专题10 分式方程及其应用(原卷版)

合集下载

中考数学压轴题专题-分式方程(解析版)

中考数学压轴题专题-分式方程(解析版)

决胜2021中考数学压轴题全揭秘精品专题05分式方程及应用【考点1】解分式方程【例1】(2020·湖南郴州·中考真题)解方程:24111x x x =+-- 【答案】x=3. 【解析】 【分析】观察可得方程最简公分母为(x 2-1),去分母,转化为整式方程求解,结果要检验. 【详解】 解:24111x x x =+-- 去分母得,2(1)41x x x +=+- 解得,x=3,经检验,x=3是原方程的根, 所以,原方程的根为:x=3. 【点睛】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要检验.【变式1-1】(2020·内蒙古通辽·中考真题)解方程:232x x=-. 【答案】6x =. 【解析】 【分析】首先去掉分母,观察可得最简公分母是x (x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解. 【详解】去分母,得()232x x =-, 去括号,得236x x =-, 移项,合并同类项,得6x -=-, 化x 的系数为1,得6x =, 经检验,6x =是原方程的根, ∴原方程的解为6x =. 【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤以及注意事项是解题的关键.【变式1-2】(2020·山东莘县·初三学业考试)解方程:214111x x x++=--. 【答案】原方程无解. 【解析】 【分析】观察可得最简公分母是(x ﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【详解】解:方程的两边同乘(x ﹣1)(x+1),得2(1)4(1)(1)x x x +-=+-,解得x=1.检验:把x=1代入(x ﹣1)(x+1)=0. 所以原方程的无解. 【点睛】本题考查解分式方程.【考点2】已知分式方程的解,求字母参数的值【例2】(2020·临潭县第二中学初三二模)若x=4是分式方程213a x x -=-的根,则a 的值为( ) A .6 B .-6C .4D .-4【答案】A 【解析】 【分析】把x =4代入方程进行求解即可. 【详解】 由题意得:24a -=143-, 解得:a =6, 故选A. 【点睛】本题考查了分式方程的解,熟练掌握分式方程解的意义是解题的关键.【变式2-1】若关于x 的分式方程1的解为x =2,则m 的值为( )A .5B .4C .3D .2【答案】B【解析】∵关于x 的分式方程1的解为x =2,∴x =m ﹣2=2, 解得:m =4. 故选:B .点睛:此题主要考查了分式方程的解,正确解方程是解题关键. 【考点3】分式方程的特殊解问题【例3】(2020·四川眉山·中考真题)关于x 的分式方程11222kx x-+=--的解为正实数,则k 的取值范围是________.【答案】2k >-且2k ≠ 【解析】 【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可. 【详解】 解:11222k x x-+=-- 方程两边同乘(x-2)得,1+2x-4=k-1, 解得22k x +=222k +≠,022k +> 2k ∴>-,且2k ≠故答案为:2k >-且2k ≠ 【点睛】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.【变式3-1】(2020·四川广元·中考真题)关于x 的分式方程2021mx +=-的解为正数,则m 的取值范围是_____________. 【答案】m<2且m≠0 【解析】 【分析】首先解方程求得方程的解,根据方程的解是正数,即可得到一个关于m 的不等式,从而求得m 的范围. 【详解】解:去分母得:m+4x-2=0, 解得:x =24m-, ∵关于x 的分式方程2021mx +=-的解是正数, ∴24m->0, ∴m<2, ∵2x-1≠0, ∴22-104m-⨯≠, ∴m≠0,∴m 的取值范围是m<2且m≠0. 故答案为:m<2且m≠0. 【点睛】本题主要考查了分式方程的解的符号的确定,正确求解分式方程是解题的关键.【变式3-2】(2020·湖北荆门·中考真题)已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( )A .正数B .负数C .零D .无法确定【答案】A 【解析】 【分析】先解出关于x 的分式方程得到x=63k-,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解. 【详解】关于x 的分式方程2322(2)(3)x kx x x +=+--+ 得x=217k -, ∵41x -<<- ∴21471k --<<- 解得-7<k <14∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x≠2且x≠-3 ∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数, 故选A . 【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法. 【考点4】分式方程的无解(增根)问题【例4】(2020·山东潍坊·中考真题)若关于x 的分式方程33122x m x x +=+--有增根,则m =_________.【答案】3. 【解析】 【分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x 的值,代入到转化以后的整式方程中计算即可求出m 的值. 【详解】解:去分母得:()332x m x =++-,整理得:21x m =+, ∵关于x 的分式方程33122x m x x +=+--有增根,即20x -=, ∴2x =,把2x =代入到21x m =+中得:221m ⨯=+,解得:3m =, 故答案为:3. 【点睛】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.【变式4-1】(2020·四川遂宁·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D 【解析】 【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m +3=0, 解得:m =﹣3, 故选:D . 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 【考点5】分式方程的应用问题【例5】(2020·吉林长春·中考真题)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤? 【答案】2万斤 【解析】 【分析】由题意设该村企去年黑木耳的年销量为x 万斤,则今年黑木耳的年销量为3x 万斤,根据单价=总价÷数量结合今年每斤黑木耳的售价比去年增加了20元,即可得出关于x 的分式方程,解之经检验后即可得出结论. 【详解】解:设该村企去年黑木耳的年销量为x 万斤 依题意得80360203x x+= 解得:2x =经检验2x =是原方程的根,且符合题意. 答:该村企去年黑木耳的年销量为2万斤. 【点睛】本题考查分式方程的应用,根据题意找准等量关系,正确列出分式方程是解题的关键.【变式5-1】(2020·江苏泰州·中考真题)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度. 【答案】75km/h 【解析】 【分析】根据题意,设走线路A 的平均速度为/xkm h ,则线路B 的速度为1.5/xkm h ,由等量关系列出方程,解方程即可得到答案. 【详解】解:设走线路A 的平均速度为/xkm h ,则线路B 的速度为1.5/xkm h ,则2563060 1.5x x-=, 解得:50x =,检验:当50x =时,1.50x ≠, ∴50x =是原分式方程的解;∴走路线B 的平均速度为:50 1.575⨯=(km/h ); 【点睛】本题考查分式方程的应用,以及理解题意的能力,解题的关键是以时间做为等量关系列方程求解.【变式5-2】(2020·贵州黔西·中考真题)“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A 型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A 型自行车去年每辆售价多少元;(2)该车行今年计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍.已知,A 型车和B 型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.【答案】(1) 2000元;(2) A 型车20辆,B 型车40辆. 【解析】 【分析】(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由卖出的数量相同列出方程求解即可; (2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值. 【详解】解:(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由题意,得8000080000(110%)200x x -=-, 解得:x=2000.经检验,x=2000是原方程的根. 答:去年A 型车每辆售价为2000元;(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由题意,得 y=a+(60﹣a ), y=﹣300a+36000.∵B 型车的进货数量不超过A 型车数量的两倍, ∴60﹣a≤2a , ∴a≥20.∵y=﹣300a+36000. ∴k=﹣300<0, ∴y 随a 的增大而减小. ∴a=20时,y 最大=30000元. ∴B 型车的数量为:60﹣20=40辆.∴当新进A 型车20辆,B 型车40辆时,这批车获利最大. 【点睛】本题考查分式方程的应用;一元一次不等式的应用.1.(2020·四川广元·中考真题)按照如图所示的流程,若输出的=6M -,则输入的m 为( )A .3B .1C .0D .-1【答案】C 【解析】 【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m 的值,从而可以解答本题. 【详解】解:当m 2-2m≥0时,661m =--,解得m=0,经检验,m=0是原方程的解,并且满足m 2-2m≥0, 当m 2-2m <0时,m-3=-6,解得m=-3,不满足m 2-2m <0,舍去. 故输入的m 为0. 故选:C . 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 2.(2020·甘肃初三一模)关于x 的分式方程2x a1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1<C .a 1<且a 2≠-D .a 1>且a 2≠【答案】D 【解析】 【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围. 【详解】分式方程去分母得:x 12x a +=+,即x 1a =-, 因为分式方程解为负数,所以1a 0-<,且1a 1-≠-, 解得:a 1>且a 2≠, 故选D . 【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.3.(2020·四川宜宾·中考真题)学校为了丰富学生的知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学书的本数相等,设文学类图书平均每本x 元,则列方程正确的是( )A .15000120008x x =- B .15000120008x x =+ C .15000120008x x =- D .15000120008x x=+ 【答案】B【解析】【分析】设文学类图书平均每本x 元,根据购买的书本数相等即可列出方程.【详解】设文学类图书平均每本x 元,依题意可得150********x x=+ 故选B .【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程.4.(2020·辽宁朝阳·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( ) A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x ⨯=⨯- 【答案】B【解析】【分析】 根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【详解】设班级共有x 名学生,依据题意列方程得,807240505x x ⨯=⨯+ 故选:B .【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.5.(2020·辽宁鞍山·中考真题)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x 个零件,所列方程正确的是( )A .2403006x x =-B .2403006x x =+C .2403006x x =-D .2403006x x=+ 【答案】B【解析】【分析】根据“甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等”,列出方程即可.【详解】解:根据题意得:2403006x x =+, 故选B .【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.6.(2020·湖北荆门·中考真题)已知关于x 的分式方程2322(2)(3)x k x x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( ) A .正数B .负数C .零D .无法确定 【答案】A【解析】【分析】先解出关于x 的分式方程得到x=63k -,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解. 【详解】关于x 的分式方程2322(2)(3)x k x x x +=+--+ 得x=217k -, ∵41x -<<-∴21471k --<<- 解得-7<k <14∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A .【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.7.(2020·重庆市教科院巴蜀实验学校)关于x 的方程1242k x x x -=--的解为正数,则k 的取值范围是( )A .4k >-B .4k <C .4k >-且4k ≠D .4k <且4k ≠- 【答案】C【解析】【分析】先对分式方程去分母,再根据题意进行计算,即可得到答案.【详解】解:分式方程去分母得:(24)2k x x --=, 解得:44k x +=, 根据题意得:404k +>,且424k +≠, 解得:4k >-,且4k ≠.故选C .【点睛】本题考查分式方程,解题的关键是掌握分式方程的求解方法.8.(2018·四川巴中·中考真题)若分式方程231222x a x x x x -+=--有增根,则实数a 的取值是( ) A .0或2B .4C .8D .4或8【答案】D【解析】【分析】先把分式方程化为整式方程,确定分式方程的增根,代入计算即可.【详解】解:方程两边同乘x (x ﹣2),得3x ﹣a+x=2(x ﹣2),由题意得,分式方程的增根为0或2,当x=0时,﹣a=﹣4,解得,a=4,当x=2时,6﹣a+2=0,解得,a=8,故选D .【点睛】本题考查的是分式方程的增根,增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.9.(2020·山东济南·中考真题)代数式31x -与代数式23x -的值相等,则x =_____. 【答案】7【解析】【分析】根据题意列出分式方程,去分母,解整式方程,再检验即可得到答案.【详解】 解:根据题意得:3213x x =--, 去分母得:3x ﹣9=2x ﹣2,解得:x =7,经检验x =7是分式方程的解.故答案为:7.【点睛】本题考查的是解分式方程,掌握分式方程的解法是解题的关键.10.(2020·内蒙古呼和浩特·中考真题)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【解析】【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解.【详解】解:∵()222x x x x -=-, ∴分式22x x -与282x x -的最简公分母是()2x x -, 方程228122-=--x x x x , 去分母得:()2282x x x -=-, 去括号得:22282x x x -=-,移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4.【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法.11.(2020·广东广州·中考真题)方程3122x x x =++的解是_______. 【答案】32【解析】【分析】根据分式方程的解法步骤解出即可.【详解】 3122x x x =++ 左右同乘2(x +1)得: 2x =3解得x =32.经检验x =32是方程的跟. 故答案为: 32. 【点睛】本题考查解分式方程,关键在于熟练掌握分式方程的解法步骤.12.(2020·黄冈市启黄中学初三二模)关于x 的分式方程21311x a x x --=--的解为非负数,则a 的取值范围为_______.【答案】4a ≤且3a ≠【解析】【分析】 根据解分式方程的方法和方程21311x a x x --=--的解为非负数,可以求得a 的取值范围. 【详解】 解:21311x a x x--=--, 方程两边同乘以1x -,得()2131x a x -+=-,去括号,得2133x a x -+=-,移项及合并同类项,得4x a =-,关于x 的分式方程21311x a x x--=--的解为非负数,10x -≠, ∴()40410a a -≥⎧⎨--≠⎩, 解得,4a ≤且3a ≠,故答案为:4a ≤且3a ≠.【点睛】本题主要考查根据分式方程的根求解参数,难度系数稍微有点大,但是是必考点.13.(2020·山东乐陵·初三二模)若关于x 的分式方程333x a x x+--=2a 无解,则a 的值为_____.【答案】1或12【解析】 分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.详解:去分母得:x-3a=2a (x-3),整理得:(1-2a )x=-3a ,当1-2a=0时,方程无解,故a=12; 当1-2a≠0时,x=312a a --=3时,分式方程无解, 则a=1,故关于x 的分式方程333x a x x +-+=2a 无解,则a 的值为:1或12. 故答案为1或12. 点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键. 14.(2020·四川内江·中考真题)若数a 使关于x 的分式方程2311x a x x ++=--的解为非负数,且使关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤,则符合条件的所有整数a 的积为_____________ 【答案】40【解析】【分析】根据分式方程的解为正数即可得出a ≤5且a≠3,根据不等式组的解集为0y ≤,即可得出a>0,找出0<a ≤5且a≠3中所有的整数,将其相乘即可得出结论.【详解】 解:分式方程2311x a x x ++=--的解为x=52a -且x≠1, ∵分式方程2311x a x x++=--的解为非负数, ∴502a -≥且52a -≠1. ∴a ≤5且a≠3.()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩①② 解不等式①,得0y ≤.解不等式②,得y<a.∵关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤, ∴a>0.∴0<a ≤5且a≠3.又a 为整数,则a 的值为1,2,4,5.符合条件的所有整数a 的积为124540⨯⨯⨯=.故答案为:40.【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为0y ≤,找出a 的取值范围是解题的关键.15.(2020·黑龙江大庆·中考真题)解方程:24111x x x -=-- 【答案】3【解析】【分析】去分母化成整式方程,求出x 后需要验证,才能得出结果;【详解】 24111x x x -=--, 去分母得:214x x -+=,解得:3x =.检验:把3x =代入1x -中,得-=-=≠13120x ,∴3x =是分式方程的根.【点睛】本题主要考查了分式方程的求解,准确计算是解题的关键.16.(2020·陕西中考真题)解分式方程:2312xx x--=-.【答案】x=45.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:方程2312xx x--=-,去分母得:x2﹣4x+4﹣3x=x2﹣2x,移项得:-5x=-4,系数化为1得:x=45,经检验x=45是分式方程的解.【点睛】本题考查了解分式方程.利用了转化的思想,解分式方程要注意检验.17.(2020·湖南中考真题)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G 下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?【答案】该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.【解析】【分析】首先设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据题意可得等量关系:4G 下载600兆所用时间﹣5G下载600兆所用时间=140秒.然后根据等量关系,列出分式方程,再解即可.【详解】解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,由题意得:600x﹣60015x=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15x =15×4=60,答:该地4G 的下载速度是每秒4兆,则该地5G 的下载速度是每秒60兆.【点睛】本题主要考察的是分式方程的应用;解答此题,首先确定5G 与4G 下载的速度关系,在根据题意找出下载600兆的公益片所用时间的等量关系,是解答此题的关键.18.(2020·辽宁丹东·中考真题)为帮助贫困山区孩子学习,某学校号召学生自愿捐书,已知七、八年级同学捐书总数都是1800本,八年级捐书人数比七年级多150人,七年级人均捐书数量是八年级人均捐书数量的1.5倍,求八年级捐书人数是多少?【答案】八年级捐书人数是450人.【解析】【分析】设七年级捐书人数为x ,则八年级捐书人数为(x+150),根据七年级人均捐书数量是八年级人均捐书数量的1.5倍,列出方程求解并检验即可.【详解】设七年级捐书人数为x ,则八年级捐书人数为(x+150),根据题意得,180018001.5150x x=⨯+, 解得,300x =,经检验,300x =是原方程的解,∴ x+150=400+150=450,答:八年级捐书人数是450人.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程求解并检验.19.(2020·山东淄博·中考真题)如图,著名旅游景区B 位于大山深处,原来到此旅游需要绕行C 地,沿折线A→C→B 方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从A 地到景区B的笔直公路.请结合∠A =45°,∠B =30°,BC =100≈1.4≈1.7等数据信息,解答下列问题: (1)公路修建后,从A 地到景区B 旅游可以少走多少千米?(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加25%,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?【答案】(1)从A地到景区B旅游可以少走35千米;(2)施工队原计划每天修建0.14千米.【解析】【分析】【详解】解:(1)过点C作AB的垂线CD,垂足为D,在直角△BCD中,AB⊥CD,sin30°=CDBC,BC=1000千米,∴CD=BC•sin30°=100×=50(千米),BD=BC•cos30°=100×=50(千米),在直角△ACD中,AD=CD=50(千米),AC==50(千米),∴AB=50+50(千米),∴AC+BC﹣AB=50+100﹣(50+50)=50+50﹣50≈35(千米).答:从A地到景区B旅游可以少走35千米;(2)设施工队原计划每天修建x千米,依题意有,﹣=50,解得x=0.14,经检验x=0.14是原分式方程的解.答:施工队原计划每天修建0.14千米.(1)过点C作AB的垂线CD,垂足为D,在直角△BCD中,解直角三角形求出CD的长度和BD的长度,在直角△ACD中,解直角三角形求出AD的长度和AC的长度,再求出AB的长度,进而求出从A地到景区B旅游可以少走多少千米;(2)本题先由题意找出等量关系即原计划的工作时间﹣实际的工作时间=50,然后列出方程可求出结果,最后检验并作答.20.(2020·湖北恩施·中考真题)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等. (1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【答案】(1)购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.【解析】【分析】(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x-20)元,根据用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买m 个A 品牌足球,则购买(90−m )个B 品牌足球,根据总价=单价×数量结合总价不超过8500元,以及A 品牌足球的数量不小于B 品牌足球数量的2倍,即可得出关于m 的一元一次不等式组,解之取其中的最小整数值即可得出结论.【详解】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x-20)元,根据题意,得 90072020x x =- 解得:x=100经检验x=100是原方程的解x-20=80答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元.(2)设购买m 个A 品牌足球,则购买(90−m )个B 品牌足球,则W=100m+80(90-m)=20m+7200∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元. ∴()2072008500290m m m +≤⎧⎨≥-⎩解不等式组得:60≤m ≤65所以,m的值为:60,61,62,63,64,65即该队共有6种购买方案,当m=60时,W最小m=60时,W=20×60+7200=8400(元)答:该队共有6种购买方案,购买60个A品牌30个B 品牌的总费用最低,最低费用是8400元.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.。

(完整版)分式方程及其应用(习题及答案)

(完整版)分式方程及其应用(习题及答案)

八年级数学上册 分式方程及其应用(习题)班级 姓名➢ 例题示范例1:解分式方程:11322x x x-=---. 【过程书写】1(1)3(2)1136242x x x x x x =----=-+-+==解:检验:把x =2代入原方程,不成立 ∴x =2是原分式方程的增根 ∴原分式方程无解例2:八年级(1)班学生周末乘汽车到游览区游览,游览区距学校120km .一部分学生乘慢车先行,出发0.5h 后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.2倍,求慢车的速度. 【思路分析】 列表梳理信息:【过程书写】解:设慢车的速度为x km/h ,则快车的速度为1.2x km/h ,由题意得,1201200.51.2x x =-解得,x =40 经检验:x =40是原方程的解,且符合题意 答:慢车的速度是40km/h .➢ 巩固练习1. 下列关于x 的方程,其中不属于分式方程的是( )A .1a b a x a ++=B .x a b x b a +=-11C .b x a a x 1-=+D .1=-+++-nx mx m x n x 2. 解分式方程2236111x x x +=+--分以下四步,其中错误的一步是( ) A .方程两边分式的最简公分母是(1)(1)x x -+B .方程两边都乘以(1)(1)x x -+,得整式方程: 2(1)3(1)6x x -++=C .解这个整式方程,得1x =D .原方程的解为1x =3. 张老师和李老师同时从学校出发,骑行15千米去县城购买书籍.已知张老师比李老师每小时多走1千米,结果比李老师早到半小时,则两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意可列方程为( )A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=- 4. 若方程61(1)(1)1mx x x -=+--有增根,则m =_________. 5. 如果解关于x 的分式方程1134x m x x +-=-+出现了增根,那么增根是________.6. 解分式方程: (1)43(1)1x x x x +=--; (2)22(1)23422x x x x +=+--+;(3)23112x x x x -=+--; (4)11222x x x-=---.7.某服装厂设计了一款新式夏装,想尽快制作8 800件投入市场.已知该服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2倍.A,B 两车间共同完成一半的生产任务后,A车间因出现故障而停产,剩下的全部由B车间单独完成,结果前后共用了20天完成全部生产任务.则A,B两车间每天分别能加工多少件该款夏装?【思路分析】列表梳理信息:【过程书写】8.某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但是单价贵了4元.商厦销售这种衬衫时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?【思路分析】列表梳理信息:【过程书写】附加题:1. 解分式方程:(1)2115225x x x ++=--;(2)100602020x x=+-;(3)3201(1)x x x x +-=--;(4)2216124x x x ++=---;(5)2236111x x x +=+--; (6)2221114268x x x x x +-=----+.【参考答案】 ➢ 巩固练习1. C2. D3. B4. 35.x =36. (1)x =2(2) (3)无解 (4)无解7. A 车间每天能加工384件该款夏装B 车间每天能加工320件该款夏装 8. 商厦共盈利90 260元附加题;1. (1)(2)(3)无解 (4)无解 (5)无解 (6)x =143x =43x =5x =。

2023学年八年级数学上册高分突破必练专题(人教版)分式方程应用(四大类型)(原卷版)

2023学年八年级数学上册高分突破必练专题(人教版)分式方程应用(四大类型)(原卷版)

分式方程应用(四大类型)类型一:行程问题类型二:工程问题类型三:销售问题类型四:方案问题【类型一:行程问题】【典例1】(2020秋•安丘市期末)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.【变式1-1】(2012•山西模拟)列方程或方程组解应用题:为响应低碳号召,肖老师上班的交通方式由自驾车改为骑自行车,肖老师家距学校15千米,因为自驾车的速度是骑自行车速度的4倍,所以肖老师每天比原来早出发45分钟,才能按原时间到校,求肖老师骑自行车每小时走多少千米.【变式1-2】(2020秋•白云区期末)一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地,求前一小时的行驶速度.【变式1-3】(2021•扬州模拟)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.【类型二:工程问题】【典例2】(2022春•瑶海区期末)某建工集团下有甲、乙两个工程队,现中标承建一段公路,若甲、乙两工程队合做20天可完成;若让两队合做15天后,剩下的工程由甲队独做,还需15天才能完成.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费10000元,乙工程队施工每天需付施工费26000元,此项工程若由甲工程队先独做若干天后,乙工程队再加入共同完成剩下的工程,则甲工程队至少要独做多少天,才能使施工费不超过680000元?【变式2-1】(2022•桂林模拟)为了进一步丰富市民的休闲生活,某区政府决定在漓江沿岸扩建5400米绿道并进行招标,根据招标结果,该工程由甲、乙两个工程队参与建设.已知:甲工程队每天完成的工程量是乙队的1.2倍,甲队单独完成工程比乙队单独完成少用10天.(1)求乙队每天能完成多少米?(2)若甲、乙两个工程队合作20天后,剩余工程由乙工程队单独完成,求乙工程队还需多少天?【变式2-2】(2022•玉州区一模)为美化小区环境,物业计划安排甲、乙两个工程队完成小区绿化工作.已知甲工程队每天绿化面积是乙工程队每天绿化面积的2倍,甲工程队单独完成600m2的绿化面积比乙工程队单独完成600m2的绿化面积少用2天.(1)求甲、乙两工程队每天绿化的面积分别是多少m2;(2)小区需要绿化的面积为9600m2,物业需付给甲工程队每天绿化费为0.3万元,付给乙工程队每天绿化费为0.2万元,若要使这次的绿化总费用不超过12万元,则至少应安排甲工程队工作多少天?【类型三:销售问题】【典例3】(2022春•大观区校级期末)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?【变式3-1】(2022春•普宁市期末)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次性购进这两种家电共100台,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,一共有多少种合理的购买方案?【变式3-2】(2022春•市南区期末)某中学举办了以“童心绘未来”为主题绘画比赛.学校计划购买A、B两种学习用品奖励获奖同学,已知购买一个A种学习用品比购买一个B 种学习用品多用20元,若用400元购买A种学习用品的数量是用160元购买B种学习用品数量的一半.(1)求A、B两种学习用品每件多少元?(2)商店给该校购买一个A种学习用品赠送一个B种学习用品的优惠,如果该校需要B 种学习用品的个数是A种学习用品个数的2倍还多8个,且该校购买A、B两种奖品的总费用不超过670元,那么该校最多可购买多少个A种学习用品?【类型四:方案问题】【典例4】(2021春•花都区校级月考)学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【变式4-1】(2021春•龙华区校级期中)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?【变式4-2】(2021•郴州)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A 奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?1.(2021•张家界模拟)为创建国家级生态市,遵义市政府决定对市区周边水域的水质进行改善,这项工程由甲、乙两个工程队承包.已知甲工程队每天的施工量是乙工程队的3倍,若先让乙工程队单独施工14天后甲工程队加入,甲、乙两个工程队合作4天后,可完成总工程的.(1)求甲工程队单独完成这项工程需要多少天;(2)甲工程队每天需支付的工程款为10万元,乙工程队每天需支付的工程款为3万元,若工程费用不超过190万元,则甲工程队最多工作多少天?2.(2021•长沙模拟)《三湘都市报》华声在线2月21日讯,在长沙市岳麓区麓景路与梅溪湖路的交汇处,一条穿过桃花岭公园连接含浦片区与梅溪湖片区的麓景路隧道正在加紧施工当中.从隧道中运输挖出土方,其中每辆大货车运输的土方比每辆小货车多8立方米,大货车运120立方米与小货车运80立方米车辆数相同.(1)求大货车与小货车每辆各运输土方多少立方米?(2)总共有大小货车共20辆,每天需运出432立方米泥土,大小货车各需要多少辆?3.(2020秋•仓山区校级期末)某段铁路全长2400千米,经过铁路技术改造,列车实现第一次提速,已知提速后比提速前速度增加了20%,行驶全程所需时间减少了4小时.(1)求列车提速前的速度;(2)现将铁路全长延伸至3000千米,且要继续缩短行驶全程所需的时间,则列车需再次提速,设提速百分比为m,已知列车在现有条件下安全行驶的速度不应超过180千米/每小时,求m的取值范围.4.(2021•昆明模拟)受新冠肺炎疫情影响,口罩、体温计、消毒液等一度紧缺,某药店用3200元采购一批耳温计(测量体温的),上市后发现供不应求,很快销售完了,该药店又去采购第二批同样的耳温计,进货价比第一批贵了5元,该店用了9900元,所购数量是第一批的3倍.(1)求第一批采购的耳温计单价是多少元?(2)若该药店按每个耳温计的售价为210元,销售光这两批耳温计,总共获利多少元?5.(2021春•埇桥区期末)开学初,学校要补充部分体育器材,从超市购买了一些排球和篮球.其中购买排球的总价为1000元,购买篮球的总价为1600元,且购买篮球的数量是购买排球数量的2倍.已知购买一个排球比一个篮球贵20元.种类标价优惠方案A品牌足球150元/个八折B品牌足球100元/个九折(1)求购买排球和篮球的单价各是多少元;(2)为响应“足球进校园”的号召,学校计划再购买50个足球.恰逢另一超市对A、B 两种品牌的足球进行降价促销,销售方案如表所示.如果学校此次购买A、B两种品牌足球的总费用不超过5000元.那么最多可购买多少个A品牌足球?6.(2020秋•天心区期末)明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?。

分式方程应用题(公开课课件)(多场合)

分式方程应用题(公开课课件)(多场合)

分式方程应用题(公开课课件)(多场合)分式方程应用题(公开课课件)一、分式方程概述分式方程是指方程中含有分式的方程,通常形式为$\frac{A(x)}{B(x)}=0$,其中$A(x)$和$B(x)$是多项式函数,且$B(x)$不恒为零。

分式方程在数学、物理、工程等领域有着广泛的应用。

解分式方程的关键是找到方程的定义域,然后通过化简、通分等操作将分式方程转化为整式方程,进而求解。

二、分式方程应用实例1.求解实际问题中的分式方程例1:某工厂生产甲、乙两种产品,甲产品每件利润为100元,乙产品每件利润为200元。

若工厂总共生产了100件产品,且甲、乙两种产品的利润之比为2:3,求甲、乙两种产品各生产了多少件?$$\begin{cases}x+y=100\\\frac{100x}{200y}=\frac{2}{3}\end{cases}将第二个方程两边同时乘以$600y$,得:$$300x=400y$$化简得:$$x=\frac{4}{3}y$$将$x=\frac{4}{3}y$代入第一个方程,得:$$\frac{4}{3}y+y=100$$化简得:$$y=60$$代入$x=\frac{4}{3}y$,得:$$$$答:甲产品生产了80件,乙产品生产了60件。

2.求解几何问题中的分式方程例2:已知直角三角形的两条直角边长度之比为3:4,斜边长度为5,求两条直角边的长度。

$$(3x)^2+(4x)^2=5^2$$化简得:$$9x^2+16x^2=25$$合并同类项,得:$$25x^2=25$$解得:x^2=1$$取正数解,得:$$x=1$$答:直角三角形的两条直角边长度分别为3和4。

三、总结分式方程在解决实际问题和几何问题中具有重要作用。

通过找到方程的定义域,将分式方程转化为整式方程,进而求解,可以解决很多实际问题。

掌握分式方程的解法,有助于提高数学思维能力和解决问题的能力。

在上述的分式方程应用题中,有一个细节需要重点关注,那就是在求解实际问题中的分式方程时,如何将实际问题转化为数学模型,以及如何处理方程中的分式,使其成为可以求解的形式。

2023学年人教中考数学重难点题型分类必刷题 专题10 分式与分式方程压轴题真题(含详解)

2023学年人教中考数学重难点题型分类必刷题 专题10 分式与分式方程压轴题真题(含详解)

专题10 分式与分式方程压轴题真题-高分必刷题(原卷版)专题简介:本份资料包含《分式与分式方程》这一章在各次月考、期末中的主流压轴题,所选题目源自各名校月考、期末试题中的典型考题,本专题资料适合于培训机构的老师培养尖子生时使用或者学生想挑战高分时刷题使用。

题型一:分式方程的无解问题1. (长郡)(1)若关于x 的方程933312-+=++-x kx k x 无解,求k 的值; (2)若 n 是自然数,关于 x 的分式方程122=-+++xnx n x 的解为t ,且t t =,求n t -+)1(的值。

2.(中雅)对于平面直角坐标系中的点(),P a b ,若点'P 的坐标为,a a kb b k ⎛⎫++ ⎪⎝⎭(其中k 为常数,且0k ≠)则称点'P 为点P 的“k 系雅培点”。

例如:()3,2P 的“3系雅培点”为3'332,23P ⎛⎫+⨯+ ⎪⎝⎭,即()'9,3P 。

(1)点()6,1P 的“2系雅培点”'P 的坐标为 ;(2)若点P 在y 轴的正半轴上,点P 的“k 系雅培点”为'P 点,若在△'OPP 中,'2PP OP =,求k 的值; (3)已知点(),A x y 在第四象限,且满足12xy =-。

点A 是点(),B m n 的“3-系雅培点”,若分式方程31813412m n cx x x -+-=--无解,求c 的值。

3.(师大)已知,关于x 的分式方程1235b x x a x--=+-.(1)当a =1,b =0时,求分式方程的解;(2)当a =1时,求b 为何值时分式方程1235b x x a x--=+-无解; (3)若a =3b ,且a 、b 为正整数,当分式方程1235b x x a x--=+-的解为整数时,求b 的值.题型二:分式的分子有理化类压轴题4. (青竹湖)阅读下列材料:我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+、21x x -这样的分式就是假分式,再如:31x +、221x x +这样的分式就是真分式,类似地,假分式也可以化为带分式.如:()12121111x x x x x +--==-+++. 解决下列问题:(1)分式2x 是 (填“真分式”或“假分式”); 假分式12x x -+可化为带分式 的形式;(2)如果分式51x x +-的值为整数,求满足条件的整数x 的值;(3)求分式226612x x x x ++++的最值。

中考数学复习专题综合过关检测—分式方程及应用(含解析)

中考数学复习专题综合过关检测—分式方程及应用(含解析)

中考数学复习专题综合过关检测—分式方程及应用(含解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。

1.(2023•天涯区一模)把分式方程﹣=1化为整式方程正确的是()A.1﹣(1﹣x)=1B.1+(1﹣x)=1C.1﹣(1﹣x)=x﹣2D.1+(1﹣x)=x﹣2【答案】D【解答】解:方程变形得:+=1,去分母得:1+(1﹣x)=x﹣2,故选:D.2.(宝应县二模)初三(1)班在今年的植树节领有平均每人植树6棵的任务,如果只由女同学完成,每人应植树15棵,如果只由男同学完成,每人应植树的棵数为()A.9B.10C.12D.14【答案】B【解答】解:设单独由男生完成,每人应植树x棵.那么根据题意可得出方程:,解得:x=10.检验得x=10是方程的解.因此单独由男生完成,每人应植树10棵.故选:B.3.(2023•邵阳县一模)分式方程=的解是()A.x=3B.x=﹣1C.x=1D.x=﹣3【答案】D【解答】解:去分母得,3(x+1)=2x,去括号得,3x+3=2x,移项得,x=﹣3,检验:把x=﹣3代入x(x+1)=﹣3(﹣3+1)=6≠0,∴x=﹣3是原方程的解,故选:D.4.(2023•武威三模)在创建文明城市的进程中,某市为美化城市环境,计划种植树木50万棵,由于志愿者的加入,实际每天植树比原计划多30%,结果提前2天完成任务,设原计划每天植树x万棵,由题意得到的方程是()A.B.C.D.【答案】A【解答】解:由题意可得,=2,故选:A.5.(2023•龙江县校级三模)若关于x的分式方程无解,则a的值为()A.0B.1C.﹣1或0D.0或1【答案】D【解答】解:,方程两边同时乘以x﹣2,得1﹣a=2ax﹣4a,移项、合并同类项,得2ax =3a +1,∵方程无解,∴2a =0或=2,解得a =0或a =1.故选:D .6.(2023•环翠区一模)若关于x 的分式方程﹣1=有增根,则a 的值为()A .﹣3B .3C .2D .﹣【答案】A【解答】解:方程两边都乘以(x ﹣2)得:6﹣(x ﹣2)=﹣ax ,解得:x =,∵方程有增根,∴x ﹣2=0,∴x =2,∴=2,解得:a =﹣3.故选:A .7.(2023•东港区校级三模)某班级为做好疫情防控,班委会决定拿出班费中的a 元给同学们购买口罩,由于药店对学生购买口罩每包优惠2元,结果比原计划多买了5包口罩.设原计划购买口罩x 包,则依题意列方程为()A .B .C .D .【答案】B【解答】解:设原计划购买口罩x 包,则实际购买口罩(x +5)包,依题意得:=+2.故选:B.8.(2023•吴桥县校级模拟)“若关于x 的方程无解,求a的值.”尖尖和丹丹的做法如下:尖尖:去分母得:ax=12+3x﹣9,移项得:ax﹣3x=12﹣9,合并同类项得:(a﹣3)x=3,∵原方程无解,∴a﹣3=0,∴a=3.丹丹:去分母得:ax=12+3x﹣9,移项,合并同类项得:(a﹣3)x=3,解得:x=,∵原方程无解,∴x为增根,∴3x﹣9=0,解得x=3,∴=3,解得a=4.下列说法正确的是()A.尖尖对,丹丹错B.尖尖错,丹丹对C.两人都错D.两人的答案合起来才对【答案】D【解答】解:去分母得:ax=12+3x﹣9,移项,合并同类项得:(a﹣3)x=3,∵原方程无解,∴x为增根或a﹣3=0,当3x﹣9=0,解得x=3,此时=3,解得a=4;当a﹣3=0,解得a=3;综上所述:a的值为3或4,故选:D.9.(2023•义乌市模拟)若分式的值为1,则x的值是()A.5B.4C.3D.1【答案】A【解答】解:根据题意得:=1,去分母得:x﹣2=3,解得:x=5,检验:把x=5代入得:x﹣2≠0,∴分式方程的解为x=5.故选:A.10.(2023•黄埔区校级二模)在正数范围内定义一种运算“※”,其规定则为a※b=,如2※4=,根据这个规则,则方程3※(x+1)=1的解为()A.B.1C.﹣1D.﹣【答案】A【解答】解:由题意得:3※(x+1)=.∵3※(x+1)=1,∴.∴x+1+3=3(x+1).∴x+4=3x+3.∴﹣2x=﹣1.∴x=.当x=时,3(x+1)≠0.∴这个方程的解为x=.故选:A.二、填空题(本题共6题,每小题2分,共12分)11.(2023•柳州三模)分式方程的解是x=﹣2.【答案】x=﹣2.【解答】解:,方程两边都乘x(x﹣3),得2(x﹣3)=5x,解得:x=﹣2,检验:当x=﹣2时,x(x﹣3)≠0,所以x=﹣2是分式方程的解.故答案为:x=﹣2.12.(2023•梁山县模拟)“孔子周游列国”是流传很广的故事.有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院,设学生步行的速度为每小时x里,则可列方程为.【答案】.【解答】解:设学生步行的速度为每小时x里,则牛车的速度是每小时1.5x里,∵学生早出发1小时,孔子和学生们同时到达书院,∴,故答案为:.13.(2023•建湖县一模)关于x的分式方程=2的解为正数,则a的取值范围是a<4且a≠2.【答案】a<4且a≠2.【解答】解:去分母得:1﹣(a﹣1)=2(x﹣1),解得:x=2﹣a,由分式方程的解为正数,得到2﹣a>0,且2﹣a≠1,解得:a<4且a≠2,故答案为a<4且a≠2.14.(2023•盐田区二模)当x=﹣8时,分式的值为2.【答案】﹣8.【解答】解:根据题意得:=2,去分母得:x﹣2=2(x+3),解得:x=﹣8,检验:把x=﹣8代入得:x+3≠0,∴分式方程的解为x=﹣8,则当x=﹣8时,分式的值为2.故答案为:﹣8.15.(2023•市北区三模)甲、乙两人同时从学校出发,去距离学校15千米的农场参加劳动.甲的速度是乙的1.2倍,结果甲比乙早到10分钟,求甲和乙的速度各是多少?设乙的速度为x千米/小时,则根据题意可列方程为.【答案】.【解答】解:设乙的速度为x千米/小时,则甲的速度为1.2x千米/小时,根据题意得:.故答案为:.16.(2023•九龙坡区校级模拟)若关于x的不等式组有且仅有四个整数解,关于y的分式方程+=1有整数解,则符合条件的所有整数a的和是﹣10.【答案】﹣10,【解答】解:关于x的不等式组整理得,∵关于x的不等式组有且仅有四个整数解,∴1≤<2,∴﹣8<a≤﹣3,解分式方程得y=且≠2,∵关于y的分式方程有整数解,且a为整数,∴符合条件的所有整数a为﹣7,﹣3,∴符合条件的所有整数a的和为:﹣7﹣3=﹣10.故答案为:﹣10.三、解答题(本题共7题,共58分)。

八年级数学上册满分直通车必练试卷(人教版)分式(满分突破)(解析版)

八年级数学上册满分直通车必练试卷(人教版)分式(满分突破)(解析版)

【满分秘诀】专题10 分式(满分突破)1.已知m2﹣4m+1=0,则=.【答案】4【解答】解:∵m2﹣4m+1=0,∴m﹣4+=0,∴m+=4,故答案为:4.2.若关于x的分式方程无解,则a的值为()A.a=1B.a=2C.a=3D.a=4【答案】A【解答】解:去分母得:x﹣4=a,解得:x=a+4,∵分式方程无解,∴x﹣5=0,∴x=5,∴a+4=5,解得a=1.故选:A.3.已知关于x的分式方程的解为正数,则m的取值范围是()A.m≥﹣4B.m≥﹣4且m≠﹣3C.m>﹣4 D.m>﹣4且m≠﹣3【答案】D【解答】解:,去分母,得m+3=2x﹣1.移项,得2x=m+3+1.合并同类项,得2x=m+4.x的系数化为1,得x=.∵关于x的分式方程的解为正数,∴>0且≠.∴m>﹣4且m≠﹣3.故选:D.4.若分式方程有增根,则m的值是()A.4B.1C.﹣1D.﹣3【答案】B【解答】解:∵分式方程有增根,∴可判断增根为使得分母为0的x的值,即x=4;分式方程两边同时乘以(x﹣4),得3﹣x+m=(x﹣4),整理得m=2x﹣7,当x=4时,m=2×4﹣7=1.故选B.5.若关于x的分式方程有增根,则m的值为()A.2B.3C.4D.5【答案】A【解答】解:,去分母,得x﹣1=5(x﹣3)+m.去括号,得x﹣1=5x﹣15+m.移项,得x﹣5x=﹣15+m+1.合并同类项,得﹣4x=﹣14+m.x的系数化为1,得x=.∵关于x的分式方程有增根,∴=3.∴m=2.故选:A.6.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A.B.C.D.【答案】B【解答】解:李老师所用时间为:,张老师所用的时间为:.所列方程为:﹣=.故选:B.7.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为()A.+=B.﹣=C.+10=D.﹣10=【答案】B【解答】解:设小军骑车的速度为x千米/小时,则小车速度是2x千米/小时,由题意得,﹣=.故选:B.8.若关于x的方程无解,则a的值是.【答案】﹣1或2.【解答】解:,去分母,得2=ax+x﹣1.移项,得ax+x=2+1.合并同类项,得(a+1)x=3.∵关于x的方程无解,∴a+1=0或.∴a=﹣1或a=2.故答案为:﹣1或2.9.已知关于x的分式方程=1的解是非正数,则a的取值范围是.【答案】a≤﹣1且a≠﹣2【解答】解:去分母,得a+2=x+1,解得:x=a+1,∵x≤0,x+1≠0,∴a+1≤0,x≠﹣1,∴a≤﹣1,a+1≠﹣1,∴a≠﹣2,∴a≤﹣1且a≠﹣2.故答案为:a≤﹣1且a≠﹣2.10.如果记y==f(x),并且f(1)表示当x=1时y的值,即f(1)==;f()表示当x=时y的值,即f()==,那么f(1)+f(2)+f()+f(3)+f()+…+f(n)+f()=.(结果用含n的代数式表示,n为正整数).【答案】n+【解答】解:∵f(1)==;f()==,f(2)==;∴f(1)+f(2)+f()=+1=2﹣.故f(1)+f(2)+f()+f(3)+f()+…+f(n)+f()=+1+1+…+1=.(n 为正整数),解法二:由题意f(2)+f()=1,f(3)+f()=1,f(n)+f()=1,∴(1)+f(2)+f()+f(3)+f()+…+f(n)+f()=+1+1+…+1=n﹣.11.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),解得y≥150.12.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?【解答】解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.13.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?【解答】解:设乙同学的速度为x米/秒,则甲同学的速度为1.2x米/秒,根据题意,得,解得x=2.5.经检验,x=2.5是方程的解,且符合题意.∴甲同学所用的时间为:(秒),乙同学所用的时间为:(秒).∵26>24,∴乙同学获胜.答:乙同学获胜.14.通惠新城开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.【解答】解:(1)设甲队单独完成这项目需要x天,则乙队单独完成这项工程需要2x天,(1分)根据题意,得(4分)解得x=30(5分)经检验,x=30是原方程的根,则2x=2×30=60(6分)答:甲、乙两队单独完成这项工程各需要30天和60天.(7分)(2)设甲、乙两队合作完成这项工程需要y天,则有,解得y=20(9分)需要施工费用:20×(0.67+0.33)=20(万元)(10分)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.。

分式方程及其应用(含答案)

分式方程及其应用(含答案)

分式方程及其应用【中考真题】【2019葫芦岛】某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A.300x−300x+2=5B.3002x−300x=5C.300x−3002x=5D.300x+2−300x=5基础知识过关1.___________的方程叫做分式方程;2.解分式方程的基本思想是把分式方程化为______;3.分式方程的增根是使______为零的未知数的值,增根是在___的过程中产生的;4.因为可能有增根的产生,因此分式方程的相关问题一定要注意______.透析考纲分式方程及其应用是中考的必考内容之一,一般着重考查解分式方程及列分式方程解应用题,并要求会用增根的意义解题,考题常以解答题的形式出现,有时也会出现在选择题和填空题中.精选好题【考向01】分式方程的相关概念【试题】【2019鸡西】已知关于x 的分式方程2x−m x−3=1的解是非正数,则m 的取值范围是( )A .m ≤3B .m <3C .m >–3D .m ≥–3【好题变式练】1.下列各式中是分式方程的是( )A .1xB .x 2+1=yC .x2+1=0D .1x−1=22.【2019宿迁】关于x 的分式方程1x−2+a−22−x=1的解为正数,则a 的取值范围是_____.【考向02】分式方程的解法【试题】【2019益阳】解分式方程x2x−1+21−2x=3时,去分母化为一元一次方程,正确的是( ) A .x +2=3B .x –2=3C .x –2=3(2x –1)D .x +2=3(2x –1)解题关键本考点主要考查分式方程的相关概念:分式方程的定义及特征、分式方程的解,均为基础知识的考查,难度不大,一般以选择题或填空题的形式出现.要点归纳分式方程的特征:(1)方程中含有分母;(2)分母中含有未知数.分式方程的解:使分式方程左右两边相等的未知数的值叫做分式方程的解(也叫做分式方程的根).【好题变式练】1.【2019淄博】解分式方程1−x x−2=12−x−2时,去分母变形正确的是( )A .–1+x =–1–2(x –2)B .1–x =1–2(x –2)C .–1+x =1+2(2–x )D .1–x =–1–2(x –2)2.【2019宁夏】解方程:2x+2+1=xx−1.【考向03】分式方程的增根【试题】【2019烟台】若关于x 的分式方程3xx−2−1=m+3x−2有增根,则m 的值为_____.解题技巧代数式的书写规范属于基础知识的考查,解题的关键是掌握相关的书写规则并在日常书写代数式时引起足够重视,严格按规则书写即可.要点归纳解分式方程的步骤:(1)去分母:在方程的两边同时乘以最简公分母,把分式方法转化为整式方程; (2)解这个整式方程;(3)检验:把一元一次方程的根代入所乘的最简公分母中,看结果是否为0; (4)写出原分式方程的解.【好题变式练】1.若分式方程3x−ax 2−2x+1x−2=2x有增根,则实数a 的取值是( )A .0或2B .4C .8D .4或82.当m =_____时,解分式方程x−5x−3=m 3−x会出现增根.【考向04】分式方程的应用【试题】【2019湘潭】现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程为( )A .120x−20=90x B .120x+20=90xC .120x=90x−20D .120x=90x+20解题技巧分式方程的增根问题属于分式方程中的重点、难点问题,在涉及到分式方程的相关问题时,一定要注意检验,同时要清楚分式方程增根产生的原因,从而解决与增根有关的问题.要点归纳分式方程的增根:在去分母,将分式方程转化为整式方程的过程中出现的不适合于原方程的根. 增根产生的原因:分式方程两边同乘以一个零因式后,所得的根是整式方程的根,而不是分式方程的根.【好题变式练】1.【2019辽阳】某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x 公里,根据题意列出的方程正确的是( )A .60×(1+25%)x −60x=60 B .60x −60×(1+25%)x =60C .60(1+25%)x−60x=60 D .60x−60(1+25%)x=602.【2019朝阳】佳佳文具店购进A ,B 两种款式的笔袋,其中A 种笔袋的单价比B 种袋的单价低10%.已知店主购进A 种笔袋用了810元,购进B 种笔袋用了600元,且所购进的A 种笔袋的数量比B 种笔袋多20个.请问:文具店购进A ,B 两种款式的笔袋各多少个?解题技巧分式方程的应用的属于高频考点,常以解答题形式出现,且经常和其它知识点(如不等式等)结合进行综合考查,一般难度为中等.列分式方程解应用题的关键是用分式表示一些基本的数量关系,列分式方程解应用题一定要验根,还要保证其结果符号实际意义.要点归纳列分式方程解应用题的一般步骤(1)审:即审题:根据题意找出已知量和未知量,并找出等量关系.(2)设:即设未知数,设未知数的方法有直接设和间接设,注意单位要统一,选择一个未知量用未知数表示,并用含未知数的代数式表示相关量. (3)列:即列方程,根据等量关系列出分式方程. (4)解:即解所列的分式方程,求出未知数的值.(5)验:即验根,要检验所求的未知数的值是否适合分式方程,还要检验此解是否符合实际意义. (6)答:即写出答案,注意答案完整.过关斩将1.下列关于x的方程中,是分式方程的是()A.3x=12B.1x=2C.x+25=3+x4D.3x–2y=12.【2019•遂宁】关于x的方程k2x−4−1=x x−2的解为正数,则k的取值范围是()A.k>–4B.k<4C.k>–4且k≠4D.k<4且k≠–43.【2019•哈尔滨】方程23x−1=3x的解为()A.x=311B.x=113C.x=37D.x=734.如果解关于x的分式方程mx−2−2x2−x=1时出现增根,那么m的值为()A.–2B.2C.4D.–45.【2019•永州】方程2x−1=1x的解为x=_____.6.【2019•巴中】若关于x的分式方程xx−2+2m2−x=2m有增根,则m的值为_____.7.【2019•盘锦】某班学生从学校出发前往科技馆参观,学校距离科技馆15 km,一部分学生骑自行车先走,过了15 min后,其余学生乘公交车出发,结果同时到达科技馆.已知公交车的速度是自行车速度的1.5倍,那么学生骑自行车的速度是_____km/h.8.【2019•济南】为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B种图书的1.5倍,购买A种图书的数量比B种图书多20本.(1)求A和B两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售.若学校当天再购买A种图书20本和B种图书25本,共需花费多少元?参考答案过关斩将1.B 【解析】A 、C 、D 项中的方程分母中不含未知数,故不是分式方程,故选B .2.C 【解析】分式方程去分母得:k –(2x –4)=2x ,即k +4=4x ,解得:x =k+44, 根据题意得:k+44>0,且k+44≠2,解得:k >–4,且k ≠4.故选C .3.C 【解析】方程两边同时乘以x(3x −1)得:2x =9x –3,∴x =37;经检验x =37是方程的根,∴方程的解为x =37,故选C .4.D 【解析】去分母,方程两边同时乘以x –2,得:m +2x =x –2,由分母可知,分式方程的增根是2, 当x =2时,m +4=2–2,m =–4,故选D .5.–1【解析】去分母得:2x =x –1,解得:x =–1,经检验x =–1是分式方程的解,故答案为:–1. 6.1【解析】方程两边都乘x –2,得x –2m =2m (x –2)∵原方程有增根,∴最简公分母x –2=0, 解得x =2,当x =2时,2–2m =0,即m =1,故m 的值是1,故答案为1. 7.20【解析】设学生骑自行车的速度是x km/h ,则公交车的速度是1.5 x km/h ,由题意得:15x−151.5x=1560,解得:x =20,经检验x =20是原方程的解, 答:骑车学生每小时行20千米.8.(1)A 种图书的单价为30元,B 种图书的单价为20元.(2)共花费880元. 【解析】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,依题意,得:30001.5x−1600x=20,解得:x =20,经检验,x =20是所列分式方程的解,且符合题意,∴1.5x =30.答:A种图书的单价为30元,B种图书的单价为20元.(2)30×0.8×20+20×0.8×25=880(元).答:共需花费880元.。

专题10 分式方程实际应用压轴题的四种考法全攻略(原卷版)(人教版)

专题10 分式方程实际应用压轴题的四种考法全攻略(原卷版)(人教版)

专题10 分式方程实际应用压轴题的四种考法全攻略类型一、销售利润问题例.在落实“精准扶贫”战略中,三峡库区某驻村干部组织村民依托著名电商平台“拼多多”组建了某土特产专卖店,专门将进货自本地各家各户的A、B两款商品销售到全国各地.2020年10月份,该专卖店第一次购进A商品40件,B商品60件,进价合计8400元;第二次购进A商品50件,B商品30件,进价合计6900元.(1)求该专卖店10月份A、B两款商品进货单价分别为多少元?(2)10月底,该专卖店顺利将两次购进的商品全部售出.由于季节原因,B商品缺货,该专卖店在11月份和12月份都只能销售A商品,且A商品11月份的进货单价比10月份上涨了m元,进价合计49000元;12月份的进货单价又比11月份上涨了0.5m元,进价合计61200元,12月份的进货数量是11月份进货数量的1.2倍.为了尽快回笼资金,A商品在11月份和12月份的销售过程中维持每件150元的售价不变,到2021年元旦节,该专卖店把剩下的50件A商品打八折促销,很快便售完,求该专卖店在A商品进货单价上涨后的销售总金额为多少元?【变式训练1】某超市销售A、B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用600元购买B款保温杯的数量与用480元购买A款保温杯的数量相同.(1)A、B两款保温杯销售单价各是多少元?(2)由于需求量大,A,B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B款保温杯数量的一半,若两款保温杯的销售单价均不变,进价均为30元/个,应如何进货才使这批保温杯的销售利润最大,最大利润是多少元?【变式训练2】国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A ,B 两种型号的低排量汽车,其中A 型汽车的进货单价比B 型汽车的进货单价多2万元;花50万元购进A 型汽车的数量与花40万元购进B 型汽车的数量相同.(1)求A ,B 两种型号汽车的进货单价;(2)销售过程中发现:A 型汽车的每周销售量yA (台)与售价xA (万元台)满足函数关系yA =﹣xA +18;B 型汽车的每周销售量yB (台)与售价xB (万元/台)满足函数关系yB =﹣xB +14.若A 型汽车的售价比B 型汽车的售价高1万元/台,设每周销售这两种车的总利润为w 万元.①当A 型汽车的利润不低于B 型汽车的利润,求B 型汽车的最低售价?②求当B 型号的汽车售价为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?【变式训练3】某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商场用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x 台,这100台家电的销售总利润y 元,要求购进空调数量不超过电冰箱数量的2倍,且购进电冰箱不多于40台,请确定获利最大的方案以及最大利润.(3)实际进货时,厂家对电冰箱出厂价下调(0100)k k <<元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.类型二、方案问题例.某市为了做好“全国文明城市”验收工作,计划对市区S米长的道路进行改造,现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a米道路,乙工程队每天可以改造b米道路,(其中a b).现在有两种施工改造方案:方案一:前12S米的道路由甲工程队改造,后12S米的道路由乙工程队改造;方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造.根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.【变式训练1】位于四川省广汉市的“三星堆”,被称为20世纪人类最伟大的考古发现之一,被誉为“长江文明之源”,昭示了长江流域与黄河流域一样,同属中华文明的母体,七中育才八年级学生计划下周前往此处开展文史探究活动,下面是两位同学对于出行方案的讨论:(1)请根据以上信息,求出每辆甲种和每辆乙种大巴的座位数;(2)为保证顺利出行,大巴车司机计划近期加油两次,打算采用两种加油方式:方式一:每次均按照相同油量(100 升)加油;方式二:每次均按照相同金额(500 元)加油.若第一次加油单价为x元/升,第二次加油单价为y元/升(x y),请分别写出每种加油方式的平均单价(用含x、y的代数式表示),并根据你所学知识帮助大巴车司机选择上述哪种加油方式更合算.【变式训练2】某超市准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同. (1)求甲种牛奶、乙种牛奶的进价分别是每件多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?【变式训练3】某公司经销甲种产品,受国际经济形势的影响,价格不断下降.预计今年的售价比去年同期每件降价1000元,如果售出相同数量的产品,去年销售额为10万元,今年销售额只有8万元.(1)今年这种产品每件售价多少元?(2)为了增加收入,公司决定再经销另一种类似产品乙,已知产品甲每件进价为3500元;产品乙每件进价为3000元,售价3600元,公司预计用不多于5万元且不少于4.9万元的资金购进这两种产品共15件,分别列出具体方案,并说明哪种方案获利更高.类型三、行程问题 例.一辆汽车开往距离出发地180 km 的目的地.出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40 min 到达目的地,设前一小时行驶的速度为km/h x .(1)直接用x 的式子表示提速后走完剩余路程的时间为______h ;(2)求汽车实际走完全程所花的时间;(3)若汽车按原路返回,司机准备一半路程以a km/h 的速度行驶,另一半路程以km/h b 的速度行驶()a b ≠,则用时1t 小时,若用一半时间以km/h a 的速度行驶,另一半时间以km/h b 的速度行驶,则用时2t 小时,请比较1t 、2t 的大小,并说明理由.【变式训练1】.甲、乙、丙三个登山爱好者经常相约去登山,今年1月甲参加了两次登山活动.(1)1月1日甲与乙同时开始攀登一座900米高的山,甲的平均攀登速度是乙的1.2倍,结果甲比乙早15分钟到达顶峰.求甲的平均攀登速度是每分钟多少米?(2)1月6日甲与丙去攀登另一座h米高的山,甲保持第(1)问中的速度不变,比丙晚出发0.5小时,结果两人同时到达顶峰,问甲的平均攀登速度是丙的多少倍?(用含h的代数式表示)【变式训练2】.A B、两港之间的距离为280千米.(1)若从A港口到B港口为顺流航行,且轮船在静水中的速度比水流速度快20千米/时,顺流所用时间比逆流少用4小时,求水流的速度;(2)若轮船在静水中的速度为v千米/时,水流速度为u千米/时,该船从A港顺流航行到B 港,再从B港逆流航行返回到A港所用的时间为1t;若轮船从A港航行到B港再返回到A港均为静水航行,且所用时间为2t,请比较1t与2t的大小,并说明理由.类型四、工程问题例.一台收割机的工作效率相当于一个农民工作效率的120倍,用这台机器收割10 公顷小麦比80个农民人工收割这些小麦要少用1 小时.(1)这台收割机每小时收割多少公顷小麦?(2)通过技术革新,这台收割机的工作效率得到了提升,收割10公顷小麦比100个农民人工收割这些小麦要少用了0.8小时.求这台收割机的工作效率相当于一个农民工作效率的多少倍?【变式训练1】.2008年5月12日,四川省发生8.0级地震,某市派出两个抢险救灾工程队赶到汶川支援,甲工程队承担了2400米道路抢修任务,乙工程队比甲工程队多承担了600米的道路抢修任务,甲工程队施工速度比乙工程队每小时少修40米,结果两工程队同时完成任务.问甲、乙两工程队每小时各抢修道路多少米.(1)设乙工程队每小时抢修道路x米,则用含x的式子表示:甲工程队每小时抢修道路米,甲工程队完成承担的抢修任务所需时间为小时,乙工程队完成承担的抢修任务所需时间为小时.(2)列出方程,完成本题解答.【变式训练2】.某小麦改良品种后平均每公顷增加产量a吨,原来产m吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a=0.8,m=100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是吨,现在小麦的平均每公顷产量是吨;(用含a、m的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【变式训练3】.2019年,在新泰市美丽乡村建设中,甲、乙两个工程队分别承担某处村级道路硬化和道路拓宽改造工程.已知道路硬化和道路拓宽改造工程的总里程数是8.6千米,其中道路硬化的里程数是道路拓宽里程数的2倍少1千米.(1)求道路硬化和道路拓宽里程数分别是多少千米;(2)甲、乙两个工程队同时开始施工,甲工程队比乙工程队平均每天多施工10米.由于工期需要,甲工程队在完成所承担的13施工任务后,通过技术改进使工作效率比原来提高了15.设乙工程队平均每天施工a米,若甲、乙两队同时完成施工任务,求乙工程队平均每天施工的米数a和施工的天数.课后训练1.在“慈善一日捐”活动中,甲、乙两校教师各捐款30000元,若甲校教师比乙校教师人均多捐50元,给出如下三个信息:①乙校教师的人数比甲校的教师人数多20%;②甲、乙两校教师人数之比为5:6;③甲校比乙校教师人均捐款多20%;请从以上三个信息中选择一个作为条件,求甲、乙两校教师的人数各有多少人?你选择的条件是________(填序号),并根据你选择的条件给出求解过程.2.重庆市政府为了美化生态环境,给居民创造舒适生活,计划将北滨二路安全堤坝路段改建为滨江步道,一期工程共1100米,计划由甲施工队施工10天,乙施工队施工15天完成,已知甲施工队比乙施工队每天多修20米.(1)求甲乙施工队平均每天各修多少米?(2)因步道延长,二期工程还需修建2260米,甲施工队和乙施工队同时开工合作修建这条步道,直至完工.甲施工队按计划速度进行施工,乙施工队修建180米后,通过技术更新提高了工作效率.步道完工时,在二期工作中,乙施工队修建的长度比甲施工队修建的长度多20米.则乙施工队技术更新后每天修建多少米?3.郑州市花卉种植专业户王有才承包了30亩花圃,分别种植康乃馨和玫瑰花,有关成本、销售额见下表:种植种类成本(万元/亩)销售额(万元/亩)康乃馨 2.43玫瑰花2 2.5(1)2012年,王有才种植康乃馨20亩、玫瑰花10亩,求王有才这一年共收益多少万元?(收益=销售额-成本)(2)2013年,王有才继续用这30亩花圃全部种植康乃馨和玫瑰花,计划投入成本不超过70万元.若每亩种植的成本、销售额与2012年相同,要获得最大收益,他应种植康乃馨和玫瑰花各多少亩?(3)已知康乃馨每亩需要化肥500kg,玫瑰花每亩需要化肥700kg,根据(2)中的种植亩数,为了节约运输成本,实际使用的运输车辆每次装载化肥的总量是原计划每次装载总量的2倍,结果运输全部化肥比原计划减少2次.求王有才原定的运输车辆每次可装载化肥多少千克?4.湖州市在2017年被评为“全国文明城市”,在评选过程中,湖州市环卫处每天需负责市区范围420千米城市道路的清扫工作,现有环卫工人直接清扫和道路清扫车两种马路清扫方式.已知20名环卫工人和1辆道路清扫车每小时可以清扫20千米马路,30名环卫工人和3辆道路清扫车每小时可以清扫42千米的马路.(1)1名环卫工人和1辆道路清扫车每小时各能清扫多长的马路?(2)已知2017年环卫处安排了50名环卫工人参与了直接清扫工作,为保证顺利完成每日的420千米清扫工作,需派出多少辆道路清扫车参与工作(已知2017年环卫工人与清扫车每天工作时间为6小时)?(3)为了巩固文明城市创建成果,从2018年5月开始,环卫处新增了一辆清扫车参与工作,同时又增加了若干个环卫工人参与直接清扫,使得每日能够较早的完成清扫工作.2018年6月市环卫处扩大清扫范围60千米,同时又增加了20名环卫工人直接参与清扫,此时环卫工人和清扫车每日工作时间仍与5月份相同,那么2018年5月环卫处增加了多少名环卫工人参与直接清扫?。

分式方程及其应用(含答案)

分式方程及其应用(含答案)

分式方程及其应用【分类解析】 例1. 解方程:x x x --+=1211分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以()()x x +-11,得x x x x x x xx x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。

例2. 解方程x x x x x x x x +++++=+++++12672356分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。

解:原方程变形为:x x x x x x x x ++-++=++-++67562312方程两边通分,得167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即经检验:原方程的根是x =-92。

例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+--分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。

解:由原方程得:3143428932874145--++-=--++-x x x x即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。

1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--==例4. 解方程:61244444402222y y y y y y yy +++---++-=2分析:此题若用一般解法,则计算量较大。

2021中考数学 一轮专题训练:分式方程及其应用(含答案)

2021中考数学 一轮专题训练:分式方程及其应用(含答案)

1
,去分母,得y-a+3y-4=y-2,解这个整式方程,得y=
a+2 3
.因为a≤7,
所以当a=1,4,7时 a+2 为正整数.当a=4时, y=2是分式方程的增根,分式方程无解. 3
综上,可得a=1或7,它们的积为1×7=7.
二、填空题(本大题共 10 道小题) 11. 【答案】a≤4 且 a≠3 [解析]方程两边同时乘以(x-1),去分母得(2x-a)+1=3(x-1),
8. 【答案】去分母得:m+3=x﹣2, 由分式方程有增根,得到 x﹣2=0,即 x=2, 把 x=2 代入整式方程得:m+3=0, 解得:m=﹣3, 故选:D.
9. 【答案】 A【解析】本题考查了分式方程的解法,用含字母的式子表示方程的
解,解:方程
4
两边同时乘以(x﹣3)得:x﹣4(x﹣3)=﹣k,
3 的解相同,因此 x=-2 也是方程a-ax1-x-2 1=1 的解.这时a--21a--22-1=1. 解得 a=17.当 a=17时,a-1≠0,故 a=17满足条件.
故 x=-1 是原方程的解.
3. 【答案】A 【解析】本题考查了列分式方程解应用题,根据少拿一株椽后,剩下的椽的运费 恰好等于一株椽的价钱列分式方程 A,因此本题选 A.
4. 【答案】C 【解析】本题考查了分式方程的实际应用.解答过程如下:
设原计划每间直播教室的建设费用是 x 元,则实际每间直播教室的建设费用是
4. (2020·昆明)某校举行“停课不停学,名师陪你在家学”活动,计划投资 8000 元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了 20%,并比 原计划多建设了一间直播教室,总投资追加了 4000 元.根据题意,求出原计划每 间直播教室的建设费用是( ) A.1600 元 B.1800 元 C.2000 元 D.2400 元

(完整版)分式方程应用题专题(含答案)

(完整版)分式方程应用题专题(含答案)

1分式方程 应用题专题1、我国“八纵八横”铁路骨干网的第八纵通道温(州)福(州)——铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.3、南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,若2007年每天的污水处理率比2006年每天的污水处理率提高(污水处理率).40% 污水处理量污水排放量(1)求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?(结果保留整数)(2)预计我市2010年平均每天的污水排放量比2007年平均每天污水排放量增加,按照国家要求“2010年省会城市的污水处理20%率不低于”,那么我市2010年每天污水处理量在2007年每70%天污水处理量的基础上至少还需要增加多少万吨,才能符合国家规定的要求?24、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天B.4天C.3天D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .B .C .D .66602x x =-66602x x =-66602x x =+66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜kg ,根据x 题意,可得方程( )A .B .9001500300x x =+9001500300xx =-C .D .9001500300x x =+9001500300x x=-a38、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的,求甲、乙两个施工队单独完成此项工程各需多少天?4510、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤m ,则得x 方程为 .通过这段对话,请你求出该地驻军原来每天加固的米数.411、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了,但售价未变,从而使超市销售这种计算器的利4%润提高了.这种计算器原来每个进价是多少元?(利润售5%=价进价,利润率)-100%=⨯利润进价12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修m ,则根据题意可得方程 x .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用小871时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的倍;甲、乙两队合作完成工程需要天;甲队每天的工作费用220为元、乙队每天的工作费用为元.根据以上信息,从节1000550约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?517、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米/时.672007分式方程的应用题 答案1、解:设通车后火车从福州直达温州所用的时间为小时.1分x 依题意,得. 5分29833122xx =⨯+解这个方程,得. 8分14991x =经检验是原方程的解. 9分14991x =.148 1.6491x =≈答:通车后火车从福州直达温州所用的时间约为1.64小时.10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50(50)×5350 4分-x2400-=化简得x 210x 12000 5分--=解方程得x 140,x 230(不合题意舍去) 6分==-经检验,x 140,x 230都是原方程的解,==-但x 230不合题意,舍去. 7分=-答: 每盒粽子的进价为40元. 8分3、解:(1)设年平均每天的污水排放量为万吨,2006x 则2007年平均每天的污水排放量为1.05x 万吨,依题意得:1分341040%1.05xx-=4分解得56x ≈5分经检验,是原方程的解56x ≈6分1.0559x ∴≈ 答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨.87分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天的污水排放量约为万吨)1.05x (2)解: 8分59(120%)70.8⨯+= 9分70.870%49.56⨯= 49.563415.56-= 答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加万吨.15.56 10分4、D5、D6、解:设张明平均每分钟清点图书本,则李强平均每分钟清点x 本,(10)x +依题意,得. 3分20030010x x =+解得.20x =经检验是原方程的解.20x =答:张明平均每分钟清点图书20本. 5分注:此题将方程列为或其变式,同样得分.30020020010x x -=⨯7、C8、解:设原来每天加固x 米,根据题意,得 1分. 3分926004800600=-+xx 去分母,得 1200+4200=18x (或18x =5400) 5分解得 . 6分300x =检验:当时,(或分母不等于0).300x =20x ≠∴是原方程的解. 7分300x =答:该地驻军原来每天加固300米. 8分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需x 天, 45……………………1分9根据题意,得 +=1 10x 1245x………………………………… 4分解这个方程,得x =25 ………………………………………6分经检验,x =25是所列方程的根 ……………………………7分当x =25时,x =20 45…………………………………………9分答:甲、乙两个施工队单独完成此项工程分别需25天和20天. ……………10分10、22402240220x x-=-11、解:设这种计算器原来每个的进价为元, 1分x 根据题意,得.5分4848(14)1005100(14)x xxx---⨯+=⨯-%%%%%解这个方程,得. 8分40x =经检验,是原方程的根. 9分40x =答:这种计算器原来每个的进价是40元.10分12、240024008(120)xx-=+%13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:-=,……………………………………2分x1500401500+x 815去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200.10…………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时. ……………………… 7分14、解:设第一次购书的进价为元,则第二次购书的进价为x 元.根据题意得:(1)x +1200150010 1.2xx+=4分解得:5x =经检验是原方程的解5x =6分所以第一次购书为(本).12002405=第二次购书为(本)24010250+=第一次赚钱为(元)240(75)480⨯-=第二次赚钱为(元)200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=所以两次共赚钱(元) 848040520+=分答:该老板两次售书总体上是赚钱了,共赚了520元.9分15、解法一:设列车提速前的速度为千米/时,则提速后的速度为x 千米/时,根据题意,得. 3.2x 12801280113.2xx-=4分解这个方程,得.80x =5分经检验,是所列方程的根.80x =6分(千米/时).80 3.2256∴⨯=所以,列车提速后的速度为256千米/时.7分解法二: 设列车提速后从甲站到乙站所需时间为小时,x 则提速前列车从甲站到乙站所需时间为小时,根据题(11)x +意,得..128012803.211x x⨯=+5x ∴=则 列车提速后的速度为=256(千米/时)11 答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需天,则乙队单独完成需要天.根据题x 2x 意得1分 , 111220x x +=3分 解得 .30x = 经检验是原方程的解,且,都符合题意.530x =30x =260x =分 应付甲队(元).∴30100030000⨯= 应付乙队(元).30255033000⨯⨯= 公司应选择甲工程队,应付工程总费用元. 8∴30000分17、解:设甲工程队每周铺设管道公里,x 则乙工程队每周铺设管道()公里 1+x ………………………1分根据题意, 得 311818=+-x x………………………4分解得, 21=x 32-=x ………………………6分经检验,都是原方程的根 21=x 32-=x 但不符合题意,舍去 32-=x ………………………7分∴31=+x 答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里. ………………………8分18、 20。

2020年中考数学复习专题练:《分式方程实际应用 》(含答案)

2020年中考数学复习专题练:《分式方程实际应用 》(含答案)

2020年中考数学复习专题练:《分式方程实际应用》1.在抗击“新冠肺炎”战役中,某公司接到转产生产1440万个医用防护口罩补充防疫一线需要的任务,临时改造了甲、乙两条流水生产线.试产时甲生产线每天的产能(每天的生产的数量)是乙生产线的2倍,各生产80万个,甲比乙少用了2天.(1)求甲、乙两条生产线每天的产能各是多少?(2)若甲、乙两条生产线每天的运行成本分别是1.2万元和0.5万元,要使完成这批任务总运行成本不超过40万元,则至少应安排乙生产线生产多少天?(3)正式开工满负荷生产3天后,通过技术革新,甲生产线的日产能提高了50%,乙生产线的日产能翻了一番.再满负荷生产13天能否完成任务?2.某口罩生产厂在春节期间接到紧急任务,要求几天内生产出70万只口罩,为了战胜疫情,口罩厂工人愿意奉献自己的休息时间来完成这项任务,厂长决定开足全厂口罩生产线进行生产,结果每天比原来多生产3万只,而且提前了3天完成了任务,问原来要求几天完成这项紧急任务?3.在我县创建“生态保护示范县”活动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍.如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天,求甲,乙两工程队每天各能完成多少面积的绿化?4.九年级(1)班学生周末从学校出发到某实践基地,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地.已知快车的速度是慢车速度的1.2倍.求慢车与快车的速度各是多少?5.某服装加工厂甲、乙两个车间共同加工一款休闲装,且每人每天加工的件数相同,甲车间比乙车间少10人,甲车间每天加工服装400件,乙车间每天加工服装600件.(1)求甲、乙两车间各有多少人;(2)甲车间更新了设备,平均每人每天加工的件数比原来多了10件,乙车间的加工效率不变,在两个车间总人数不变的情况下,加工厂计划从乙车间调出一部分人到甲车间,使每天两个车间加工的总数不少于1314件,求至少要从乙车间调出多少人到甲车间.6.某公司需要采购A、B两种笔记本,A种笔记本的单价高出B种笔记本的单价10元,并且花费300元购买A种笔记本和花费100元购买B种笔记本的数量相等.(1)求A种笔记本和B种笔记本的单价各是多少元;(2)该公司准备采购A、B两种笔记本共80本,若A种笔记本的数量不少于60本,并且采购A、B两种笔记本的总费用不高于1100元,那么该公司有种购买方案.7.哈市红十字预计在2019年儿童节前为郊区某小学发放学习用品,联系某工厂加工学习用品.机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的倍.(1)求手工每小时加工产品的数量;(2)经过调查该小学的小学生的总数不超过1332名,每名小学生分发两个学习用品,工厂领导打算在两天内(48小时)完成任务,打算以机器加工为主,同时人工也参与加工(人工与机器加工不能同时进行),为了保证按时完成加工任务,人工至多加工多少小时?8.甲、乙两个筑路队共同承担一段一级路的施工任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用15天.且甲队单独施工60天和乙队单独施工40天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了4天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?9.为维护市区的生态环境,政府决定对市区周边水域的水质进行改善,这项工程由甲、乙两个工程队承包,乙工程队单独施工140天后甲工程队加入,甲、乙两个工程队合作40天后,共完成总工程的,且甲工程队每天的施工量是乙工程队的3倍.(1)求甲工程队单独完成这项工程需要多少天?(2)若要求乙工程队施工工期不超过300天,则甲工程队至少要施工多少天?10.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?11.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.比亚迪油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为96元;若完全用电做动力行驶,则费用为36元.已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?12.某商店用1000元人民币购进水果销售,过了一段时间又用2800元购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)求该商店第一次购进水果多少千克?(2)该商店两次购进的水果按照相同的标价销售一段时间后,将最后剩下的100千克按照标价的半价出售.售完全部水果后,利润不低于1700元,则最初每千克水果的标价至少是多少?13.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?14.某体育用品商场预测某品牌运动服能够畅销,用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场第一次购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%.)15.某周日,珂铭和小雪从新天地小区门口同时出发,沿同一条路线去离该小区1800米的少年宫参加活动,为响应节能环保,绿色出行的号召,两人步行,已知珂铭的速度是小雪的速度的1.2倍,结果珂铭比小雪早6分钟到达.(1)求小雪的速度;(2)活动结東后返回,珂铭与小雪的速度均与原来相同,若小雪计划比珂铭至少提前6分钟回到小区,则小雪至少要比珂铭提前多长时间出发?16.一项工程,甲队单独完成比乙队单独完成少用8天,甲队单独做3天的工作乙队单独做需要5天.(1)甲、乙两队单独完成此项工程各需几天?(2)甲队每施工一天则需付给甲队工程款5.5万元,乙队每施工一天则需付给乙队工程款3万元.该工程先由甲、乙两队合作若干天后,再由乙队完成剩下的工程.若要求完成此项工程的工程款不超过65万元,则甲、乙两队最多合作多少天?17.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?18.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“百姓超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?19.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?20.某学校计划选购A、B两种图书.已知A种图书每本价格是B种图书每本价格的2.5倍,用1200元单独购买A种图书比用1500元单独购买B种图书要少25本.(1)A、B两种图书每本价格分别为多少元?(2)如果该学校计划购买B种图书的本数比购买A种图书本数的2倍多8本,且用于购买A、B两种图书的总经费不超过1164元,那么该学校最多可以购买多少本B种图书?参考答案1.解:(1)设乙条生产线每天的产能是x万个,则甲条生产线每天的产能是2x万个,依题意有﹣=2,解得x=20,经检验,x=20是原方程的解,2x=2×20=40,故甲条生产线每天的产能是40万个,乙条生产线每天的产能是20万个;(2)设安排乙生产线生产y天,依题意有0.5y+1.2×≤40,解得y≥32.故至少应安排乙生产线生产32天;(3)(40+20)×3+[40×(1+50%)+20×2]×13=180+1300=1480(万个),1440万个<1480万个,故再满负荷生产13天能完成任务.2.解:设原来每天生产x万只口罩,则实际每天生产(x+3)万只口罩,依题意,得:﹣=3,解得:x=7,经检验,x=7是原分式方程的解,且符合题意,∴==10.答:原来要求10天完成这项紧急任务.3.解:设乙工程队每天能完成xm2的绿化,则甲工程队每天能完成2xm2的绿化,依题意,得:﹣=6,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天能完成100m2的绿化,乙工程队每天能完成50m2的绿化.4.解:设慢车与快车的速是xkm/h,则快车的速度是1.2xkm/h,根据题意得﹣=,解得:x=50,检验:经检验x=50是原方程的根,答:慢车速度为50千米/小时,快车速度为60千米/小时.5.解:(1)设甲车间有x人,乙车间有(x+10)人,则:,解得:x=20,经检验:x=20是原分式方程的解.答:甲车间有20人,乙车间有30人.(2)设从乙车间调a人到甲车间;则:,解得:a≥11.4.因为a为正整数,所以a的最小值为12.答:从乙车间至少调12人到甲车间.6.解:(1)设A种笔记本的单价是x元,则B种笔记本的单价是(x﹣10)元,根据题意得,=,解得:x=15,经检验:x=15是原方程的根,∴x﹣10=5,答:A种笔记本和B种笔记本的单价各是15元和5元;(2)设该公司准备采购A种笔记本a本,采购B种笔记本(80﹣a)本,根据题意得,15a+5(80﹣a)≤1100,解得:a≤70,∵A种笔记本的数量不少于60本,∴60≤a≤70,(a为正整数),∴该公司有11种购买方案.故答案为:11.7.解:(1)设手工每小时加工产品x件,则机器每小时加工产品(2x+9)件,根据题意,得:×=,解得x=27,经检验:x=27是原分式方程的解,答:手工每小时加工产品27件;(2)设人工要加工a小时,根据题意,得:27a+(2×27+9)(48﹣a)≥2×1332,解得a≤10,答:人工至多加工10小时.8.解:(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+15)天根据题意得经检验x=30是原方程的解,则x+15=45(天)答:甲队单独完成此项任务需45天,乙队单独完成此项任务需30天.(2)解:设甲队再单独施工y天,依题意,得,解得y≥4.答:甲队至少再单独施工4天.9.解:(1)设甲工程队单独完成这项工程需要x天,则甲每天的施工量为,乙每天的施工量为,由题意得140×+40(+)=∴+=∴x=200经检验x=200是原方程的解,且符合问题的实际意义.答:甲工程队单独完成这项工程需要200天.(2)由(1)可知,乙工程队单独完成这项工程需要3×200=600天设甲工程队至少要施工y天,由题意得≤300∴y≥199答:甲工程队至少要施工199天.10.解:(1)设原计划每天挖掘x米,则实际每天挖掘1.5x米,根据题意得:﹣=25,解得x=4.经检验,x=4是原分式方程的解,且符合题意,则1.5x=6答:实际每天挖掘6米.(2)设每天还应多挖掘y米,由题意,得(70﹣)(6+y)≥500﹣300,解得y≥4.答:每天还应多挖掘4米.11.解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:=,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是36÷0.3=120(千米);(2)汽车行驶中每千米用油费用为0.3+0.5=0.8(元),设汽车用电行驶ykm,可得:0.3y+0.8(120﹣y)≤50,解得:y≥92,所以至少需要用电行驶92千米.12.解:(1)设第一次购进水果x千克,依题意可列方程:.解得x=200.经检验:x=200是原方程的解.答:第一次购进水果200千克;(2)由(1)可知,二次共购进水果600千克,设最初水果标价为y元,依题意可列不等式:500y+100×﹣3800≥1700.解得y≥10.答:最初每千克水果标价至少为10元.13.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=25,经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25×2=50(m2),答:甲、乙两工程队每天能完成绿化的面积分别是50m2、25m2;(2)设应安排甲队工作y天,根据题意得:0.35y+×0.25≤8,解得:y≥20,答:至少应安排甲队工作20天.14.解:(1)设该商场第一次购进这种运动服x套,第二次购进2x套,由题意得,﹣=10,解得:x=200,经检验:x=200是原分式方程的解,且符合题意,答:该商场第一次购进200套;(2)设每套售价是y元,两批运动服总数:200+400=600由题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200,答:每套售价至少是200元.15.解:设小雪的速度是x米/分钟,则珂铭速度是1.2x米/分钟,依题意得:,解得:x=50,经检验x=50是原方程的解,答:小雪的速度是50米/分钟.(2)1.2×50=60(米/分钟),1800÷50=36(分钟),1800÷60=30(分钟),设小雪比珂铭提前a分钟出发,根据题意得,a+30﹣36≥6,解得a≥12,答:小雪至少要比珂铭提前出发12分钟.16.解:(1)设甲队单独完成此项工程需x天,乙队单独完成此项工程需(x+8)天根据题意得:=解得x=12经检验x=12是原方程的解当x=12时,x+8=20答:甲队单独完成此项工程需12天,乙队单独完成此项工程需20天.(2)设甲乙两队合作m天,根据题意得:5.5m+×3≤65,解得m≤10;又∵(+)m≤1,∴m≤7.5,∴甲乙两队最多合作7天.答:甲乙两队最多合作7天.17.解:(1)设购买一副羽毛球拍需要x元,则购买一根跳绳需要(x﹣20)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣20=5.答:购买一副羽毛球拍需要25元,购买一根跳绳需要5元.(2)设八(1)班购买m副羽毛球拍,则购买(2m+10)根跳绳,依题意,得:25m+5(2m+10﹣m)≤350,解得:m≤10.答:八(1)班最多可购买10副羽毛球拍.18.解:(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,依题意,得:﹣=0.2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:该超市第一批购进这种葡萄100市斤.(2)设每市斤葡萄的售价应该定为y元,依题意,得:(100+100×2)y﹣320﹣680≥(320+680)×20%,解得:y≥4.答:每市斤葡萄的售价应该至少定为4元.19.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:+=1,∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴,∴20≤m≤40.∵15>0,∴w值随m值的增大而增大,∴当m=20时,完成此项工程总费用最少,此时n=90﹣m=60,w=780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.20.解:(1)设B种图书每本价格为x元,则A种图书每本价格为2.5x元,依题意,得:﹣=25,解得:x=40.8,经检验,x=40.8是原方程的解,且符合题意,∴2.5x=102.答:A种图书每本价格为102元,B种图书每本价格为40.8元.(2)设购买y本A种图书,则购买(2y+8)本B种图书,依题意,得:102y+40.8(2y+8)≤1164,解得:y≤4.∵y为整数,∴y的最大值为4,∴(2y+8)的最大值为16.答:该学校最多可以购买16本B种图书.。

11.分式方程及其应用

11.分式方程及其应用

5. A.
若分式
x2 −9 x−3
的值为0,则x的值等于(
0

B. ±3
C. 3
D. −3
考点:分式有意义的条件、分式值为零的条件
知识点:分式、分式方程有意义的条件
答案:D
解析:∵分式
x2 −9 x−3
的值为0,
且 , ∴ x2 − 9 = 0 x − 3≠0
解得:x = −3.
故选:D.
中等 已测:942次 正确率:55.4%
答案:a>5且a≠20
解析:去分母得:3x − a = x − 5 − x,
解解∵∴关a得得−于::x5xa的>>=方05,且a程−3aa35−≠x3x−,5−25≠a0.5=,1
+
x 5−x
的解为正数,
故答案为:a>5且a≠20 .
一般 已测:2986次 正确率:79.7%
9考.点若:已2x 知=式y子3 的=值,5z 求≠代0数,式则的值x 2、+x分y−式+的z z求值=
∴m = 3.
故选:D .
一般 已测:2728次 正确率:79.8%
2. A.
解分式方程 解为x = 7
x−8 x−7

1 7−x
=
8,可知方程(
)
B. 解为x = 8
C. 解为x = 15
D. 无解
考点:解分式方程
知识点:分式方程的解法
答案:D
解析:最简公分母为(x − 7),去分母,得 , x − 8 + 1 = 8(x − 7) 解得x = 7,代入x − 7 = 0. ∴此方程无解.故选D .
装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个,设B型包装

初中数学:分式方程应用题专题练习附详解(精)

初中数学:分式方程应用题专题练习附详解(精)
5.随着人们对健康生活的追求,有机食品越来越受到人们的喜爱和追捧,某商家打算花费40000元购进一批有机绿色农产品存放于冷库.实际购买时供货商促销,可以在标价基础上打8折购进这批产品,结果实际比计划多购进400千克.
(1)实际购买时,该农产品多少元每千克?
(2)据预测,该农产品的市场价格在实际购买价的基础上每天每千克上涨0.5元,已知冷库存放这批农产品,每天需要支出各种费用合计为280元,同时,平均每天将有8千克损坏不能出售.则将这批农产品存放多少天后一次性全部出售,该公司可获得利润19600元?
(1)求每盒口罩和每盒水银体温计的价格各是多少元?
(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.
(3)在健康大药房累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有1000名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?
经检验,x=40原方程的解,
∴x+8=48.
答:每件乙种商品的价格为40元,每件甲种商品的价格为48元.
(2)
解:设购买y件甲种商品,则购买(80-y)件乙种商品,
根据题意得:48y+40(80-y)≤3600,
解得:y≤50.
答:最多可购买50件甲种商品.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价,列出关于x的分式方程;(2)根据总价=单价×购买数量,列出关于y的一元一次不等式.
3.第十一届江苏书展在苏州国际博览中心设有400个展台,并在全省多地线上、线下同步举行.本届书展设置了“读经典、学四史、童心向党和百年辉煌”等活动.为保障书展的准备工作比原计划提前2天完成,每天准备展台的个数需比原计划增加 .

专题10 分式方程(解析版)

专题10 分式方程(解析版)

专题10分式方程【考查题型】【知识要点】解分式方程的一般步骤:1)去分母(方程两边同乘最简公分母,约去分母,把分式方程化成整式方程)。

2)解整式方程。

3)验根(把整式方程的解代入最简公分母,情况一:最简公分母为0,则该根不是分式方程的解,这个根叫原分式方程的增根;情况二:若最简公分母不为0,则该根是分式方程的解。

分式的化简求值:1)分式通过化简后,代入适当的值解决问题,注意代入的值要使分式的分母不为0;2)灵活应用分式的基本性质,对分式进行通分和约分,一般要先分解因式;3)化简求值时,一要注意整体思想,二要注意解题技巧,三要注意代入的值要使分式有意义。

分式方程解决实际问题的步骤:1)根据题意找等量关系2)设未知数3)列出方程4)解方程,并验根(对解分式方程尤为重要)5)写答案考查题型一解分式方程题型1.(2022·辽宁营口·中考真题)分式方程322x x =-的解是()A .2x =B .6x =-C .6x =D .2x =-【答案】C【分析】先去分母,去括号,移项,合并同类项得出答案,最后检验即可.题型1-1.(2022·海南·中考真题)分式方程101x -=-的解是()A .1x =B .2x =-C .3x =D .3x =-题型1-2.(2022·山东济南·中考真题)代数式2x +与代数式1x -的值相等,则x =______.()()3122x x -=+,去括号号3324x x -=+,解得7x =,检验:当7x =时,()()210x x +-≠,∴分式方程的解为7x =.故答案为:7.【名师点拨】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.题型1-3.(2022·四川内江·中考真题)对于非零实数a ,b ,规定a ⊕b =11a b-,若(2x ﹣1)⊕2=1,则x的值为_____.题型1-4.(2022·湖南永州·中考真题)解分式方程01x x -=去分母时,方程两边同乘的最简公分母是______.故答案为:x (x +1).【名师点拨】题目主要考查解分式方程中确定公分母的方法,熟练掌握解分式方程的步骤是解题关键.题型1-5.(2022·湖南常德·中考真题)方程()21522xx x x+=-的解为________.【答案】4x =【提示】根据方程两边同时乘以()22x x -,化为整式方程,进而进行计算即可求解,最后注意检验.【详解】解:方程两边同时乘以()22x x -,()()222252x x ⨯-+=⨯-482510x x -+=-解得4x =经检验,4x =是原方程的解故答案为:4x =【名师点拨】本题考查了解分式方程,解分式方程一定要注意检验.题型1-6.(2022·浙江台州·中考真题)如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____.先化简,再求值:314xx -+-,其中x =解:原式3(4)(4)4xx x x -=⋅-+--34x x =-+-1=-题型1-7.(2022·四川泸州·中考真题)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.题型1-8.(2022·浙江宁波·中考真题)定义一种新运算:对于任意的非零实数a ,b ,ba b a ⊗=+.若21(1)++⊗=x x x x,则x 的值为___________.【答案】12-##0.5-题型1-9.(2022·青海西宁·中考真题)解方程:220x x x x-=+-.【答案】7x =【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:方程两边同乘()()11x x x +-,得()()41310x x --+=,解得7x =,检验:当7x =时,()()110x x x +-≠,所以,原分式方程的解为7x =.【名师点拨】本题主要考查了解分式方程,掌握求解的方法是解题的关键,注意解分式方程一定要验根.题型1-10.(2022·广西梧州·中考真题)解方程:24133x x -=题型1-11.(2022·青海·中考真题)解分式方程:21244x x x -=.方程两边乘2(2)x -得:2(2)(2)4x x x ---=,解得:x =4,检验:当x =4时,220x ≠(﹣).所以原方程的解为x =4.【名师点拨】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.考查题型二根据分式方程解的情况求值题型2.(2022·四川德阳·中考真题)关于x 的方程211x ax +=-的解是正数,则a 的取值范围是()A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-2题型2-1.(2022·内蒙古通辽·中考真题)若关于x 的分式方程:222x x--=--的解为正数,则k 的取值范围为()A .2k <B .2k <且0k ≠C .1k >-D .1k >-且0k ≠∴2k <,∵分母不能为0,∴2x ≠,∴22k -≠,解得0k ≠,综上所述:2k <且0k ≠,故选:B .【名师点拨】本题考查解分式方程,求不等式的解集,能够熟练地解分式方程式解决本题的关键.题型2-2.(2022·黑龙江·中考真题)已知关于x 的分式方程23111x m x x--=--的解是正数,则m 的取值范围是()A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠题型2-3.(2022·重庆·中考真题)关于x 的分式方程133x a x x x-++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是()A .13B .15C .18D .20【答案】A【提示】先通过分式方程求出a 的一个取值范围,再通过不等式组的解集求出a 的另一个取值范围,两个范围结合起来就得到a 的有限个整数解.题型2-4.(2022·重庆·中考真题)若关于x 的一元一次不等式组1351x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x ≤-,且关于y 的分式方程1211y ay y -=-++的解是负整数,则所有满足条件的整数a 的值之和是()A .-26B .-24C .-15D .-13题型2-5.(2022·湖北黄石·中考真题)已知关于x 的方程1(1)x ax x x x +=++的解为负数,则a 的取值范围是__________.考查题型三分式方程无解的情况题型3.(2022·四川遂宁·中考真题)若关于x 的方程221mx x =+无解,则m 的值为()A .0B .4或6C .6D .0或4【答案】D【提示】先将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=,整理得(4)2m x -=,题型3-1.(2021·内蒙古呼伦贝尔·中考真题)若关于x 的分式方程233x x++=--无解,则a 的值为()A .3B .0C .1-D .0或3题型3-2.(2021·四川宜宾·中考真题)若关于x 的分式方程322x x -=--有增根,则m 的值是()A .1B .﹣1C .2D .﹣2【答案】C【提示】先把分式方程化为整式方程,再把增根x =2代入整式方程,即可求解.题型3-3.(2021·西藏·中考真题)若关于x的分式方程1x-﹣1=1x-无解,则m=___.考查题型四列分式方程题型4.(2022·辽宁阜新·中考真题)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的1.2倍,结果提前20天完成了这项工作.设原计划每天接种x万人,根据题意,所列方程正确的是()A.3030201.2x x-=B.3030 1.220x x-=-C.3030201.2x x-=D.3030 1.220x x-=-【答案】A1.2题型4-1.(2022·山东淄博·中考真题)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x元,则下列方程中正确的是()A.2000020000(115%)10x x⨯-=-B.2000020000(115%)10x x⨯-=-C.2000020000(115%)10x x⨯-=D.2000020000(115%)10x x⨯-=题型4-2.(2022·辽宁朝阳·中考真题)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km,一部分学生乘慢车先行,出发30min后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶x km,根据题意,所列方程正确的是()A.60x﹣601.5x=3060B.601.5x﹣60x=3060C.60x﹣601.5x=30D.601.5x﹣60x=30【答案】A,根据基地距学校题型4-3.(2022·贵州黔西·中考真题)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x 亩,则可以得到的方程为()A .363024x x=⨯B .363024x x=⨯C .363024x x =⨯D .363024x x =⨯题型4-4.(2022·山东潍坊·中考真题)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x 万吨,下列算法正确的是()A .4271100%14.0%4271x -⨯=-B .4271100%14.0%4271x-⨯=-C .4271100%14.0%x x-⨯=-D .4271100%14.0%xx-⨯=-题型4-5.(2022·湖北恩施·中考真题)一艘轮船在静水中的速度为30km/h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km/h ,则符合题意的方程是()A .144963030v v =+-B .1449630v v=-C .144963030v v=D .1449630v v=题型4-6.(2022·广西·中考真题)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x 米,根据题意可列方程()A .1.482.413x x -=-B .1.482.413x x +=+C .1.4282.4213x x -=-D .1.4282.4213x x +=+【答案】D(2.4+2题型4-7.(2022·湖北荆州·中考真题)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min...到达基地,求甲、乙的速度.设甲的速度为3x km/h....,则依题意可列方程为()A.6110334x x+=B.6102034x x+=C.6101343x x-=D.6102034x x-=题型4-8.(2022·四川广元·中考真题)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N95口罩花费9600元.已知一次性医用外科口罩的单价比N95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x元,则列方程正确的是()A.960010x-=1600xB.960010x+=1600xC.9600x=160010x-D.9600x=1600x+10【答案】B【提示】设该药店购进的一次性医用外科口罩的单价是x元,则购进N95口罩的单价是(x+10)元,利用数量=总价÷单价,结合购进两种口罩的只数相同,即可得出关于x的分式方程.【详解】解:设该药店购进的一次性医用外科口罩的单价是x元,则购进N95口罩的单价是(x+10)元,题型4-9.(2022·山东临沂·中考真题)将5kg 浓度为98%的酒精,稀释为75%的酒精.设需要加水kg x ,根据题意可列方程为()A .0.9850.75x ⨯=B .0.9850.755x ⨯=+C .0.7550.98x ⨯=D .0.7550.985x⨯=-题型4-10(2022·浙江丽水·中考真题)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示()A .足球的单价B .篮球的单价C .足球的数量D .篮球的数量题型4-11(2022·湖北襄阳·中考真题)《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天:如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为()A.900900213x x=⨯+-B.900900213x x⨯=+-C.900900213x x=⨯-+D.900900213x x⨯=-+题型4-12.(2022·山东青岛·中考真题)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x米/分,那么x满足的分式方程为__________.考查题型五分式方程的实际应用题型5.(2022·重庆·中考真题)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________.题型5-1.(2022·西藏·中考真题)某班在庆祝中国共产主义青年团成立100周年活动中,给学生发放笔记本2元,用240元购买的笔记本数量与用200元购买的钢笔数量相同.(1)笔记本和钢笔的单价各多少元?(2)若给全班50名学生每人发放一本笔记本或一支钢笔作为本次活动的纪念品,要使购买纪念品的总费用不超过540元,最多可以购买多少本笔记本?解得:x=10,经检验:x=10是原方程的解,故笔记本的单价为:10+2=12(元),答:笔记本每本12元,钢笔每支10元.(2)设购买y本笔记本,则购买钢笔(50﹣y)支,依题意得:12y+10(50﹣y)≤540,解得:y≤20,故最多购买笔记本20本.【名师点拨】本题考查了用分式方程和一元一次不等式解决问题,找到题目中的等量关系并列出关于未知数的方程或不等式,仔细计算是本题的解题关键.题型5-2.(2022·宁夏·中考真题)某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?题型5-3.(2022·山东东营·中考真题)为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?由题意得:()()()6485150450y a a a =-+--=-+,∵-1<0,∴y 随a 的增大而减小,∵甲种水果的重量不低于乙种水果重量的2倍,∴()2150a a -≥,解得:100a ≥,∴当100a =时,y 取最大值,此时100450350y =-+=,15050a -=,答:水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.【名师点拨】本题考查了分式方程的应用,一次函数与一元一次不等式的应用,正确理解题意,找出合适的等量关系列出方程和解析式是解题的关键.题型5-4.(2022·贵州安顺·中考真题)阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A 块种植杂交水稻,B 块种植普通水稻,A 块试验田比B 块试验田少4亩.(1)A 块试验田收获水稻9600千克、B 块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B 块试验田的一部分改种杂交水稻,使总产量不低于17700题型5-5.(2022·贵州铜仁·中考真题)科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?题型5-6.(2022·湖南益阳·中考真题)在某市组织的农机推广活动中,甲、乙两人分别操控A、B两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.(1)甲、乙两人操控A、B型号收割机每小时各能收割多少亩水稻?(2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小时?题型5-7.(2022·吉林长春·中考真题)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?【名师点拨】本题考查了分式方程的应用,明确题意列出分式方程是解答本题的关键.题型5-8.(2022·山东聊城·中考真题)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.(1)求实际施工时,每天改造管网的长度;(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?题型5-9.(2022·重庆·中考真题)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.题型5-10.(2022·山西·中考真题)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势,经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.【答案】这款电动汽车平均每公里的充电费为0.2元.元,则燃油车平均每公里的充电费为题型5-11.(2022·四川自贡·中考真题)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题10 分式方程及其应用
1.分式方程的定义:分母中含有未知数的方程叫做分式方程.
2.解分式方程的一般方法:解分式方程的思想是将“分式方程”转化为“整式方程”。

(1)去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);
(2)按解整式方程的步骤求出未知数的值;
(3)验根:将所得的根代入最简公分母,若等于零,就是增根,原分式方程无解;若不等于零,就是原方程的根。

【例题1】(2020•哈尔滨)方程2
x+5=1
x−2
的解为()
A.x=﹣1 B.x=5 C.x=7 D.x=9 【对点练习】(2019▪黑龙江哈尔滨)方程=的解为()
A.x=B.x=C.x=D.x=
【例题2】(2020•齐齐哈尔)若关于x的分式方程3x
x−2=m
2−x
+5的解为正数,则m的取值范围为()
A.m<﹣10 B.m≤﹣10
C.m≥﹣10且m≠﹣6 D.m>﹣10且m≠﹣6
【对点练习】(2019•江苏宿迁)关于x的分式方程+=1的解为正数,则a的取值范围是.
【例题3】(2020•长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件
产品,依题意得()
A.400
x−30=500
x
B.400
x
=500
x+30
C.400
x =500
x−30
D.400
x+30
=500
x
【对点练习】(2019吉林长春)为建国70周年献礼,某灯具厂计划加工9000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务。

求该灯具厂原计划每天加工这种彩灯的数量.
【例题4】(2020贵州黔西南)“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元;
(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.
【对点练习】(2020•广东)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的3
5

(1)求每个A,B类摊位占地面积各为多少平方米?
(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.
一、选择题
1.(2020•黑龙江)已知关于x的分式方程x
x−2−4=k
2−x
的解为正数,则k的取值范围是()
A.﹣8<k<0 B.k>﹣8且k≠﹣2 C.k>﹣8 且k≠2 D.k<4且k≠﹣2
2.(2020•泸州)已知关于x的分式方程m
x−1+2=−3
1−x
的解为非负数,则正整数m的所有个数为()
A.3 B.4 C.5 D.6
3.(2020•成都)已知x=2是分式方程k
x +x−3
x−1
=1的解,那么实数k的值为()
A.3 B.4 C.5 D.6
4.(2019•广东省广州市)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()
A.=B.=
C.=D.=
5.(2019黑龙东地区)已知关于x的分式方程2
1
3
x m
x
-
=
-
的解是非正数,则m的取值范围是()
A.m≤3 B.m<3 C.m>-3 D.m≥-3
6.(2019山东淄博)解分式方程=﹣2时,去分母变形正确的是()
A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)
C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)
7.(2019•广西贵港)若分式的值等于0,则x的值为()
A.±1 B.0 C.﹣1 D.1
8.(2019•湖北十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()
A.﹣=15 B.﹣=15
C.﹣=20 D.﹣=20
9. (2019•山东省济宁市)世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是()
A.﹣=45B.﹣=45
C.﹣=45D.﹣=45
10.(2019•江苏苏州)小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人
的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软
面笔记本每本售价为x元,根据题意可列出的方程为()
A.1524
3
x x
=
+
B.
1524
3
x x
=
-
C.
1524
3
x x
=
+
D.
1524
3
x x
=
-
二、填空题
11.(2020•徐州)方程9
x =8
x−1
的解为.
12.(2020•盐城)分式方程x−1
x
=0的解为x=.
13.(2020•广元)关于x的分式方程m
2x−1
+2=0的解为正数,则m的取值范围是.
14.(2019•甘肃)分式方程=的解为.
15.(2019•山东省滨州市)方程+1=的解是.
16.(2019▪湖北黄石)分式方程:﹣=1的解为.
17.(2019四川巴中)若关于x的分式方程+=2m有增根,则m的值为.
18.(2019•江苏宿迁)关于x的分式方程+=1的解为正数,则a的取值范围是.
19.(2019•贵州省安顺市)某生态示范园计划种植一批蜂糖李,原计划总产量达36万千克,为了满足市场需求,现决定改良蜂糖李品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划平均亩产量为x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为.
20. (2019黑龙江绥化)甲乙两辆汽车同时从A地出发,开往相距200km的B地,甲,乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车速度为______km/h.
三、解答题
21.(2020•湘潭)解分式方程:3
x−1+2=x
x−1

22.(2020•陕西)解分式方程:x−2
x −3
x−2
=1.
24.(2020•牡丹江)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:
(1)A,B两种书包每个进价各是多少元?
(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?
(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B种书包各有几个?。

相关文档
最新文档