自动控制原理实验指导书(1-4)
自动控制原理实验指导书(实验四)
实验四自动控制系统的动态校正仿真实验实验可在真实系统进行,亦可在模型上进行仿真。
真实系统需要物理环境和实验设备、仪器,按实际系统的运行模式进行实验;仿真实验是利用模型(物理的或数学的)进行系统动态特性研究的实验。
MATLAB提供的控制系统数学仿真工具包SIMULINK,提供了一般控制系统所需的模块和用户创建模块功能,允许用户用框图的形式搭建任意系统并进行仿真,是控制系统研究设计的重要手段,在控制系统的仿真中获得了广泛的应用。
一.实验目的1.了解MATLAB数学仿真工具包SIMULINK2.学习SIMULINK在自动控制系统的仿真应用3.研究串联校正对系统稳定性及过渡过程的影响二.实验内容及实验原理1.Simulink进行系统仿真方法1)安装并启动MATLAB2)启动Simulink进入仿真环境单击MATLAB Command窗口工具条上的Simulink图标,或者在MATLAB命令窗口输入simulink,即弹出图示的模块库窗口界面(Simulink Library Browser)。
该界面右边的窗口给出Simulink所有的子模块库。
每个子模块库中模块可直接用于建立系统的Simulink框图模型。
3)打开空白模型窗口用来建立系统的仿真模型MATLAB主界面中选择【File:New Model】菜单项;所打开的空白模型窗口如图所示4)将模块库的相应模块复制到该窗口,通过相应的连接可建立Simulink仿真系统结构图在Simulink模型或模块库窗口内,用鼠标左键单击所需模块图标,按住鼠标左键不放并移动鼠标至目标模型窗口指定位置,释放鼠标即完成模块拷贝,用鼠标选中模块按Del键即可删除,选取菜单Format→RotateBlock,可使模块旋转90°。
用鼠标双击指定模块图标,打开模块对话框,根据对话框栏目中提供的信息进行参数设置或修改。
例如双击模型窗口的传递函数模块,弹出图示对话框,在对话框中分别输入分子、分母多项式的系数,点击OK键,完成该模型的设置,如右下图所示:●模块的连接模块之间的连接是用连接线将一个模块的输出端与另一模块的输入端连接起来;也可用分支线把一个模块的输出端与几个模块的输入端连接起来。
自动控制原理实验指导书
⾃动控制原理实验指导书⽬录第⼀章⾃动控制原理实验 (1)实验⼀典型环节模拟⽅法及动态特性 (1)实验⼆典型⼆阶系统的动态特性 (4)实验三典型调节规律的模拟电路设计及动态特性测试 (6)实验四调节系统的稳态误差分析 (8)实验五三阶系统模拟电路设计及动态特性和稳定性分析 (11)实验六单回路系统中的PI调节器参数改变对系统稳定性影响 (13)实验七典型⾮线性环节的模拟⽅法 (15)实验⼋线性系统的相平⾯分析 (17)第⼆章控制理论实验箱及DS3042M(40M)⽰波器简介 (19)第⼀节⾃动控制理论实验箱的简介 (19)第⼆节数字存储⽰波器简介 (20)第⼀章⾃动控制原理实验实验⼀典型环节模拟⽅法及动态特性⼀、实验⽬的1、掌握⽐例、积分、实际微分及惯性环节的模拟⽅法。
2、通过实验熟悉各种典型环节的传递函数和动态特性。
⼆、实验设备及器材配置1、⾃动控制理论实验系统。
2、数字存储⽰波器。
3、数字万⽤表。
4、各种长度联接导线。
三、实验内容分别模拟⽐例环节、积分环节、实际微分环节、惯性环节,输⼊阶跃信号,观察变化情况。
1、⽐例环节实验模拟电路见图1-1所⽰传递函数:K R R V V I -=-=120阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K(2) R 1=100K R 2=200K2、积分环节实验模拟电路见图1-2所⽰传递函数:ST V V I I O 1-= ,其中T I阶跃输⼊信号:2V 实验参数:(1) R=100K C=1µf(2) R=100K C=2µf 3、实际微分环节实验模拟电路见图1-3所⽰传递函数:K ST S T V V D D I O +-=1 其中 T D =R 1C K=12R R 阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K (2)R 1=100K R 2=200K C=1µf4、惯性环节实验模拟电路见图1-4所⽰传递函数:1+-=TS K V V I O 其中 T=R 2C K=12R R 阶跃输⼊:2V 实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µfR四、实验步骤1、熟悉实验设备并在实验设备上分别联接各种典型环节。
自动控制原理实验实验指导书
自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
自动控制原理(实验指导书)
⾃动控制原理(实验指导书)⽬录实验⼀典型环节的模拟研究(验证型)(2)实验⼆典型系统的瞬态响应和稳定性(设计型)(9)实验三动态系统的数值模拟(验证型)(15)实验三动态系统的频率特性研究(综合型)(16)实验四动态系统的校正研究(设计型)(18)附录XMN—2学习机使⽤⽅法简介(20)实验⼀典型环节的模拟研究⼀、实验⽬的:1、了解并掌握XMN-2型《⾃动控制原理》学习机的使⽤⽅法,掌握典型环节模拟电路的构成⽅法,培养学⽣实验技能。
2、熟悉各种典型线性环节的阶跃响应曲线。
3、了解参数变化对典型环节动态特性的影响。
⼆、实验设备Uo(S)=(K+TS 1)S1?)1()()(21210210CS R R RR R R R S U S U i +++≈(1-19)⽐较式(1-17)和(1-19)得K=21R R R +T=C R R R R ?+2121 (1-20)当输⼊为单位阶跃信号,即Ui(t)=1(t)时,Ui(S)=1/S 。
则由式(1-17)得到111)()(23111022100210++?+++=S C R S C R C R C R S C R R R R S U S U i (1-24) 考虑到R 1》R 2》R 3,则式(1-24)可近似为S C R R R S C R R R S U S U i 2021100101)()(++≈(1-25)⽐较式(1-23)和(1-25)得K P =1R R , T 1=R 0C 1T D =2021C R R R ? (1-26)当输⼊为单位阶跃信号,即Ui(t)=1(t)时,Ui(S)=1/S 。
则由式(1-23)得到U o (S)=(K P +ST 11+T D S )S 1?五、实验报告要求:1、实验前计算确定典型环节模拟电路的元件参数各⼀组,并推导环节传递函数参数与模拟电路电阻、电容值的关系以及画出理想阶跃响应曲线。
2、实验观测记录。
自动控制原理实验指导书
自动控制原理实验指导书内蒙古工业大学电力学院自动化系2012年10月目录实验一典型环节模拟及二阶系统的时域瞬态响应分析 (1)实验二频率特性的测试 (8)实验三控制系统的动态校正 (12)实验四非线性系统的相平面分析 (14)实验五状态反馈 (20)TKKL—1型控制理论电子模拟实验箱使用说明书 (23)实验一 典型环节模拟及二阶系统的时域瞬态响应分析一、实验目的1.通过搭建典型环节模拟电路,熟悉并掌握控制理论电子模拟实验箱的使用方法。
2.了解并掌握各典型环节的传递函数及其特性,掌握用运放搭建电子模拟线路实现典型环节的方法。
3.掌握二阶系统单位阶跃响应的特点,理解二阶系统参数变化对输出响应的影响。
二、实验仪器1.控制理论电子模拟实验箱一台;2.超低频扫描示波器一台;3.万用表一只。
三、实验原理1.典型环节的传递函数及其模拟电路图(1)比例环节图1-1 比例环节的方框图比例环节的方框图如图1-1所示,其传递函数为()()C s K R s (1-1)比例环节的模拟电路图如图1-2所示,其传递函数为21()()R C s R s R = (1-2) 比较式(1-1)和式(1-2),得:21R K R =图1-2 比例环节的模拟电路图当输入为单位阶跃信号,即()1()r t t =时,由式(1-1)得输出() (0)c t K t =≥,其输出波形如图1-3所示。
图1-3 比例环节的单位阶跃响应(2)积分环节图1-4 积分环节的方框图积分环节的方框图如图1-4所示,其传递函数为()1()C s R s Ts= (1-3)图1-5 积分环节的模拟电路图积分环节的模拟电路图如图1-5所示,其传递函数为()1()C s R s RCs= (1-4) 比较式(1-3)和式(1-4),得:T RC =当输入为单位阶跃信号,即()1()r t t =时,由式(1-3)得输出1()c t t T= 其输出波形如图1-6所示。
自动控制原理实验指导书(学生版)
编著 李蔓华 陈昌虎 李晓高自动控制理论实验指导书目录实验装置简介·························································(3-4·)实验一控制系统典型环节的模拟·················(5-6)实验二一阶系统的时域响应及参数测定·····(6-7)实验三二阶系统的瞬态响应分析·················(8-9)实验四频率特性的测试·······························(9-13)实验五PID控制器的动态特性······················(13-15)实验六典型非线性环节·································(15-18)实验七控制系统的动态校正(设计性实验)··(19)备注:本实验指导书适用于自动化、电子、机设专业,各专业可以根据实验大纲选做实验。
《自动控制原理》实验指导书
信 号 源
自动控制原理实验模块
计算机控制原理实验模块
控制对象模块
CPU 控制模块
RS232 接口
控制对象输出显示模块 图 1-1-1 上位机
各模块相互交联关系框图
自动控制原理实验模块由六个模拟运算单元及元器件库组成,这些模拟运算单元的输入回路和 反馈回路上配有多个各种参数的电阻、电容,因此可以完成各种自动控制模拟运算。 例如构成比例 环节、惯性环节、积分环节、比例微分环节,PID 环节和典型的二阶、三阶系统等。利用本实验机 所提供的多种信号源输入到模拟运算单元中去,再使用本实验机提供的虚拟示波器界面可观察和分 析各种自动控制、计算机控制原理实验的响应曲线。利用本实验平台及虚拟示波器还可以用相轨迹 法和相平面法观察和分析非线性系统的瞬间响应和稳态误差等。 本实验机的元器件库中还提供了直读式的可变电阻和可变电容, 使实验可更方便、 简捷地进行。 由于本实验机除了提供了丰富的元器件库,并且在 A1-A6 模拟运算单元的输入回路和反馈回路 中还预留了多个可由实验人员自行接续的电阻/电容位置, 将方便地扩展各种实验。 预留位置在实验 机中用‘RES’表示。 计算机控制原理实验模块由模数转换器,数模转换器,8253 定时器,8259 中断控制器及模拟运 算单元组成。在 CPU 的运算和控制下,可完成数字 PID 控制,最少拍控制及大林算法等实验。 控制对象模块由温度控制模块, 直流电机模块和步进电机模块组成。 可实现温度闭环控制实验, 直流电机闭环调速实验和步进电机调速实验。还包括外设接口模块,可实现扩展外设各种实验。 CPU 控制模块由十六位微机 8088 及只读存储器 27512, 随机存取存储器 62256, 时钟芯片, RS232
5
(3)运行、观察、记录: 运行 LABACT 程序,进入自动控制菜单下的线性系统的时域分析下的典型环节的 模拟研究实验项目, 再选择开始实验。点击右下角开始, 在按下 SB2 按钮瞬间 (0→+2V 阶跃) ,观察 A6 输出端(Uo)的实际响应曲线 Uo(t) 。然后点击停止, 在观察到的曲 线上移动标尺,测量放大倍数 K,并记录响应曲线。
《自动控制原理》实验指导书1
积分环节
10.连接被测量典型环节的模拟电路(图1-3)。电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将积分电容两端连在模拟开关上。检查无误后接通电源。
11.实验步骤同4~7
微分环节
12.连接被测量典型环节的模拟电路(图1-4)。电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。检查无误后接通电源。
2.域性能指标的测量方法:
超调量Δ%:
利用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:
YMAX- Y∞
Δ%=——————×100%
Y∞
上升时间TP:
利用软件的游标测量水平方向上从零到达最大值或从零到达95%稳态值所需的时间值,便可得到TP。
四、实验内容
典型二阶系统的闭环传递函数为
2n
(S)=(1)
s2+2ns+2n
其中和n对系统的动态品质有决定的影响。
图1-1二阶系统模拟电路图
构成图1-1典型二阶系统的模拟电路,并测量其阶跃响应:
电路的结构图如图1-2:图1-2二 Nhomakorabea系统结构图
系统闭环传递函数为
(2)
式中T=RC,K=R2/R1。
比较(1)、(2)二式,可得
n=1/T=1/RC
图1实验系统构成
实验箱面板如图2:
图2实验箱面板
实验箱主要由以下几部分构成:
1、系统电源
自控原理实验系统采用高性能开关电源作为系统的工作电源,其主要技术性能指标为:
1)入电压:AC220V
2)输出电压/电流:+12V/0.5A,-12V/0.5A,+5V/2A
《自动控制原理》实验指导书
《自动控制原理》实验指导书31000字实验一、开关量控制与监测实验目的:掌握开关量控制与监测的基本原理及方法。
实验器材:PC机、PLC编程软件、PLC编程器、PLC实验箱、直流电源、继电器、开关。
实验内容:1. 使用PLC编程软件进行PLC的程序编写。
2. 使用直流电源作为控制电源,将继电器与开关连接,利用PLC实现开关量控制和监测。
实验步骤:1. 利用PLC编程软件进行PLC的程序编写。
2. 将直流电源的正极与继电器的常闭端相连,继电器的常开端与开关相连。
3. 将开关的另一端与PLC的输入端相连,PLC的输出端与继电器的控制端相连。
4. 将直流电源的负极与PLC实验箱的接地端相连。
5. 将PLC编程器连接到PC机上,将编写好的程序下载到PLC实验箱中。
6. 按下开关,观察继电器的输出,检查程序的正确性。
实验结果:1. 开关按下,PLC输出信号,继电器吸合。
2. 开关松开,PLC输出信号,继电器断开。
实验二、模拟量采集和控制实验目的:掌握模拟量采集和控制的基本原理及方法。
实验器材:PC机、PLC编程软件、PLC编程器、PLC实验箱、直流电源、电位器、LED灯。
实验内容:1. 使用PLC编程软件进行PLC的程序编写。
2. 使用电位器作为模拟量输入信号源,利用PLC采集电位器的模拟量信号,并控制LED灯的亮度。
实验步骤:1. 利用PLC编程软件进行PLC的程序编写。
2. 将电位器的信号通过模拟量转换模块输入到PLC的模拟量输入端。
3. 利用PLC的模拟量比较指令,将电位器的模拟量信号转换成数字量信号。
4. 根据数字量输出信号的状态,控制LED灯的亮度。
5. 将直流电源的负极与PLC实验箱的接地端相连。
6. 将PLC编程器连接到PC机上,将编写好的程序下载到PLC实验箱中。
7. 调节电位器,观察LED灯的亮度变化。
实验结果:1. 电位器调整时,模拟量输入信号发生变化。
2. 根据模拟量输入信号的大小,PLC输出数字量信号,控制LED灯的亮度。
自动控制原理实验指导书1
自动控制原理实验指导书南通大学电气工程学院二○一九年二月目录一、自动控制实验指导概述 (2)实验一典型环节的电路模拟 (7)实验二控制系统的时间响应分析………………………………………………错误!未定义书签。
实验三控制系统根轨迹实验 (23)实验四典型环节(或系统)的频率特性测量 (23)实验五控制系统的校正 (30)实验六离散控制系统的分析 (36)实验七非线性系统相平面法 (41)二、自动控制理论软件说明第一章概述 (48)第二章安装指南及系统要求 (52)第三章功能使用说明 (54)第四章使用实例 (64)第五章 MATLAB软件使用说明 (64)概述一.实验系统功能特点1.系统可以按教学需要组合,满足“自动控制原理”课程初级与高级实验的需要。
只配备ACCT-I实验箱,则实验时另需配备示波器,且只能完成部分基本实验。
要完成与软件仿真、混合仿真有关的实验必须配备上位机(包含相应软件)及USB2.0通讯线。
2.ACCT-I实验箱内含有实验必要的电源、信号发生器以及非线性与高阶电模拟单元,可根据教学实验需要进行灵活组合,构成各种典型环节与系统。
此外,ACCT-I实验箱内还可含有数据处理单元,用于数据采集、输出以及和上位机的通讯。
3.配备PC微机作操作台时,将高效率支持“自动控制原理”的教学实验。
系统提供界面友好、功能丰富的上位机软件。
PC微机在实验中,除了满足软件仿真需要外,又可成为测试所需的虚拟仪器、测试信号发生器以及具有很强柔性的数字控制器。
4.系统的硬件、软件设计,充分考虑了开放型、研究型实验的需要。
除了指导书所提供的10个实验外,还可自行设计实验。
二.系统构成实验系统由上位PC微机(含实验系统上位机软件)、ACCT-I实验箱、USB2.0通讯线等组成。
ACCT-I实验箱内装有以C8051F060芯片(含数据处理系统软件)为核心构成的数据处理卡,通过USB口与PC微机连接。
1.实验箱ACCT-I简介ACCT-I控制理论实验箱主要由电源部分U1单元、与PC机进行通讯的数据处理U3单元、元器件单元U2、非线性单元U5~U7以及模拟电路单元U9~U16等共14个单元组成,详见附图。
《自动控制原理》实验指导书
目录实验一典型环节的电路模拟 (1)实验二典型二阶系统动态性能和稳定性分析 (3)实验三典型环节(或系统)的频率特性测量 (5)实验四线性系统串联校正 (7)实验五MATLAB控制系统数学模型仿真 (11)实验六SIMULINK环境下典型环节阶跃响应仿真及分析 (14)附录1 ACT-I控制理论实验箱说明 (16)附录2 实验一模拟电路参考及分析 (18)附录3 实验三参考电路及分析 (22)实验一典型环节的电路模拟(设计性)一.实验目的1.通过实验熟悉并掌握实验装置和上位机软件的使用方法。
2.通过实验熟悉各种典型环节的传递函数及其特性,掌握电路模拟和软件仿真研究方法。
二.实验内容1.设计各种典型环节的模拟电路。
2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。
3.在上位机界面上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。
三.实验步骤1.熟悉实验箱,利用实验箱上的模拟电路单元,参考本实验附录设计并连接各种典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。
注意实验接线前必须先将实验箱上电,以对运放仔细调零。
然后断电,再接线。
接线时要注意不同环节、不同测试信号对运放锁零的要求。
在输入阶跃信号时,除比例环节运放可不锁零(G可接-15V)也可锁零外,其余环节都需要考虑运放锁零。
2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。
无上位机时,利用实验箱上的信号源单元U2所输出的周期阶跃信号作为环节输入,即连接箱上U2的“阶跃”与环节的输入端(例如对比例环节即图1.1.2的Ui),同时连接U2的“锁零(G)”与运放的锁零G。
然后用示波器观测该环节的输入与输出(例如对比例环节即测试图1.1.2的Ui和Uo)。
注意调节U2的周期阶跃信号的“频率”电位器RP5与“幅值”电位器RP2,以保证观测到完整的阶跃响应过程。
《自动控制原理》实验指导书(正文全)
实验一基于MATLAB实验平台的系统被控对象的建立与转换[说明]一个控制系统主要由被控对象、检测测量装置、控制器和执行器四大部分构成。
用于自控原理实验方面的被控对象可以有①用于实际生产的实际系统的真实被控对象,如进行温度控制的锅炉、进行转速控制的电机等;②用于实验研究的真实被控对象,如进行温度控制的实验用锅炉、进行转速控制的电机等;③用运算放大器等电子器件搭建的电模拟被控对象(电路板形式),它们的数学模型与真实被控对象的数学模型基本一致,而且比真实被控对象更典型,更精准。
它们是实物型原理仿真被控对象。
④计算机仿真的被控对象,它们是非实物型原理仿真被控对象,是以各种形式展现的被控对象的数学模型。
它们通过计算机屏幕展示,或是公式形式的数学算式,或是数字形式的数表、矩阵,或是图形形式的结构框图,或是动画形式的真实被控对象实物的动态图形。
在自控原理实验中,①极少用;②用的不多;③用的较多;④在MATLAB软件广泛使用后,用的较多。
③、④各有其优缺点。
MATLAB软件的应用对提高控制系统的分析、设计和应用水平起着十分重要的作用。
我们的实验采用的是④:采用MATLAB软件平台的计算机仿真的被控对象。
这里“被控对象的建立”,指在MATLAB软件平台上怎样正确表示被控对象的数学模型。
[实验目的]1.了解MATLAB软件的基本特点和功能;2.掌握线性系统被控对象传递函数数学模型在MATLAB环境下的表示方法及转换;3.掌握多环节串联、并联、反馈连接时整体传递函数的求取方法;4.掌握在SIMULINK环境下系统结构图的形成及整体传递函数的求取方法。
[实验指导]一、被控对象模型的建立在线性系统理论中,一般常用的描述系统的数学模型形式有:(1)传递函数模型——有理多项式分式表达式(2)传递函数模型——零极点增益表达式(3)状态空间模型(系统的内部模型)这些模型之间都有着内在的联系,可以相互进行转换。
1、传递函数模型——有理多项式分式表达式设系统的传递函数模型为1110111......)()()(a s a s a s a b s b s b s b s R s C s G n n n n m m m m ++++++++==---- 对线性定常系统,式中s 的系数均为常数,且a n 不等于零。
自动控制理论实验指导书1-4
. . .实验一典型环节及其阶跃响应一、实验目的1. 掌握控制模拟实验的基本原理和一般方法。
2. 掌握控制系统时域性能指标的测量方法。
二、实验仪器1.EL-AT-III型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2.时域性能指标的测量方法:超调量Ó %:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2)检查USB线是否连接好,在实验项目下拉框中选中任实验,点击按钮,出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。
3)连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。
检查无误后接通电源。
4)在实验项目的下拉列表中选择实验一[典型环节及其阶跃响应] 。
5)鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。
6)用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:%100%max ⨯-=∞∞Y Y Y σT P 与T S :利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P 与T S 。
四、实验容构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1. 比例环节的模拟电路及其传递函数如图1-1。
G (S )= R2/R12. 惯性环节的模拟电路及其传递函数如图1-2。
自动控制原理1实验指导书
⾃动控制原理1实验指导书《⾃动控制原理Ⅰ》实验指导书2011年9⽉实验⼀典型环节及其阶跃响应⼀.实验⽬的1.学习构成典型环节的模拟电路。
2.熟悉各种典型环节的阶跃响应曲线,了解参数变化对典型环节动态特性的影响。
3.学会由阶跃响应曲线计算典型环节的传递函数。
4.掌握仿真分析软件multisim的使⽤。
⼆.物理模拟说明⽤电⼦线性运算放⼤器和各种反馈电路能够模拟线性系统典型环节。
同时,模拟典型环节是有条件的,即是将运算放⼤器视为满⾜以下条件的理想放⼤器:(1)输⼊阻抗为∞,进⼊运算放⼤器的电流为零,同时输出阻抗为零;(2)电压增益为∞;(3)通频带为∞;(4)输⼊与输出间呈线性特性.可是,实际运算放⼤器毕竟不是理想的;电⼦元件和电路仍然有惯性(尽管⾮常⼩)其通频带有限,并⾮达到∞,输⼊输出功率也是有限的;⼀般的运算放⼤器,在开环使⽤时,其通频带仅为10-100Hz,当将其接成K=1的⽐例器,其通频带也不过MHz左右。
所以,以线性运算放⼤器和各种反馈电路去模拟系统的各种线性和⾮线环节也不是⽆条件的,它仍然是在⼀定条件下,在⼀定程度上模拟出线性典型环节的特性,超出条件的范围和要求过份精确都是办不到的。
因此,需要说明以下⼏点事项:(1)⽤实际的运算放⼤器模拟线性系统各种典型环节都是有条件的近似关系,不可能得到理想化典型环节的特性。
其主要原因是:1实际运算放⼤器输出幅值受其电源所限,根本不可能达到∞,此即⾮线性影响;2实际运算放⼤器不是⽆惯性的。
尽管惯性很⼩,但通频带不会达到∞。
(2)实际运算放⼤器输出幅值受限的⾮线性因素对所有各种模拟环节都有影响,但情况迥异。
对⽐例环节、惯性环节、积分环节、⽐例积分环节和振荡环节,只要控制了输⼊量的⼤⼩或是输⼊量施加的时间长短(对于积分或⽐例积分环节),不使其输出在⼯作期间内达到最⾼饱和度,则⾮线性因素对上述环节特性的影响可以避免;但是⾮线性因素对模拟⽐例微分环节和微分环节的影响却⽆法避免。
自动控制原理实验指导书(1-4)
4、分析ξ和ωn 对二阶系统动态响应的影响;
五、实验步骤
5
《自动控制原理》实验指导书
1)点击“开始”菜单中的 如图 2 所示窗口;
图标,进入 EWB 实验平台。这时 EWB 会自动打开
自定义器件 信号源库 基本电路器件库
二极管库 晶体三极管库
逻辑门电路库 数字集成芯片库 数字电路库
元器件特性 运行或停止实验
5)测量出该系统的穿越频率 ωc 、相角裕量 γ 和幅值裕量 K g 。
9
《自动控制原理》实验指导书
2、 G2 (S )
=
6(1 + 0.9s) S 2 (0.1S + 1)
1)按同样的方法构建一个开环传递函数为:G2 (S )
=
6(1 + 0.9s) S 2 (0.1S + 1)
的单位反馈系统的实验模
13
《自动控制原理》实验指导书
R(s)
GC(S)
20
C(s)
S (0.5S +1)
图 3—4 校正后系统方块图
注意校正后系统负反馈的实现。
四、实验内容及步骤
1、测量未校正系统的性能指标。
(1)按图 3-2 接线画图;
(2)加阶跃电压,观察阶跃相应曲线,并测出超调量 MP 和调节时间 ts。 2、测量校正后系统的性能指标。
分析图形
虚拟器件库
其它器件库
模拟集成芯片库 混和集成芯片库
显示器件库 控制器件库
图2
在此窗口下,同学们就可以自己在元件库中选择元件组图了。组图完成后点击运行按钮开始 各项实验内容。为了让同学们有更多的时间分析电路和思考问题,实验室现将实验电路绘制 于"D:\My Documents\EDA user\EWB"文件夹中.同学们可以根据下面的步骤来完成 实验。
《自动控制原理》实验指导书
《自动控制原理》实验指导书山西农业大学工程技术学院目录自动控制理论电子模拟实验指导书实验一、控制系统典型环节的模拟实验二、一阶系统的时域响应及参数测定实验三、二阶系统的瞬态响应分析实验四、PID控制器的动态特性实验五、典型环节频率特性的测试附录:扫频电源操作使用说明实验一 控制系统典型环节的模拟一、 实验目的1)、熟悉超低频扫描示波器的使用方法2)、掌握用运放组成控制系统典型环节的电子电路 3)、测量典型环节的阶跃响应曲线4)、通过实验了解典型环节中参数的变化对输出动态性能的影响二、 实验仪器1)、控制理论电子模拟实验箱一台 2)、超低频慢扫描示波器一台 3)、万用表一只三、 实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。
图中Z 1和Z 2为复数阻抗,它们都是由R 、C 构成。
基于图中A 点的电位为虚地,略去流入运放的电流,则由图1-1得:由上式可求得由下列模拟电 路组成的典型环节的传递函数及 其单位阶跃响应。
1)、比例环节比例环节的模拟电路如图1-2所示: 图1-1、运放的反馈连接(1) )(12Z Z u u S G i o =-=2=410820==12KKZ Z )S (G)(2 1+=1+1•=R 1+==21212212TS KCS R R R CS /R CS/R Z Z )S (G图1-2 比例环节2)、惯性环节取参考值R 1=100K ,R 2=100K ,C=1uF图1-3、惯性环节3)、积分环节取参考值R =200K ,C =1uF图1-4、积分环节)(3 11/1)(12TSRCS R CSZ Z S G ==== RC =T 积分时间常数式中4)、比例微分环节(PD ),其接线图如图及阶跃响应如图1-5所示。
参考值R 1=200K ,R 2=410K ,C =0.1uF图1-5 比例微分环节5)、比例积分环节,其接线图单位阶跃响应如图1-6所示。
自动控制原理实验指导书
自动控制原理实验指导书自动控制原理实验指导书实验一控制系统典型环节的模拟及一阶系统的特性分析第一部分:典型环节的模拟一、实验目的1、熟悉超低频扫描示波器的使用方法2、掌握用运放组成控制系统典型环节的电子模拟电路3、测量典型环节的阶跃响应曲线4、通过本实验了解典型环节中参数的变化对输出动态性能的影响二、实验仪器1、控制理论模拟实验箱一台2、超低频慢扫描示波器一台3、万用表一只三、实验原理以运算放大器为核心组件,由其不同的输入R-C 网络和反馈R-C 网络构成控制系统的各种典型环节。
各典型环节的模拟电路及结构图如下: 1.比例环节1.1比例环节电路图:G (S )=-K其中K =R2/R11.2比例环节结构图:2. 惯性环节2.1惯性环节电路图: G(S)=1KTs -+ K =R 2/R 1 T =R 2C2.2惯性环节结构图:图1-1图1-2图1-3图1-43积分环节3.1积分环节电路图G(S)=1TST=R 1C图1-5 积分环节电路图3.2积分环节结构图图1-64微分环节4.1微分环节电路图图1-74.2微分环节结构图图1-85. 比例微分环节5.1比例微分环节电路图:图1-9比例微分环节电路图根据以上环节得:G(S)=31221[()1]1R R R Cs R R Cs +++ 此时:R 1C=51K×1u=0.051<<1故1R Cs 项可忽略不计,得传递函数为:G(S)=3122[()1]R R R Cs R ++ 5.2比例微分环节结构图图1-10其中:K=R3/R2 T=R1+R2 四、实验内容1、在模拟实验箱连线实现下列典型环节,观察并记录它们的阶跃响应波形。
1)比例环节 2)积分环节 3)微分环节 4)惯性环节 5) 比例微分环节五、实验报告要求1、画出五种典型环节的实验电路图,并注明参数。
2、测量并记录各种典型环节的单位阶跃响应,并注明时间坐标轴。
第二部分:一阶系统的特性分析一、实验目的K(TS+1)1、观察一阶系统在阶跃和斜坡输入信号作用下的瞬态响应。
自动控制原理实验指导书1
自动控制原理实验指导书1自动控制原理实验指导书信息工程学院自动化教研室《自动控制原理》实验指导书目录目录...................................................... 错误!未定义书签。
第一章虚拟示波器........................................... 错误!未定义书签。
第一节虚拟示波器的类型 ................................. 错误!未定义书签。
第二节虚拟示波器的使用 ................................. 错误!未定义书签。
第二章自动控制原理实验 ..................................... 错误!未定义书签。
实验一典型环节的模拟研究 ............................... 错误!未定义书签。
实验二典型二阶系统瞬态响应和稳定性 ..................................... 12 实验三控制系统的频率特性 ............................................... 15 实验四系统校正 ...................................................... ... 20 实验五典型非线性环节 (24)附录一 LCAACT集成调试环境 (31)第一节 LCAACT软件界面介绍 .............................................. 31 第二节第二节 88串行监控命令 ........................................... 43 第三节LCAACT软件调试 (46)第四节快速入门 ...................................................... (48)- 1 -《自动控制原理》实验指导书第一章虚拟示波器第一节虚拟示波器的类型虚拟示波器的类型为了满足自动控制不同实验的要求我们提供了示波器的三种使用方法。
自控原理实验指导书
实验一典型环节及其阶跃响应一、实验目的1、学习构成典型环节的模拟电路。
2、熟悉各种典型环节的阶跃响应曲线。
3、了解参数变化对典型环节动态特性的影响,并学会由阶跃响应曲线计算典型环节的传递函数。
二、实验内容各典型环节的模拟电路及结构图如下:图1-1-1 比例环节电路图图1-2-1 惯性环节电路图图1-1-2 比例环节结构图2-2 惯性环节结构图图1-3-1 积分环节电路图图1-4-1 微分环节电路图图1-3-2 积分环节结构图图1-4-2 微分环节结构图三、实验步聚1、 将输入端ui 与数据通道接口板上的DAO 连接、输出端uo 与实验平台信号引出区的INO 孔连接。
(若无特别声明,其它实验中涉及运放电路板及ui 及uo 均按此连线,不再赘述)。
2、 启动计算机,运行“系统设置”菜单,选择串口。
(若无特别声明,其它实验中均同此,不再赘述。
如不选择,则设为默认值,选择COM1通讯端口)3、 打开“自动控制原理实验系统”,打开“实验选择”菜单,选择“典型环节及其阶跃响应”实验。
4、 选择“参数设置”命令,设置采样周期,采样点数和设定电压。
5、 选择“运行观测”命令,观察阶跃响应曲线,改变模拟电路参数后,再重新观察阶跃响应曲线的变化。
6、 为了更好的观察曲线,再“参数设置”命令中,设置“曲线放大”倍数,“运行观测”。
7、 记录波形及数据(保存结果、打印图象)。
8、 连接其它模拟电路,重复步骤3、4、5、6注:打印图像只有在曲线放大为“1”时打印(其它实验相同)四、实验报告1、 画出惯性环节、积分环节、比例微分环节的电路图和所记录的响应曲线。
2、 由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与值比较。
图1-5-1 比例微分环节电路图传递函数为:G(s) = (R3/R2) ((R1+R2)CS+1)图1-5-2 比例微分环节结构图实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的阻尼比ξ和无阻尼自然频率ω对系统动态性能的影响。
(完整word)自动控制原理实验指导书
目录第一部分使用说明书 (1)第一章系统概述 (1)第二章硬件的组成及使用 (2)第二部分实验指导书 (4)第一章控制理论实验 (4)实验一典型环节的电路模拟 (4)实验二二阶系统的瞬态响应 (9)实验三高阶系统的瞬态响应和稳定性分析 (11)实验五典型环节和系统频率特性的测量 (16)实验七典型非线性环节的静态特性 (21)实验十三采样控制系统的分析 (26)附录上位机软件使用流程 (29)第一部分使用说明书第一章系统概述“THKKL—6”型控制理论及计算机控制技术实验箱是我公司结合教学和实践的需要而进行精心设计的实验系统。
适用于高校的控制原理、计算机控制技术等课程的实验教学。
该实验箱具有实验功能全、资源丰富、使用灵活、接线可靠、操作快捷、维护简单等优点。
实验箱的硬件部分主要由直流稳压电源、低频信号发生器、阶跃信号发生器、交/直流数字电压表、电阻测量单元、示波器接口、CPU(51单片机)模块、单片机接口、步进电机单元、直流电机单元、温度控制单元、通用单元电路、电位器组等单元组成。
数据采集部分采用USB2。
0接口,它可直接插在IBM-PC/AT 或与之兼容的计算机USB通讯口上,有4路单端A/D模拟量输入,转换精度为12位;2路D/A模拟量输出,转换精度为12位;上位机软件则集中了虚拟示波器、信号发生器、Bode图等多种功能于一体。
在实验设计上,控制理论既有模拟部分的实验,又有离散部分实验;既有经典控制理论实验,又有现代控制理论实验;计算机控制系统除了常规的实验外,还增加了当前工业上应用广泛、效果卓著的模糊控制、神经元控制、二次型最优控制等实验;第二章硬件的组成及使用一、直流稳压电源直流稳压电源主要用于给实验箱提供电源。
有+5V/0。
5A、±15V/0。
5A及+24V/2.0A四路,每路均有短路保护自恢复功能。
它们的开关分别由相关的钮子开关控制,并由相应发光二极管指示。
其中+24V主要用于温度控制单元.实验前,启动实验箱左侧的电源总开关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4
图5
5)双击打开"My Documents"下的"EDA user",如图 6 所示。
6)双击打开"EDA user"目录下的"EWB"文件夹,如图 7 所示。 7)在如图 7 所示的图界面左6边的实验列表中选择并双击所要做的实验电图路,再7点击运行按钮开 始各项实验内容。
六、预习要求:
1、熟悉各种典型环节电模拟的原理和方法,并计算好元件相关参数。
2、 要求设计串联校正装置使系统满足下列性能指标:
(1) 超调量 MP≤25% (2) 调节时间 ts≤1s (3) 静态速度误差系数 Kv≥20
3、 串联校正装置的设计:
常用校正装置电路如图 3—3 所示。
R1
R2
C
R3 R0
图 3—3 校正装置电路
校正网络的传递函数为
GC
(S)
=
K
T1S T2 S
根据运算放大器反向输入端、输出端之间的传递函数:
G(s) = Uc (s) = − Z f U r (s) Zr
Zf
Ur Zr
A
UC
图1 在运算放大器反向输入端、输出端之间配以适当的电阻和电容,即可模拟各种典型环节。 改变电阻的阻值和电容的容值,也就改变了典型环节的参数。再观察典型环节的的阶跃响应, 就可了解参数变化对典型环节动态特性的影响。 1、比例环节:实验电路见图 1。
1、掌握测取系统或环节频率特性的基本方法; 2、由开环对数频率特性求取传递函数。 二、仪器、设备 微型计算机(安装有 EWB 软件) 1 台
三、实验原理
线性系统(环节)在正弦信号输入下的稳态输出为一个与输入信号同频率的正弦信号, 但其振幅和相位与输入信号不同,并随输入信号的频率变化而变化,测取不同频率下的输入 输出信号的振幅比,相位差,即可求得该系统(环节)的幅频特性 A(ω)相频特性φ(ω), 从而获得该系统(环节)的频率特性 G(jω)。
13
《自动控制原理》实验指导书
R(s)
GC(S)
20
C(s)
S (0.5S +1)
图 3—4 校正后系统方块图
注意校正后系统负反馈的实现。
四、实验内容及步骤
1、测量未校正系统的性能指标。
(1)按图 3-2 接线画图;
(2)加阶跃电压,观察阶跃相应曲线,并测出超调量 MP 和调节时间 ts。 2、测量校正后系统的性能指标。
5)并测量出该系统的穿越频率 ωc 、相角裕量 γ 和幅值裕量 K g 。
3、将上述两个系统的波德图绘制于同一对数频率坐标系中,并对两个系统进行比较。
五、预习要求:
1、熟悉各典型环节的频率特性,系统频率特性的绘制以及典型环节的频率特性与系统频率特 性之间的关系。 2、画出被测系统的模拟电路图,计算元件参数值,确定测试频率值(建议在系统(最低)转 折频率的“十分之一”到(最高)转折频率的“十倍”的频率范围内选择 12 个点),列好实 验数据表。
+1 +1
其中
K = (R1 + R2 ) / R0
T1
= ( R1R2 R1 + R2
+
R3 )C
T2 = R3C
提示:R3<<R1、R2
根据系统的性能指标要求,并利用常用串联校正装置,对系统进行校正设计。
4、 将设计好的串联校正装置加入到未校正系统模拟电路中。 校正后系统的方块图如图 3—4 所示。
4、分析ξ和ωn 对二阶系统动态响应的影响;
五、实验步骤
5
《自动控制原理》实验指导书
1)点击“开始”菜单中的 如图 2 所示窗口;
图标,进入 EWB 实验平台。这时 EWB 会自动打开
自定义器件 信号源库 基本电路器件库
二极管库 晶体三极管库
逻辑门电路库 数字集成芯片库 数字电路库
元器件特性 运行或停止实验
5)测量出该系统的穿越频率 ωc 、相角裕量 γ 和幅值裕量 K g 。
9
《自动控制原理》实验指导书
2、 G2 (S )
=
6(1 + 0.9s) S 2 (0.1S + 1)
1)按同样的方法构建一个开环传递函数为:G2 (S )
=
6(1 + 0.9s) S 2 (0.1S + 1)
的单位反馈系统的实验模
1、 未校正系统的原理方块图为图 3—1 所示,图 3—2 是它的模拟电路。
R(s)
20
C(s)
S (0.5S +1)
图 3—1 未校正系统方框图
1µ
200K
1µ
R(t) 200K
100K
500K 250K
C(t)
200K
图 3—2 未校正系统模拟电路
系统的闭环传递函数为
Φ(S) =
20
=
40
0.5S 2 + S + 20 S 2 + 2S + 40
函数 发生器
被测 系统
Y1(t) 频率测 Y2(t) 试 仪
四、实验内容与步骤:
1、 G1 (S )
=
12 S (0.1S
+
1)
1)按实验一所述的方法,通过
EWB
实验软件构建一个开环传递函数为:G1 (S )
=
1 S (0.1S
+ 1)
的单位反馈系统的实验模拟电路; 2)设置函数发生器的输出信号为正弦信号,并选择该信号的频率和幅值。 3)通过频率测试仪测量该系统的对数频率特性; 4)确定测试频率范围(建议在系统(最低)转折频率的“十分之一”到(最高)转折频率的 “十倍”的频率范围内),在此范围内选择 12 个点进行测量,并通过描点法画出系统波德图。
其闭环传递函数为:φ(s) = U c (s) =
1
=
ωn2
U r (s) S (TS + 1) + 1 S 2 + 2ξωn S + ωn 2
四、实验内容
1、启动微机,打开 EWB 实验软件,画好(或者是打开)实验电路,并设置好参数;
2、观察不同ξ和ωn 时的阶跃响应(取规定的四组参数);
3、测试每组参数下所对应的阶跃响应的 tr , t p , ts ,σ p 和振荡次数 N,并与理论值比较;
一、实验目的 1、了解和观测校正装置对系统稳定性及瞬态特性的影响。 2、学习校正装置的设计和实现方法。
二、实验设备 微型计算机(安装有 EWB 软件) 1 台
三、实验原理和电路 在系统中引入适当的辅助装置,使原系统在稳定性、精度和暂态性能等方面得以改善,
从而满足预定的性能指标要求,这种改善系统性能的方法称为校正。所引入的辅助装置称为 校正装置。利用超前网络的相角超前特性,使已校正系统的截止频率和相角裕度满足性能指 标要求,从而改善闭环系统的动态特性。
六、实验记录表
1、系统一:
参数
组 1 2 3 4 5 6 7 8 9 10 11 12
f (Hz)
ω(rad / s)
L(ω )(dB)
ϕ(ω)( )
穿越频率 ω c
相角裕量 γ
幅值裕量 K g
2、系统二:
参数
组 1 2 3 4 5 6 7 8 9 10 11 12
10
《自动控制原理》实验指导书
振荡次数 N
理论值 测试值 理论值 测试值 理论值 测试值 理论值 测试值 理论值 测试值
八、思考题
1、ξ和ωn 分别决定和影响阶跃响应的哪些指标?
2、随着ξ的增大,系统的振荡特性有何变化?
3、随着ωn 的增大,系统的振荡特性有何变化?
8
《自动控制原理》实验指导书
实验二 自控系统频率特性
一、实验目的
S
3、惯性环节:实验电路见图 3。
Rf
其传递函数为 G(s) = U c (s) = − R0 ,记 T=RC,取 K ' = R f = 1 ,则 G(s) = − 1
U r (s) R f CS + 1
R0
TS + 1
4、总模拟实验电路: R1
U r R0
A
C1
C2
R2
R3
R4
A
A
UC
图5
其开环传递函数为: G(s) == 1 S(TS + 1)
2、熟悉由典型环节构建二阶系统的方法;并分析二阶系统的ξ和 ωn 与各典型环节的参数之
间的关系。3、分析二阶系统的阶跃响应,熟悉系统ξ和ωn 对系统阶跃响应的影响。
七、实验记第四组
ωn (1/S)
3
3
1
1
1
ξ
0.5
0.5
0
6
7
《自动控制原理》实验指导书
阶跃响应曲线
上升时间 tr 峰值时间 t p 调节时间 ts 超调量σ p
G(s) = K
(1) K = Z f ,本实验中取 K = 1 。 Zr
2、积分环节:实验电路见图 2。 C
Ur R
A
UC
U r R0
C
Rf
A
UC
图2
图3
4
《自动控制原理》实验指导书
其传递函数为 G(s) = U c (s) = − 1 ,取 RC=1,则 G(s) = − 1
U r (s) RCS
拟电路; 2)设置函数发生器的输出信号为正弦信号,并选择该信号的频率和幅值。 3)通过频率测试仪测量该系统的对数频率特性; 4)确定测试频率范围(建议在系统(最低)转折频率的“十分之一”到(最高)转折频率的 “十倍”的频率范围内),在此范围内选择 12 个点进行测量(选择本实验的 12 个点的频率与 系统一相同),并通过描点法画出系统波德图。