比例线段和黄金分割练习题.doc

合集下载

浙教新版九年级上册《4.1 比例线段》2024年同步练习卷(6)+答案解析

浙教新版九年级上册《4.1 比例线段》2024年同步练习卷(6)+答案解析

浙教新版九年级上册《4.1比例线段》2024年同步练习卷(6)一、选择题:本题共5小题,每小题3分,共15分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如果线段a::2,且线段b是线段a、c的比例中项,那么c:b等于()A.4:3B.3:2C.2:3D.3:42.已知P是线段AB的黄金分割点,且,那么的值为()A. B. C. D.3.生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近,可以增加视觉美感,若图中,则a约为()A.B.C.D.4.已知如图,线段,,,,请问在D,E,F,三点中,哪一点最接近线段AB的黄金分割点()A.D点B.E点C.F点D.D点或F点5.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是,称为黄金比例,如图,著名的“断臂维纳斯”便是如此,此外,最美人体的头顶至咽喉与咽喉至肚脐的长度之比也是,若某人的身材满足上述两个黄金比例,且头顶至咽喉的长度为26cm,则其身高可能是()A.165cmB.178cmC.185cmD.190cm二、填空题:本题共3小题,每小题3分,共9分。

6.据有关实验测定,当气温处于人体正常体温的黄金比值即黄金分割值时,身体感到特别舒适,这个温度大致是______用整数填写7.如图,在五角星中,,且C、D两点都是AB的黄金分割点,,则BC的长是______.8.如图,点C在线段AB上,且,则的数值为______;如果AB的长度与舞台的宽度一样长,那么节目主持人应站在点______的位置最好.三、解答题:本题共4小题,共32分。

解答应写出文字说明,证明过程或演算步骤。

9.本小题8分已知线段,延长AB到C,使,M为AC的中点,判断线段AB是不是线段BM和BC的比例中项,并说明理由.10.本小题8分如图,已知线段AB,按照如下方法作图:经过点B作,使;连接AD,在DA上截取;在AB上截取,则点C为线段AB的黄金分割点.11.本小题8分已知线段AB,按照如下的方法作图:以AB为边作正方形ABCD,取AD的中点E,连接EB,延长DA到F,使,以线段AF为边,作正方形AFGH,那么点H是线段AB的黄金分割点吗?请说明理由.12.本小题8分下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图,把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图中所示的AD处,折痕为根据以上的操作过程,完成下列问题:求CD的长;求证:四边形ABQD是菱形.答案和解析1.【答案】C【解析】解:线段b是a、c的比例中项,,::c,::2,::2,::故选:根据线段比例中项的概念,a::c,再根据a::2可得b::2,即可求出答案.此题考查了比例线段,关键是根据比例中项的概念列出算式.注意线段不能是负数.2.【答案】C【解析】【分析】本题考查了黄金分割,熟练掌握黄金分割的定义是解题的关键.利用黄金分割的定义,进行计算即可解答.【解答】解:是线段AB的黄金分割点,且,,,,故选:3.【答案】D【解析】解:雕像的腰部以下a与全身b的高度比值接近,,为3米,约为米.故选:根据雕像的腰部以下a与全身b的高度比值接近,因为图中b为2米,即可求出a的值.本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.4.【答案】C【解析】解:线段,,,,,,,::,AF::,点F最接近线段AB的黄金分割点.故选:先计算出,,,则E点为AB的中点,则计算BD:AB和AF:AB,然后把计算的结果与比较,则可判断哪一点最接近线段AB的黄金分割点.本题考查了黄金分割的定义:把线段AB分成两条线段AC和,且使AC是AB和BC的比例中项即AB::,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中,并且线段AB的黄金分割点有两个.5.【答案】B【解析】【分析】依据黄金分割和题意可得某人的咽喉至肚脐的长度,再根据黄金分割和题意,可得某人的肚脐至足底的长度,最后身高=头顶至咽喉的长度+咽喉至肚脐的长度+肚脐至足底的长度.本题主要考查了黄金分割,利用黄金比例进行计算是解决问题的关键.【解答】解:设某人的咽喉至肚脐的长度为xcm,则,解得,设某人的肚脐至足底的长度为ycm,则,解得,其身高可能是,故选:6.【答案】22【解析】解:根据黄金比的值得:故本题答案为:根据黄金比的值知,身体感到特别舒适的温度应为36度的倍.本题要熟记黄金比的值为7.【答案】【解析】解:、D两点都是AB的黄金分割点,,,,故答案为:利用黄金分割的定义得到,即可求解.本题考查了黄金分割:点C把线段AB分成两条线段AC和,且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中,并且线段AB的黄金分割点有两个.8.【答案】C【解析】解:设,则,::x,解得:,的数值为,点C是线段AB的黄金分割点,故主持人应站在点C位置最好.故答案为:;假设主持人应站在点C位置最好,即C点为黄金分割点,根据黄金分割的意义,根据AB,AC,BC的关系列出方程求得用AB表示AC即可.本题考查了相似三角形的应用,比例线段,黄金分割,正确的理解黄金分割是解题的关键.9.【答案】解:线段AB是线段BM和BC的比例中项,理由:,,,,为AC的中点,,,,,,,线段AB是线段BM和BC的比例中项.【解析】根据已知条件求得,,由M为AC的中点,得到,进一步得到,由于,,于是得到,即可得到结论.本题考查了线段上两点间距离,比例线段,解题的关键是理解比例中项的含义.10.【答案】解:如图所示:点C即为线段AB的黄金分割点.【解析】根据题意先作出AB的垂直平分线与AB的交点F,经过点B作,使,再连接AD,以D为圆心,DB长为半径,交DA于E,再以A为圆心,AE长为半径,交AB于C,则点C 为线段AB的黄金分割点.本题考查了作图-基本作图,黄金分割点的作法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本作图,逐步操作.11.【答案】解:设正方形ABCD的边长为2a,在中,依题意,得,,由勾股定理知,,;,,,所以点H是线段AB的黄金分割点.【解析】根据黄金分割点的定义,只需证明即可.本题考查黄金分割的概念,勾股定理,找出黄金分割中成比例的对应线段是解决问题的关键.12.【答案】解:,四边形MNCB是矩形,,矩形MNCB是正方形,,由折叠得:,中,由勾股定理得:,,;由折叠得:,,,,,,,,四边形ABQD是平行四边形,,平行四边形ABQD是菱形.【解析】先证明四边形MNCB为正方形,再利用折叠得:,,所以,可得结论;根据平行线的性质和折叠得:,由等角对等边得:,由一组对边平行且相等可得:四边形ABQD是平行四边形,再由,可得四边形ABQD是菱形.本题是四边形的综合题,难度适中,考查了菱形、正方形、平行四边形、矩形的判定和性质以及折叠的性质,并利用数形结合的思想解决问题.。

线段的比、黄金分割(培优训练)

线段的比、黄金分割(培优训练)

线段的比、黄金分割知识要点◆要点1 线段的比(1) 线段的比:在同一单位下,两条线的长度的比叫做这两条线段的比。

(2) 成比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即d c b a =,那么这四条线段成比例线段,当b =c 时,有db b a =,称b 为a 与d 的比例中项。

(3) 比例尺:比例尺=图上距离:实际距离★说明:判断四条线段是否成比例,首先要把四条线段的单位化成同一单位,再计算它们的比值来判断,要注意它们的顺序。

◆要点2 比例的性质a . 比例的基本性质:()()0,02≠=⇔=≠=⇔=d c b a ac b cb b a dc b a bc ad d c b a 、、、、、、 b . 合比性质:(两边都加1或减1)dd c b b a d c b a ±=±⇒= c . 等比性质:如果()0≠+++===m d b n m d c b a ,那么b a n d b m c a =++++++ 。

◆要点3 黄金分割概念:若点C 把线段AB 分成两条线段AC 、BC (AC >BC),若ACBC AB AC =,我们称线段AB 被点C 黄金分割,C 点为该条线段的黄金分割点,较短线段与较长线段(或较长线段与原线段)的比叫做黄金比⎪⎪⎭⎫ ⎝⎛≈-618.0215。

★说明:(1)一条线段有两个黄金分割点。

黄金分割比是两个线段的比,没有单位;(2) 一条线段黄金分割后,原线段、较长线段、较短线段有其固定关系:若AB =1,.253,215-=-=BC AC 则(3)作一条线段的黄金分割点一般有两种方法,如右图XS —01、XS —02:易错易混点 (1)求线段的比时,忽视了单位的统一;(2) 不按顺序写成比例线段;运用等比性质时,忽略了成立的条件;(3) 没有理解黄金分割的定义;XS —02 XS —01例☆ 已知:k zy x y z x x z y =+=+=+,求k 的值。

专题讲练:比例线段与黄金分割

专题讲练:比例线段与黄金分割

专题讲练:比例线段与黄金分割¤题型讲练【例1】下列各组中的四条线段成比例的是( ) A.a =2,b =3,c =2,d =3 B.a =4,b =6,c =5,d =10 C.a =2,b =5,c =23,d =15 D.a =2,b =3,c =4,d =1变式训练1:1.已知a =8cm ,b =6cm ,c =4cm ,(1) 请添加一边d ,使a 、b 、c 、d 四边成比例,求d 的长度; (2) a 、c 的比例中项x 的值.【例2】若ac =bd ,则下列各式一定成立的是( ) A.d c b a = B.c c b d d a +=+C.c d ba =22D.da cd ab =变式训练2: 1.已知dcb a =,则下列式子中正确的是( ) A. a ∶b =c 2∶d 2 B. a ∶d =c ∶bC. a ∶b =(a +c )∶(b +d )D. a ∶b =(a -d )∶(b -d )【例3】已知 ,求x 的值变式训练3:1.已知524232x z z y y x -=-=-,求y x z y x -++2的值【例4】已知5:4:2::=c b a ,且632=+-a b a ,求c b a 23-+的值.变式训练4:1.已知线段x 、y ,如果(x +y )∶(x -y )=a ∶b ,求x ∶y .【例5】如图:在ABC ∆中,D 、E 分别是边AB 、AC 上的点,且 ,(1) 你能说明 吗? (2)若AB=12,AE=6,EC=4,求出AD 的长。

(3)若 ,且ABC ∆的周长为30,求出ADE ∆的周长。

【例6】已知线段AB=6,点C 为线段AB 的黄金分割点,(AC>BC),求AC -BC 的值:变式训练5:如图,以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上. (1)求AM 、DM 的长. (2)求证:AM 2=AD ·DM .(3)根据(2)的结论你能找出图中的黄金分割点吗?ba ab b ax +=+=+=222ECAEBD AD =ACECAB BD =53===BCDE ACAE ABAD※基础训练 1.若43xx =,则x 等于( ) A.12 B.32 C.-32 D.32± 2.若5:6:=y x ,则下列等式中,不正确的是( )A 、511=+yy x B 、51=-y y xC 、6=-yx xD 、5=-x y y 3.若2:1:::===d c c b b a ,则=d a :( ) A 、1:2 B 、1:4 C 、1:6 D 、1:8 4.若3:2:1::=cb a ,则cb a cb a +---的值为( )A 、-2B 、2C 、3D 、-3 5.已知875c b a ==,且20=++c b a ,则=-+c b a 2( )A 、11B 、12C 、314D 、96.若4:3:2::=c b a ,且5=-+c b a ,则b a -是( ) A 、5 B 、-5 C 、20 D 、-20 7.已知35=y x ,则=-+)(:)(y x y x 8.如果32=b a ,且3,2≠≠b a ,那么=-++-51b a b a9.已知a b a 3)(7=-,则=ba10.如果2===c z b y a x ,那么=+-+-cb a z y x 3232※能力提升 11.有以下命题:①如果线段d 是线段a ,b ,c 的第四比例项,则dcb a = ②如果点C 是线段AB 中点,则AC 是AB 、BC 的比例中项 ③如果点C 是线段AB 的黄金分割点,且AC >BC ,那么AC 是AB 与BC 的比例中项④如果点C 是线段AB 的黄金分割点,AC >BC ,且AB =2,则AC =5-1其中正确的判断有( ) A.1个B.2 个C.3个D.4个12.已知:2,2,1三个数,请你再写一个数,使这四个数组成一个比例式,并写出这些比例式。

成比例的线段 黄金分割(复习整理)

成比例的线段  黄金分割(复习整理)

成比例的线段 黄金分割一、梳理知识1、线段的比的定义在同一单位长度下,两条线段 的比叫做这两条线段的比。

2、比例线段的定义 在四条线段中,如果其中两条线段的 等于另外两条线段的 ,那么这四条线段叫做成比例线段,简称 .在a :b=c :d 中,a 、d 叫做比例的 ,b 、c 叫做比例的 ,称d 为a 、b 、c 的 . 3、比例的性质(1)比例的基本性质:如果a ∶b =c ∶d ,那么 ,特别地,若a ∶b=b ∶c ,即 ,则b 叫a ,c 的比例中项. (2)合(分)比性质:若dcb a =,则 . (3)等比性质:若nm f e d c b a ==== ,且 ,则 .4、黄金分割(1)黄金分割的意义:点C 把线段AB 分成两条线段AC 和BC ,如果 ,那么称线段AB 被点C 黄金分割.其中点C 叫做线段AB 的 ,AC 与AB 的比叫做 .二、典例解析例1 (1)已知线段a=2,b=3,c=5时,若a ,b ,c ,d 四条线段成比例,则d=_______. (2)已知1,5,5三个数,如果再添一个数,使之能与已知的三个数成比例,则这个数应该是 .(3)在比例尺为1:n 的某市地图上,规划出一块长5cm ×2cm 的矩形工业区,则该工业区的实际面积是 平方米. 例2 比例的性质(1)若2a=3b ,则(a-b ):(a+b )的值是________.(2)在线段AB 上取一点P ,使AP :PB=1:4,则AP :AB=_____,AB :PB=_______. (3)若5:2=(3-x ):x ,则x=_______ 【仿练】1.如果a=15cm ,b=10cm ,且b 是a 和c 的比例中项,则c=________. 2.已知(a-b ):b=2:3,则a :b=_______.3.在比例尺为1:2 700 000的海南地图上量得海口与三亚间的距离约为8cm ,则海口与三亚两城间的实际距离为________km例3 已知P 是线段AB 上一点,且AP :PB=3:5,求AB :PB 的值.【仿练】若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB =10,23==BQ ΑQ BP AP ,求线段PQ 的长.例4 (1)已知x ∶y ∶z =3∶4∶5,①求zyx +的值; ②若x +y +z =6,求x 、y 、z .【仿练】已知实数x ,y ,z 满足x+y+z=0,3x-y+2z=0,则x :y :z=________.(2)已知a 、b 、c 是非零实数,且k cb a dd a b c d c a b d c b a =++=++=++=++,求k 的值.【仿练】如果k cb a dd b a c d c a b d c b a =++=++=++=++,试求k 的值.(3)若a 、b 、c 是非零实数,并满足ac b a b c b a c c b a ++-=+-=-+,且a b c a c c b b a x ))()((+++=,求x 的值.【仿练】已知实数a ,b ,c 满足cb a b ac a c b +=+=+,求a cb +的值.例5 如图,若点P 是AB 的黄金分割点,则线段A P 、PB 、AB 满足关系式________,即AP 是________与________的比例中项.三、课堂练习1、如果53=-b b a ,那么b a =________.2、若a =2,b =3,c =33,则a 、b 、c 的第四比例项d 为________.3、若753z y x ==,则zy x z y x -++-=________. 4、已知dcb c=,则下列式子中正确的是( ) A.a ∶b =c 2∶d 2 B.a ∶d =c ∶bC.a ∶b =(a +c )∶(b +d )D.a ∶b =(a -d )∶(b -d )5、如图,已知直角三角形的两条直角边长的比为a ∶b =1∶2,其斜边长为 45 cm ,那么这个三角形的面积是________cm 2.( )A.32B.16C.8D.46、若875c b a ==,且3a -2b +c =3,则2a +4b -3c 的值是( )A.14B.42C.7D.3147、如图,等腰梯形ABCD 的周长是104 cm ,AD ∥BC ,且AD ∶AB ∶BC =2∶3∶5,则这个梯形的中位线的长是________.cm.( )A.72.8B.51C.36.4D.288、已知四条线段a 、b 、c 、d 的长度,试判断它们是否成比例?(1)a =16 cm ,b =8 cm ,c =5 cm ,d =10 cm ; (2)a =8 cm ,b =5 cm ,c =6 cm ,d =10 cm . 9、若65432+==+c b a ,且2a -b +3c =21,试求a ∶b ∶c .10、已知线段AB=a ,在线段AB 上有一点C ,若AC=a 253-,则点C 是线段AB 的黄金分割点吗?为什么?四、课后作业1.等边三角形的一边与这边上的高的比是( )A.3∶2B.3∶1C.2∶3D.1∶32.下列各组中的四条线段成比例的是( )A.a =2,b =3,c =2,d =3B.a =4,b =6,c =5,d =10C.a =2,b =5,c =23,d =15D.a =2,b =3,c =4,d =13.已知线段a 、b 、c 、d 满足ab =cd ,把它改写成比例式,错误的是( )A.a ∶d =c ∶bB.a ∶b =c ∶dC.d ∶a =b ∶cD.a ∶c =d ∶b 4.若ac =bd ,则下列各式一定成立的是( )A.dc b a = B.c cb d d a +=+ C.cd ba =22D.da cd ab = 5.已知点M 将线段AB 黄金分割(AM >BM ),则下列各式中不正确的是( )A.AM ∶BM =AB ∶AMB.AM =215-AB C.BM =215-AB D.AM ≈0.618AB 6.在1∶500000的地图上,A 、B 两地的距离是64 cm ,则这两地间的实际距离是________. 7.正方形ABCD 的一边与其对角线的比等于________. 8.若2x -5y =0,则y ∶x =________,xyx +=________. 9.若53=-b b a ,则b a =________.10.若AEACAD AB =,且AB =12,AC =3,AD =5,则AE =________. 11.已知342=+x y x ,求yx.12.以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图。

黄金分割及比例线段

黄金分割及比例线段
1、“黄金分割”之美2、“黄金分割”应用两例
3、黄金分割矩形4、人体中的黄金分割之美
5、美妙的黄金分割和黄金数6、线段黄金分割点的几种求法
7、中考黄金分割问题两例8、“黄金分割”考题透视
9、“比例线段”变式多多10、证明比例线段方法多多
11、巧用面积比来证线段比12、巧用面积比,妙解几何题
1、“黄金分割”之美
所谓的黄金分割矩形,是指矩形的长∶宽= ∶1,黄金分割矩形有一种特别的性质:在这种矩形中分出一个以宽为边长的正方形后,余下的矩形仍然是一个黄金分割矩形(如图2),由于它具有这一特性,因此每次余下的矩形都与原矩形相似,也就是说黄金分割矩形具有碎形自相似性的特质。
图2图3图4图5
至于黄金螺旋,则是将黄金矩形依黄金比例的长宽比往外扩张,然后将正方形顶点依序连接起来,就成为“黄金螺旋”如图3,4,5。同样地,黄金螺旋也普遍存在于自然界中,如下右图6的鹦鹉螺即是最著名的例子
析解:由黄金分割的定义可知 的数值为 。依据“黄金分割”知识可知节目主持人站在线段AB的黄金点C,这样台下的观众看上去感觉最好.
点评:本题实际上是属于黄金分割问题,即若点C把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.
3、黄金分割矩形
美丽宜人的黄金分割矩形是古希腊时代被认为地球上最具有调和性而美丽的比例。在古希腊时代,除了著名的巴特农神殿之外(如右图1),有许多建筑物、美术品、工艺品都具有十分接近黄金分割的作品。文艺复兴时代的万能艺术家达文西(Leonardo da Vinci,1452~1519)据说用黄金分割的长方形绘画。黄金分割不仅是几何学,也是整个数学的重要内容。十七世纪德国著名的天文学家、数学家开普勒(kepler,1571~1630)曾经这样说过:“几何学里有两件宝,一是勾股定理,另一个是黄金分割”。

《黄金分割》专题练习

《黄金分割》专题练习

《黄金分割》专题练习一、选择题1.已知C 是线段AB 的一个黄金分割点,则AC ∶AB 为( ) A .215- B .253- C .215+ D .215-或253- 2.若=+-1y y x 黄金数,则y x的值是( ) A .55B .21 C .25D .5 3.把2米的线段进行黄金分割,则分成的较短的线段长为( ) A .53-B .15-C .51+D .53+4.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在匀称与协调上的一种美 感的参考,在数学上,这个比例称为黄金分割。

在人体躯干(由脚底至肚脐的长度)与身高的比例上,肚脐是 理想的黄金分割点,也就是说,若此比值越接近0.618,就越给别人一种美的感觉。

如果某女士身高为1.60m , 躯干与身高的比为0.60,为了追求美,她想利用高跟鞋达到这一效果,那么她选的高跟鞋的高度约为( ) A .2.5cm B .5.1cm C .7.5cm D .8.2cm 5.如图,在正五边形ABCDE 中,对角线AD 、AC 与EB 分别相交于点M 、N .下列命题: ①四边形EDCN 是菱形; ②四边形MNCD 是等腰梯形; ③△AEN 与△EDM 全等; ④△AEM 与△CBN 相似;⑤点M 是线段AD 、BE 、NE 的黄金分割点, 其中假命题有( )A .0个B .1个C .2个D .4个二、填空题1.C 是AB 的黄金分割点,则=BCAC。

2.P 为线段AB =10cm 的黄金分割点,则AP = cm (保留两个有效数字)。

3.当人的肚脐到脚底的距离与身高的比等于黄金分割比0.618时,身材是最完美的。

一位身高为165cm ,肚脐到 头顶高度为65cm 的女性,应穿鞋跟为 cm 的高跟鞋才能使身材最完美(精确到1cm )。

4.如图,节目主持人现站在舞台AB 的一端A 点,在主持节目时,站在舞台的黄金分割点处可获得最佳美学效果, 若舞台AB 长20米,主持人要想站在舞台的黄金分割点处,她应走到距A 点至少 米处,如果向 B 点再走 米,也处在舞台的黄金分割点处(结果精确到0.1米)5.如图,在平行四边形ABCD中,点E是边BC上的黄金分割点,且BE>CE,AE与BD相交于点F.那么BF:FD的值为。

初中黄金分割试题及答案

初中黄金分割试题及答案

初中黄金分割试题及答案黄金分割是指将一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,其比值约为0.618。

这个比例在自然界和艺术设计中非常常见,被认为是一种美学上的比例。

以下是关于黄金分割的几道初中试题及答案:1. 已知线段AB的长度为10厘米,按照黄金分割点C将线段分割,求AC的长度。

答案:根据黄金分割的定义,AC的长度为10 × (√5 - 1) / 2 ≈ 6.18厘米。

2. 如果一个矩形的长宽比符合黄金分割,且长为20厘米,求宽的长度。

答案:设矩形的宽为x厘米,根据黄金分割的定义,有20 / x = (x + 20) / 20。

解这个方程,我们可以得到x = 20 × (√5 - 1) / 2 ≈ 12.36厘米。

3. 在一个正方形中,按照黄金分割点将正方形的一边分割,求分割后较小部分的长度。

答案:设正方形的边长为a厘米,按照黄金分割点分割后,较小部分的长度为a × (√5 - 1) / 2 厘米。

4. 一个等腰三角形的顶角为36°,底角为72°,求这个三角形的高与底边的比例。

答案:根据黄金分割的定义,这个等腰三角形的高与底边的比例为(√5 - 1) / 2 ≈ 0.618。

5. 已知一个五边形的边长都相等,且每个内角都为108°,求这个五边形的对角线与边长的比例。

答案:这个五边形的对角线与边长的比例符合黄金分割,即对角线长度与边长的比例为(√5 + 1) / 2 ≈ 1.618。

这些题目涵盖了黄金分割在不同几何图形中的应用,通过计算和理解黄金分割的定义,可以解决这些问题。

比例线段黄金分割习题

比例线段黄金分割习题

⽐例线段黄⾦分割习题例1.下列各组中的四条线段成⽐例的是( )A.a =2,b =3,c =2,d =3B.a =4,b =6,c =5,d =10C.a =2,b =5,c =23,d =15D.a =2,b =3,c =4,d =1例2. 已知线段a 、b 、c 、d 满⾜ab =cd ,把它改写成⽐例式,错误的是( )A.a ∶d =c ∶bB.a ∶b =c ∶dC.d ∶a =b ∶cD.a ∶c =d ∶b 例3. 若a =2,b =3,c =33,则a 、b 、c 的第四⽐例项d 为________例4. 若ac =bd ,则下列各式⼀定成⽴的是( )A.dc b a =B.ccb d d a +=+ C.c d b a =22 D.dacd ab = 例5. 已知dcb a =,则下列式⼦中正确的是() A. a ∶b =c 2∶d 2B. a ∶d =c ∶bC. a ∶b =(a +c )∶(b +d )D. a ∶b =(a -d )∶(b -d )例6.已知5:4:2::=c b a ,且632=+-a b a ,求c b a 23-+的值。

例7.在⽐例尺为1∶500000的地图上,A 、B 两地的距离是64 cm ,则这两地间的实际距离是______ 例8.在⼀张地图上,甲、⼄两地的图上距离是3 cm,⽽两地的实际距离为1500 m ,那么这张地图的⽐例尺为________.例9.(1)已知ba ab b a x +=+=+=222,求x 的值(2)已知524232xz z y y x -=-=-,求y x z y x -++2的值例10.已知点M 将线段AB 黄⾦分割(AM >BM ),则下列各式中不正确的是( ) A .AM ∶BM =AB ∶AM B.AM =215-AB C.BM =215-AB D.AM ≈0.618AB 例11.如图,线段AB=2,点C 是AB 的黄⾦分割点(AC <BC ),点D (不同于C 点)在AB 上,且AB BD AD ?=2,A CDB求:ACCD的值【经典练习】1.如果bc ad =,那么下列⽐例中错误的是()A 、d b c a =B 、b a d c =C 、b d c a =D 、cd a b =2.若5:6:=y x ,则下列等式中,不正确的是()A 、511=+y y x B 、51=-y y x C 、6=-yx x D 、5=-x y y3.若2:1:::===d c c b b a ,则=d a :()A 、1:2B 、1:4C 、1:6D 、1:8 4.若3:2:1::=c b a ,则cb a cb a +---的值为()A 、-2B 、2C 、3D 、-35.已知875cb a ==,且20=++c b a ,则=-+c b a 2() A 、11 B 、12 C 、314D 、96.若4:3:2::=c b a ,且5=-+c b a ,则b a -的值是()A 、5B 、-5C 、20D 、-20 7.若43xx =,则x 等于() A 、12 B 、32 C 、-32 D 、32± 8.已知AB=1,)15(2 1-=AC ,且BC AB AC ?=2,则BC 的长为() A 、215- B 、215+ C 、)53(21- D 、)53(21+ 9.已知P 是线段AB 的黄⾦分割点,且15-=AP ,则AB 的长为()A 、2B 、15+C 、2或15+D 、以上都不对 10.已知572zy x ==,设x z y x C y z x B z y x y A -+=+=++=,,,那么A 、B 、C 的⼤⼩顺序为() A 、A>B>C B 、AA>B D 、A35=y x ,则=-+)(:)(y x y x 12.如果32=b a ,且3,2≠≠b a ,那么=-++-51b a b a 13.已知a b a 3)(7=-,则=ba14.如果2===c z b y a x ,那么=+-+-cb a z y x 3232 15.已知:2,2,1三个数,请你再填⼀个数,可写成⼀个⽐例式,这个数是 16.把长为5的线段进⾏黄⾦分割,则较短的线段长是17.若65432+==+c b a ,且2a -b +3c =21.试求a ∶b ∶c . 19. 若54,23,43===d c c b b a ,则22db ac+等于多少?20. 已知xbc a x a c b x c b a =+=+=+,,,求x 的值1.如果线段a=3,b=12,那么线段a 、b 的⽐例中项x=___________。

10.2 黄金分割(练习)

10.2 黄金分割(练习)

C B A C B A 10.2 黄金分割概念:点C 把线段AB 分成两条线段AC 和BC ,如果ACBC AB AC =,那么称线段被点C 黄金分割(golden section ),点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比,AC ∶AB=215-∶1≈0.618。

注意:(1)如图,AC 是较长线段,则AC ∶AB=215-∶ 1 (2)如图,AC 是较短线段,则BC ∶AB=215-:1 练习:一、选择题:1、如图,点C 把线段AB 分成两条线段AC 和BC,如果AC BC AB AC =,那么下列说法错误的是 ( ) A 、线段AB 被点C 黄金分割 B 、点C 叫做线段AB 的黄金分割点C 、AB 与AC 的比叫做黄金比D 、AC 与AB 的比叫做黄金比2、如果点C 是线段AB 的黄金分割点(AC >BC ), 则 下列比例式正确的是( )A 、BC AC AC AB = B 、AC BC BC AB = C 、AB BC BC AC = D 、BCAB AB AC = 3、如图,点C 是AB 的黄金分割点,那么AC AB 与AC BC的值分别是( ) AB,C , 4、如图的五角星中,AC AB 与BC AC的关系是 ( ) A 、相等 B 、AC AB >BC AC C 、AC AB <BC AC D 、不能确定 5、若P 为线段AB 的黄金分割点且AP>PB,则下列各式成立的是( )A. AB 2=AP·BPB. BP 2=AP· ABC. PA 2=2BA·BPD. AP 2=AB·BP6、点C 为线段AB 的黄金分割点,AC 为较长线段,若AC=1,则AB 等于( ) 253.253.215.215.+-+-D C B A 7、 已知点C 是AB 的黄金分割点(AC >BC),若AB=4cm ,则AC 的长为( )(A)(2 5 –2)cm(B)(6-2 5 )cm(C)( 5–1)cm (D)(3- 5 )cm8、把长为8cm 的线段进行黄金分割,则较长的线段的长为 ( ) A (4.4).8).4)cm B cm C cm D cm -D C BA 1)2)二、填空题:1、一条线段的黄金分割点有个。

专题01 比例线段及黄金分割点压轴题型全攻略(原卷版)

专题01 比例线段及黄金分割点压轴题型全攻略(原卷版)

专题01 比例线段及黄金分割点压轴题型全攻略【考点导航】目录【典型例题】 (1)【考点一 比例线段的识别】 (1)【考点二 比例线段的计算】 (2)【考点三 黄金分割点的定义】 (2)【考点四 黄金分割点的应用】 (3)【考点五 黄金分割点的拓展提高】 (3)【过关检测】 (4)【典型例题】【考点一 比例线段的识别】【例题1】若a :b=2:3,则下列各式中正确的式子是( )A .2a=3bB .3a=2bC .D .【变式1】已知=,那么下列等式中,不一定正确的是( ).A .2a=5b B. a b 52= C. a+b=7 D.a b b 72+= 【变式2】由5a=6b (a≠0),可得比例式( )A .B .C .D .【考点二 比例线段的计算】【例题2】 设,求的值.432z y x ==2222232z xy x z yz x --+-【变式1】若=,则=().A. B. C. D. 无法确定【变式2】已知,(1)求的值;(2)如果,求x的值.【变式3【考点三黄金分割点的定义】【例题3】已知点P是线段AB的一个黄金分割点(AP>PB),则PB:AB的值为().A. B. C. D.【变式1】已知线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,求AC长为__________cm;【变式2】已知线段AB=1,C是线段AB的黄金分割点,则AC的长度为()A. B.C. 或D.以上都不对【考点四黄金分割点的应用】【例题4】美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为().A.4cmB.6cmC.8cmD.10cm【变式1】如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割.已知AB=10cm,则AC的长约为__________cm(结果精确到0.1cm).【变式2△BDC 、△DEC 都是黄金三角形,已知AB=4,则DE=__________.【考点五 黄金分割点的拓展提高】【例题5】是黄金矩形(即=≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形?【变式1】如图,扇子的圆心角为x°,余下扇形的圆心角为y°,x 与y 的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x 为( ).A. 144°B. 135°C. 136°D. 108°【变式2道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF 和一个矩形EFDC ,那么EFDC 这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.BC AB 215-【变式3】以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图所示,(1)求AM ,DM 的长,(2)试说明AM 2=AD·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?【过关检测】一.选择题1.在比例尺为1︰1 000 000的地图上,相距3cm 的两地,它们的实际距离为( ).A .3 kmB .30 kmC .300 kmD .3 000 km2.已知线段满足把它改写成比例式,其中错误的是( ).A. B. C.D. 3. (2014•牡丹江)若x :y=1:3,2y=3z ,则的值是(). 4.如图,已知点P 是线段AB 的黄金分割点,且PA >PB ,若S 1表示以PA 为边的正方形的面积,S 2表示a 、b 、c 、d =ab cd ::b c d a =::a b c d =::c b a d =::a c d b =长为AB 、宽为PB 的矩形的面积,那么S 1( )S 2.A.>B.=C.<D.无法确定6. 宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD 、BC 的中点E 、F ,连接EF :以点F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH ⊥AD ,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH 二. 填空题8.线段AB 长10cm ,点P 在线段AB 上,且满足=,那么AP的长为 cm . ,(填写一个即可).10.已知若若5x -4y=0,则x:y=________. -3=,=____;4x y x y y则三.综合题13.如果,一次函数经过点(-1,2),求此一次函数解析式.14.如图,在△ABC 中,点D 在边AB 上,且DB=DC=AC ,已知∠ACE=108°,BC=2.(1)求∠B 的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边 长①写出图中所有的黄金三角形,选一个说明理由;②求AD 的长;③在直线AB 或BC 上是否存在点P (点A 、B 除外),使△PDC 是黄金三角形?若存在,在备用图中画出点P ,简要说明画出点P 的方法(不要求证明);若不存在,说明理由.a b c d k b c d a c d a b d a b c====++++++++y kx m =+15. 如图,用长为40cm的细铁丝围成一个矩形ABCD(AB>AD).(1)若这个矩形的面积等于99cm2,求AB的长度;(2)这个矩形的面积可能等于101cm2吗?若能,求出AB的长度,若不能,说明理由;(3)若这个矩形为黄金矩形(AD与AB之比等于黄金比),求该矩形的面积.(结果保留根号)。

黄金分割专项练习30题

黄金分割专项练习30题

黄金分割专项练习1. 定义:如图1,点C在线段AB上,若满足A C=BC? AB,贝U称点C为线段AB的黄金分割点.如图2, AABC中,AB=AC=1 ZA=36° , BD平分Z ABC交AC于点D.(1) 求证:点D是线段AC的黄金分割点;(2) 求出线段AD的长.2. 如图,用长为40cm的细铁丝围成一个矩形ABCD( AB> A。

.____________ C40cm -----------------A B(1) 若这个矩形的面积等于99cm2,求AB的长度;(2) 这个矩形的面积可能等于101cm2吗?若能,求出AB的长度,若不能,说明理由;(3) 若这个矩形为黄金矩形(AD与AB之比等于黄金比在二!),求该矩形的面积.(结果保留根号)2ABC" 当时,称矩形ABCD 9. 在数学上称长与宽之比为黄金分割比的矩形为黄金矩形,如在矩形为黄金矩形ABCD请你证明黄金矩形是由一个正方形和一个更小的黄金矩形构成.10. 如图,设AB是已知线段,在AB上作正方形ABCD取AD的中点E,连接EB;延长DA至F,使EF=EB以线段AF为边作正方形AFGH则点H是AB的黄金分割点.为什么说上述的方法作出的点H是这条线段的黄金分割点,你能说出其中的道理吗?请试一试,说一说.12 .已知AB=2,点C是AB的黄金分割线,点D在AB上,且AE2=BD? AE^求望的值.AC14.五角星是我们常见的图形,如图所示,其中,点C, D分别是线段AB的黄金分割点,AB=20cm求EC+CD勺长.15.人的肚脐是人的身高的黄金分割点,一般来讲,当肚脐到脚底的长度与身高的比为时,是比较好看的黄金身段.个身高的人,他的肚脐到脚底的长度为多少时才是黄金身段(保留两位小数)?17. 如图,点P是线段AB的黄金分割点,且AA BP,设以AP为边长的正方形面积为S i,以PB为宽和以AB为长的矩形面积为 &,试比较S与S2的大小.18. 如图,在平行四边形 ABC/, E 为边AD 延长线上的一点,且 D 为AE 的黄金分割点,即 曲*; 曲,BE 交 DC 于点F,已知AB=V5 + 1,求CF 的长.20.(如图1),点P 将线段AB 分成一条较小线段 AP 和一条较大线段 BP,如果金分割点,设 旻 W=k,则k 就是黄金比,并且 k-. BP AB(1) 以图1中的AP 为底,BP 为腰得到等腰△ APB (如图2),等腰AAPB 即为黄金三角形,黄金三角形的定义为: 满足三 —的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义: 腰节谖一 (2)如图1,设AB=1,请你说明为什么 k 约为; (3) 由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线 S1 S 之 ,__ 、那么称直线i 为该图形的黄金分割线.(如 图3),点P 是线段AB 的黄金分割点,那么直线 CP>AABC 的黄金分割线吗?请说明理由;(4)图3中的AABC 的黄金分割线有几条?21 .在人体躯干(脚底到肚脐的长度) 与身高的比例上,肚脐是理想的黄金分割点, 即比例越接近,越给人以美感.张 女士原来脚底到肚脐的长度与身高的比为,她的身高为,她应该选择多高的高跟鞋穿上看起来更美?(精确到十分 位)23.如图,用纸折出黄金分割点:裁一张正方的纸片 ABCD 先折出BC 的中点E,再折出线段 AE,然后通过折叠使EB 落到线段EA 上,折出点B 的新位置B',因而EB' =EB 类似地,在 AB 上折出点B”使AB' =AB .这时B”就 是AB 的黄金分割里莫,那么称点P 为线段AB 的黄 BP 趾 l 将一个面积 为S 的图形分成面积为 S1和面积为&的两部分(设Sv &),如果,点.请你证明这个结论.25 .如图,在△ ABC 中,点D 在边AB上,且DB=DC=AC 已知Z ACE=108 , BC=2.(1)求ZB的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形. 它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比匝二L2①写出图中所有的黄金三角形,选一个说明理由;②求AD的长;③在直线AB或BC上是否存在点P (点A、B除外),使APDC是黄金三角形?若存在,在备用图中画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.28. 折纸与证明——用纸折出黄金分割点:第一步:如图(1),先将一张正方形纸片ABCD寸折,得到折痕EF;再折出矩形BCFE勺对角线BF.第二步:如图(2),将AB边折到BF上,得到折痕BG试说明点G为线段AD的黄金分割点(A(G>GD29. 三角形中,顶角等于 36°的等腰三角形称为黄金三角形,如图 1,在AABC 中,已知:AB=AC 且Z A=36°(1) 在图1中,用尺规作 AB 的垂直平分线交 AC 于D,并连接BD (保留作图痕迹,不写作法)(2) ABCD >不是黄金三角形?如果是,请给出证明;如果不是,请说明理由;(3) 设辱二虻试求k 的值;30. 如图1,点C 将线段AB 分成两部分,如果那么称点C 为线段AB 的黄金分割点.某研究小组在进行课 A D AC题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为 S 1, &,如果一^=二,那么称直线l 为该图形的黄金分割线. (1) 研究小组猜想:在^ ABC 中,若点D 为AB 边上的黄金分割点(如图 2),则直线CD^AABC 的黄金分割线.你 认为对吗?为什么?(2) 请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点 C 任作一条直线交 AB 于点E,再过点D 作直线DF//C 匕交AC 于点F,连 接EF (如图3),则直线EF 也是AABC 的黄金分割线.请你说明理由. (4)如图4,点E 是平行四边形 ABCD 勺边AB 的黄金分割点,过点 E 作EF//AD 交DC 于点F,显然直线EF 是平行 四边形ABCD 勺黄金分割线.请你画一条平行四边形ABCD 勺黄金分割线,使它不经过平行四边形ABCD&边黄金分 割点. ,且 A 1Bi=A0 D请直接写出(4) 如图 2,在^A 1B1G 中,已知 A i B i =A iG, ZA 1=108°32 由3 34黄金分割专项练习30题参考答案:1. (1)证明:AB=AC=,1ABC= C=_ (180°—,Z A) 4 (180° - 36° ) =7222. • BD平分Z ABC交AC于点D,ABD£ CBD」Z ABC=36 ,2. .Z BDC=180 - 36° - 72° =72° ,••• DA=DB BD=BCAD=BD=BC易得△ BD(^A ABC•••BQ AC=CD BC,即BC2=CD? AC••• A D^CCP AC,.••点D是线段AC的黄金分割点;(2)设AD=x 贝U CD=AG AD=1— x, 2.• AD=CCP AQ•■-x2=1 - x,解得X1 ——-,X2=———,2 2即AD的长为展一122 .解:(1)设AB=xcm 则AD= (20 - x) cm,根据题意得x (20 - x) =99,整理得x2- 20x+99=0,解得x1=9, x2=11,当x=9 时,20 — x=11 ;当x=11 时,20— 11=9,而AB> AR所以x=11,即AB的长为11cm;(2) 不能.理由如下:设AB=xcm 则AD= (20 — x) cm,根据题意得x (20 - x) =101,整理得x2- 20x+101=0,因为^=202-4X 101 = - 4 V 0,所以方程没有实数解,所以这个矩形的面积可能等于101cm2;(3) 设AB=xcm 则AD= ( 20 - x) cm,根据题意得20 - x= ——x,解得x=10 (-底T ),则20 - x=10 (3-庭),所以矩形的面积=10 (Vs-1)? 10(3-巧)=(400、再-80。

4.1 比例线段 第3课时 比例中项与黄金分割练习题 2021—2022学年浙教版九年级数学上

4.1 比例线段   第3课时 比例中项与黄金分割练习题  2021—2022学年浙教版九年级数学上

第3课时比例中项与黄金分割【基础练习】知识点1比例中项1.如果a︰b=3︰2,且b是a,c的比例中项,那么b︰c等于()A.4 3B.3 4C.2 3D.3 22.如果a=3,b=2,且b是a,c的比例中项,那么c=.3.已知三个数a,b,c,其中a=1,b=4,c是a,b的比例中项,则c=.4.已知线段a=2 cm,b=8 cm,它们的比例中项c为cm.知识点2黄金分割5.已知点C是线段AB的黄金分割点,且AC>BC,则下面的等式成立的是()A.AB2=AC·BCB.BC2=AC·ABC.AC2=BC·ABD.AC2=2AB·BC6.图5是意大利著名画家达·芬奇的名画《蒙娜丽莎》.画中脸部被围在矩形ABCD内,点F 是AB的黄金分割点,BF>AF,若AB=10,则BF的长为.图57.已知点E是线段AB的黄金分割点,且BE>AE,若AB=2,则AE=.【能力提升】8.已知线段AB及AB上一点P,再添加一个条件,使P为AB的黄金分割点,其中错误的是()A.AP=√5-12AB B.PB=3-√52AB C.APPB=√5-12D.ABAP=√5-129.如果三条线段的长a,b,c满足ba =cb=√5-12,那么a,b,c叫做“黄金线段组”.黄金线段组中的三条线段()A.必构成锐角三角形B.必构成直角三角形C.必构成钝角三角形D.不能构成三角形10.如图6,已知P是线段AB的黄金分割点,且P A>PB,若S1表示以P A为一边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,则S1S2(填“>”“=”或“<”).图611.已知顶角为36°的等腰三角形称为黄金三角形(底边长与腰长的比值为黄金分割比).如图7,△ABC,△BDC,△DEC都是黄金三角形,已知AB=1,求CE的长度.图712.如图8,用纸折出黄金分割点:裁一张正方形的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落在线段EA上,折出点B的新位置B',因而EB'=EB.类似地,在AB上折出点B″,使AB″=AB'.这时点B″就是线段AB的黄金分割点.请你证明这个结论.图8答案1.D [解析] ∵a ∶b=3∶2,b 是a ,c 的比例中项,∴a ∶b=b ∶c ,∴b ∶c=3∶2. 2.433.±2 [解析] 根据比例中项的概念,得c 2=a ×b=4×1,解得c=±2.4.4 [解析] 根据比例中项的概念得c 2=ab ,则c 2=2×8,解得c=±4. ∵线段长是正数,∴c=4 cm .5.C6.5√5-5 [解析] ∵点F 是AB 的黄金分割点,BF>AF , ∴BF=√5-12AB=√5-12×10=5√5-5. 7.3-√5 [解析] ∵E 是线段AB 的黄金分割点,且BE>AE , ∴BE AB =√5-12,则BE=√5-12AB=√5-12×2=√5-1,故AE=AB -BE=3-√5.8.D9.D [解析] ∵ba =cb =√5-12, ∴b=√5-12a ,c=√5-12b=3-√52a , ∴b+c=√5-12a+3-√52a=a , ∴长为a ,b ,c 的三条线段不能构成三角形. 故选D .10.= [解析] ∵P 是线段AB 的黄金分割点,且P A>PB ,∴P A 2=PB ·AB.又∵S 1表示以P A 为一边的正方形的面积,S 2表示长是AB ,宽是PB 的矩形的面积, ∴S 1=P A 2,S 2=PB ·AB ,∴S 1=S 2.11.解:∵△ABC ,△BDC ,△DEC 都是黄金三角形, ∴DE=CD ,BC AB =√5-12,CD BC=√5-12,CE CD =√5-12. ∵AB=1, ∴BC=√5-12AB=√5-12, ∴CD=√5-12BC=√5-122=3-√52, ∴CE=√5-12CD=√5-12×3-√52=√5-2.12.证明:设正方形ABCD的边长为2.∵E为BC的中点,∴BE=1,∴AE=√AB2+BE2=√5.又∵B'E=BE=1,∴AB'=AE-B'E=√5-1,∴AB″=AB'=√5-1,∴AB″∶AB=(√5-1)∶2,∴点B″是线段AB的黄金分割点.。

比例线段+黄金分割+相似概念测试

比例线段+黄金分割+相似概念测试

比例线段及相似形测试1、若四条比例线段为a ,b ,c ,d ,且a =3cm ,b =2cm ,c =6cm ,则线段d 的长为.2、若2x -5y =0,则y ∶x =________,x y x +=________,22-x y xy=________.3、某校一年级有64人,分成甲、乙、丙三队,其人数比为4∶5∶7. 若由外校转入1人加入乙队,则后来乙与丙的人数比为.4、设14ac e bd f ===,则a c e b d f+-=+-_____. 5、若a d d c c b b a ===,则d c b a dc b a +-+-+-的值是. 6、已知43322a c cb b a -=-=+,则ba cb a 98765+-+=.7、设a 、b 、c 是三个互不相同的正数,如果ab ba c bc a =+=-,那么( )A 、3b=2cB 、3a=2bC 、2b=cD 、2a=b8、如图,DE BC ∥,且DB AE =,若510AB AC ==,,则AE 的长为.第8题图第9题图9、如图,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的选项为.A .AD BF DB FC =B .AD EF BC BF =C .AE DEEC FC= D .BCDEAB EF =10、如图,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且61=EB AE ,射线CF 交AB 于E 点,则FDAF等于______.第10题图第11题图11、如图,已知在平行四边形ABCD 中,M 、N 为AB 的三等分点,DM 、DN 分别交EDCBAAC 于P 、Q 两点,则AP ∶PQ ∶QC =.12、请写出一定相似的三角形(写两种)和一定相似的四边形(写一种): .13、如图,ABC ∆中,BC a =,若11D E ,分别是AB AC ,的中点,则1112D E a =;若22D E 、分别是11D B E C 、的中点,则2213224aD E a a ⎛⎫=+= ⎪⎝⎭; 若33D E 、分别是22D B E C 、的中点,则33137248D E a a a ⎛⎫=+= ⎪⎝⎭;若n n D E 、分别是-1-1n n D B E C 、的中点,则n n D E =_________.14、已知a ∶b ∶c =4∶3∶2,且a +3b -3c =14.求4a -3b +c 的值.15、若0≠abc ,且b ac a c b c b a +=+=+,求abca c cb b a ))()((+++的的值.16、已知:a cb d=,求证:ab cd +是2222a c b d ++和的比例中项.E n D n E 3D 3E 2D 2E 1D 1CBA17、如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111cab=+.18、如图,AD 是ABC ∆的中线,点E 在AD 上,F 是BE 延长线与AC 的交点. (1)如果E 是AD 的中点,求证:12AF FC =; (2)由(1)知,当E 是AD 中点时,12AF AEFC ED=⋅成立,若E 是AD 上任意一点(E 与A 、D 不重合),上述结论是否仍然成立,若成立请写出证明,若不成立,请说明理由.19、如图,已知在△ABC 中,AE :EB=1:3,BD :DC=2:1,AD 与CE 相交于F ,求的值.FE DCBAF E DCBAFDAFFC EF+20、已知△ABC 中,AB =AC ,∠A =36゜,该三角形的底BC 与腰AB 的比等于黄金比,这样我们称顶角为36度的等腰三角形为黄金三角形. 若BD 是∠ABC 的角平分线,可以得到如下结论:△BCD 和△ABD 都是等腰三角形,且△ABC 相似于△BCD ,从而得到这两个相似三角形的对应边成比例.利用上述知识,试求证黄金三角形的底BC 与腰AB 的比为黄金比.21、心理学测试表明,黄金矩形令人赏心悦目,它给我们以协调,匀称的美感,现将同学们在教学活动中,折叠黄金矩形的方法归纳出以下作图步骤(如图所示): 第一步:作一个任意正方形ABCD ;第二步:分别取AD BC ,的中点M N ,,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E ; 第四步:过B 作EF AD ⊥交AD 的延长线于F ;请你根据以上作法,证明矩形DCEF 为黄金矩形,(可取2AB =)ABCDEFMN(第21题图)。

比例线段及黄金分割点压轴题型全攻略(解析版)

比例线段及黄金分割点压轴题型全攻略(解析版)

比例线段及黄金分割点压轴题型全攻略【考点导航】1.目录【典型例题】1【考点一比例线段的识别】【考点二比例线段的计算】【考点三黄金分割点的定义】【考点四黄金分割点的应用】【考点五黄金分割点的拓展提高】【过关检测】4【典型例题】【考点一比例线段的识别】1【若a:b=2:3,则下列各式中正确的式子是( )A.2a=3bB.3a=2bC.ba =23D.a-bb=13【分析】根据比例的性质,对选项一一分析,选择正确答案.【答案】B.【详解】A、2a=3b⇒a:b=3:2,故选项错误;B、3a=2b⇒a:b=2:3,故选项正确;C、ba =23⇒b:a=2:3,故选项错误;D、a-bb =13⇒a:b=3:2,故选项错误.故选B.【点睛】考查了比例的性质.在比例里,两个外项的乘积等于两个内项的乘积.1.已知ab=52,那么下列等式中,不一定正确的是( ).A.2a=5bB.a5=b2C.a+b=7D.a+bb=72【答案】C.2.由5a=6b(a≠0),可得比例式()A.b6 =5aB.b5 =6aC.ab =56D.a-bb=15【答案】D .【解析】A 、b 6 =5a⇒ab =30,故选项错误;B 、b 5 =6a ⇒ab =30,故选项错误;C 、a b =56⇒6a =5b ,故选项错误;D 、a -b b=15⇒5(a -b )=b ,即5a =6b ,故选项正确.故选D .【考点二比例线段的计算】1设x 2=y 3=z4,求2x 2-3yz +z 2x 2-2xy -z 2的值.【分析】由已知条件利用解方程的思想不能求出x ,y ,z 的值,因此用设参数法代入化简.【详解】设x 2=y 3=z4=k则x =2k ,y =3k ,z =4k 原式=2×2k 2-3×3k ×4k +4k 22k 2-2×2k ×3k -4k2=-12k 2-24k 2=12【点睛】解此类题学生容易误认为设k 后,未知数越多更不易解出,实际上分子、分母能产生公因式约去.1.若x -y 13=y 7,则x +yy=( ).A.137B .207C . 277D . 无法确定【答案】C .2.已知x 2=y 3=z4,(1)求x -2y z 的值;(2)如果x +3=y -z ,求x 的值.(1)令x 2=y 3=z4=k ,则x =2k ,y =3k ,z =4k ,再代入代数式进行计算即可;(2)把x =2k ,y =3k ,z =4k 代入x +3=y -z ,求出k 的值即可.【解析】解:(1)∵x 2=y 3=z4,∴令x 2=y 3=z4=k ,则x =2k ,y =3k ,z =4k ,∴x -2y z =2k -6k 4k =-4k 4k=-1;(2)∵x =2k ,y =3k ,z =4k ,x +3=y -z ,∴x +3=(y -z )2,即2k +3=(3k -4k )2,解得k =-1或k =3(舍去),∴x =-2.【点睛】本题考查的是比例的性质,根据题意得出x =2k ,y =3k ,z =4k 是解答此题的关键.举一反三:3.已知:a b +c =b a +c =ca +b=k .求k 值.【答案】可分a+b+c=0和a+b+c≠0两种情况代入求值和利用等比性质求解.【答案与解析】①当a+b+c=0时,b+c=-a,c+a=-b,a+b=-c,∴k为其中任何一个比值,即k=a-a=-1;②a+b+c≠0时,k=a+b+cb+c+c+a+a+b =a+b+c2(a+b+c)=12.∴k=-1或12.【点睛】考查比例性质的应用;分两种情况探讨此题是解决本题的易错点.【考点三黄金分割点的定义】1已知点P是线段AB的一个黄金分割点(AP>PB),则PB:AB的值为( ).A.5-12B.3-52C.1+52D.3-54【答案】B.【详解】根据题意得AP=5-12AB,所以PB=AB-AP=3-52AB,所以PB:AB=3-5 2.1.已知线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,求AC长为cm;【答案】根据黄金分割点的定义,知AC是较短线段,由黄金分割的公式:较短的线段=原线段的3-5 2倍,可得AC=10×3-52,计算即可;【解析】∵线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,∴AC=10×3-52=15-55(cm);【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的3-52倍,较长的线段=原线段的5-12倍.2.已知线段AB=1,C是线段AB的黄金分割点,则AC的长度为()A.5-12B. 3-52C.5-12或3-52D. 以上都不对【答案】C.【解析】∵线段AB=1,C是线段AB的黄金分割点,当AC>BC,∴AC=5-12AB=5-12;当AC<BC,∴BC=5-12AB=5-12,∴AC=AB-BC=1-5-12=3-52.【考点四黄金分割点的应用】2美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ).A.4cmB.6cmC.8cmD.10cm【答案】C.【详解】根据已知条件得下半身长是165×0.60=99cm,设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:99+y165+y=0.618,解得:y≈8cm.故选C.1.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割.已知AB=10cm,则AC的长约为cm(结果精确到0.1cm).【答案】6.2或3.8【解析】由题意知AC:AB=BC:AC,∴AC:AB≈0.618,∴AC=0.618×10cm≈6.2(结果精确到0.1cm)或AC=10-6.2=3.8.故答案为:6.2或3.8.2.如图,△ABC顶角是36°的等腰三角形(底与腰的比为5-12的三角形是黄金三角形),若△ABC、△BDC、△DEC都是黄金三角形,已知AB=4,则DE=.【答案】6-25.【解析】根据题意可知,BC=5-12AB,∵△ABC顶角是36°的等腰三角形,∴AB=AC,∠ABC=∠C=72°,又∵△BDC也是黄金三角形,∴∠CBD=36°,BC=BD,∴∠ABD=∠ABC-∠CBD=36°=∠A,∴BD=AD,同理可证DE=DC,∴DE=DC=AC-AD=AB-BC=AB-5-12AB=6-25.故答案为:6-25.【考点五黄金分割点的拓展提高】3是黄金矩形(即ABBC=5-12≈0.618),如果在其内作正方形CDEF,得到一个小矩形ABFE,试问矩形ABFE是否也是黄金矩形?【分析】(1)矩形的宽与长之比值为5-12,则这种矩形叫做黄金矩形.(2)要说明ABFE是不是黄金矩形只要证明AEAB =5-12即可.【答案与详解】矩形ABFE是黄金矩形.理由如下:因为AEAB=AD-EDAB=ADAB-EDAB=25-1-1=25+15-15+1-1=5+12-1=5-12所以矩形ABFE也是黄金矩形.【点睛】判断四边形是否是黄金矩形,要根据实际条件灵活选择判断方法.1.如图,扇子的圆心角为x°,余下扇形的圆心角为y°,x与y的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x为( ).A.144°B. 135°C. 136°D. 108°【答案】B.【解析】由扇子的圆心角为x°,余下扇形的圆心角为y°,黄金比为0.6,根据题意得:x:y=0.6=3:5,又∵x+y=360,则x=360×38=135【总结升华】此题考查了黄金分割,以及比例的性质,解题的关键是根据题意列出x与y的关系式.2.图1是一张宽与长之比为5-12:1的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.矩形EFDC是黄金矩形,【解析】证明:∵四边形ABEF是正方形,∴AB=DC=AF,又∵ABAD=5-12,∴AF AD =5-12,即点F是线段AD的黄金分割点.∴FD AF =AFAD=5-12,∴FD DC =5-12,3.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图所示,(1)求AM,DM的长,(2)试说明AM2=AD·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?【答案】(1)∵正方形ABCD的边长是2,P是AB中点,∴AD=AB=2,AP=1,∠BAD=90°,∴PD=AP2+AD2=5。

分割黄金智力测试题(3篇)

分割黄金智力测试题(3篇)

第1篇一、选择题1. 下列关于黄金分割的描述,正确的是:A. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例。

B. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为1:1。

C. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为2:1。

D. 黄金分割是指将一条线段分为两部分,其中较大部分与整体的比例等于较小部分与较大部分的比例,且比例为3:2。

2. 黄金分割的比值约为:A. 1.618B. 2.618C. 0.618D. 1.4143. 黄金分割在以下哪个领域有广泛的应用?A. 数学B. 物理C. 建筑D. 以上都是4. 下列哪个不是黄金分割的应用实例?A. 斐波那契数列B. 古希腊建筑C. 印度教神像D. 荷兰风车5. 黄金分割在音乐中的运用体现在:A. 旋律B. 和弦C. 节奏D. 以上都是6. 黄金分割在艺术创作中的运用体现在:A. 形状B. 色彩C. 线条D. 以上都是7. 下列哪个不是黄金分割的特点?A. 比例关系B. 美学价值C. 经济效益D. 生物学意义8. 黄金分割在建筑设计中的运用体现在:A. 室内布局B. 外观造型C. 结构设计D. 以上都是9. 黄金分割在植物生长中的运用体现在:A. 叶片排列B. 花朵形态C. 果实分布D. 以上都是10. 下列哪个不是黄金分割的应用领域?A. 设计B. 科学研究C. 农业种植D. 医学治疗二、填空题1. 黄金分割的比值是__________。

2. 黄金分割在数学中被称为__________。

3. 黄金分割在自然界中普遍存在,如__________、__________等。

4. 黄金分割在艺术创作中的应用实例有__________、__________等。

5. 黄金分割在建筑设计中的应用实例有__________、__________等。

九年级数学上册相似三角形比例线段黄金分割同步练习新版浙教版

九年级数学上册相似三角形比例线段黄金分割同步练习新版浙教版

第3课时 黄金分割一、选择题1.已知线段a ,b ,c ,其中c 是a 和b 的比例中项,a =4,b =9,则c 等于( ) A .4 B .6 C .9 D .362.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽约为( )A . cmB . cmC . cmD . cm3.若b 是a 和c 的比例中项,c 是b 和d 的比例中项,则下列各式中不一定成立的是( )=b c =b c=c d =c d4.美是一种感觉,当人体的下半身长与身高的比值越接近时越给人一种美感.已知某女士身高160 cm ,下半身长与身高的比值是,为尽可能达到好的效果,她应穿的高跟鞋的高度约为( )A .6 cmB .10 cmC .4 cmD .8 cm5.已知C 是线段AB 上的一个点(AC >BC ),有以下命题:①若AC AB =BC AC ,则C 是线段AB 的黄金分割点;②若AC AB =5-12,则C 是线段AB 的黄金分割点; ③若BC AC=5-12,则C 是线段AB 的黄金分割点; ④若AC 2=BC ·AB ,则C 是线段AB 的黄金分割点. 其中正确的有( )A .1个B .2个C .3个D .4个6.已知P ,Q 是线段AB 的两个黄金分割点,且AB =10,则PQ 的长为( ) A .5( 5-1) B .5( 5+1) C .10( 5-2) D .5(3-5)7.宽与长的比是5-12(约的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:如图K -29-1②,作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连结EF ;如图③,以点F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH ⊥AD ,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是( )图K -29-1A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH 二、填空题8.(1)实数2和18的比例中项是________;(2)已知线段a =5 cm ,b =15 cm ,则a 与b 的比例中项是________;(3)已知数3,6,请再写出一个数,使这三个数中的一个数是另外两个数的比例中项,这个数是________(只需填写一个数).9.已知C 为线段AB 的黄金分割点,且AC >BC ,则BC AB =________,BC AC=________.10.据有关试验测定,当气温处于人体正常体温(37 ℃)的黄金比值时,人体感到最舒适.这个气温约为________℃(精确到1 ℃).链接学习手册例2归纳总结11.如图K -29-2所示,已知P 是线段AB 的黄金分割点,且PA >PB .若S 1是以PA 为边的正方形的面积,S2表示长是AB,宽是PB的矩形的面积,则S1________S2(填“>”“=”或“<”).图K-29-2三、解答题12.如图K-29-3,扇子的圆心角为x°,余下的扇形的圆心角为y°,x与y的比通常按黄金比来设计,这样的扇子外形较美观.若取黄金比为,求x的值(精确到1°).图K-29-313.我们定义:顶角为36°的等腰三角形称为黄金三角形(底边与腰的比值为黄金分割比).如图K-29-4,△ABC,△BDC,△DEC都是黄金三角形.已知AB=1,求DE的长.图K-29-414.以长为2的定线段AB 为边作正方形ABCD ,取AB 的中点P ,连结PD ,在BA 的延长线上取一点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图K -29-5所示.(1)求AM ,DM 的长;(2)求证:M 是线段AD 的黄金分割点.图K -29-515思维拓展如图K -29-6①,点C 将线段AB 分成两部分,如果AC AB =BCAC,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果S 1S =S 2S 1,那么称直线l 为该图形的黄金分割线.(1)研究小组猜想:在△ABC 中,若点D 为AB 边的黄金分割点(如图②),则直线CD 是△ABC 的黄金分割线.你认为对吗为什么(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF∥CE,交AC于点F,连结EF(如图③),则直线EF也是△ABC的黄金分割线.请你说明理由.图K-29-61.[答案]B2.[解析] A 设这本书的宽为x cm ,则x20≈,解得x≈,故选A.3.[答案]B4.[解析] D 先求得下半身的实际高度,再根据黄金分割的定义求解. 根据已知条件得下半身长是160×=96(cm).设需要穿的高跟鞋的高度是y cm ,则根据黄金分割的定义,得y +96160+y ≈.解得y≈8.故选D. 5.[答案]D6.[解析] C 由黄金分割的意义可得PQ =10×⎣⎢⎡⎦⎥⎤5-12-(1-5-12)=10( 5-2).7.[解析] D 设正方形的边长为2,则CD =2,CF =1. 在Rt △DCF 中,DF =12+22=5, ∴FG =5,∴CG =5-1, ∴CG CD =5-12, ∴矩形DCGH 为黄金矩形. 故选D.8.[答案] (1)±6 (2)5 3cm (3)32,12或±3 2(写出一个即可) [解析] (3)设这个数为x ,则3,6或x 都可能是比例中项,因此本题应分三种情况讨论.设这个数为x ,则32=6x 或62=3x 或x 2=3×6,解得x =32或x =12或x =±3 2.9.[答案]3-525-12[解析] 因为C 是线段AB 的黄金分割点,且AC>BC ,所以AC AB =5-12.又因为BC =AB -AC ,所以BC AB =AB -AC AB =1-AC AB =1-5-12=3-52.由黄金分割可知BC AC =AC AB =5-12.10.[答案] 23[解析] 用近似的黄金比值直接与37相乘即可. 11.答案] =[解析] 根据黄金分割的定义得到PA 2=PB·AB,再利用正方形和矩形的面积公式有S 1=PA 2,S 2=PB·AB,即可得到S 1=S 2.∵P 是线段AB 的黄金分割点,且PA >PB , ∴PA 2=PB·AB.又∵S 1是以PA 为边的正方形的面积,S 2表示长是AB ,宽是PB 的矩形的面积, ∴S 1=PA 2,S 2=PB·AB,∴S 1=S 2.12.解:∵x 与y 的比通常按黄金比来设计, ∴x ∶y ≈,∴y ≈53x.又∵x+y =360,∴x +53x≈360,解得x≈135.13.解:∵△ABC,△BDC ,△DEC 都是黄金三角形,AB =1,∴AB =AC ,AD =BD =BC ,DE =BE =CD.设DE =x ,则CD =BE =x ,AD =BC =1-x.∵EC DE =BCAB ,EC =BC -BE =1-x -x =1-2x ,∴1-2x x =1-x1, 解得x =3-52(x =3+52>1舍去),∴DE 的长为3-52.14.解:(1)∵正方形ABCD 的边长为2,P 是AB 的中点, ∴AB =AD =2,AP =1,∠BAD =90°, ∴PD =AP 2+AD 2=5,∴在正方形AMEF 中,AM =AF =5-1,DM =AD -AM =3- 5. (2)证明:由(1),得AD·DM=2(3-5)=6-2 5. 又∵AM 2=(5-1)2=6-2 5. ∴AM 2=AD·DM,即M 是线段AD 的黄金分割点. 15解:(1)对.理由如下: 设△ABC 中边AB 上的高为h.则S △ADC =12AD·h,S △BDC =12BD·h,S △ABC =12AB·h,∴S △ADC S △ABC =AD AB ,S △BDC S △ADC =BD AD. 又∵点D 为AB 边的黄金分割点, ∴AD AB =BD AD , ∴S △ADC S △ABC =S △BDCS △ADC,∴直线CD 是△ABC 的黄金分割线.(2)∵三角形的中线将三角形分成面积相等的两部分,此时S 1=S 2=12S ,即S 1S ≠S 2S 1,∴三角形的中线不可能是该三角形的黄金分割线. (3)∵DF∥CE,∴△DEC 和△FCE 的公共边CE 上的高相等,∴S △DEC =S △FCE .设直线EF 与CD 交于点G , ∴S △DGE =S △FGC ,∴S △ADC =S 四边形AFGD +S △FGC =S 四边形AFGD +S △DGE =S △AEF ,S △BDC =S 四边形BEFC . 又∵S △ADC S △ABC =S △BDC S △ADC ,∴S △AEF S △ABC =S 四边形BEFCS △AEF ,∴直线EF 也是△ABC 的黄金分割线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、把ab = -cd 写成比例式,下列写法不正确的是 2
a d A 、—=— c 2
b a d 2a d —=—C 、—=— 2
c b c b
3、己知P 为线段AB 的黄金分割点,且AP<PB,则(
B 、 D 、 2a c ~d =~b ) 比例线段和黄金分割练习题
姓名 学号
一、选择题(每题4分,共24分) 1、在比例尺为1: 400000的地图上,量得AB 两地距离是24cm,则A 、B 两地实 际距离为(
) A 、 960m B 、 9600m C 、 96000m D 、 960000m
A 、AP 2 =A
B PBB 、AB 2 =AP PB ;
C 、PB 1 = AP A8;
D 、AP 2 BP 2 = AB 2
4、 己知P 、Q 是线段AB 的两个黄金分割点,且AB=10cm,则PQ 长为(

A 、5(V5-1)
B 、5(V5 +1)
C 、10(75-2)
D 、5(3-妁 e a + h b + c a + c ,
、 5、 若 ---- 二 ---- 二 ---- ,则。

:Z?: c =(

II 10 15
A 、11: 10: 15
B 、8: 3: 7;
C 、3: 2: 5;
D 、6: 7: 8
6、 某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是
1.5米,影长是1米,旗杆的影长是8米,则旗杆的高度是( )
A 、12 米
B 、11 米
C 、10 米
D 、9 米 二、填空题(每空3分,共24分)
1、 己知 “ =0.2,= 0.04,贝\\ a \b=。

2、 正方形的边长与对角线的比为:。

a 3 ri , ci+ b a a + h
3、 若一二一,则 ----- = __________ _____ = __________ ____ = _________ o
b 4 a a - 2b a-b
4、 若x:y = 3:2, y:z = 3:2 贝^x: y: z=。

5、 若P 为AB 的黄金分割点,且AP>PB,若AB = 8cm,则AP=PB =o
四、解答题。

(每题7分,共28分)
1、(1)若七箜二2,求4的值。

(2)、若2Q = 3" = 4C ,求a:h:c 的值。

3 y
2、已知。

:力:c = 3:5 :10 ,且。

+。

一/? = 16,求 3。

+ 2/? —。

的值。

.t, a h c口,八r 4a + 3b-2c 己知一二一二
一,旦。

•如CA O,求 ------------------------
3 4 7 2a + 3b-4c
的值。

4、
a h c d , n
右-------- = -------- = --------- = --------- =k求k的值。

b +
c +
d a + c + d a + b + d a^b + c
五、综合应用题。

1、已知点C是线段AB的黄金分割点AC=5A/5-5,且AC>BC,求线段AB与BC的长。

(8分)
2、(1)试用尺规作图的方法作出线段AB的黄金分割
点。

3、己知一=—,求证:
b d a + b _ a-b
c +
d c-d
3-Js
4、(1)已知线段AB=a,在线段AB ±有一点C,若AC=」^-。

,则点C是线段 2
AB的黄金分割点吗?为什么?
(2)宽与长的比等于黄金比的矩形也称为黄金矩形。

清你设法作出一个黄金矩形.
5、若AABC三边a: h:c = 6:4:3,三边上的高分别为I气、为、/*,求":/& :勿
的值。

相似三角形的判定
1.如图,E是平行四边形ABCD的边BC的延长线上的一点,----- D
连结AE交CD于F,则图中共有相似三角形() A1对B2对C3对 D4对L J_
B C
2.如图,在正方形网格上有6个斜三角形:①A ABC, CD
E
(2) A BCD, ®ABDE,④ ABFG, @AFGH, @A
EFK.其中②〜⑥中,与三角形①相似的是()A
(A)②③④(B)③④⑤(C)④⑤⑥ (D)②③⑥
B
3.如图,P是Rt A ABC的斜边BC上异于B、C的一BK
点,过点P做直线截AABC,使截得的三角形与△ ABC相似,满 \
足这样条件的直线共有()X A、1条 B、2条 C、3条 D、4条A
AB BC AC
4.如图,已知—=—=—,求证:△ABDs^ACE//\、E
5.已知;如图,D 是 AC ±一点.BE〃AC, BE=AD。

AE 分别交
BD、BC 于点 F、Go Z1 = Z2
O
求证:BF ~ =FG ・ EF。

6.如图,点C、D在线段AB±,且△ PCD是等边三 P
(1)当AC, CD, DB满足怎样的关系时,AACPsAPD //
(2)当小PDB S/XACP时,试求ZAPB的度数. //
E
7.如图,四边形ABCD、CDEF、EFGH都是正方形.
(1)ZIACF与/ACG相似吗?说说你的理由. (2)求匕1 +匕2的度数.
9.
8. 如图,在直角梯形 ABCD 中,AB//CD
DA±AB,CD = 2y AB = 3,AD = 7,在 AD 上能否找到一点 P, 使三角
形PAB 和三角形PCD 相似?若能,共有儿个符合条件的 点P?并求
相应PD 的长。

若不能,说明理由。

如图,21 ABC 是等边三角形,点D, E 分别在BC, AC 上,且BD=CE, AD
与BE 相交于点F.则BD 』AD • DF 成立吗?清说明
理由.
10.如图,在左EAD 中,ZEAD=90° , AC 是高,B 在DE
延长线上,且ZBAE=ZEAC. (1)试说明: △ ABE s
△ DBA ; (2)试说明:
位)• EC = AB • AC ; (3)问:当 AB : B D 等 于多少时,EC : CD=1 : 4?
10、如图:AB 是等腰直角三角形ABC 的斜边,点M 在边AC 上,点N 在边BC 上,
沿直线MN 将AMCN 翻折,使点C 落在AB ±,设其落点为P,
PA CM
%1 当P 是边AB 中点时,求证: ——=——;
PB CN
PA CM
%1 当P 不是边AB 中点时,一=—是否仍成立?请证明
PB CN
你的结论;。

相关文档
最新文档