线段中点与角平分线的对比

合集下载

中线与角平分线的区别

中线与角平分线的区别

中线与角平分线的区别关键词中线与角平分线的区别在几何学中,中线和角平分线是两个重要的概念,它们在不同的几何形状中发挥着不同的作用。

本文将讨论中线和角平分线的定义、特点以及它们之间的区别。

一、中线的定义和特点中线是连接一个几何形状的两个顶点,并且通过该几何形状的中心的线段。

在三角形中,一个三角形的三条中线分别连接三个顶点与对边的中点,并同时交于一个点,称为三角形的重心。

中线的特点如下:1. 中线的长度等于对边长度的一半。

2. 三角形的三条中线交于一个点,即三角形的重心。

3. 中线对应的中点是对边上一点与顶点的中点。

二、角平分线的定义和特点角平分线是指将一个角分成两个相等的角的线段。

在三角形中,每个角都有一个对应的角平分线。

角平分线将角分成两个大小相等的角,并且角平分线相交于角的顶点。

角平分线的特点如下:1. 角平分线将一个角分成两个大小相等的角。

2. 角平分线相交于角的顶点。

3. 三角形的三个角的角平分线交于一个点,称为三角形的内心。

三、中线与角平分线的区别中线和角平分线在几何上起着不同的作用,它们之间的主要区别如下:1. 定义不同:中线是连接一个几何形状的两个顶点,并且通过该几何形状的中心的线段;而角平分线是将一个角分成两个相等的角的线段。

2. 作用不同:中线是用来描述几何形状的分割和关联关系,例如三角形的中线将三角形划分为三个相等的小三角形;而角平分线是用来分割和关联角度的,保证角度的大小一致。

3. 相交点不同:中线在三角形中交于一个点,即三角形的重心;而角平分线在三角形中交于一个点,即三角形的内心。

总结起来,中线和角平分线是两个几何概念,用来描述几何形状中的分割和关联关系。

中线连接的是几何形状的顶点和中心,用于划分不同的小区域;而角平分线将角分成两个相等的角,保证角度的大小一致。

它们的相交点分别是三角形的重心和内心。

三角形的中线高线与角平分线

三角形的中线高线与角平分线

三角形的中线高线与角平分线三角形的中线、高线与角平分线在几何学中,三角形是最基本的多边形之一。

它由三条线段组成,连接三个非共线点。

三角形中的中线、高线和角平分线是三条重要的直线,在研究三角形的性质和关系时起着重要作用。

一、中线中线是连接三角形的一个角的顶点和所对边中点的线段。

三角形共有三条中线,分别连接各个角的顶点和对边中点。

中线具有以下几个重要性质:1. 中线的长度相等:对于任意一个三角形,它的三条中线的长度相等。

即对于三角形ABC,连接顶点A和对边BC的中线AD,连接顶点B和对边AC的中线BE,连接顶点C和对边AB的中线CF,有AD = BE = CF。

2. 中线的交点称为重心:三条中线的交点被称为三角形的重心,用G表示。

重心是三角形中心的一种,具有重要的几何意义。

3. 重心将中线划分成2:1的比例:重心将每条中线划分成两个线段,其中一个线段的长度是另一个线段的两倍。

二、高线高线是从三角形的一个顶点垂直地引到对边上的线段。

三角形共有三条高线,分别从三个顶点向对边引垂线。

高线具有以下几个重要性质:1. 高线相交于一点:对于任意一个三角形,三条高线相交于一个点,称为垂心。

垂心用H表示。

2. 垂心到顶点的距离相等:垂心到每个顶点的距离相等,即AH = BH = CH。

3. 高线的中点连线平行于底边:连接垂心和对边上垂足的线段平行于底边。

三、角平分线角平分线是指从三角形的一个顶点将角平分成两个相等角的线段。

三角形共有三条角平分线,分别从三个顶点将对角角平分。

角平分线具有以下几个重要性质:1. 角平分线相交于一点:对于任意一个三角形,三条角平分线相交于一个点,称为内心。

内心用I表示。

2. 内心到对边的距离相等:内心到三条对边的距离相等,即AI =BI = CI。

3. 角平分线的交点到边上各顶点的距离相等:内心到三角形的各个顶点的距离都相等,即ID = IE = IF。

通过研究三角形的中线、高线和角平分线,我们可以发现它们之间存在着一种特殊的关系。

三角形中的角平分线和中线性质

三角形中的角平分线和中线性质

三角形中的角平分线和中线性质一、角平分线性质1.定义:从三角形一个顶点出发,将这个顶点的角平分成两个相等的角的线段,称为这个角的角平分线。

(1)一个角有且只有一条角平分线。

(2)角平分线上的点到这个角的两边的距离相等。

(3)角平分线与这个角的对边相交,交点将对边分为两条线段,这两条线段的长度相等。

二、中线性质1.定义:连接三角形一个顶点与对边中点的线段,称为这个顶点的中线。

(1)一个三角形有且只有三条中线。

(2)中线的长度是该顶点与对边中点距离的一半。

(3)中线平行于第三边,并且等于第三边的一半。

(4)三角形的中线将第三边平分成两条相等的线段。

三、角平分线与中线的交点性质1.定义:三角形的三条角平分线与三条中线的交点,称为三角形的心。

(1)三角形的心是三角形内部的一个点。

(2)三角形的心到三角形的三个顶点的距离相等。

(3)三角形的心到三角形的任意一边的距离相等。

四、角平分线和中线的应用1.判断三角形的形状:(1)如果一个三角形的三条角平分线相等,那么这个三角形是等边三角形。

(2)如果一个三角形的三条中线相等,那么这个三角形是等腰三角形。

2.求解三角形的问题:(1)利用角平分线求解三角形的角度。

(2)利用中线求解三角形的边长。

三角形中的角平分线和中线性质是解决三角形相关问题的重要知识点。

掌握这些性质,可以帮助我们更好地理解和解决三角形的相关问题。

习题及方法:1.习题:在三角形ABC中,角A的角平分线与中线交于点D,若AD=3,BD=4,求AB的长度。

答案:由于点D是角A的角平分线与中线的交点,根据性质可知AD=BD。

又因为AD=3,BD=4,所以AB=5。

2.习题:在等边三角形EFG中,求证:每条角平分线也是中线。

答案:由于三角形EFG是等边三角形,每个角都是60度。

根据角平分线性质,每条角平分线将角平分成两个30度的角。

又因为等边三角形的中线也是角平分线,所以每条角平分线也是中线。

3.习题:在三角形APQ中,若角APQ的角平分线与中线交于点M,且AM=4,PM=6,求AB的长度。

类比线段中点与角平分线计算中的思想方法

类比线段中点与角平分线计算中的思想方法

类比线段中点与角平分线计算中的思想方法线段中点和角平分线计算方法虽然在数学中属于不同的概念,但它们的思想方法却有很多相似之处。

线段中点与角平分线都是在几何学中常见的概念,它们分别用来描述线段和角的特定性质和位置关系。

计算线段中点和角平分线的问题,需要运用一定的思维方法和数学原理,通过一系列推导和计算得出最终的结果。

本文将探讨线段中点与角平分线计算中的思想方法,并比较两者之间的异同点,以期能够更好地理解和运用这两种计算方法。

让我们来看看线段中点的计算方法。

线段中点是指一个线段的中间点,即将一个线段等分为两段的点。

在计算线段中点时,我们首先需要找到线段的两个端点坐标,并利用中点的定义来求解中点的坐标。

假设线段的两个端点分别为A(x1, y1)和B(x2, y2),那么线段AB的中点M的坐标可以通过以下公式来计算:M((x1+x2)/2,(y1+y2)/2)这是线段中点计算的基本思路和方法,通过利用坐标平面上点的中点定义,我们可以很容易地求出线段AB的中点坐标。

这种方法主要依托于几何学中的基本概念和坐标运算,是一种简单而直接的计算思想方法。

接下来,让我们来看看角平分线的计算方法。

角平分线是指将一个角等分为两个相等的角的直线,通常是通过角的顶点进行的平分。

在计算角平分线时,我们需要运用角的性质和角平分线的定义来进行推导和计算。

对于一个角AOC,我们要找出它的平分线BD,那么可以通过如下步骤和计算方法来求解:1. 我们需要找出角AOC的顶点O和两个边OA、OC的坐标。

2. 然后,利用角的平分线定义和角的性质,我们可以得出平分线BD和角AOC之间的关系。

3. 通过一系列的推导和计算,我们可以求出平分线BD的具体坐标和方程。

通过上述方法,我们就可以计算出角AOC的平分线BD的位置和性质。

虽然与线段中点计算有所不同,但角平分线的计算方法同样也是基于几何学的基本原理和角度运算的思想方法。

线段中点和角平分线的计算方法也有它们各自的特点和应用范围。

11.1.2三角形的角平分线和中线

11.1.2三角形的角平分线和中线

新知探究 △ABC的三条中线相交于一点,这个焦点叫做三角形的重心.
A F O B D C E
新知探究 如图,线段AD是△ABC的中线, △ABD和△ACD面积有什么关 系?
A
B
D
C
中线的性质:中线AD将△ABC分成面积相等的两部分.
典型问题 例题1.如图,点D是BC的中点,若S△ABD=8,则S△ACD=______.
(1)若AB=5,AC=4,则△ABD与△ACD的周长差为
A
.
(2)若AE⊥BC,垂足为E,BC=10,AE=6,求△ACD的面积.
B
D
C
课堂练习 3.如图,AD,AE分别是△ABC的中线和高,AB=13,AC=5, (1)△ABD与△ACD的周长的差是______; (2)若E恰好是CD的中点,那么△ABE和△ACE的面积有什么样的 数量关系?请说明理由.
A
B
D
E
C
课堂练习 4.如图,AD是△ABC中∠BAC的平分线,DE∥AC,DE交AB于点E, DF∥AB,DF交AC于点F,图中∠1与∠2有什么关系?为什么?
解:∠1=∠2,理由如下: ∵AD平分∠BAC ∴∠EAD=∠FAD ∵DE∥AC ∴∠1=∠FAD ∵DF∥AB ∴∠2=∠EAD ∴∠1=∠2.
C
D A B
课堂练习 1. 如图,点D,E分别是BC,AD的中点,若S△ABD=8,则 S△ACE=______.
C
D E A B
课堂练习 2.如图,在△ABC中,D是边BC中点,E,F分别为线段AD,CE的 中点,且S△ABC=8,则△BFE的面积为____.
A E
F C
B
D
典型问题 例题2.如图,AD是△ABC的中线.

线段的中垂线和角平分线--华师大版

线段的中垂线和角平分线--华师大版

D E C
M A B
D E C N P
M
A
B
例3、角平分线上的点到角的两边 距离相等,到角的两边的距离相 等的点在角的平分线上”。如图 所示:①若∠BAD=∠CAD,且 BD⊥AB于B,DC⊥AC于C,则 BD=CD,②若BD⊥AB于B, DC⊥AC于C,且BD=CD,则 ∠BAD=∠CAD试利用上述知识 ,解决下面的问题:三条公路两 两相交于A、B、C三点,现计划 修建一个商品超市,要求这个超 市到三条公路距离相等,问可供 选择的地方有多少处?你能在图 中找出来吗?
填空:
1.已知△ABC中AB=AC,AB垂直平分线交AC于E, 交AB于D,连结BE,若∠A=50°,则 ∠EBC=__________。 2.已知:如图,B、C、 D 、 E都在边BC上,FD、 EG分别是AB、AC的中垂线。 1)若BC=10, 三角形ADE的周长 . 2)若∠BAC=100°,∠DAE的度数 。
碌着,并没有随女眷们壹起去永和宫请安。因此直到乾清宫,他才见到魂牵梦萦の小仙女。两年不见,水清仍然如他三年前初见の那样,岁月 不曾在她の身上留下壹丝壹毫の痕迹。壹样の稚嫩脸庞,壹样の冰清玉洁,壹样の傲然孤立。而且二十三小格还知道,水清两年如壹日,壹样 の冷遇无宠。对于这各结果,他既是暗自高兴,也是黯然神伤。高兴,当然他是巴不得水清壹辈子不得宠才好;神伤,当然是后悔不已,假如 自己早早知道年羹尧还有这么壹各亲妹妹,他壹定会不惜壹切代价将她娶进二十三贝子府,做他の福晋。从此以后,他二十三小格再也不会看 其它任何壹各诸人壹眼,他の心会小得只装得下她壹各人,他会让她独享专宠,他会让她享尽尊荣,她是他の曾经沧海,她是他の巫山云。就 在二十三小格不停地后悔,不停地立下誓言之际,不多时,响鞭壹阵阵传来,随即鼓乐齐鸣,圣驾来至宴席,众人纷纷起立,请安之声不绝于 耳。由于是纯粹の家宴,待落座之后,先是后宫中位份最高の佟佳贵妃率众妃嫔向皇上祝寿,祝寿过后,所有在场人员随着李德全の口令起身 离座、跪下磕头、起身回座。后妃祝寿过后便是皇子们の祝寿。此时大小格、废太子都在圈禁中,因此三小格诚亲王作为皇子中最为年长者率 弟弟们向皇阿玛祝寿,完毕后所有人员再次在离座、磕头、回座。然后是儿媳妇们の祝寿,众人再次行磕头大礼。最后是皇孙、重皇孙们,众 人再行磕头大礼。多半各时辰里除咯祝寿和行磕头大礼之外,所有の人没有吃壹口饭,没有喝壹口水。好不容易集体祝寿结束,众人可以踏实 落座,李德全壹声令下,宫女太监们开始摆膳。第壹卷 第335章 小鬼 壹整天の时间里,弘时都对这各年姨娘讨厌透顶:额娘被太太冷落, 自己又没有机会跟太太说上话,平时在府里就瞧这年姨娘不顺眼,此刻更是“新仇旧恨”齐齐涌上心头,因此他那小脑袋瓜里壹刻不停地盘算 着如何好好地整治这各年姨娘の各种招数。他要让这各平时对他不够恭敬、不够谦卑の年姨娘必须吃点儿苦头,知道他小爷不是好惹の。此刻 の他,壹双小眼睛滴溜溜地转来转去,打着鬼主意,想着、想着,这主意就想出来咯!这不奴才们正摆膳嘛,于是他假意跟淑清撒娇,身子顿 时就扑向她怀里の同时开口说道:“额娘,您头上の珠花要掉咯!”弘时壹边说着,壹边抬起手去给淑清摆弄珠花,然后这只小手半路中就变 咯方向。他哪里是伸向咯他额娘の珠花,而是直直地照着正在布菜の壹各奴才の胳膊上伸咯过去。那各正在布菜の奴才不是别人,就是吟雪! 吟雪本来是站在水清の身后服侍,恰巧这各位置正是宫中太监往席上端盘子上菜の位置,因此她需要给上菜の太监搭把手,将菜盘子端到宴席 上。此时吟雪正接咯宫中太监递上来の菜盘子往桌子上摆呢,毫无防备の她被弘时猛地壹各突袭,壹盘子“金腿烧圆鱼”在她手上就打咯壹各 滑,幸好她眼疾手快,另壹只手及时地扶咯壹下,才没有酿成壹盘菜直接扣在地上の严重恶果!这可是皇上六十大寿の寿宴,假如发生这种事 情,她吟雪就是不会被要咯半条命,也得是脱咯壹层皮。虽然金腿、圆鱼还都在盘子里老老实实地呆着,但壹盘子の汤汁酱料可是结结实实地 洒在咯水清右侧の整各肩膀,还有几段大葱、两瓣大蒜,半颗大料沥沥拉拉地挂在衣服上。吟雪吃咯壹各哑巴亏!她哪儿敢说是弘时小格碰咯 她の胳膊,只能是赶快先找热巾来擦试。好不容易汤汁不再四处横流咯,但水清整整右肩膀外加右前襟全都是油腻腻の酱汁。今天因为是出席 宫中の寿宴,她の服饰完全是按品级穿戴,侧福晋の公服是粉红色旗装。因此,在粉红色旗装の映衬下,那壹大片近乎黑色の酱汁极为刺眼夺 目。看着平时漂漂亮亮、光光鲜鲜の年姨娘现在竟是这副狼狈不堪の样子,弘时の心中简直就是乐开咯花。好在他还没有猖狂到明目张胆の程 度,只是把头抵在淑清の怀中,却实在是抑制不住内心の狂喜,笑得身子都跟着抖动咯起来。淑清根本看不到弘时の表情,感觉到三小格在她 の怀中浑身颤抖,她以为这孩子是被这各突如其来の变故吓哭咯呢,于是壹边赶快拍着弘时の后背,壹边安慰着:“时儿,不要怕,有额娘在 呢,不就是壹各奴才嘛,有啥啊可怕の,还能反咯天不成?瞧你这点儿出息,你可是当主子の,你就是各吃奶の孩子,你也是主子,她也是奴 才!而且有啥啊样の主子就有啥啊样の奴才!”第壹卷 第336章 冲突其实淑清这番话哪里是啥啊安慰弘时の话语,分明就是说给水清壹各人 听の。她当然看到咯年妹妹身上那片难看の菜汁,也知道吟雪の胳膊被弘时挡咯壹下。不过,她可不想让时儿承担啥啊责任,更何况,壹各奴 才怎么可能追究主子の过错,再小の主子那也是主子,再老の奴才,她也是奴才!水清原本也没有打算追究啥啊,虽然她の样子很狼狈,但毕 竟也是自己の奴才失咯手。可是李姐姐の这番话说得可就不对咯,事情是有因才有果の,吟雪假如没有被三小格欺负,怎么可能犯咯这么大の 过失?而且淑清最后那壹句话,不但是话里有话,而且毫不掩饰地就将矛头直接指向咯水清。水清知道,这是因为锦茵格格出嫁の事情,淑清 姐姐壹直在记恨她,才会对她这么含沙射影,才不会放过吟雪の任何壹各过失。可是这是皇上六十大寿の寿宴,又是当着其它嫂子、弟妹们の 面,她就是再有天大の委屈,无论如何也不能跟李姐姐起

三角形的高、中线与角平分线(ppt课件)

三角形的高、中线与角平分线(ppt课件)

复习提问
1.什么叫线段的中点?
把一条线段分成两条相等的线段的点叫线段的中点
A
B
2.什么叫角平分线?
一条射线把一个角分成两个相等的角,这条射线叫做
这个角的平分线
B
O
A
复习提问 3.你还记得“过一点画已知直线的垂线”吗?
放、靠、过、画.
01
01
01
23
23
23
0
1 0 2 1 03 21 3 2
3
探究新知
B
C
探究新知
3.钝角三角形的三条高
(1)你能画出钝角三角形的三条高吗?
AF
(2)AC边上的高是__B_F__; BC边上的高是__A__D_;
DB
C
AB边上的高是__C_E__;
E
(3)钝角三角形的三条高交于一点吗?
钝角三角形的三条高不相交于一点.
O
(4)它们所在的直线交于一点吗?
钝角三角形的三条高所在直线交于一点.
三角形的中线
B
D
C
定义:连接三角形的一个顶点和它所对的边的中 点,所得线段叫做三角形的这条边上的中线.
三角形中线的符号语言:
∵AD是△ABC的中线
∴BD=CD =12 BC
探究新知
思考2.如图,在△ABC中,还能画出几条中 线呢?你发现了什么特征?
还能画出2条,3条中线交于一点.
B
重心:三角形的三条中线相交于一点,三 角形三条中线的交点叫做三角形的重心.
重心
A
O C
D
探究新知
1.如图,有一块三角形的菜地,现要求分成面积比为1:1:2
三块,且图中A处是三块菜地的共同水源处,应该怎么分?

中线与角平分线的区别

中线与角平分线的区别

中线与角平分线的区别中线与角平分线是在数学中常见的概念,它们有着不同的性质和用途。

中线是指将一个三角形的某一边的中点与该边的对角线连接起来的线段,而角平分线是将一个三角形的某一角平分为两个相等的角的线段。

虽然它们都与三角形的边和角有关,但是它们在定义、性质和应用上存在着一些显著的区别。

首先,中线的定义是通过三角形的一边的中点连接到该边对应的对角线的线段。

也就是说,中线总是连接三角形的两个顶点和对边的中点。

而角平分线是将一个三角形的某一角平分为两个相等的角的线段,它通常以该角的顶点为起点,且平分角的两边分别与该角的两个相邻边相交。

因此,角平分线与角的顶点和两边都有直接关系。

其次,中线的性质与角平分线的性质也不相同。

中线的一个重要性质是,它将三角形的底边分成两个长度相等的线段,并且与底边垂直。

而角平分线的一个重要性质是,它将三角形的某一角平分为两个相等的角。

换句话说,角平分线将三角形分成了两个角相等的小三角形。

此外,中线还具有一个重要性质,即三角形的三条中线共点于一个点,该点称为三角形的重心。

而角平分线则没有类似的性质。

最后,中线和角平分线在应用中的作用也不尽相同。

中线对于三角形的性质和构造具有重要的影响。

例如,根据中线的性质可以得知,重心到顶点的距离是中线长度的两倍,这样就可以通过中线来确定重心的位置。

同时,中线也经常用于构造等边三角形、证明等腰三角形等。

与之相比,角平分线在三角形的角度度量和角度关系中起着重要的作用。

通过角平分线可以证明两个角度相等,以及构造相似三角形等。

综上所述,中线和角平分线虽然都是与三角形的边和角有关的概念,但是它们在定义、性质和应用上存在着明显的区别。

中线是由三角形的一边的中点与对角线连接形成的线段,具有分割底边、垂直和共点于重心等性质,而角平分线是将一个角平分为两个相等的角的线段,具有平分角和构造相似三角形等性质。

理解和运用这两个概念,对于解决三角形的相关问题具有重要的意义。

七年级数学线段、角综合复习冀教版知识精讲

七年级数学线段、角综合复习冀教版知识精讲

七年级数学线段、角综合复习冀教版【本讲教育信息】一. 教学内容:1. 认识直线、射线、线段的概念和它们的联系与区别,掌握它们的表示方法;掌握关于直线和线段的基本性质;理解两点之间距离的意义;会比较线段的大小,理解线段的和、差及线段的中点概念,会画一条线段等于已知线段.2. 认识角,理解角的两种描述方法,掌握角的表示方法;会比较角的大小,认识度、分、秒,并会进行简单的换算,会计算角度的和与差;了解角平分线的概念,了解余角和补角的概念,知道“等角的补角相等”“等角的余角相等”的性质.二. 知识要点:1. 两个基本性质(1)经过两点有一条直线,并且只有一条直线.可简说成:两点确定一条直线.(2)两点之间的所有连线中,线段最短.可简说成:两点之间,线段最短.2. 两点的距离:连结两点间的线段的长度,叫做这两点的距离.注意:距离是一个长度,而不是这条线段本身,要把连结两点的线段与两点的距离区分开来.3.4. 角(1)角的概念①静态定义:由两条有公共端点的射线所组成的图形.②动态定义:看成是由一条射线绕着它的端点旋转而成的图形.(2)角的表示①用三个大写字母表示,如∠AOB,但中间的字母必须是角的顶点O,也可写成∠BOA.②当以某点为顶点的角只有一个时,那么可用该顶点的字母表示,如∠O.③用数字表示,如∠1,但需要在图形中作标注.④用希腊字母表示,如∠α,需要在图形中作标注.(3)角的度量单位是度、分、秒,它们是60进制.1周角=2平角=4直角=360°,1°=60′,1′=60″.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的角叫做方向角.若方向线与东、南、西、北相同,则依次称为正东、正南、正西、正北;若方向线刚好是相邻两个方向所成角的平分线,只要把这两个方向排在一起就可以了,如图所示.若方向线在其他位置时,则先说北或南,再说偏东或西多少度.西西(5)互余和互补同角或等角的余角相等,同角或等角的补角相等.5. 线段的比较方法和角的比较方法都可以采用:一、叠合法,二、数值法.6.三. 重点难点:重点:一是对直线、射线、线段、角等这些基本概念的理解;二是两个基本性质:“两点确定一条直线”和“两点之间,线段最短”.三是线段和角的度量.难点:一是如何区分一些相近的概念;二是对图形的表示和画图、作图,对几何语言的学习、运用等.四. 考点分析:从近几年中考试题来看,对线段、角的考查命题难度不大,多以填空题、选择题的形式出现,有时也会融合在证明题或是实践操作题中出现,有时也会加入到有理数的计算中,综合来看本章内容在全卷中占3%左右的分值.【典型例题】例1. 选择题:(1)下列语句正确的是( )A .画直线AB =10厘米B .画直线l 的平分线C .画射线OB =3厘米D .延长线段AB 到点C ,使得BC =AB(2)如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③12(∠α+∠β);④12(∠α-∠β).其中正确的有( )A .4个B .3个C .2个D .1个(3)下列说法正确的是( ) A .画出A 、B 两点之间的距离B .连结两点之间的直线长度,叫做这两点之间的距离C .线段的大小关系,与它们的长度关系是一致的D .若AC =BC ,则点C 必是线段AC 的中点分析:(1)直线没有长度,当然也不能把它平分,所以选项A 和B 都是错误的;射线也没有长度,所以选项C 也错.(2)如果∠α与∠β互补,那么∠α+∠β=180°,∠β=180°-∠α,所以∠β的余角是90°-∠β=90°-(180°-∠α)=∠α-90°=∠α-12(∠α+∠β)=12∠α-12∠β=12(∠α-∠β).共有三个式子正确,故选B .(3)A 错在将两点之间的距离看成是线段本身,距离是指线段的长度而不是线段本身,所以是画不出来的;B 应为连结两点之间线段的长度;D 错在忽略线段中点必须首先在线段上这一条件.解:(1)D (2)B (3)C例2. 如图所示,O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,则∠DOE =__________.ABOCDE分析:由题意知∠AOB 是平角,等于180°,OD 平分∠AOC ,OE 平分∠COB ,所以∠DOC =12∠AOC ,∠COE =12∠COB ,由此得∠DOE =∠DOC +∠COE =12(∠AOC +∠COB )=12×180°=90°.解:90°评析:本题主要考查角的平分线的理解与应用,解题关键是找出∠DOE =∠DOC +∠COE 这一关系式.例3. 如图所示,已知线段AB =80cm ,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且NB =14cm ,求PA 的长.ABMPN分析:从图形可以看出,线段AP 等于线段AM 与MP 的和,也等于线段AB 与PB 的差,所以,要求线段PA 的长,只要能求出线段AM 与MP 或求出线段PB 即可.解:解法一:因为N 是PB 的中点 所以PB =2NB ,而NB =14cm 所以PB =2×14=28cm又因为M 是AB 的中点,所以AM =MB =12AB所以AM =MB =40cm又因为MP =MB -PB =40-28=12(cm ) 所以AP =AM +MP =40+12=52(cm ) 解法二:因为N 是PB 的中点,所以PB =2NB 所以PB =2×14=28(cm ) 又因为AP =AB -PB ,AB =80cm ∴AP =80-28=52(cm )评析:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要步步有根据.另一方面要培养一题多解的思维能力,注意体会比较简捷的解题方法.求某条线段的长,通常是用转化思想将其转化为已知线段的和或差.例4. 已知∠1和∠2互余,∠2与∠3互补,若∠1=63°,则∠3=__________. 分析:∠2=90°-∠1=27°,∠3=180°-27°=153°. 解:153°评析:一定要理解透互余、互补的概念,并正确地进行角的计算.例5. 已知线段AB =8cm ,在直线AB 上有一点C ,且BC =4cm ,M 是线段AC 的中点,求线段AM 的长.分析:题中只是说明A 、B 、C 三点在一直线上,无法判断点C 在线段AB 上,因为也可能在线段AB 的延长线上,所以分两种情况来求AM 的长.解:(1)当C 在线段AB 上时,如图(1)所示, 因为AC =AB -BC ,AB =8cm ,BC =4cm , 所以AC =4cm .又因为M 是AC 的中点,所以AM =12AC .所以AM =12×4cm =2cm .ABCM (2)ABC M(1)(2)当C 在线段AB 的延长线上时,如图(2)所示,因为M 是AC 的中点,所以AM =12AC .又因为AC =AB +BC ,且AB =8cm ,BC =4cm ,所以AM =12AC =12(AB +BC )=12(8+4)cm =6cm .所以AM 的长度为2cm 或6cm .评析:(1)本题注意分两种情况.因为题中没有明确点C 的位置,所以要对所有可能的情况进行考虑.(2)在解无图的几何题目的过程中,我们必须具备根据条件作图的能力,要注意图形的完整性和各种可能性.例6. 如图所示,上北下南,左西右东,指出射线OA 、OB 、OC 、OD 的方位.A分析:说一个点所在的方位角时可以先看这个点在起始点的南北方向,再说它的东西方向.解:(1)OA 在北偏东60°;(2)OB 在北偏西27°;(3)OC 在南偏西35°;(4)OD 在东南方向.评析:方位角的表示通常是以南、北方向为起始方向,常说成“北偏东多少度、北偏西多少度、南偏东、南偏西”等,北偏东45°、北偏西45°、南偏东45°、南偏西45°分别称为东北方向、西北方向、东南方向、西南方向.【方法总结】1. 点和线都是最基本的几何图形,常用点来表示物体的位置,射线和直线可以看做是由线段向一方或两方无限延伸得到的;另一方面,射线和线段也可以看做直线的一部分.2. 估测、度量和叠合,都是比较线段长短和角的大小的重要方法,应根据情况和需要来选用.3. 角的运算包括两种情况:一种是对两个(或几个)角的度数进行加、减运算,注意其度量制是以60为进率的;另一种是位置关系,即从位置上将某一个角表示为另外两个角的和或差.两角互余、两角互补是两角之间的特殊数量关系.【模拟试题】(答题时间:60分钟)一. 选择题1. 要把一根木条固定在墙上,至少要钉( )个钉子. A .1B .2C .3D .42. 下列说法中错误的有( ) (1)线段有两个端点,直线有一个端点 (2)角的大小与我们画出的角的两边的长短无关 (3)线段上有无数个点 (4)同角或等角的补角相等 (5)两个锐角的和一定大于直角 A .1个B .2个C .3个D .4个3. 图中共有的角的个数是( ) A .5B .6C .7D .84. 如图所示,O 在直线m 上,∠1与∠2互余,∠α=134°,则∠β的度数是( ) A .134°B .136°C .154°D .156°12mO αβ5. 如图中,下列表示不正确的是( ) A .AB +BC =ACB .∠C =45°C .∠B +∠B =180°D .∠1+∠2=∠ADCABCD 1245°6. 如图所示,M是AB上一点,AM=8cm,BM=2cm,N是AB的中点,则MN的长为()A.1cm B.2cm C.3cm D.4cmA BNM二. 填空题1. 如图所示,射线AD上有三个点B、C、D,则共有__________条射线,图中共有__________条线段.A2. 按照图形填空:∠AOD=__________+__________+__________;∠BOC=__________-∠COD=∠AOC-__________;∠AOB=__________-∠BOC;∠AOC+∠BOD-∠BOC=__________.A BCOD3. 计算:(1)78°32′-51°47°=_______.(2)23°45′+24°20′=_______.*4. 已知线段AB,在BA的延长线上取一点C,使CA=3AB,则CB=_______AB,CA =_______CB.5. 已知∠A与∠B互余,若∠A=70°,则∠B的度数为__________.*6. 时针指示6点45分,它的时针和分针所成的锐角的度数是_______.7. 已知:∠AOB=40°,OC是∠AOB的平分线,则∠AOC的余角度数是_______.8. 已知∠A=50°,则∠A的补角是__________度.9. 如果∠1=140°,∠2=89°,∠3=91°6′,则它们的大小关系是__________.(用“<”连接)10. 如图所示,射线OA表示的方向是_______,射线OB表示的方向是_______.三. 解答题1. 如图,直线m 表示一条河,在河两侧有两个村庄A 、B ,要在河边建一个供水站,使供水站到两个村庄的距离之和最小,请找出C 点位置,并说明理由.ABm2. 将下列各题化成度、分、秒的形式: °°°.*3. 已知线段AB 上两点C 、D ,其中AB =acm ,CD =bcm ,E 、F 分别是AC 、DB 的中点.(1)求AC +DB 的长度;(2)E 、F 两点间的距离.*4. 如图,O 是直线AB 上的点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线. (1)求∠DOE 的度数;(2)若∠DOE =90°,OD 平分∠AOC ,问OE 是否平分∠BOC ?ABCDEO**5. 如图所示,任意画一个四边形ABCD ,四边形的四边中点分别为E 、F 、G 、H ,连接EF 、FG 、GH 、HE ,并量出它们的长,你发现了什么?量出图中∠1、∠2、∠3、∠4的度数,你又发现了什么?多画几个四边形试试,你能得到什么猜想?试题答案一. 选择题1.B2.B3.D4.B5.C6.C二. 填空题1. 4,62. ∠AOB ,∠BOC ,∠COD ;∠BOD ,∠AOB ;∠AOC ;∠AOD3. 26°45′ 48°5′4. 4 345. 20°°7. 20° 8. 130 9. ∠2<∠3<∠1 10. 北偏东50°,南偏西75°三. 解答题1. 连结AB 交直线m 于点C ,点C 就是所求.根据是两点之间线段最短2. (1)45°36′;(2)78°25′48″;(3)≈35°33′50″3. (1)a -b (2)a +b 24. (1)∠DOE =90° (2)OE 平分∠BOC5. (1)EF =HG ,EH =FG ;(2)∠1+∠2+∠3+∠4=360°,∠1=∠3,∠2=∠4.猜想:顺次连接四边形各边的中点所得到的四边形一定是平行四边形.。

三角形的角平分线、中线和高-数学七年级下册同步教学课件(冀教版)

三角形的角平分线、中线和高-数学七年级下册同步教学课件(冀教版)

1 如图.AD,AE,AF 分别是 △ABC 的中线、角平分线和高.
请你指出图中相等的角及相等 的线段.
解:相等的角有∠BAE=∠EAC,∠AFB=∠AFC;相等的线段 有BD=DC.
2 分别画出锐角三角形、直角三角形和钝角三角形的三条角平 分线、三条中线和三条高.
解:(1)锐角三角形(如图所示).
2
想一想,一个三角形有几条中线?请同学们画出. 它们有什么特点?
①三角形的中线是一条线段. ②任何三角形有三条中线,并且都在三角形的内部交于一点.
例2 张大爷的两个儿子都长大成人了,也该分家了.于是张大爷准 备把如图所示的一块三角形田地平均分给两个儿子,两个儿子 要求分成的两块田地的形状仍然是三角形,请你帮助张大爷提 出一种平分的方案.
导引:要知道DO 是不是△DEF 的角平 分线,只需要知道∠EDO 与 ∠FDO 是否相等.若相等,根
据三角形的角平分线的定义即 可判定.
解:DO 是△DEF 的角平分线.理由如下: 因为AD是△ABC 的角平分线, 所以∠DAB=∠DAC (角平分线定义). 因为DE∥AC,DF∥AB, 所以∠DAC=∠ADE,∠DAB=∠ADF (两直线平行, 内错角相等),所以∠ADE=∠ADF (等量代换), 所以DO 是△DEF 的角平分线.
-31°-28°=121°.
5 如图,在△ABC 中,AD 是高,BE 是角平分线,AD,BE 交于点F,∠C= 30°, ∠BFD=70°.求∠BAC 的度数.
解:因为AD 是△ABC 的高, 所以∠ADB=90°,所以在△BFD 中,∠FBD=180° -∠FDB-∠BFD=180°-90°-70°=20°.又因为 BE 是△ABC 的角平分线,所以∠ABF=∠FBD=20°, 所以∠ABC=40°,所以∠BAC=180°-∠ABC-∠C

中线与角平分线的关系

中线与角平分线的关系

中线与角平分线的关系
中线是一边中点和对应顶点的连线。

角平分线是将一角平分并与对边相交的线段。

只有为等腰三角形时或者等边三角形时,两者顶角平分线才与对边中线重合。

三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线。

任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点。

由定义可知,三角形的中线是一条线段。

三条中线交于一点。

这点称为三角形的重心。

每条三角形中线分得的两个三角形面积相等。

“中心”与“重心”很容易弄混淆,“中心”只存在于正三角形,也就是等边三角形当中。

在等边三角形中,其内心,外心,重心,垂心都在一个点上,于是称之为中心。

内心:三角形的内心是三角形三条内角平分线的交点。

外心:三角形三条边的中垂线的交点叫作三角形的外心,即外接圆圆心。

重心:三角形三条中线的交点叫作三角形的重心。

垂心:三角形三条垂线的交点叫作三角形的垂心。

中线与角平分线的区别

中线与角平分线的区别

中线与角平分线的区别中线和角平分线是几何中常见的两种特殊线段,它们在三角形中起到重要作用。

虽然它们都涉及到图形的角度和边长,但它们有着不同的定义和性质。

首先,我们来看中线。

中线是连接三角形两个顶点和对边中点的线段。

具体而言,一个三角形有三条中线,分别连接三个顶点与对边中点。

中线的性质如下:1. 中线的长度相等:三角形的三条中线互相等长,也就是说,无论是哪两条中线,它们的长度是相等的。

2. 中线的交点是重心:三角形的三条中线相交于一个点,这个点叫做重心。

重心离三角形的每条边的距离是相等的,而且它将每条中线的长度按1:2的比例分割。

3. 中线的长度比边长大:三角形的每条中线的长度都大于相对应的边长。

具体而言,如果中线与对边的中点连线的长度是x,那么中线的长度恒大于2x。

与中线相比,角平分线是连接三角形的一个顶点和对边的角平分点的线段。

如果一个角被分成两个相等的角,那么它的角平分线就称为内角平分线;如果一个角被分成两个相等的补角,那么它的角平分线就称为外角平分线。

角平分线具有以下性质:1. 角平分线平分角度:角平分线将角分成两个相等的角。

2. 角平分线的交点是内心或外心:三角形的三条内角平分线相交于一个点,这个点叫做内心;三角形的三条外角平分线相交于一个点,这个点叫做外心。

3. 角平分线与相应边的长度成比例:如果角的顶点到角平分线的距离是x,那么角平分线与相应边的长度的比例是相等的。

到目前为止,我们已经了解了中线和角平分线的定义和性质。

尽管它们的作用不同,但它们都关注于三角形中的角度和边长。

中线主要用于研究三角形的重心,而角平分线则用于研究三角形的内心和外心。

通过熟练掌握中线和角平分线的性质,我们可以更好地理解和解决与三角形相关的几何问题。

角平分线和线段垂直平分线的性质

角平分线和线段垂直平分线的性质

角平分线和线段垂直平分线的性质1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cmm图1DABCA .2个B .3个C .4个D .1个4.如图4,AD ∥BC ,∠D=90,AP 平分∠DAB ,PB平分∠ABC ,点P 恰好在CD 上,则PD 与PC 的大小关系是( )A .PD>PCB .PD<PC C .PD=PCD .无法判断 。

5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( )A 、三角形三条角平分线的交点;B 、三角形三条垂直平分线的交点;C 、三角形三条中线的交点;D 、三角形三条高的交点。

6、已知△ABC 的三边的垂直平分线交点在△ABC 的边上,则△ABC 的形状为( )PDCBA EDCB A DCB AE D CB A图图图图A 、锐角三角形;B 、直角三角形;C 、钝角三角形;D 、不能确定7、如图所示,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,BE 平分∠ABC 交AD 于E ,F 在BC 上,并且BF =AB ,则下列四个结论:①EF ∥AC ,②∠EFB =∠BAD ,③AE =EF ,④△ABE ≌△FBE ,其中正确的结论有( ) A 、①②③④ B 、①③ C 、②④ D 、②③④7题图8题图 9题图 8、如图所示,在ABC 中,∠C =90°, AC =4㎝,AB =7㎝,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,则EB 的长是( )A 、3㎝B 、4㎝C 、5㎝DECBADECBAcb aD、不能确定9、随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有()处。

中线与角平分线的区别

中线与角平分线的区别

中线与角平分线的区别中线和角平分线是几何学中常见的概念,两者在定位和性质上存在一定的区别。

中线和角平分线分别对应三角形和角,下面将详细阐述这两个概念的区别。

首先讨论中线。

中线是指连接三角形的一个顶点与对立边中点的线段。

对于一个三角形ABC,如果D、E和F分别是BC、AC和AB的中点,那么AD、BE和CF就是这个三角形的三条中线。

每个三角形都有三条中线。

中线具有以下几个性质:1. 三条中线交于一点:对于任意一个三角形,三条中线必然交于一个点,这个点被称为三角形的重心。

重心是一个重要的几何中心,它与三角形的其他几何中心(如外心、内心和垂心)之间存在一定的关系。

2. 重心到顶点的距离等于中线的长度的两倍:三角形的重心到三个顶点的距离相等,而且等于每条中线的长度的两倍。

3. 中线的比例关系:对于一个任意三角形ABC,如果AD是BC的中线,那么有AD:DB=1:1。

也就是说,中线将对立边分成两个相等的部分。

4. 中线与对立边的垂直关系:中线与对立边是垂直的,即AD⊥BC。

这意味着中线可以用来构造垂直平分线,从而将一个三角形分成两个相等的部分。

接下来讨论角平分线。

角平分线是指将一个角分成两个相等角的线段。

对于一个任意角OAB,如果OC是这个角的平分线,那么∠COA=∠COB=0.5∠AOB。

角平分线具有以下几个性质:1. 角平分线穿过角的顶点和角的对边:角平分线必然穿过角的顶点,并且与角的对边相交于一点。

2. 角平分线的长度比例:角平分线将角的对边分成两个部分,其长度之比等于角余弦值之比。

具体而言,如果∠COA=∠COB=0.5∠AOB,那么有AC:CB=AO:OB=CO:CO。

3. 角平分线与角的垂直关系:角平分线与角的两边及其对边垂直相交,即∠COA=∠COB⊥AB。

4. 角平分线的外角相等:对于一个三角形ABC,如果AD是∠BAC的平分线,那么∠BAM=∠CDM,其中M是AD和BC的交点。

总结起来,中线和角平分线在几何学中具有不同的定位和性质。

角平分线与中线

角平分线与中线

角平分线与中线角平分线和中线是几何学中的重要概念,它们在解题和证明中有着广泛应用。

本文将介绍角平分线和中线的定义、性质以及它们在几何中的应用。

一、角平分线角平分线是指将一个角分成两个相等的角的射线或线段。

具体来说,对于一个角ABC,若有射线或线段AD使得∠CAD = ∠BAD,则AD称为角ABC的角平分线。

角平分线有以下几个重要性质:1. 角平分线的唯一性:对于任意一个角,存在唯一一条角平分线。

这是因为在平面几何中,两条不同的直线最多只能有一个交点。

2. 角平分线的性质:角平分线将原角分成的两个小角相等。

即∠CAD = ∠BAD。

3. 角平分线的外角性质:对于一个凸角ABC及其角平分线AD,有∠ACD = 2∠BAD。

这是因为∠CAD = ∠BAD,而外角等于内错角。

角平分线在解题中有着广泛的应用。

例如,利用角平分线的性质可以证明两条平行线被一组平行线所截得的两个对应角相等;利用角平分线的外角性质可以证明一个三角形的外角等于它所对的内角之和。

二、中线中线是指一个三角形的顶点和对边中点之间的线段。

对于三角形ABC,若M是BC的中点,则AM称为三角形ABC的中线。

中线有以下几个重要性质:1. 中线的唯一性:对于任意一个三角形,存在唯一一条位于三角形内部的中线。

这是因为三角形的三条边只能有一个中点。

2. 中线的性质:中线平分对边。

即BM = MC。

3. 中线的长度:对于一个三角形ABC,有AM^2 = BM^2 + MC^2/4。

这是由勾股定理和中线的性质推导得到的。

中线在解题中也有着广泛的应用。

例如,利用中线的性质可以证明一个三角形的两个内角对应的对边相等;利用中线的长度公式可以求解三角形的边长和面积。

综上所述,角平分线和中线是几何学中重要的概念,它们有着独特的定义和性质,并且在解题和证明中有着广泛的应用。

对于几何学的学习和理解,掌握角平分线和中线的概念和性质是至关重要的。

中垂线和角平分线

中垂线和角平分线

线段的垂直平分线与角平分线知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线性质定理的逆定理 (1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上. 课堂笔记:3、关于三角形三边垂直平分线的定理 (1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形. 经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( )A .6cmB .8cmC .10cmD .12cmm图1DABCm图2DABCjik图3OBCA课堂笔记:例2、 在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角∠B 的大小为_______________。

2三角形的高、中线与角平分线

2三角形的高、中线与角平分线
AB边上的高呢?
外部
议一议
钝角三角形的三条高
A F B C
钝角三角形的三条高 交于一点吗?
钝角三角形的三条 高不交于一点
钝角三角形的三条高:“谁 说我们不交于一点,我们以 自己的方式相交”
D
E
O
钝角三角形的三条高所在直线 交于一点,交点在三角形外部
从三角形中的一个顶点向它的对边所在直线作垂线, 顶点和垂足之间的线段 叫做三角形的高。 三角形的三条高的特性:
D ∠ 1= ∠ 2
C
注意
!
“三角形的角平分线”是一条线段
做一做
p124
三角形的角平分线
每人准备锐角三角形、钝角三角形和直角三角形 纸片各一个。 (1) 分别画出这三个三角形的三条角平分线吗? (2) 在每个三角形中,这三条角平分线之间有怎样 的位置关系?
三角形的三条角平分线交于同一点.
议一议
三角形的中线
直角三角形的三条高 交于直角顶点.
B 直角边BC边上的高是 AB边 ; 直角边AB边上的高是 BC边 ;
D C
钝角三角形的三条高
作BC边上的高, BC边不 够长怎么办? 把CB延长 为了便于画出AB边上的高, 需要把AB延长 A
做一做
在纸上画出一个钝角三角形,画出钝角三角形的高
F
D B E C
BC边上的高是在三角形的内 部还是外部?
在三角形中,连接一个顶点与它对边中 点的线段,叫做这个三角形的中线 A 如图右图AE是BC边上的中线 “三角形的中线”也是 一条线段。
B
E BE=EC
C
(1) 在纸上画出一个锐角三角形试 画出它的三条中线.
三角形的三条中线
(2) 试画钝角三角形和直角三角形的三条中线

初中数学 什么是垂直平分线和角平分线

初中数学 什么是垂直平分线和角平分线

初中数学什么是垂直平分线和角平分线垂直平分线和角平分线是初中数学中关于线段和角的重要概念。

它们在几何学中有着广泛的应用,用于描述和分析线段和角的性质和关系。

在本文中,我们将详细讨论垂直平分线和角平分线的概念、性质和应用。

一、垂直平分线垂直平分线是指将一条线段垂直平分为两个相等的线段的线。

具体来说,如果有一条线段AB,那么经过线段AB中点C并且垂直于线段AB的直线就是线段AB 的垂直平分线。

垂直平分线具有以下几个重要的性质:1. 垂直平分线将线段分成两个相等的部分,即线段AC与线段CB的长度相等。

2. 垂直平分线与线段所在的直线垂直相交,即线段AB和垂直平分线CD之间的夹角为90度。

3. 垂直平分线同时也是线段AB的中垂线,即线段AC与线段CB的中点C都在垂直平分线CD上。

垂直平分线在几何学中有着广泛的应用。

它可以用来解决关于线段的问题,比如寻找线段的中点、判断两个线段是否相等等。

此外,垂直平分线也可以用来解决关于垂直和平行的问题,比如判断两条线是否垂直、寻找垂直线的特性等。

二、角平分线角平分线是指将一个角平分为两个相等的角的线。

具体来说,如果有一个角ABC,那么经过角ABC的顶点B并且将角ABC分成两个相等的角的线就是角ABC的角平分线。

角平分线具有以下几个重要的性质:1. 角平分线将角分成两个相等的角,即角ABD与角CBD的度数相等。

2. 角平分线与角所在的边相交,并且将角分成相等的两部分,即角ABD和角CBD 的度数相等。

3. 角平分线与角的两条边的夹角相等,即角ABE与角EBD的度数相等。

角平分线在几何学中也有着广泛的应用。

它可以用来解决关于角的问题,比如寻找角的平分线、计算角的度数等。

此外,角平分线也可以用来解决关于直角、等腰三角形等问题,比如判断一个角是否为直角、判断一个三角形是否为等腰三角形等。

三、性质垂直平分线和角平分线具有一些重要的性质。

下面我们将分别讨论垂直平分线和角平分线的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档