流体力学计算公式
流体力学公式总结
工程流体力学公式总结第二章流体得主要物理性质❖流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。
1.密度ρ= m/V2.重度γ= G /V3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m5.流体得相对密度:d = γ流/γ水= ρ流/ρ水6.热膨胀性7.压缩性、体积压缩率κ8.体积模量9.流体层接触面上得内摩擦力10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律)11.、动力粘度μ:12.运动粘度ν:ν=μ/ρ13.恩氏粘度°E:°E = t 1 /t 2第三章流体静力学❖重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。
1.常见得质量力:重力ΔW = Δmg、直线运动惯性力ΔFI =Δm·a离心惯性力ΔFR =Δm·rω2、2.质量力为F。
:F= m·am= m(fxi+f yj+fzk)am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。
即:p=p(x,y,z),由此得静压强得全微分为:4.欧拉平衡微分方程式单位质量流体得力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力得势函数7.重力场中平衡流体得质量力势函数积分得:U =-gz + c*注:旋势判断:有旋无势流函数就是否满足拉普拉斯方程:8.等压面微分方程式、fx dx+fy d y + fz d z =09.流体静力学基本方程对于不可压缩流体,ρ=常数。
流体力学主要公式及方程式
《流体力学与流体机械》(上)主要公式及方程式1.流体的体积压缩系数计算式:pp V V d d 1d d 1p ρρβ=-= 流体的体积弹性系数计算式:ρρd d d d pV p VE =-= 流体的体积膨胀系数计算式:TT V V d d 1d d 1T ρρβ-==2.等压条件下气体密度与温度的关系式:t βρρ+=10t , 其中2731=β。
3.牛顿内摩擦定律公式:yu AT d d μ±= 或 y uA T d d μτ±==恩氏粘度与运动粘度的转换式:410)0631.00731.0(-⨯-=EE ν 4.欧拉平衡微分方程式: ⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂-=∂∂-=∂∂-010101z p f y p f x pf z y x ρρρ 和 ⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂-=∂∂-=∂∂-010101z pf r p f r p f z r ρθρρθ 欧拉平衡微分方程的全微分式: )d d d (d z f y f x f p z y x ++=ρ )d d d (d z f r f r f p z r ++=θρθ 5.等压面微分方程式: 0d d d =++z f y f x f z y x0d d d =++z f r f r f z r θθ6.流体静力学基本方程式:C z p=+γ或2211z p z p +=+γγ或 2211z g p z g p ρρ+=+相对于大气时: C z g p a m =-+)(ρρ 或 2211)()(z g p z g p a m a m ρρρρ-+=-+ 7.水静力学基本方程式:h p p γ+=0,其中0p 为自由液面上的压力。
8.水平等加速运动液体静压力分布式:)(0gz ax p p +-=ρ;等压面方程式:C z g ax =+;自由液面方程式:0=+z g ax 。
注意:p 0为自由液面上的压力。
9.等角速度旋转液体静压力分布式:)2(220z gr p p -+=ωγ;等压面方程式:C z g r =-222ω;自由液面方程式:0222=-z g r ω。
《流体力学》Ⅰ主要公式及方程式讲解
《流体力学与流体机械》(上)主要公式及方程式1.流体的体积压缩系数计算式:β1dρp=-1dVVdp=ρdp 流体的体积弹性系数计算式:E=-VdpdpdV=ρdρ 流体的体积膨胀系数计算式:βdVT=1VdT=-1dρρdT2.等压条件下气体密度与温度的关系式:ρ0t=ρ1+βt,其中β=1273。
3T=±μAdudy 或τ=TduA=±μdy 恩氏粘度与运动粘度的转换式:ν=(0.0731E-0.0631E)⨯10-4f1∂p⎫x-ρ∂x=0⎪fr-1∂p=0⎫⎪ρ∂r⎪⎪4.欧拉平衡微分方程式: f⎪y-1∂pρ∂y=0⎪⎬和fθ-1∂pρ=0⎬ f1∂p⎪r∂θρ∂z=0⎪⎪⎪⎭f1∂p⎪z-z-ρ∂z=0⎪⎭欧拉平衡微分方程的全微分式:dp=ρ(fxdx+fydy+fzdz) dp=ρ(frdr+fθrdθ+fzdz) 5 fxdx+fydy+fzdz=0frdr+fθrdθ+fzdz=06pγ+z=C 或 p1γ+zp21=γ+z2 或p1+ρgz1=p2+ρgz2相对于大气时:pm+(ρ-ρa)gz=C 或pm1+(ρ-ρa)gz1=pm2+(ρ-ρa)gz27p=p0+γh,其中p0为自由液面上的压力。
8.水平等加速运动液体静压力分布式:p=p0-ρ(ax+gz);等压面方程式:ax+gz=C;自由液面方程式:ax+gz=0。
注意:p0为自由液面上的压力。
1 9.等角速度旋转液体静压力分布式:p=p0+γ(ω2r22g-z);等压面方程式:ω2r22-gz=C;自由液面方程式:ω2r22-gz=0。
注意:p0为自由液面上的压力。
10.静止液体作用在平面上的总压力计算式:P=(p0+γhc)A=pcA,其中p0为自由液面上的相对压力。
压力中心计算式:yD=yc+γsinαIxc (p0+γycsinα)AIxcycA或yD-yc=IxcycA。
当自由液面上的压力为大气压时:yD=yc+矩形截面的惯性矩Ixc计算式:Ixc=圆形截面的惯性矩Ixc计算式:Ixc11bh3;三角形截面的惯性矩Ixc计算式:Ixc=bh3 1236π4=d 6411.静止液体作用在曲面上的总压力的垂直分力计算式:Pz=p0Az+γVP,注意:式中p0应为自由液面上的相对压力。
流体力学计算公式
流体力学计算公式流体力学是研究流体的运动规律和性质的一门学科,广泛应用于工程和科学领域中。
在流体力学的研究过程中,有许多重要的计算公式和方程被提出和应用。
下面是一些重要的流体力学计算公式。
1.压力力学方程:压力力学方程是描述流体力学中流体静压力分布和变化的方程。
对于稳定的欧拉流体,方程为:∇P=-ρ∇φ其中,P是压力,ρ是流体的密度,φ是流体的势函数。
2.欧拉方程:欧拉方程用于描述流体的运动,它是流体运动的基本方程之一:∂v/∂t+v·∇v=-1/ρ∇P+g其中,v是流体的速度,P是压力,ρ是流体的密度,g是重力加速度。
3.奇异体流动方程:奇异体流动是流体与孤立涡流动的一种类型,其方程为:D(D/u)/Dt=0其中,D/Dt是对时间的全导数,u是速度向量。
4.麦克斯韦方程:5.纳维-斯托克斯方程:纳维-斯托克斯方程是描述流体的动力学行为的方程,它是流体力学中最重要的方程之一:∂v/∂t+v·∇v=-1/ρ∇P+μ∇²v其中,v是速度矢量,P是压力,ρ是密度,μ是动力黏度。
6.贝努利方程:贝努利方程描述了在不可压缩流体中流体静力学的变化。
贝努利方程给出了伯努利定律,即沿着一条流线上的速度增加,压力将降低,反之亦然。
贝努利方程的公式为:P + 1/2ρv^2 + ρgh = const.其中,P是压力,ρ是密度,v是流体速度,g是重力加速度,h是流体高度。
7.流量方程:流量方程用于描述流体在管道或通道中的流动。
Q=A·v其中,Q是流量,A是截面积,v是流速。
8.弗朗脱方程:弗朗脱方程是描述管道中流体流动的方程,其中考虑了摩擦阻力的影响:hL=f(L/D)(v^2/2g)其中,hL是管道摩擦阻力头损失,f是阻力系数,L是管道长度,D 是管道直径,v是流速,g是重力加速度。
以上是一些重要的流体力学计算公式。
这些公式和方程在流体力学中具有广泛的应用,是工程和科学领域中进行流体流动分析和计算的基础。
流体力学重要公式
流体流动流体特性→流体静力学→流体动力学→流体的管内流动gΔZ+Δu2/2+Δp/ρ=W e-∑h f静压能:p/ρ,J/kg静压头:p/(ρg),m流体密度:ρ,kg/m3 ,不可压缩流体与可压缩流体压强差:Δp,Pa, mmHg,表压强,绝对压强,大气压强,真空度流体静力学基本方程:gΔz+Δp/ρ=0或p1/ρ+gZ1=p1/ρ+gZ1或p=p A+hρg应用:U型压差计gΔZ+Δu2/2+Δp/ρ=W e-∑h f位能:gZ,J/kg位头:Z,m截面的选择基准面的选定gΔz+Δu2/2+Δp/ρ=W e-∑h f动能:u2/2,J/kg动压头(速度头):u2/(2g),m流速:u, m/s当两截面积相差很大时,大截面上(贮液槽)u≈0流体在圆管内连续定态流动:u2=u1(d1/d2)2体积流速:q v, m3/s q v=uA质量流速:q m, kg/s q m=q vρ=uAρ流速测定:变压差(定截面)流量计:测速管/孔板/文丘里u=C(2Δp/ρ)1/2=C[2R(ρA-ρ)g/ρ]1/2孔板C=0.6-0.7;测速管/文丘里C=0.98-1.0变截面(定压差)流量计:转子流量计gΔZ+Δu2/2+Δp/ρ=W e-∑h f管路总阻力:∑h f=h f+h f’,J/kg;总压头损失:H f=∑h f/g,m对静止流体或理想流体:∑h f=0直管阻力:h f=λ.L/d.u2/2局部阻力:h f’=ζu2/2 (阻力系数法)或h f’=λ.L e /d.u2/2 (当量长度法)(进口:ζ=0.5;出口:ζ=1)雷诺准数:Re=duρ/μ, 流型判断管内层流:Re≤2000ur=Δp f/(4μL).(R2-r2), u=u max/2;λ=64/Re管内湍流:Re>2000λ=0.3164/Re0.25 (光滑管)λ=f(Re,ε/d)(粗糙管)牛顿黏性定律:τ=μ(du/dy)当量直径:d e=4流通面积/润湿周边长度gΔZ+Δu2/2+Δp/ρ=W e-∑h f有效功(净功):W e,J/kg;有效压头:H e=W e/g,m有效功率:P e=W e q m,W功率:P=P e/η非均相混合物分离及固体流态化非均相混合物(颗粒相+连续相)→相对运动(沉降/过滤)→分离颗粒相+连续相→固体流态化→混合沉降沉降(球形颗粒):连续相:气体/液体颗粒受力:(重力/离心)场力-浮力-阻力=ma沉降速率重力沉降离心沉降ζ=f(Re t,υs),Re t=du tρ/μ<10-4-1(层流区),ζ=24/ Ret离心分离因数沉降设备设计沉降条件:θ≥θt重力沉降:降尘室离心沉降:旋风分离器生产能力qv=blu t q v=hBu i(q v与高度无关)n层沉降室q v=(n+1)blu t过滤(滤饼过滤)恒压滤饼过滤(忽略过滤介质阻力)K过滤常数:K=2k(Δp)1-s, m2/s;*K取决于物料特性与过滤压差;单位过滤面积所得的滤液体积q=V/A,m3/m2;单位过滤面积所得的当量滤液体积q e=V e/A,m3/m2;s-滤饼的压缩性指数每得1m3滤液时的滤饼体积υ(1m3滤饼/1m3滤液)体积为V W的洗水所需时间θW = V W/(dV/dθ)W过滤机的生产能力(单位时间获得的滤液体积)间歇式连续式Q=V/T=V/(θ+θW+θD)若V e可忽略转筒表面浸没度ψ=浸没角度/3600转筒转速为n-- r/min,过滤时间θ=60 ψ/n传热传热方式及定律热传导:傅立叶定律对流:牛顿冷却定律辐射;斯蒂芬-波耳兹曼定律:E b=σ0T4=C0(T/100)4传热基本方程Q=KS△t m换热器的热负荷用热焓用等压比热容用潜热两平行灰体板间的辐射传热速度Q1-2Q1-2=C1-2S[(T1/100)4-(T2/100)4对流和辐射联合传热总散热速率:Q=Q c+Q R=αTS w(t w-t b)αT=αc+αR恒温传热△t m=T-t变温传热:平均温差*逆流和并流错流和折流温差校正系数=f(P,R)传热单元数法计算确定C min→NTU,C R→ε→由冷热流体进口温度和ε→冷热出口温度传热表面积S=Q/(K△t m)热传导和对流联合传热总传热系数R so,R si垢阻;壁阻对流传热系数αi,αo流体有相变时的对流传热系数层流膜状冷凝时:努塞尔特方程湍流液膜冷凝时:水平管外液膜冷凝时:液体沸腾传热系数:罗森奥公式:α=(Q/S)/Δt蒸发蒸发器的热负荷Q,kJ/hQ=D(H-h c)=WH’+(F-W)h1-Fh c+Q L冷凝水在饱和温度下排出Q=Dr=WH’+(F-W)h1-Fh0+Q L溶液稀释热可忽略D=[Wr’ +Fc0(t1–t0)+Q L]/rr’=(H’-c W t1)近似可作为水在沸点t1的汽化热。
(完整版)工程流体力学公式
(完整版)工程流体力学公式工程流体力学公式 (完整版)流体静力学公式1. 压力公式: $P = \rho \cdot g \cdot h$其中,$P$表示压力,$\rho$表示流体密度,$g$表示重力加速度,$h$表示高度差。
2. 曲面小段受力: $dF = P \cdot dA$其中,$dF$表示曲面小段受力,$P$表示压力,$dA$表示曲面小段面积。
3. 曲面上受力:$F = \int P \cdot dA$其中,$F$表示曲面上受力,$P$表示压力,$dA$表示曲面面积。
4. 静水压力公式: $P = \rho \cdot g \cdot h_1 - \rho \cdot g \cdoth_2$其中,$P$表示压力,$\rho$表示流体密度,$g$表示重力加速度,$h_1$表示液体上表面高度,$h_2$表示液体下表面高度。
5. 压力的传递公式: $P_2 = P_1 + \rho \cdot g \cdot h$其中,$P_2$表示第二点的压力,$P_1$表示第一点的压力,$\rho$表示流体密度,$g$表示重力加速度,$h$表示两点的高度差。
流体动力学公式1. 流体密度公式: $\rho = \frac{m}{V}$其中,$\rho$表示流体密度,$m$表示流体的质量,$V$表示流体的体积。
2. 流量公式: $Q = Av$其中,$Q$表示流量,$A$表示流体流动的横截面积,$v$表示流体的平均流速。
3. 根据质量守恒定律,流量公式也可以表示为: $Q = \rho \cdot Av$其中,$Q$表示流量,$\rho$表示流体密度,$A$表示流体流动的横截面积,$v$表示流体的平均流速。
4. 动量方程: $F = \rho \cdot A \cdot (v_2 - v_1)$其中,$F$表示力,$\rho$表示流体密度,$A$表示流体流动的横截面积,$v_2$表示流体出口速度,$v_1$表示流体入口速度。
流体力学流速计算公式
流体力学流速计算公式一、伯努利方程推导流速公式(理想不可压缩流体定常流动)1. 伯努利方程。
- 对于理想不可压缩流体作定常流动时,在同一条流线上有p+(1)/(2)ρ v^2+ρ gh = C(p是流体压强,ρ是流体密度,v是流速,h是高度,C是常量)。
- 假设水平流动(h_1 = h_2),则方程变为p_1+(1)/(2)ρ v_1^2=p_2+(1)/(2)ρ v_2^2。
- 由此可推导出流速公式v_2=√(v_1^2)+(2(p_1 - p_2))/(ρ)。
2. 适用条件。
- 理想流体(无粘性),实际流体在粘性较小时可近似使用。
- 不可压缩流体,像水在大多数情况下可视为不可压缩流体,气体在低速流动时也可近似为不可压缩流体。
- 定常流动,即流场中各点的流速等物理量不随时间变化。
3. 示例。
- 已知水管中某点1处的压强p_1 = 2×10^5Pa,流速v_1 = 1m/s,另一点2处的压强p_2 = 1.5×10^5Pa,水的密度ρ = 1000kg/m^3。
- 根据v_2=√(v_1^2)+(2(p_1 - p_2))/(ρ),将数值代入可得:- v_2=√(1^2)+frac{2×(2×10^{5-1.5×10^5)}{1000}}- 先计算括号内的值:2×(2×10^5-1.5×10^5)=2×5×10^4=10^5。
- 则v_2=√(1 + 100)= √(101)≈10.05m/s。
二、连续性方程推导流速公式(不可压缩流体定常流动)1. 连续性方程。
- 对于不可压缩流体的定常流动,有S_1v_1 = S_2v_2(S_1、S_2分别是流管中两个截面的面积,v_1、v_2是相应截面处的流速)。
- 由此可推导出流速公式v_2=(S_1)/(S_2)v_1。
2. 适用条件。
- 不可压缩流体,如液体或低速流动的气体。
流体力学公式及分析
流体力学1. 密度ρ: 单位体积流体所具有的质量。
SI 单位:kg/m3a) 液体密度:主要影响因素为温度和压力。
i.压力的影响较小,通常可忽略。
ii.温度升高,密度减小。
b) 气体密度:在工程中,低压、高温下的真实气体可近视为理想气体。
i. 气体密度随温度、压力的变化有明显的改变。
ii.压力升高,密度增大;温度升高,密度减小。
2. 压强p :流体垂直作用在单位面积上的力。
SI 单位:Pa 或N/m 2a) 1atm =101.3kPa =760mmHg =10.33mH 2O =1.033at = 1.033kgf/cm 21bar =105Pab) 表压=绝压-大气压 真空度=大气压-绝压★当压力用表压或真空度表示时,需注明。
例如:20kPa (表压)3. 流体静力学基本方程式:a) 等压面概念:在静止、连续的同一种流体内部,处在同一水平面上的各点的压力均相等。
(即静压强仅与垂直高度有关,而与水平位置无关。
)Vm=ρRTpM V m ==ρAFp =ghP P ρ+=0b) 传递定律:同一种流体内部,如果一点的压力发生变化,则其他各点的压力将发生同样大小和方向的变化。
c)可以改写成 即液柱高度可以用来表示静压强大小,但须注明是何种液体。
在静止、连续的同一种流体内部,任一截面的压力仅与其所处的深度有关,而与底面积无关 。
d) 方程是以不可压缩流体推导出来的,对于可压缩性的气体,只适用于压强变化不大的情况。
(±20%)4. 流量:单位时间内流过管道任一截面的流体量。
a) 体积流量:流量用体积来计量,一般用Q 表示;SI 单位:m 3/s b) 质量流量:流量用质量来计量,用W S 表示; SI 单位:kg/sc)5. 流速:单位时间内流体在流动方向上流过的距离,称为平均流速。
以u 表示,SI 单位:m/s 。
质量流速:单位时间内流体流过管道单位面积的质量流量,SI 单位:kg/(m 2.S)。
经常用到的给排水流体力学计算公式
经常用到的给排水流体力学计算公式:
1、h f=(λL/d)*(v2/2g)
h f ——流段的沿程水头损失(m液柱或气柱)
L——流段的长度(m)
d——管段的直径(m)
v——流体的流动速度(m/s)
λ——沿程阻力系数(或摩擦阻力系数),在层流运动中,该值可根据λ=64/Re求出。
给水工程经常采用钢管和铸铁管,由于管内壁容易锈蚀和积垢,所以管壁的粗糙度按旧钢管和铸铁管考虑,并为一个常数。
管内水流温度一般为10℃左右,运动粘度也可以为一个常数。
这样是的沿程阻力系数λ的经验计算公式比较简单,在紊流区内:
v<1.2 m/s时,λ=(0.0179/d0.3)*(1+0.867/ v)0.3
v≥1.2 m/s时,λ=0.021/ d0.3
上式中,d为管道的内径(m),不是公称直径;v为流速(m/s)。
2、v=(1/n)R2/3i1/2
n——粗糙系数
R——过流断面的水利半径(m)
i——渠底或管底的坡度
常用材料的粗糙系数n值。
流体力学常用公式
流体力学常用公式流体力学(Fluid Mechanics)是研究流体(液体和气体)运动规律的科学。
它在物理学和工程学中都有广泛的应用。
以下是流体力学常用的一些公式:1.流体速度和流量:在流体运动中,流速(Velocity)是指单位时间内流体通过一些截面的体积。
流量(Flow rate)是指单位时间内通过一些截面的质量或体积。
流速和流量的关系由以下公式给出:流量=流速×截面积Q=Av其中,Q表示流量,A表示截面积,v表示流速。
2.可压缩流体速度和流量:对于可压缩流体,流速和流量的关系由以下公式给出:流量=流速×截面积×密度Q=Avρ其中,Q表示流量,A表示截面积,v表示流速,ρ表示流体密度。
3.连续性方程:连续性方程描述了流体的质量守恒原理,即在稳态流动和不可压缩条件下,流体质量在流动过程中是不会凭空消失或增加的。
连续性方程可以表示为:流量的入口=流量的出口A1v1=A2v2其中,A1和A2分别表示入口和出口的截面积,v1和v2分别表示入口和出口的流速。
4.压力方程:压力方程是描述压强(Pressure)随深度变化的方程,可通过以下公式表达:ΔP = ρgh其中,ΔP表示在高度h上的压力变化,ρ表示流体密度,g表示重力加速度。
5.伯努利方程:伯努利方程描述了在理想流动条件下,流体的能量守恒原理,即在没有外力作用的情况下,流体速度、压力和高度之间存在关系。
伯努利方程可以表示为:P + 1/2ρv² + ρgh = 常数其中,P表示压力,v表示速度,ρ表示密度,g表示重力加速度,h 表示高度。
6.流动的雷诺数:雷诺数(Reynolds Number)是用来判断流体的流动状态的参数,可通过以下公式计算:Re=(ρvL)/μ其中,Re表示雷诺数,ρ表示密度,v表示速度,L表示特征长度,μ表示动力粘度。
7.流体的扩散:流体的扩散可以通过热量传递或质量传递来实现。
扩散速率可以使用以下公式计算:质量传递速率=D×A×(C2-C1)/L其中,D表示扩散系数,A表示扩散面积,C2和C1分别表示扩散物质在两个位置上的浓度,L表示扩散路径的长度。
工程流体力学公式
工程流体力学公式1.流体静力学公式:(1) 压强公式:P = ρgh,其中P为压强,ρ为流体密度,g为重力加速度,h为液面高度。
(2)压力公式:P=F/A,其中P为压力,F为作用力,A为受力面积。
2.流体力学基本方程:(1)质量守恒方程:∂(ρ)/∂t+∇·(ρv)=0,其中ρ为密度,t为时间,v为速度矢量。
(2) 动量守恒方程:∂(ρv)/∂t + ∇·(ρvv) = -∇P + ∇·τ +ρg,其中P为压力,τ为应力张量,g为重力加速度。
(3) 能量守恒方程:∂(ρe)/∂t + ∇·(ρev) = -P∇·v +∇·(k∇T) + ρg·v,其中e为单位质量的总能量,T为温度,k为热传导系数。
3.流体动力学方程:(1)欧拉方程:∂v/∂t+(v·∇)v=-∇(P/ρ)+g,其中v为速度矢量,P为压力,ρ为密度,g为重力加速度。
(2)再循环方程:∂v/∂t+(v·∇)v=-∇(P/ρ)+g+F/M,其中F为体积力,M为质量。
4.流体阻力公式:(1) 粘性流体的阻力公式:F = 6πμrv,其中F为阻力,μ为粘度,r为流体直径,v为速度。
(2)粘性流体在管道中的流量公式:Q=(π/8)ΔP(R^4)/(Lμ),其中Q为流量,ΔP为压差,R为半径,L为管道长度,μ为粘度。
5.流体力学定律:(1) Pascal定律:在封闭的液体容器中,施加在液体上的外力将均匀传递到液体的每一个点。
(2) Bernoulli定律:沿着流体流动方向,速度增大则压力减小,速度减小则压力增大。
除了上述公式之外,还有许多与特定问题相关的公式,如雷诺数、流体阻力系数、泵和液力传动公式等。
这些公式是工程流体力学研究和设计的基础,可以帮助工程师分析和解决与流体运动和相互作用有关的问题。
流体主要计算公式
流体主要计算公式流体是液体和气体的统称,具有流动性和变形性。
流体力学是研究流体静力学和动力学的学科,其中主要涉及到流体的力学性质、运动规律和力学方程等内容。
在流体力学的研究中,有一些重要的计算公式被广泛应用。
下面将介绍一些常见的流体力学计算公式。
1.流体静力学公式:(1)压力计算公式:P=F/A-P表示压力-F表示作用力-A表示受力面积(2)液体静力学公式:P=hρg-P表示液体压力-h表示液体高度-ρ表示液体密度-g表示重力加速度2.流体动力学公式:(1)流体流速公式:v=Q/A-v表示流速-Q表示流体流量-A表示流体截面积(2)流体流量公式:Q=Av-Q表示流体流量-A表示流体截面积-v表示流速(3)连续方程:A1v1=A2v2-A1和A2表示流体截面积-v1和v2表示流速(4) 流体动能公式:E = (1/2)mv^2-E表示流体动能-m表示流体质量-v表示流速(5)流体的浮力公式:Fb=ρVg-Fb表示浮力-ρ表示液体密度-V表示浸泡液体的体积-g表示重力加速度3.流体阻力公式:(1)层流阻力公式:F=μAv/L-F表示阻力-μ表示粘度系数-A表示流体截面积-v表示流速-L表示流动长度(2)湍流阻力公式:F=0.5ρACdV^2-F表示阻力-ρ表示流体密度-A表示物体的受力面积-Cd表示阻力系数-V表示物体相对于流体的速度4.比力计算公式:(1)应力计算公式:τ=F/A-τ表示应力-F表示力-A表示受力面积(2)压力梯度计算公式:ΔP/Δx=ρg-ΔP/Δx表示压力梯度-ρ表示流体密度-g表示重力加速度(3) 万斯压力计算公式:P = P0 + ρgh-P表示压力-P0表示参考压力-ρ表示流体密度-g表示重力加速度-h表示液体的高度以上是一些流体力学中常见的计算公式,涉及到压力、流速、阻力、浮力以及比力等方面的运算。
这些公式在解决流体力学问题时非常有用,可以帮助我们理解和分析流体的运动和力学性质。
流体的基本计算
1、液体压强计算计算公式;液体压强;在液体容器低、内壁、内部中,由液体所产生的液体压强,简称液压。
2、喷嘴射流速度及流量深度△Z 液体密度ρ出口直径D 流量系数C出口速度计算公式;体积流量计算公式;质量流量计算公式;3、限孔流场计算入口直径Di 出口直径Do 压力差△p 流体密度ρ入口速度计算公式;出口速度计算公式;体积流量计算公式;质量力量计算公式;4、运动粘度运动粘度μ密度ρ运动粘度计算公式;运动粘度;运动粘度即流体的运动粘度与同温度下该流体密度ρ之比。
动力粘度;Μ动力粘度【Pa。
s】或【N。
S/m²】或【kg/(m。
s)】;也被称为动态粘度、绝对粘度或简单粘度,定义为应力与应变速率之比,其数值上等于面积为1m²相距1m的两平板,以1m/s的速度作为相对运动时,因之存在的流体互相作用所产生的内摩擦力。
5、雷诺数特征速度v 特征长度L 运动粘度V 动力粘度μ密度ρ雷诺数计算公式;雷诺数;一种可用来表征流体流动情况的无量纲数。
利用雷诺数可区分为流体的流动是层流或湍流,也可用来确定物体在流体中流动所受的阻力。
6、韦伯数流体密度ρ特征速度v 特征长度L秒面张力σ韦伯数计算公式;韦伯数韦伯数是流体力学中的一个无量纲数。
当不同的流体之间有交界面时,尤其在多相流中交界面的曲率较大时,它用来分析流体运动。
7、马赫数流体速度v马赫数计算公式;马赫数;流体力学中表征流体可压缩程度的一个重要的无量纲参数,定义为流场中某点的速度v同该点的当地声速c 之比。
8、水力半径和水力直径流动截面积A圆周Pw水力半径计算公式水力直径计算公式水力半径;是水力学中的一个专有名称,指某输水断面的过流面积与输水断水面和接触的边长(圆周)之比,与断面形状有关,常用于计算渠道隧道的输水能力。
水力直径;是在关内流动中引入的,其目的是为了给非圆管流动取一个合适的特征长度来计算其雷诺数。
常用表达式是;2A/P,即二倍的横截面积(A)除以圆周长度(p)。
流体力学三大方程公式及符号含义
流体力学是研究流体运动和力学的学科,涉及流体的运动规律、压力、密度等物理性质。
在流体力学的研究中,三大方程公式是非常重要的理论基础,它们分别是连续方程、动量方程和能量方程。
本文将对这三大方程公式及其符号含义进行详细介绍。
一、连续方程连续方程是描述流体连续性的重要方程,它表达了流体在运动过程中质点的连续性。
连续方程的数学表达式为:\[ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \]其中,符号和含义说明如下:1.1 ∂ρ/∂t:表示密度随时间的变化率,ρ为流体密度。
1.2 ∇·(ρv):表示流体质量流动率的散度,∇为Nabla算子,ρv为流体的质量流速矢量。
这一方程表明了在运动的流体中,质量是守恒的,即单位体积内的质量永远不会减少,这也是连续方程的基本原理。
二、动量方程动量方程描述了流体运动过程中动量的变化和传递,是流体力学中的核心方程之一。
其数学表达式为:\[ \frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = -\nabla p + \nabla \cdot \mathbf{\tau} + \mathbf{f} \]其中,符号和含义说明如下:2.1 ∂(ρv)/∂t:表示动量随时间的变化率。
2.2 ∇·(ρv⃗v):表示动量流动率的散度。
2.3 -∇p⃗:表示流体受到的压力梯度力。
2.4 ∇·τ⃗:表示应力张量的散度,τ为流体的粘性应力张量。
2.5 f⃗:表示单位体积内流体受到的外力。
动量方程描述了流体内部和外部力之间的平衡关系,它是研究流体运动规律和动力学行为的重要方程。
三、能量方程能量方程描述了流体在运动过程中的能量变化规律,包括内能、压力能和动能等能量形式。
流体力学公式大全
流体力学公式大全流体力学是研究流体静力学和流体动力学的学科,涉及到流体的运动规律、压力分布、速度场等内容。
在工程和物理学领域,流体力学有着广泛的应用,包括飞机设计、水利工程、汽车空气动力学等方面。
本文将为大家详细介绍流体力学中常见的公式,希望能够帮助大家更好地理解和应用流体力学知识。
1. 流体静力学公式。
在静止的流体中,压力的分布可以用以下公式表示:\[ P = \rho \cdot g \cdot h \]其中,P为压力,ρ为流体密度,g为重力加速度,h为流体的高度。
2. 流体动力学公式。
在流体运动时,流体的速度场可以用以下公式表示:\[ \frac{Dv}{Dt} = -\frac{1}{\rho} \cdot \nabla P + g \]其中,Dv/Dt表示速度的变化率,ρ为流体密度,∇P为压力的梯度,g为重力加速度。
3. 纳维-斯托克斯方程。
描述了流体运动的基本规律,可以用以下形式表示:\[ \rho \cdot \frac{Dv}{Dt} = -\nabla P + \mu \cdot \nabla^2 v + \rho \cdot g \]其中,μ为流体的动力粘度,∇^2v为速度的散度。
4. 伯努利方程。
描述了流体在不同位置之间的能量转换关系,可以用以下公式表示:\[ P + \frac{1}{2} \cdot \rho \cdot v^2 + \rho \cdot g \cdot h = \text{常数} \]其中,P为压力,ρ为流体密度,v为流体速度,h为流体的高度。
5. 应力张量。
描述了流体内部的应力分布情况,可以用以下矩阵表示:\[ \tau = \begin{bmatrix} \tau_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} &\tau_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \tau_{zz} \end{bmatrix} \] 其中,τ为应力张量,下标表示不同方向上的应力分量。
流体力学基本公式
、 ——通过 任意两 断面的 流量
、 ——断面中心距离基准 面的垂直高度
——动能修正系数;一般工程 计算可取 = ≈1
——总流断面A1及A2之间单位 重力流体的平均能量损失,m
——单 位 重 力 流 体 从 流 体 机
械获得的能量( 为“+”),或 单位重力流体供给流体机械的能量
( 为“-”)m
系统中有流 体机械的伯努 利方程
Page 1 of 1
项目 压强或压力 相对压力 真空度 静力学基本方程 流体对平面的作用力
公式
单位 Pa
F——总压力, A——有效断面积,
——绝对压力,
符号意义
——大气压力, Pa
h——液柱高,
、 ——同一种流体中任意两点的压力,Pa
Pa
Pa 使用条件:连续均一流体
N
——平面的形心G 离液面的垂直高度, A0——平板的面积(按被淹没部分的面积计算)
项目
项目 重力
密度公式 G=mg Nhomakorabea单位 N
kg/m3
理想气体状态方 程
符号意义
Page 1 of 1
等温过程
绝热过程
流体体积压缩系 数
流体体积弹性模 量
m——质量,kg
g——重力加速度,m/s2
V——流体体积,m3
p——绝对压力,Pa T——绝对温度,K R——气体常数,N·m/(kg·K);不同的气体R值不同,空气 的R=287N·m/(kg·K) k——绝热指数;不同气体k值不同,空气k=1.4
使用条件:1.质量力只有重力;2.稳定流动; 3.不可压缩流体;4.缓变流;5.流量为常数
ΣF ——作用于流体段上的所有外 力,N
稳定流的动 量方程
《流体力学》Ⅰ主要公式及方程式
《流体力学》Ⅰ主要公式及方程式流体力学是研究流动的力学学科,它使用了一系列的公式和方程式来描述和解释流体的运动和性质。
以下是流体力学中的一些主要公式和方程式:1.连续性方程式:连续性方程式描述了质量守恒定律,即在一个封闭的流体系统中,质量的流入量等于流出量。
连续性方程式的公式如下:∇·(ρV)=0其中,∇表示向量的散度操作符,ρ表示流体的密度,V表示流体的速度矢量。
2.动量方程式:动量方程式描述了物体所受到的力和加速度之间的关系。
对于流体力学,动量方程式可以分为欧拉方程和纳维尔-斯托克斯方程两种形式。
欧拉方程描述了无粘性流体的动量方程,其公式如下:∂V/∂t+(V·∇)V=-(1/ρ)∇p+F其中,∂V/∂t表示速度V对时间t的偏导数,·表示向量点乘,p表示压力,F表示外力。
纳维尔-斯托克斯方程描述了粘性流体的动量方程,其公式如下:∂V/∂t+(V·∇)V=-(1/ρ)∇p+μ∇²V+F其中,μ表示流体的动力黏度,∇²表示向量的拉普拉斯算子。
3.质量守恒方程:质量守恒方程描述了流体的质量守恒定律,其公式如下:∂ρ/∂t+∇·(ρV)=0其中,ρ表示流体的密度,V表示流体的速度矢量。
4.能量守恒方程:能量守恒方程描述了流体的能量守恒定律,其公式如下:∂(ρe)/∂t+∇·(ρeV)=∇·(k∇T)+Q其中,e表示流体的单位质量内部能量,T表示流体的温度,k表示热传导系数,Q表示热源。
5.状态方程:状态方程描述了流体的状态,在流体力学中常用的状态方程有理想气体状态方程和液体状态方程。
理想气体状态方程公式如下:p=ρRT其中,p表示压力,ρ表示密度,R表示气体常数,T表示温度。
以上是流体力学中的一些主要公式和方程式。
这些方程式通过数学描述和解析,可以帮助我们理解和预测流体的运动和行为,对于各种工程和科学应用都具有重要的意义。
流体力学复习要点(计算公式)
第一章 绪论单位质量力:mF f B m= 密度值:3mkg 1000=水ρ,3mkg13600=水银ρ,3mkg29.1=空气ρ牛顿内摩擦定律:剪切力:dy du μτ=, 内摩擦力:dy du A T μ= 动力粘度:ρυμ= 完全气体状态方程:RT P =ρ压缩系数:dpd 1dp dV 1ρρκ=-=V (Nm2) 膨胀系数:TTV V V d d 1d d 1ρρα-==(1/C ︒或1/K)第二章 流体静力学+流体平衡微分方程:01;01;01=∂∂-=∂∂-=∂∂-zp z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ液体静力学基本方程:C =++=gp z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱mm 73610/9800012===m m N at 2/1013251m N atm =注:hgPP →→ρ ; P N at →→2m /98000乘以 2/98000m N P a =平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D +=αsin 1)()2(32121h h h h L e ++=若01=h ,则压强为三角形分布,32L e y D==注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图,且用相对压强绘制。
(2)解析法A gh A p P c c ρ== 作用点Ay I y yC xc C D+= 矩形123bL Ixc= 圆形644d I xc π=曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力z x P P P+= 与水平面的夹角xzP P arctan=θ潜体和浮体的总压力:0=x P 排浮gV F P z ρ==第三章 流体动力学基础质点加速度的表达式⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a zz z y z x z z y z y y y x y y x z x y x x x x AQV Q Q Q Q Q G A====⎰断面平均流速重量流量质量流量体积流量g u d Am ρρ流体的运动微分方程:tz t y t x d du z p z d du y p Y d du x p X =∂∂-=∂∂-=∂∂-ρρρ1;1;1不可压缩流体的连续性微分方程 :0zu yu xu z y x=∂∂+∂∂+∂∂恒定元流的连续性方程:dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν无粘性流体元流伯努利方程:g 2ug p z g 2u g p z 22222111++=++ρρ 粘性流体元流伯努利方程:w 22222111'h g2u g p z g 2u g p z +++=++ρρ恒定总流的伯努利方程:w 2222221111h g2g p z g 2g p z +++=++ναρναρ 气流伯努利方程:w 22212211P 2)()(2++=--++ρνρρρνP z z g Pa 有能量输入或输出的伯努力方程w 2222221111h g2g p z g 2g p z +++=±++ναρναρm H 总流的动量方程:()∑-=1122Q F νβνβρ 投影式⎪⎩⎪⎨⎧-=-=-=∑∑∑)()()(112211221122z z zy y y x x x v v Q F v V Q F v v Q F ββρββρββρ动能修正系数α:11.105.1Av dAu 33=-==⎰ααα,一般,较均匀流动A动量修正系数β:105.102.1Av dAu 22=-==⎰βββ,一般,较均匀流动A水力坡度dldh dl dH J w =-= 测压管水头线坡度dl dh dl dH J w p=-= 第四章 流动阻力和水头损失圆管沿程水头损失:gv d l h f22λ= ⎪⎭⎫ ⎝⎛==2g 8Re64C λλ;紊流层流 局部水头损失:gvh j22ξ=⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧==-=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=-==-==0.15.015.0v v g 2v v h 1g 2v h 1g 2v h 12221j 2122222j 2211211j出入;管道出口注:管道入口)(用细管流速(突缩管—其余管用断面平均流速—弯管)()(,)(,突然扩大管ζζζζζζζA A A A A A 雷诺数:⎪⎪⎩⎪⎪⎨⎧======575R e e 2300d e d e c cR R c c υνυνυνυνR R R R R ,非圆管,圆管 流态判别⎪⎩⎪⎨⎧=><,流动为临界流为紊流,为层流,cc c Re Re 流动Re e 流动Re e R R 谢才公式:RJ C V = 谢才系数:λg C 8= ; 曼宁公式:611R n C =均匀流动方程式:lh gR gRJ f 0ρρτ== 圆管过流断面上剪应力分布:0ττr r =圆管层流:(1)流速分布式)r (r 4g u 220-=μρJ (2)最大流速20max r 4g u μρJ =(3)断面平均流速:2u v max = (4)Re 64=λ紊流剪应力包括:粘性剪应力和附加剪应力,即21τττ+=,dyu d x1μτ=,y x 2u u ''-=ρτ 紊流流速分布一般表达式:C +=Iny k1u*ν 非圆管当量直径:)4Re ;2(42υυλR v vd gv d l h R d e e fe ==== 绕流阻力: A U C D D 220ρ=第五章 孔口、管嘴出流和有压管流薄壁小孔口恒定出流: 02gH v ϕ=2gH A Q μ= 97.0=ϕ 62.0==ϕεμ AA c =ε-0H 作用水头,自由出流gv H H 22000α+=,若00≈v ,H H =0;淹没出流g v g v H H H 22222211210αα-+-=,若021≈≈v v ,H H H H =-=210孔口变水头出流:)(2221H H gA Ft -=μ,若02=H ,放空时间max1222Q V gA H Ft ==μ 圆柱形外管嘴恒定出流:02gH v n ϕ=;2gH A Q n μ=; 82.0==n n μϕ;μμ32.1=n ;075.0H gP v =ρ简单管道:5228,d g a a alQ h H f πλ=-==比阻,(62/m s )串联管道:ii ni i i ni i i i ni fi l a S Q S Q l a h H i ====∑∑∑===阻抗,12121并联管道:233322222111321,Q l a Q l a Q l a h h h f f f ==== 注:串联、并联管道有时需结合节点流量方程求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、流体的运动粘度: [动力]粘度, 密
度)
5、牛顿内摩擦定律:
T A
,以应力表示为
(u 为运动速度,y 为液体厚)
dy
dy
6、静止液体某点压强:
p P o g (z o z ) p o gh (h 为该点到液面的距离)
7、静水总压力:
10、文丘里流量计测管道流量:
-、
2g)
1
11、沿程水头损失一般表达式:
h f
1 V
( l 为管长,d 为管径,v 为断面平均流速,g
d 2g
1单位质量力:
F B
3、压缩系数:
1?dV V dp
丄?d
dp
的单位是m
%)体积模量为压缩系数的倒数
4、体积膨胀系数:
v 1?dV
V dT
(V 的单位是 1K ,1
C )
p P c A
ghA (p 为静水总压力, h 为受压面形心淹没深度 ,A 为受压面积)
8、元流伯努利方程;乙旦
g 2 U
1
2g
Z 2
虫
h w' (h w'为粘性流体元流单位重量流体由过流
g
断面1-1运动至过流断面2-2 的机械能损失,z 为某点的位置高度或位置水头,
管高度或压强水头,
2
—是单位流体具有的动能,
g
u fg 晋丽,
u C 2g p g p
C 2gh u C 是修正系数,数值接近于
9、总流伯努利方程
2
1
V 1
z Z
2
2g
R L
g
2 2V
2
h w (为修正系数通常取1)
(Z 2
为重力加速度,
为沿程阻力系数) 12、局部水头损失一般表达式:
2
h j —(为局部水头损失系数, v 为 对应的断面平均流速) J
2g
.-pl
13、圆管流雷诺数:R e 一(u 为流速,V 为运动粘度,d 为圆管直径)
V
uR
14、非圆管道流雷诺数: R e
(R 为水力半径,水力半径R V
渠宽度,h 为明渠水深)
力坡度,J 牛)
半径,J '为所取流束的水力坡度,与总水流坡度相等)
17、过流断面上的流速分布的解析式:
u
J
(r ; r 2) 4
18、平均流速:v
Q
A Q 2 r 。
8 r0
,断面平均流速与最大流速的关系:
1 v U max
2
19、沿程水头损失:
h f
64 l v 2
l 2
爲g ,其中为沿程摩阻系数
,沿程摩阻系数
Re d 2g
64 Re
20、谢才公式:V 8g
. RJ C • RJ (v 为断面平均流速,R 为水力半径,J 为水力坡
度,C 为谢才系数)
A
A 为过流断面面积,x
为过流断面上流体与固体接触的周界, 矩形断面明渠流的水力半径:
R 一 ,b 为明 b 2h
15、均匀流动方程式: h f
l
gA
gR? gRJ
(R 为水力半径,J 为水
16、流束的均匀流动方程:
gRJ (为所取流束表面的剪应力, R'为所取流束的水力
21、曼宁公式:
1 -R n 1
0.5 6(吹)
(n 为综合反映壁面对水流阻滞作用的系数,称为粗糙
25、变水头出流,水位由 出降至H 2所需的时间:t
系数,R 为水力半径)
22、局部水头损失:
A 2)2
, 2
A 2
(- 1) ,A 1,A 2分别为扩大前断面1-1和正常状
态断面2-2的面积, 2分别为突然扩大前、后两个断面的平均流速对应的两个局部水头
损失系数。
23、自由出流
绕流阻力:D C D
牛A (为流体的密度,
U 0为来流的速度, A 为绕流物体在垂直于
来流方向的投影面积,
C D 为绕流阻力系数)
24、收缩断面流速:
V c
1 ________ ——,.2gH o
2gH o
孔口的流量:Q v c A
A 2gH 0 A 2gH 0
(Ho 为作用水头,
为孔口局部损失系数,
为收缩系数,
牛A C 、A 分别为收缩断
面面积、孔口断面面积,
为孔口的流速系数,
1
——
,为孔口的流
.1
量系数, 24、淹没出流
收缩断面流速:V c
2gH 2gH o
se
孔口的流量:Q V c A c
A 2gH o A. 2gH o
(Ho 为作用水头,
为孔口的局部水头损失系数,
se 为水流出孔后,突然扩大的局部水
头损失系数。
为淹没孔口的流速系数,
se
—, 为淹没孔口的流量系数,
1
Q C
________
(•. H 1 H 2)( F 为容器截面
A 2g
面积)
26、管嘴恒定出流:
27、比阻的定义式:
关闭时间)
a
断面的宽深比,m 为边坡系数,其中 m cot
h
31、水力最优梯形断面的水力半径:
判别数)
管嘴出口流速:v
1 ------- 2gH 0
7 n
n
.2gH °
管嘴流量:Q vA
n
A,2gH °
n
A. 2gH 。
(H o 为作用水头,
n 为管嘴的局部水头损失系数,相当于短刀锐缘入口的水头损失系数,
n =0.5,
n
为管嘴的流速系数, 0.82, n 为管嘴的流量系数,因出
口断面无收缩,
n =0.82)
28、直接水击: p
C (V ° V ), p 为水击压强,
为水的密度,c 为水击波的传播速度,
V 。
为管流原来流速, V 为阀门部分关闭后流速。
29、间接水击: p
cV 0 — (V 0为管流原来流速 T
Z
,T 为水击波相长,T 2^c ,T z 为阀门
30、水力最有梯形断面的宽深比:
2(.1 m ) m=0时即得水力最优矩形
水力半径:R
(b mh)h b 2h . 1 m 2
将水力最优条件
m 2 m ) h 代入上式得, R h
32、弗劳德数:
Fr
V c
V
——(无纲量数
Fr 成为弗劳德数,可作为流动状态的
33、临界水深计算公式:对矩形断面渠道,水面宽等于底面h c 3
B=b。
Q
2 3 q2,q Q称为单宽流量
V gb x g b。