植被光谱分析与植被指数计算教学提纲

合集下载

计算植被指数实验报告

计算植被指数实验报告

一、实验目的1. 理解植被指数的概念及其在遥感监测中的应用;2. 掌握植被指数的计算方法;3. 分析不同植被指数对植被覆盖度的反映程度。

二、实验原理植被指数是遥感技术中用于监测植被覆盖度和生长状况的重要指标。

它是通过分析遥感图像中红光和近红外波段的反射率差异来计算的。

常见的植被指数有归一化植被指数(NDVI)、增强型植被指数(EVI)等。

三、实验材料1. 遥感影像:选取不同植被覆盖度的遥感影像;2. 软件工具:ENVI、ArcGIS等遥感数据处理软件;3. 计算器。

四、实验步骤1. 遥感影像预处理(1)读取遥感影像,包括红光波段和近红外波段数据;(2)进行几何校正,使影像具有相同的地理坐标;(3)进行辐射校正,消除大气和传感器等因素的影响;(4)进行大气校正,消除大气对遥感影像的影响。

2. 计算植被指数(1)计算归一化植被指数(NDVI)NDVI = (NIR - Red) / (NIR + Red)(2)计算增强型植被指数(EVI)EVI = 2.5 (NIR - Red) / (NIR + 6 Red - 7.5 Red^2)3. 分析植被指数(1)绘制NDVI和EVI分布图,观察不同植被覆盖度的变化;(2)分析不同植被指数对植被覆盖度的反映程度,比较NDVI和EVI的差异。

五、实验结果与分析1. 实验结果(1)通过遥感影像预处理,得到了具有相同地理坐标和辐射校正后的遥感影像;(2)根据遥感影像计算得到NDVI和EVI分布图,可以看出不同植被覆盖度的变化;(3)通过比较NDVI和EVI分布图,可以发现EVI对植被覆盖度的反映程度更好。

2. 实验分析(1)NDVI和EVI是两种常用的植被指数,它们都能反映植被覆盖度的变化;(2)EVI相较于NDVI,对植被覆盖度的反映程度更好,尤其是在植被覆盖度较低的情况下;(3)通过遥感影像预处理和植被指数计算,可以实现对植被覆盖度的有效监测。

六、实验结论1. 通过本次实验,掌握了植被指数的概念及其在遥感监测中的应用;2. 掌握了植被指数的计算方法,包括NDVI和EVI;3. 分析了不同植被指数对植被覆盖度的反映程度,发现EVI在植被覆盖度较低的情况下具有更好的反映效果。

遥感地学分析实验——实验五:植被波谱特征与叶面积指数、生物量分析

遥感地学分析实验——实验五:植被波谱特征与叶面积指数、生物量分析

实验五:植被波谱特征与叶面积指数、生物量分析(3学时)
原理与方法
遥感图像上面的植被信息主要是通过绿色植物叶子和植被灌层的光谱特性以及差异变化变现出来的,选择多光谱遥感数据进行分析运算,产生某些对植被长势、生物量等有一定指示意义的数值,即是所谓的“植被指数”。

用一种简单有效的形式来实现对植被状态信息的表达,以定性和定量地评价植被覆盖、生长活力与生物量。

在植被光谱中,通常选用对绿色植物(叶绿素引起的)强吸收的可见光波段和对绿色植物(叶内组织引起的)高反射的近红外波段,通过两个不同波段数据的分析运算得到不同的植被指数,如归一化植被指数(NDVI)等。

实习仪器
学生实习机房
图象处理软件(ENVI3.5)
叶面积指数仪(WINSCANNY)
实验目的
1、掌握应用遥感图像处理软件进行植被波谱与叶面积指数、生物量测量方法。

2、掌握运用植被指数分析叶面积指数和生物量。

实验报告
内容包括:实验目的、分析叶面积指数和生物量的区域分异。

植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation indices ——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。

目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。

本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。

这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁迫性相关的色素、植被冠层中水分含量等。

包括以下内容:∙∙●植被光谱特征∙∙●植被指数∙∙●HJ-1-HSI植被指数计算1.植被光谱特征植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。

很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。

研究植被的波长范围一般为400 nm to 2500 nm,这也是传感器设计选择的波长范围。

这个波长范围可范围以下四个部分:∙∙●可见光(Visible):400 nm to 700 nm∙∙●近红外(Near-infrared——NIR):700 nm to 1300 nm∙∙●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm∙∙●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。

4 遥感数据处理及分析----NDVI植被指数计算

4 遥感数据处理及分析----NDVI植被指数计算
如:要找出所有负值像元 并用值-999代替, 可以用表达式: (b1 lt 0)*(-999)+(b1 ge 0)* b1
IDL基本语法知识-注意事项
4)运算符操作顺序
在波段运算过程中,是根据数序。
5)注意使用调用整个图像的IDL函数
如同其他所有ENVI程序一样,波段运算处理也是分块进行的。 如果被处理的图像大于在参数设置中被指定的碎片尺寸,图像将 被分解为更小的部分,系统对每一部分进行单独处理,然后再重 新组合起来。
知识介绍--NDVI
常用的植被指数有: 3)差值植被指数
(difference vegetation index, DVI)
公式:DVI = DNNIR-DNR
对土壤背景的变化极为敏感,有利于植被生态 环境的监测。
当植被浓密,如覆盖度大于等于80%时,它对 植被的灵敏度下降,适用于植被发育早、中期 或低、中覆盖度的植被监测。
3)应用函数 如:ratio_rvi函数是对b1和b2进行操作,则在波段运算的表达式输入时, 应该为: ratio_rvi(b1,b2)。如设有关键字check的话,则在表达式输入时, 应输入:bm_ratio(b1,b2,/check)
作业
计算can_tmr.img数据的NDVI:
要求:1)编写计算NDVI的IDL函数(附在报告内) 2)保存函数,并描述编译函数、 波段运算中调用函数的过程。 3)记录(200,150)像素位置的NDVI值。
b1(ptr) = 1.0 rvi = float(b2)/b1 rvi(ptr) = 0.0 endif else begin rvi = float(b2)/b1 endelse end
IDL函数编写和函数在波段运算中的使用

植被指数的计算方法与遥感图像处理步骤

植被指数的计算方法与遥感图像处理步骤

植被指数的计算方法与遥感图像处理步骤植被指数是研究地表植被覆盖状况的重要指标,可以通过遥感技术获取高空间分辨率的植被信息。

植被指数的计算方法与遥感图像处理步骤是确定植被指数数值的关键环节。

一、什么是植被指数?植被指数是通过遥感技术获取的图像数据来计算植被覆盖状况的指标。

常见的植被指数有归一化植被指数(Normalized Difference Vegetation Index, NDVI)、植被指数(Vegetation Index, VI)等。

这些指标利用遥感图像中红、近红外波段的反射光谱信息来反映植被生长情况,指数数值越高,代表植被覆盖程度越高。

二、植被指数的计算方法1. 归一化植被指数(NDVI)NDVI是最常用的植被指数之一,计算公式为(NIR-RED)/(NIR+RED),其中NIR是近红外波段的反射值,RED是红波段的反射值。

NDVI范围在-1到1之间,数值越接近1代表植被覆盖越高,数值越接近-1代表植被覆盖越低,数值接近0则代表无植被。

2. 植被指数(VI)植被指数是根据遥感图像中的红、蓝、绿波段的反射值计算得到的,常见的植被指数有绿光波段(Green)、蓝光波段(Blue)和红边波段(Red-edge)等。

植被指数的计算公式根据研究的需要而定,比如Normalized Green-Blue Vegetation Index(NGB)、Green-Blue Vegetation Index(GBVI)等。

三、遥感图像处理步骤1. 遥感图像获取遥感图像可以通过卫星、飞机等载体获取,一般包括多个波段的光谱信息。

从遥感图像中选取合适的波段进行植被指数的计算。

2. 数据预处理遥感图像预处理包括大气校正、几何纠正和辐射辐射校正等步骤,以消除由于大气、地表地貌等因素引起的图像噪声。

3. 波段选择根据研究需要和相关指数的计算公式选择合适的波段进行植被指数的计算。

常用的波段有红、近红外、绿、蓝等。

植被覆盖 植被指数 植被光谱

植被覆盖 植被指数 植被光谱

NDVI的理论基础NDVI的理论基础植被指数按不同的监测方法和计算方法可分为多种多样的植被指数。

常用的有:归一化植被指数NDVI;垂直植被指数PVI;比值植被指数RVI;消除土壤影响的植被指数SAVI和全球植被指数GVI等。

其中,NDVI则是使用最广泛,效果也较好的一种。

NDVI(Normalized Difference Vegetation Index)归一化植被指数,又称标准化植被指数,在使用遥感图像进行植被研究以及植物物候研究中得到广泛应用,它是植物生长状态以及植被空间分布密度的最佳指示因子,与植被分布密度呈线性相关。

归一化植被指数(NDVI)是近红外与红色通道反射率比值(SR=NIR/RED)的一种变换形式,NDVI=(NIR-R)/(NIR+R)。

植被覆盖度(fv)fv=(NDVI-NDVImin)/(NDVImax-NDVImin).叶面积指数(LAI)LAI=k-1ln(1-fv)-1,k是消光系数,每种植被k各不相同,一般植被取值范围是0.8-1.3。

NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、枯叶、粗超度等,且与植被覆盖有关,-1≤NDVI≤1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大。

用NDVI判断植物生长的状态:植物叶绿素发生光合作用而吸收红光,所以长势越好的植物吸收红光越多,反射近红外光也越多。

所以NDVI能反应植物生物量的多少,NDVI越大,植物长势越好。

附表:植被指数指数应用计算公式测量值的意义优点局限性NDVI 归一化植被指数监测植被生长状态、植被覆盖度和消除部分辐射误差等NDVI=(NIR-R)/(NIR+R)-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等能反映出植物冠层的背景影响,如土壤、潮湿地面、枯叶、粗超度等,且与植被覆盖有关对高植被区具有较低的灵敏度RVI 比值植被指数是绿色植物的的灵敏指数参数,用于检测和估算植物生物量RVI=NIR/R绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。

植被光谱分析与植被指数计算

植被光谱分析与植被指数计算

植被光谱分析与植被指数计算在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation indices——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。

目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。

本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。

这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁迫性相关的色素、植被冠层中水分含量等。

包括以下内容:∙ ∙●植被光谱特征∙ ∙●植被指数∙ ∙●HJ-1-HSI植被指数计算1.植被光谱特征植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。

很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。

研究植被的波长范围一般为400 nm to 2500 nm,这也是传感器设计选择的波长范围。

这个波长范围可范围以下四个部分:∙∙●可见光(Visible):400 nm to 700 nm∙∙●近红外(Near-infrared——NIR):700 nm to 1300 nm∙∙●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm∙∙●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。

实验三 植被指数计算

实验三 植被指数计算
实验三 植被指数的计算
实验三 植被指数的计算
一 实验目的: (1)掌握常用植被指数的计算方法; (2)理解植被指数设计原理;
实验三 植被指数的计算
二 实验意义: (1)加深对植被指数的理解,了解各种常用 植被指数的计算方法及计算步骤,为植被指 数应用打好基础; (2)通过对常用植被指数计算的方法和流程 的学习与实践,形成对植被指数原理的认识, 掌握波段代数方法的应用。
三 实验原理 3.1 RVI 3.2 NDVI 3.3 DVI 3.dsat TM 影 像 。 (/) 1. 辐射定标 basic tools—>preprocessing—>calibration utilities —>Landsat calibration打开定标对话 框进行辐射定标。 在出现的ENVI Landsat calibration对话框中 各项参数已经自动填好,若有后续结果要 用于大气校正则calibration type选择radiance, 否则选reflectance.
2. 植被指数计算 在ENVI中用basic tools—>band math处理, 在输入表达式一栏输入……………… RVI NDVI DVI GVI(缨帽变化的绿度植被指数)
问题思考
• 对比使用DN值计算的结果与使用反射率计 算的结果之间是否为线性?
• 选择相同的植被分布区,对比不同植被指 数之间的关系是否为线性? • 对于整个图像,不同植被指数之间的关系 是否为线性?

植被指数及其应用学习教案

植被指数及其应用学习教案
TSAVI是对SAVI的改进,它着眼于土壤线实际的a和b,而不 是假设它们为1和0。
为了减少SAVI中裸露土壤的影响,Qi等(1994)发展了修 改型土壤调整(tiáozhěng)植被指数(MSAVI),表示为:
第16页/共42页
第十六页,共42页。
第七章 植被(zhíbèi)遥感
第四节 植被指数 (Vegetation Index)及其应用(yìngyòng)
§7.4.1 植被指数综述 §7.4.2 植被指数分类 §7.4.3 土壤背景影响(yǐngxiǎng) 与消除 §7.4.4 大气影响(yǐngxiǎng)与消 除 √§7.4.5 植被第指22页数/共应42页用
第二十二页,共42页。
Leaf area index (LAI) is ratio of the total area of all leaves on a plant to the area of ground covered by the plant.
第18页/共42页
第十八页,共42页。
Kanfman等(1992)提出了大气阻抗植被指数 (ARVI-atmospherically resistant vegetation index),即利 用可见光的蓝光(B)和红光(R)对大气响应(xiǎngyìng) 的差异,用红-蓝波段组合替代了NDVI的红波段,以减少 植被指数对大气性质的依赖。ARVI可表示为:
第3页/共42页
第三页,共42页。
2)植被指数的基本原理
对于遥感数据的信息来讲,很难对其进行分解,从而得到有用的一些参数 ,而植被(zhíbèi)指数恰好能应用于大范围的植被(zhíbèi)覆盖定性研究。
不同的植被(zhíbèi)覆盖类型可以通过其特有的光谱 特征进行区分,这是由于叶绿素在红波段内对太 阳辐射的吸收以及叶片细胞结构对红外波段内太 阳辐射的强反射。当我们观察植被(zhíbèi)的反射率曲线 时,红与红外区间反射率的差异会由于绿色植被(zhíbèi) 的不同覆盖而变化。使用这两个波段信息的组合 能够区分植被(zhíbèi)与土壤,以及测量不同植被(zhíbèi)覆盖度 下的光合有效生物量。

植被指数计算方法

植被指数计算方法

2.1 归一化植被指数(NDVI )归一化植被指数(Normalized Difference Vegetation Index ,即N D V I )的计算公式为:NIR RED NIR REDNDVI ρρρρ-=+ 其中:NIR ρ和RED ρ分别代表近红外波段和红光波段的反射率NDVI 的值介于-1和1之间。

2.2 增强型植被指数(EVI )增强型植被指数(Enhanced Vegetation Index ,即EVI )计算公式为:2.5 6.07.51NIR RED NIR RED BLUE EVI ρρρρρ-=⨯+-+ NIR ρ、RED ρ和BLUE ρ分别代表近红外波段、红光波段和蓝光波段的反射率。

2.3 高光谱归一化植被指数(Hyp_NDVI )对于环境与灾害监测预报小卫星高光谱载荷,选取中心波长分别位于近红外和红光的谱段进行归一化植被指数计算:_____Hyp NIR Hyp RED Hyp NDVI Hyp NIR Hyp RED-=+ 2.4 其他植被指数(1) 比值植被指数(Ratio Vegetation Index ——RVI )NIR REDRVI ρρ= 该植被指数能够充分表现植被在红光和近红外波段反射率的差异,能增强植被与土壤背景之间的辐射差异。

但是RVI 对大气状况很敏感,而且当植被覆盖小于50%时,它的分辨能力显著下降。

(2) 差值植被指数(Difference Vegetation Index ——DVI )NIR RED DVI ρρ=-该植被指数对土壤背景的变化极为敏感,有利于对植被生态环境的监测,因此又被称为环境植被指数(EVI )。

(3) 土壤调整植被指数(Soil-Adjusted Vegetation Index ——SA VI )(1)NIR RED NIR RED SAVI L Lρρρρ-=+++ 其中,L 是一个土壤调节系数,该系数与植被浓度有关,由实际区域条件确定,用来减小植被指数对不同土壤反射变化的敏感性。

植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算解读植被光谱是指随着光波长的变化,植物所吸收、反射和传输的光的能量分布的变化。

植被光谱分析通过测量植物在不同波长的光下的反射或吸收情况,可以获取丰富的生理和生态信息。

一般来说,植物对于光谱中的红光和近红外光具有较高的反射能力,而对于绿光的反射较低。

利用这些特点,可以通过光谱数据对植物的生理状态、营养状况、水分含量等进行分析。

植被指数是从植被光谱数据中计算出的一种定量指标,用于揭示植物的生长状况和生理特征。

常见的植被指数有归一化植被指数(NDVI)、叶绿素指数(CI)、简化绿度指数(SR)、水分指数(WI)等。

植被指数的计算一般是通过光谱数据中的不同波段的反射值进行比较和组合计算得出的。

归一化植被指数(NDVI)是最常用的植被指数之一、它是利用红光和近红外光之间的差异来评估植被生长状况的指数。

NDVI的计算公式为:NDVI=(NIR - Red)/(NIR + Red),其中NIR代表近红外光波段的反射值,Red代表红光波段的反射值。

NDVI的取值范围为-1到1,数值越大表示植被生长状况越好。

叶绿素指数(CI)是评估植被叶绿素含量的指标。

叶绿素是植物光合作用的重要组成部分,通过测量不同波段的光反射率可以推算出植物叶绿素的含量。

常见的叶绿素指数包括结构化叶绿素指数(SCI)和非结构化叶绿素指数(NNCI)等。

简化绿度指数(SR)是一种用于估计植物总叶绿素含量的指标。

它基于不同波段的光反射率之间的比较和计算进行求解。

SR的计算公式为:SR = (NIR - Red) / NIR,其中NIR代表近红外光波段的反射值,Red代表红光波段的反射值。

水分指数(WI)是评估土壤水分状况和植物水分含量的指标。

通过测量植物叶片在不同波段的反射率,可以推算出植物的水分含量和土壤的水分状况。

常见的水分指数有归一化差异植被指数(NDWI)、水分转换指数(WTCI)等。

植被光谱分析与植被指数计算在许多领域有着广泛的应用。

实验七 植被指数提取与分析

实验七 植被指数提取与分析

实验七 植被指数提取与分析1实训目的:掌握应用遥感图像处理软件进行植被指数提取方法,了解植被指数在图像解译中的作用。

2实训内容:提取主要指被指数:归一化植被指数NDVI 、比值植被指数RVI 。

植被指数分析:不同土地覆盖植被指数差异,不同植被指数数值。

3实训材料准备采用软件:ERDAS 软件遥感数据:SPOT 多光谱遥感影像图: spotxs tm 遥感影像图: t mAtlanta.img 4实训方法与步骤;遥感图像上的植被信息,主要通过绿色植物叶子和植被冠层的光谱特性及其差异、变化而反映的,不同的光谱通道所获得的植被信息可与植被的不同要素或某种特征状态有各种不同的相关性,因此,我们往往选用多光谱遥感数据经分析运算(加、减、乘、除等线性或非线性组合方式)产生某些对植被长势、生物量等有一定指示意义的数值——即所谓的“植被指数”。

用一种简单有效的形式来实现对植物状态信息的表达,以定性和定量地评价植被覆盖、生长活力及生物量等。

在植被指数中,通常选用对选用对绿色植物(叶绿素引起的)强吸收的可见光红波段和对绿色植物(叶内组织引起的)高反射的近红外波段。

这两个波段不仅是植物光谱中的最典型的波段,而且它们对同一生物物理现象的光谱响应截然相反,故它们的多种组合对增强或揭示隐含信息将是有利的。

1)提取归一化植被指数:2)提取比值植被指数:3)植被指数土地覆盖植被指数差异:土地覆盖类型植被指数值NDVI植被指数值RVI)/()(R NIR R NIR spot spot spot spot NDVI +-=RNIR DN DN RVI /=植被覆盖度提取(选作)植被指数与植被盖度的关系:)/()(min max min NDVI NDVI NDVI NDVI f g --=。

植被指数

植被指数

部分遥感植被指数
植被指数
简单比值指数(SR) 归一化植被指数 (NDVI)
SR =
方程
参考文献
Birth和McVey,1968 Colombo等,2003 Rouse等,1974 Deering等,1975 Huete等,2002
ρ ρ
red n3;ρ
nir nir
red red
NDBI =
MidIR 5 − NIRTM 4 TM MidIR 5 + NIRTM 4 TM
Zha等,2003
Built − uparea = NDBI − NDVI
第四章 遥感数字图像增强处理
3) 差值植被指数(Difference Vegetation Index,DVI) DVI = IR - R
Huete和Liu,1994 Running等,1994 Huete等,1997 Huete和Justice, 1994 Huete等,2002
部分遥感植被指数( 部分遥感植被指数(续)
植被指数
新型植被指数 (NVI) 不受气溶胶影响的植 被指数(AFRI)
NVI =
方程
ρ 777 − ρ 747 ρ 673 ρ nir − 0.66 ρ 1.6 µm AFRI 1.6 µm = ρ nir + 0.66 ρ 1.6 µm ρ nir − 0.5 ρ 2.1µm AFRI 2.1µm = ρ nir + 0.5 ρ 2.1µm
参考文献
LWCI
[
ft
]

Hunt等,1987
中红外指数 土壤调整植被指数 (SAVI)和修正的 SAVI指数(MSAVI) 大气阻抗植被指数 (ARVI) 土壤和大气阻抗植被 指数(SARVI) 增强型植被指数 (EVI)

植被光谱分析与植被指数计算

植被光谱分析与植被指数计算

植被光谱分析与植被指数计算植被在地表覆盖范围广泛,具有重要的生态功能和资源价值。

随着遥感技术的发展,植被遥感成为了研究植被空间分布、生态环境变化和资源管理的关键手段之一、植被光谱分析和植被指数计算是植被遥感研究中的重要内容,通过分析植被在不同光谱波段上的反射率特征,可以获取植被生理状态和生态环境信息,为植被遥感应用提供了基础数据。

植被光谱是指植被在不同光谱波段上的反射率特征。

植被可以吸收、反射和透过露光,不同植被类型和不同植被生理状态对光的吸收和反射率具有特殊的光谱特征。

通过遥感技术获取的植被光谱数据可以用于反演植被类型、植被覆盖度、植被生理状态等信息。

植被光谱分析主要基于植被在遥感波段上的反射率特征进行建模和分析,包括光谱强度、光谱形状和光谱参数等。

植被指数是一种从植被光谱数据中提取植被信息的数值指标。

植被指数通过对植被光谱特征进行合理组合和计算,可以反映植被的生长状况、叶绿素含量、水分状况、光合活性等植被生理和生态参数。

常用的植被指数有归一化植被指数(Normalized Difference Vegetation Index,NDVI)、归一化差异植被指数(Normalized difference vegetation index,NDWI)、植被指数(Vegetation index,VI)等。

这些指数通过计算不同波段上的反射率差异,将植被的生理信息概括为一个数值,可以在不同时间和空间尺度上进行比较和分析。

植被光谱分析和植被指数计算是植被遥感研究的基础方法和技术手段。

利用植被光谱数据,可以了解植被在其中一时刻的生理状态、植被类型和植被覆盖度等信息,为植被的监测、评价和管理提供了基础数据。

通过植被指数计算,可以更加直观地表达植被的生态和环境信息,为植被资源管理和农业生产提供科学依据。

植被光谱分析和植被指数计算在植被遥感中具有重要应用价值。

通过分析植被光谱数据,可以监测植被环境变化、研究植被生长规律和机理、评估植被健康状态等。

几种常见植被指数课案

几种常见植被指数课案

常用的植被指数,土壤指数,水体指数有哪些?植被指数与土壤指数一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。

1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。

植被的RVI通常大于2;2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量;3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。

二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。

1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。

对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关;三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。

1、对土壤背景的变化极为敏感;四、SAVI\TSAVI\MSAVI——调整土壤亮度的植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。

1、目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。

与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。

植被光谱特征与植被指数综述

植被光谱特征与植被指数综述

植被光谱特征与植被指数综述植被光谱特征与植被指数是现代遥感技术中常用的分析工具,能够提供植被物候变化、生理状况、生态系统功能等多种信息。

下面是关于植被光谱特征与植被指数的综述:一、植被光谱特征植被的光谱特征指的是植物叶片反射和吸收光线的特征,通常使用遥感技术获取。

植被的光谱特征可以分为两类:光谱反射率和吸收率。

光谱反射率指植被表面反射的光线占入射光线的比例,而吸收率则指植被吸收光线的能力。

光谱反射率植被表面的光谱反射率通常被描述为“红边反射”,即在近红外(NIR)波段和绿色波段之间的波段范围内的反射率。

典型的红边反射区域在680-750 nm之间,这是由于植物叶绿素的吸收谱和植被的叶片结构所导致的。

另外,绿色波段和近红外波段的反射率也可以提供有关植被的信息。

吸收率植物叶片中的叶绿素和类胡萝卜素是两种主要的色素,它们对特定波长的光线具有吸收作用。

在可见光谱范围内,叶绿素对蓝色和红色光线的吸收最大,而类胡萝卜素对蓝色光线的吸收最大。

此外,植物叶片的纤维素、半纤维素和蛋白质等化学成分也会影响植物叶片的吸收率。

二、植被指数植被指数是一种基于植被反射谱线的标准化指标,用于评估植被生长状况、叶绿素含量、光合作用速率等。

植被指数通常使用多光谱遥感数据计算,其中常见的植被指数包括:归一化植被指数(Normalized Difference Vegetation Index,NDVI)NDVI是植被遥感研究中最常用的指数之一,它可以通过计算近红外波段(NIR)和红色波段(RED)的反射率之差来获得,公式为:(NIR - RED) / (NIR + RED)。

该指数对植被覆盖度、生长状况和叶绿素含量有较好的敏感性。

归一化差值植被指数(Normalized Difference Vegetation Index,NDVI)NDWI主要用于估计水分含量,计算公式为:(NIR - SWIR) / (NIR + SWIR),其中SWIR是短波红外波段。

植被指数计算方法

植被指数计算方法

植被指数计算方法植被指数是用来衡量一个特定区域内植被覆盖状况的一个指标。

植被指数经常被应用于农业、林业、环境科学、地理信息系统以及监测全球气候变化等领域。

常见的植被指数包括归一化植被指数(NDVI)、归一化差异植被指数(NDWI)和总体植被指数(TVI)等。

归一化植被指数(NDVI)是最常见也是最常用的植被指数之一、它是通过计算可见光波段和红外波段反射率之差,然后除以两者之和得到的。

NDVI的值范围在-1到1之间,-1代表无植被,0代表有一般植被,而1代表有密集的绿色植被。

NDVI的计算公式为:NDVI = (NIR - Red) / (NIR + Red)其中NIR表示红外波段的反射率,Red表示可见光波段的反射率。

这两个波段可以从遥感影像中提取得到。

归一化差异植被指数(NDWI)是通过计算近红外和短波红外波段的反射率之差,然后除以两者之和得到的。

NDWI主要用于表征水体覆盖的程度,特别适用于监测湿地、河流、湖泊等水体变化的状况。

NDWI的计算公式为:NDWI=(NIR-SWIR)/(NIR+SWIR)其中NIR表示近红外波段的反射率,SWIR表示短波红外波段的反射率。

总体植被指数(TVI)是基于红外波段的植被指数,它是通过计算红外波段反射率与可见光波段反射率之差的平方根得到的。

TVI的计算公式为:TVI = √(NIR - (Red * (1 - NIR)))其中NIR表示红外波段的反射率,Red表示可见光波段的反射率。

除了以上的植被指数,还有其他一些植被指数也被广泛应用,例如比值植被指数(RVI)、改进型植被指数(EVI)等。

这些植被指数的计算方法各有不同,但基本原理都是通过不同波段的反射率之差或比值来反映植被的生长情况。

总之,植被指数的计算方法基于多光谱遥感数据,通过利用不同波段的反射特性来评估植被的覆盖程度。

这些植被指数的应用可以帮助我们更好地了解植被的分布、成长状况以及对环境的响应,从而为农业生产、自然资源管理和环境保护等提供科学依据。

植被光谱分析与植被指数计算

植被光谱分析与植被指数计算

植被光谱分析与植被指数计算在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation indices ------------------ VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。

目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。

本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。

这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁迫性相关的色素、植被冠层中水分含量等。

包括以下内容:植被光谱特征植被指数HJ-1-HS植被指数计算1•植被光谱特征植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm 高反射。

很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。

研究植被的波长范围一般为400 nm to 2500 nm,这也是传感器设计选择的波长范围。

这个波长范围可范围以下四个部分:可见光(Visible): 400 nm to 700 nm近红外(Near-infrared ------- N IR):700 nm to 1300 nm短波红外1 (Shortwave infrared 1 ---- SWIR-1): 1300 nm to 1900 nm短波红外2 (Shortwave infrared 2 ---- SWIR-2 : 1900 nm to 2500 nm其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。

实验三 常见植被指数的表达和计算

实验三 常见植被指数的表达和计算

实验三常见植被指数的表达和计算
班级:地信091班学号:2009014871 姓名:凡绍录一、实验目的:
掌握常见植被指数的表达;了解常见植被指数的计算;
二、实验内容:
1、常见植被指数表达,过程为:
—--
对03-0614的图进行转换不同格式植被指数,得出图像。

2、植被指数计算(助决策的过程):
--
Add加载(先加载7个波段的数据,然后加载所有第一部所得数据)得到总图。

在新得的图中观察典型地物不同植被类型如何变化(重复实验一的操作),进行比较。

三、实验总结:
通过这次实验掌握常见植被指数的表达和计算,在新得的图像中观察典型地物不同植被类型是如何变化的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

植被光谱分析与植被指数计算植被光谱分析与植被指数计算在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation indices——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。

目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。

本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。

这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁迫性相关的色素、植被冠层中水分含量等。

包括以下内容:∙ ∙●植被光谱特征∙ ∙●植被指数∙ ∙●HJ-1-HSI植被指数计算1.植被光谱特征植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。

很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。

研究植被的波长范围一般为400 nm to 2500 nm,这也是传感器设计选择的波长范围。

这个波长范围可范围以下四个部分:∙∙●可见光(Visible):400 nm to 700 nm∙∙●近红外(Near-infrared——NIR):700 nm to 1300 nm∙∙●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm∙∙●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。

SWIR-1 和 SWIR-2的过渡区(1900nm附近)也是大气水的强吸收范围。

植被可分为三个部分组成:∙∙●植物叶片(Plant Foliage)∙∙●植被冠层(Plant Canopies)∙∙●非光合作用植被(Non-Photosynthetic Vegetation)这三个部分是植被分析的基础,下面对他们详细介绍。

1.1植物叶片(Plant Foliage)植物叶片包括叶、叶柄以及其他绿色物质,不同种类的叶片具有不同的形状和化学成份。

对波谱特征产生重要影响的主要化学成份包括:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),这也是遥感反演的基础,如用植被指数来估算叶子的化学成份。

●色素(Pigments)叶色素主要包括叶绿素、叶黄素和花青素。

这些都是植被的健康的指标,比如含高浓度叶绿素的植被一般很健康,相反,叶黄素和花青素常常出现在健康较差的植被,濒临死亡的植被出现红色、黄色或棕色。

叶色素只影响可见光部分(400nm~700nm),图1为几种叶色素在可见光范围的相对光谱吸收特征。

图1 部分叶色素的相对光谱吸收特征●水分(Water)叶子的几何特性、冠层结构和对水的需求影响植被的水分含量。

水分对植被反射率的影响波段范围在NIR和SWIR(图2)。

在1400nm和1900nm附近有吸收波谷,但是传感器一般会避开这两个波段范围。

在970nm和1190nm 附近也有强吸收特征,可利用这两个波段范围监测植被水分。

●碳(Carbon)植物中的碳是以很多形式存在,包括糖,淀粉,纤维素和木质素等。

纤维素和木质素的吸收特征表现在短波光谱范围内容(图3)。

图2 叶片水和碳(纤维素和木质素)相对光谱吸收特征氮(Nitrogen)叶子中的氮元素一般包含在叶绿素、蛋白质以及其他分子中。

植被指数(VI)对包含在叶绿素中的氮元素很敏感(大约含6%氮)。

包含在蛋白质中的氮元素在1500nm~1720 nm范围内对叶片波谱特征影响比较大。

从上可以看出,植被与辐射的相互作用主要体现在叶片的波谱特征,因此,在可见光谱段内,主要太阳辐射的吸收来自叶绿素、叶黄素和花青素,形成450nm和670nm附近的吸收谷;在近红外谱段内,主要太阳辐射的吸收来自水分,形成970nm和1190nm两个水吸收带;在短波红外谱段内,除了水分,各种形式存在的碳和氮也对太阳辐射的吸收有一定的贡献,形成1400nm和1900nm吸收谷。

图3是叶片反射率与透射光谱(Transmittance Spectra)对比例子,木本植被和草本植被在色素、水分、氮等含量不一样,反射率与透射光谱关系也不一样。

图3木本植物(A)和草本植物(B)的叶片反射率与透射光谱1.2植被冠层(Plant Canopies)单片叶子的反射特性对植被冠层光谱特征是重要的,此外,叶子数量和冠层结构对植被冠层的散射、吸收也有重要的影响。

比如不同的生态系统中,森林、草原、或农业用地等都具有不同的反射特性,虽然它们单个叶子很类似。

有很多植被模型用于描述冠层光谱特征。

两个最重要的是叶面积指数(LAI)和叶倾叶角分布(LAD)。

LAI指每单位面积地上绿叶面积,这表现了冠层中绿色植被的总数;LAD描述了树叶所有类型的定向,常用平均叶倾角(MLA)近似。

MLA表示冠层中的每个叶片角度与水平方向的差值的平均值。

图4表示LAI和LAD对植被冠层的影响效果,MLA近似LAD。

在近红外谱段内,植被强反射太阳辐射,植被冠层在可见光和SWIR-2是强吸收。

使用可见光和SWIR-2的植被指数对上层林冠非常敏感。

图4LAI (A) 和MLA (B) 的增减对植被冠层的影响1.3非光合作用植被(Non-Photosynthetic Vegetation)在自然界里,还包括占了全球植被覆盖一半的衰老或死亡植被,它们被称为非光合作用植被(简称NPV)。

NPV 的冠层也具有木本森林结构,如树干,茎,和树枝等。

NPV主要包含碳元素,以淀粉,纤维素和木质素形式存在,NPV的光谱特征主要受这些物质支配。

在短波红外内的波动比较大,与绿色植被相反,SWIR-1 和SWIR-2范围内散射占主导。

图5显示了绿色植被和NPV冠层光谱特征。

图5 透射绿色植被和干植被的冠层反射特性的变化(400nm~2500nm)2.植被指数植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。

所有的植被指数要求从高精度的多光谱或者高光谱反射率数据中计算。

未经过大气校正的辐射亮度或者无量纲的DN值数据不适合计算植被指数。

下面是7大类27种植被指数的说明,这些植被指数都是经过严格生物条件下测试的。

2.1宽带绿度——Broadband Greenness (5种)宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。

宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。

宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些波段。

下面的公式中规定波段的中心波长:ρNIR = 800 nm,ρRED = 680 nm,ρBLUE = 450 nm。

表1 宽带绿度指数植被指数基本描述归一化植被指数(Normalized Difference Vegetation Index)增加在近红外波段范围绿叶的散射与红色波段范围叶绿素吸收的差异。

比值植被指数(Simple Ratio Index)在近红外波段范围绿叶的散射与红色波段范围叶绿素吸收的比值。

增强植被指数(Enhanced Vegetation Index)增强NDVI,解决土壤背景和大气气溶胶对茂密植被的影响大气阻抗植被指数(Atmospherically Resistant Vegetation Index)增强NDVI,更好地解决大气散射的影响。

绿波段总和指数(Sum Green Index)绿色波段范围的整体光散射对植被冠层间隙的敏感度。

1)归一化植被指数(Normalized Difference Vegetation Index——NDVI)NDVI众所周知的一种植被指数,在LAI值很高,即植被茂密时其灵敏度会降低。

其计算公式为:NDVI=(式1)值的范围是-1~1,一般绿色植被区的范围是0.2~0.8。

2)比值植被指数(Simple Ratio Index——SR)SR指数也是众所周知的一种植被指数,在LAI值很高,即植被茂密时其灵敏度会降低。

其计算公式为:SR=(式2)值的范围是0~30+,一般绿色植被区的范围是2~8。

3)增强植被指数(Enhanced Vegetation Index——EVI)EVI通过加入蓝色波段以增强植被信号,矫正土壤背景和气溶胶散射的影响。

EVI常用于LAI值高,即植被茂密区。

其计算公式为:EVI=(式3)值的范围是-1~1,一般绿色植被区的范围是0.2~0.8。

4)大气阻抗植被指数(Atmospherically Resistant Vegetation Index——ARVI)ARVI是NDVI的改进,它使用蓝色波段矫正大气散射的影响(如气溶胶),ARVI常用于大气气溶胶浓度很高的区域,如烟尘污染的热带地区或原始刀耕火种地区。

其计算公式为:EVI=(式4)值的范围是-1~1,一般绿色植被区的范围是0.2~0.8。

5)绿度总和指数(Sum Green Index——SG)SG指数是用于探测绿色植被变化最简单的植被指数。

由于在可见光范围内,绿色植被对光强吸收,SG指数对稀疏植被的小变化非常敏感。

SG指数是500 nm ~600 nm范围内平均波谱反射率。

总和最后会被转化回反射率。

值的范围是0~50+,一般植被区域是10~25。

2.2窄带绿度——Narrowband Greenness (7种)窄带绿度指数对叶绿素含量、叶子表面冠层、叶聚丛、冠层结构非常敏感。

它使用了红色与近红外区域部分——红边,红边是介于690 nm ~ 740 nm之间区域,包括吸收与散射。

它比宽带绿度指数更加灵敏,特别是对于茂密植被。

表2窄带绿度指数植被指数基本描述红边归一化植被指数(Red Edge Normalized使用红边波段的改进型NDVI。

Difference Vegetation Index)改进红边比值植被指数(Modified Red Edge Simple使用红边和蓝色波段比值。

相关文档
最新文档