等腰三角形中的分类讨论好题强烈推荐

合集下载

专题11 等腰三角形中的分类讨论 (原卷版)

专题11 等腰三角形中的分类讨论 (原卷版)

专题11 等腰三角形中的分类讨论【知识点睛】❖ 在等腰三角形中,没有明确指明边是腰还是底时,要进行分类讨论,且求出未知边的长后,一定要看这三边能否组成三角形;❖ 没有明确指明角是顶角或底角时,也要进行分类讨论 设等腰三角形中有一个角为α时 对应结论 当α为顶角时底角=α2190-︒ 当α为直角或钝角时不需要分类讨论,该角必为顶角 当α为锐角时α可以为顶角;也可以为底角 当等腰三角形的一个外角为α时对应结论 若α为锐角、直角α必为顶角的外角 若α为钝角α可以是顶角的外角,也可以是底角的外角❖ 动态环境下的等腰三角形存在性问题【类题训练】1.已知△ABC 是等腰三角形,它的周长为20cm ,一条边长6cm ,那么腰长是 cm .2.(1)等腰三角形中有一个角是70°,则它的顶角是 .(2)等腰三角形中有一个角是100°,则它的另两个角是 .(3)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为 .3.如果等腰三角形的周长是35cm ,一腰上中线把三角形分成两个三角形,其周长之差是4cm ,则这个等腰三角形的底边长是 .4.等腰三角形一腰上的高与另一腰所成的夹角为45°,则这个等腰三角形的顶角的度数为 .5.如图,已知直角三角形ABC中,∠ACB=90°,∠CAB=60°,在直线BC或AC上取一点P,使得△ABP为等腰三角形,则符合条件的点有()A.4个B.5个C.6个D.7个6.用一根长为21厘米的铁丝围成一个三条边长均为整数厘米的等腰三角形,则方案的种数为()A.5B.6C.7D.87.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为.8.如图,M,N是∠AOB的边OA上的两个点(OM<ON),∠AOB=30°,OM=a,MN =4.若边OB上有且只有1个点P,满足△PMN是等腰三角形,则a的取值范围是.9.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.10.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条11.如图,△ABC中,∠B=60°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为.12.如图,等边△ABC的边长为6,点P沿△ABC的边从A→B→C运动,以AP为边作等边△APQ,且点Q在直线AB下方,当点P、Q运动到使△BPQ是等腰三角形时,点Q 运动路线的长为.13.如图,在△ABC中,∠ACB=2∠A,过点C的直线能将△ABC分成两个等腰三角形,则∠A的度数为.14.已知等边△ABC的边长为3,点E在直线AB上,点D在直线CB上,且ED=EC,若AE=6,则CD的长为.15.△ABC的高AD、BE所在的直线交于点M,若BM=AC,求∠ABC的度数.16.已知△ABC中,∠ACB=90°,AC=BC,过点C作直线l,BE⊥l于E,AD⊥l于D.若BE=2,AD=6,求DE的长.17.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.18.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)图①是顶角为36°的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)图③是顶角为45°的等腰三角形,请你在图③中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,则x所有可能的值为.19.如图,在四边形ABCD中,AB∥CD,AE交BC于点P,交DC的延长线于点E,点P 为AE的中点.(1)求证:点P也是BC的中点;(2)若CB⊥AB,且DP=,CD=,AB=4,求AP的长;(3)在(2)的条件下,若线段AE上有一点Q,使得△ABQ是等腰三角形,求AQ的长.。

八年级数学从等腰三角形看分类讨论专题练习(含答案)

八年级数学从等腰三角形看分类讨论专题练习(含答案)

八年级数学从等腰三角形看分类讨论专题练习试卷简介:分类讨论在中招试题中十分常见,这类题目不仅考查了学生对数学基础知识和方法的掌握,也考查了学生思维的深刻度。

而解决这类问题时,因考虑不全导致的失分现象十分严重,针对这个问题,本套题目以等腰三角形为依托,详细介绍了何时分类、如何分类的思想与方法,希望能对大家有所启发。

学习建议:分类不全面、不知如何分类是同学们在解决分类讨论型问题时的常见问题,如何才能做到最终结果的不重不漏,同学们需要重点注意一下几点:1、熟悉不同图形间的差异,并根据图形做出分类的初始判断;2、准确把握题目告知的信息,从问题中找到分类的依据;3、了解常见问题的分类准则;4、永远比其他人多想一步。

一、单选题(共12道,每道10分)1.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cmB.12cmC.15cmD.12cm或15cm答案:C解题思路:此题属于腰或底边不确定时注意分类讨论,两条边长轮流做三角形的腰长:(1)6cm做腰长时(如图):周长为6+6+3=15(cm)(2)3cm做腰长时:周长为3+3+6=12(cm)验证,第一种情况:最短边+较短边>最长边(3+6>6),可以构成三角形. 第二种情况:由于3+3=6,不符合最短边+较短边>最长边,构不成三角形. 综上:C选项正确试题难度:一颗星知识点:三角形三边关系2.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50°D.50°或80°答案:D解题思路:解题思路:此题属于角不确定时注意50°可能是顶角,可能是底角:(1)50°为顶角时(如图),这个等腰三角形的顶角为50°(2)50°为底角时(如图),可知等腰三角形的两个底角相等,均为50°,由三角形内角和为180°,可求得顶角度数为:80°.综上,D选项正确试题难度:一颗星知识点:等腰三角形的性质3.等腰三角形的两角之差为30°,求该三角形顶角的度数为()A.80°B.40°C.40°或80°D.50°或80°答案:C解题思路:此题属于角不确定时,设顶角为x度,底角为y度,注意分类讨论:(1)顶角-底角=30°此时,满足方程组:解得:(2)底角-顶角=30°,此时满足方程组解得:综上:顶角度数为40°或80°,所以,C 选项正确试题难度:二颗星知识点:等腰三角形的性质4. 如图,在等腰三角形ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连结BE,则∠CBE等于()A.80°B.70°C.60°D.50°答案:C解题思路:此题直接给出了图形,所以不用再分类讨论了.由三角形内角和为180°得∠A+∠ABC+∠C=180°,已知∠A=20°得,∠ABC+∠A=160°,又因为三角形ABC为等腰三角形,即∠ABC=∠C,所以∠ABC=80°,因为DE为线段AB的垂直平分线,所以∠A=∠ABE=20°,从而∠CBE=∠ABC-∠ABE=60°.所以:C选项正确试题难度:二颗星知识点:等腰三角形的性质5. 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°答案:D解题思路:此题属于高的位置关系不确定时, 要考虑两种情况(1)(如图)已知△ABC中AB=AC,BD为AC线的高,即∠ABD=30°则∠A=90°-30°=60°(2)(如图)已知△ABC 中AB=AC,BD垂直于AC交CA的延长线于点D,其中∠ABD=30°,则∠ABD=60°,从而∠BAC=180°-60°=120°综上,顶角度数为60°或120°,D选项正确试题难度:二颗星知识点:等腰三角形的性质6. 在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.15答案:C解题思路:先根据题意做出图形,如图:设AD长为x,BC长为y则CD的长为x,AB为2x,则中线BD分三角形周长两部分为x+2x=3x,x+y从而应有两种情况,即:或解得或最后要检验:最短边+较短边>第三边,此题经过检验,均符合题意,所以底边长为7或11,答案为C试题难度:二颗星知识点:等腰三角形的性质7. 在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=( )A.70°B.50°C.70°或20°D.20°答案:C解题思路:根据题意作图:题干中说的是AB的中垂线与AC所在直线相交所得的锐角为50°,所以分两种情况:(1)如图与AC线段相交所得锐角为50°,即∠1=50°,则此时∠A=40°,∠B=∠C=(180°-40°)/2=70°(2)如图与AC线段所在直线相交所得锐角为50°,即∠1=50°,则此时∠BAE=40°,所以,∠B=∠C=(180°-140°)/2= 20°综上,C选项正确.试题难度:三颗星知识点:等腰三角形的性质8.等腰三角形的周长是16,其中两边之差为2,求它的腰长为()A.B.6D.6或答案:D解题思路:设腰长为x,底边长为y,因不知腰长与底边长的大小关系,注意分类讨论:(1)x>y时,此时有以下方程组成立:,解得:(2)x<y时,此时有以下方程组成立:,解得:验证:最短边+较短边>最长边,由4+4>6知第一种情况成立,即:腰长为6. 由+>知第二种情况也成立,即:腰长为. 综上:答案为D试题难度:三颗星知识点:等腰三角形的性质9.已知线段AB,以点A和点B为其中两个点作位置不同的等腰直角三角形,一共可以作( )A.2个B.4个C.6个D.8个答案:C解题思路:此题属于腰或底边不确定时,分两种情况:(1)线段AB为腰时,此时如图:有等腰直角三角形ABC,等腰直角三角形ABD,等腰直角三角形ABG,等腰直角三角形ABF (2)线段AB为底边时,此时如图:有等腰三角形ABI,有等腰三角形ABK 综上共有6个,从而答案为C试题难度:三颗星知识点:等腰三角形的性质10. 等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是()A.15B.15或7C.7D.11答案:C解题思路:此题属于腰或底边不确定时,分两种情况讨论(1)7为底时,腰=(29-7)/2=11 (2)7为腰时,底=29-7-7=15,此时7+7=14小于15不满足构成三角形的条件,舍去正确答案:C试题难度:二颗星知识点:等腰三角形的性质11. 已知一等腰三角形的两个内角的度数之比为1:4,求等腰三角形底角的度数()A.30°B.80°C.30°或80°D.90°答案:C解题思路:此题属于角不确定时(1)顶角与底角之比为1:4,由三角形内角和定理可得底角+底角+顶角=180°求得底角=80°(2)底角与顶角之比为1:4,同样可求得底角=30°正确答案:C试题难度:二颗星知识点:等腰三角形的性质12.等腰三角形一腰上的高与一边的夹角为50°,则该等腰三角形的底角度数()A.50°B.40°或20°或70°C.70°或20°D.40°或70°答案:B解题思路:此题属于高的位置关系不确定时,如图图一不符合实际,舍去正确答案:B试题难度:三颗星知识点:等腰三角形的性质。

“分类讨论”在等腰三角形中的应用

“分类讨论”在等腰三角形中的应用

“分类讨论”在等腰三角形中的应用在最近几年的全国各地中考试卷中,出现了以等腰三角形为背景,考查学生分类讨论能力的试题,为帮助同学们提高对此类问题的解题能力,现列举几例:一、要讨论谁是底边或腰长例1、已知一个等腰三角形的一边长为5,另一边长为7,则这个等腰三角形的周长()A. 12 B 17 C 19 D 17或19分析:题中并未说明5或7是底边,还是腰,应分情况讨论.解:当等腰三角形的一腰长为5时,此时7为底边,满足任意两边之和大于第三边,所以满足题意的三角形的周长为5+5+7=17;当等腰三角形的一腰长为7时,此时5为底边,也满足任意两边之和大于第三边,故满足题意的三角形的周长为7+7+5=19.综上知选D.例2、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,求等腰三角形的周长.分析:已知等腰三角形三边长,说明有两边相等,但不知谁是腰,必须分三种情况分析.解:(1)当3x-2=4x-3时,即x=1,则三边为1,1,4,由于1+1<4,所以不成立;(2)当3x-2=6-2x时,即85x=,则三边长为141714555、、,由于141417555+>,所以成立;(3)当4x-3=6-2x时,即x=1.5,则三边为2.5,3,3,由于2.5+3>3,所以成立.由上可知等腰三角形周长为9或8.5.说明:如果等腰三角形的腰长为A,底边长为B,则有222b b aa+<<.二、要讨论腰与底谁较大例3、一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长.分析:题目中的条件是一部分比另一部分长2cm,这里可能是腰比底长,也可能是底比腰长,应分两种情况讨论,因为是中线,周长分成的两部分之差就是腰长与底边长之差.解:不妨设腰长为x cm,底边长为y cm ,根据题意有(1)当腰长大于底边时,有2220x yx y-=⎧⎨+=⎩,解得221633x y==、;(2)当腰长小于底边时,有2220y xx y-=⎧⎨+=⎩,解得68x y==、;因为两种情形都符合三角形的三边关系定理,故腰长为223cm或6cm.说明:分类讨论后,要用三角形三边关系定理来判断所给三边能否构成三角形,从而避免造成错解.三、要讨论谁是底角或顶角例4、(1)等腰三角形的一个角是30°,求底角.(2)等腰三角形的一个角是100°,求底角.分析:等腰三角形的一个角可能指底角,也可能指顶角,须分情况讨论,但顶角可以是锐有、直角、钝角,而底角只能是锐角.解:(1)当30°是底角时,底角即为30°;当30°是顶角时,底角为180302︒-︒,即为75°;(2)因100°只能是顶角,所以底角是1801002︒-︒,即为40°.说明:等腰三角形的底角只能为锐角,不能为直角、钝角,但顶角可以为锐角、直角、钝角.四、要讨论高在三角形内部或外部例5、已知等腰三角形ABC中,BC边上的高12AD BC=,求∠BAC的度数.分析:题中未交代哪条边是底边,哪条边是腰,所以必须分三种情况讨论.解:(1)当BC为底边时,则D是BC中点,△ABC为等腰直角三角形∠BAC=90°;(2)当BC为腰,且高AD在△ABC内部时,1122AD BC AB==,∠B=30°,所以∠BAC=75°;(3)当BC为腰,且高AD在△ABC的外部时,1122AD BC AB==,∠DBA=30°;所以∠BAC=15°.综上所述∠BAC的度数可以为15°、75°、90°.说明:由于题目的图形未画出,因此考虑情况时要周全,不要出现漏解.试一试:1、在活动课上,小红已有两根长为4cm、8cm的小木棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒长是_____Cm.2、在平面直角坐标系中,已知点为A(-2,0),B(2,0)画出等腰三角形ABC(画出一个即可),并写出你画出的ABC的顶点C的坐标.3、下面是数学课堂的一个学习片段,,阅读后, 请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手说:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°” ,还有一些同学也提出了不同的看法……(1)假如你也在课堂中,你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受? (用一句话表示)“分类讨论”在等腰三角形中的应用当面临的问题不宜用一种方法处理或同一种形式叙述时,我们就要想到“分类讨论”——“分而治之,各个击破”.下面就让“分类讨论”思想在等腰三角形中“大放光彩”吧!例1 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A、60°B、120°C、60°或150°D、60°或120°分析:分两种情况,①当顶角是锐角时,如图1,∵∠ABD=30°,∠ADB=90°,∴∠A=60°;②当顶角是钝角时,如图2,∵∠ABD=30°,∠ADB=90°,∴∠BAD=60°,∴∠BAC =120°.所以顶角度数为60°或120°,所以选D .例2 等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为( ) A 、7 B 、3 C 、5或3 D 、5分析:长为3的边可能是底边,也可能是腰,因此有两种情况,①若长为3的边为底边,则该等腰三角形的底边长为3; ②若长为3的边为腰,则该等腰三角形的底边长为(13-3)÷2=5.故选C .说明:边长为3的边、可能是底边,不要只认为它是腰.例3 已知点A 和点B ,以点A 和点B 为其中两个点作位置不同的等腰直角三角形,一共可以作出( )A 、2个B 、4个C 、6个D 、8个分析:如图3,以线段AB 为底边可作出两个等腰直角三角形,以AB 为腰可作出4个等腰直角三角形,因此,共可作出6个等腰直角三角形,故选C . 说明:解题时容易忽视为腰长的情况,因此,分析问题一定要用心,充分考虑各种情形. 例4 如图4,在等边△ABC 所在的平面内求一点P ,使△P AB 、△PBC 、△P AC 都是的等腰三角形,你能找到几个这样的点?画图描述它们的位置.分析:如图4,△ABC 三条边的垂直平分线的交点1p 满足条件,分别以点A 、点B 为圆心,AB 为半径画圆弧,交AC 的垂直平分线于2p 、3p 两点,则△、、、AC P BC P AB P 222∆∆、、、AC P BC P AB P 333∆∆也是等腰三角形,同样可以在AB 、BC 的垂直平分线上再找到4个点P ,使△P AB 、△PBC 、△P AC 是等腰三角形.所以共有7个点.画出的图形如图4.说明:此题乍一看只能确定在△ABC 内一点,关键要注意三个等腰三角形的腰是哪两条边.分类讨论探究题既是中考热点又是考生易错点,克服方法是解题时常提醒自己:“还有其它情况吗?”切记!…图1B 图2 图3B。

等腰三角形的分类讨论

等腰三角形的分类讨论

等腰三角形的分类讨论模块一等腰三角形的分类讨论例1(1)等腰三角形的一边长为3,一边长为7,那么它的周长是。

(2)等腰三角形的一边长为4,周长为9,那么它的腰长是。

(3)已知等腰三角形一腰上的中线将它的周长分为6和12两部分,求此等腰三角形的腰长。

练习(1)已知一个等腰三角形两内角的度数之比为1:2,求这个等腰三角形顶角的度数。

(2)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为。

例2(1)若等腰三角形一腰上的高和另一腰的夹角为25°,求该三角形的底角的度数。

(2)(2016—2017武昌区八上期中第16题)已知△ABC是等腰三角形,由点A作BC边上的高恰好等于BC的一半,则∠BAC的度数为。

练习例3如图,在△ABC 中,∠ABC=90°,∠A=30°.将△ABC 绕B 点逆时针旋转α(0<α≤60°)角度后得到△A ’BC ’,A ’C ’与AC 交于点F ,与AB 交于点E ,连BF 。

当△BEF 为等腰三角时,α= 。

A模块二 两圆一中垂知识导航已知线段AB ,在平面上找一点C ,使△ABC 为等腰三角形。

图1 图2 图3AABB① 如图1,以A 为圆心,AB 为半径作圆,此圆上的所有点C 均满足AC=AB 。

② 如图2,以B 为圆心,BA 为半径作圆,此圆上的所有点C 均满足BC=BA 。

③ 如图3,作AB 的垂直平分线,此垂直平分线上的所有点C 均满足CA=CB 。

“两圆一中垂”上的所有点C 均满足△ABC 为等腰三角形,即满足“等腰”条件的C 点有无数个。

因此,题目会对C 点再加上另外一个限定条件----例如还限定C 点在坐标轴上或格点,这样,C 点的个数就只有几个了。

例4(2014—2016江岸区八上期末)如图:在4×4的网格中存在线段AB ,每格表示一个单位长度,并构建了平面直角坐标系。

在现有的网格中(包括网格的边界)存在一点P,点P 的横纵坐标都为整数,连接PA 、PB 后得到△PAB 为等腰三角形,则满足条件的点P 有 个。

八年级等腰三角形的分类讨论专题

八年级等腰三角形的分类讨论专题

专题一:等腰三角形中的分类讨论(一)角分类:顶角和底角+ 三角形内角和;外角1.已知一个等腰三角形两内角的度数之比为1:4,求顶角的度数。

2.一个等腰三角形的一个内角比另一个内角的2倍少30o,求这个三角形的三个内角的度数。

3.如果一个等腰三角形的一个外角等于100°,则该等腰三角形的底角的度数是.(二)边分类:底边和腰+ 三角形三边关系4.等腰三角形的两边分别是8,6,这个等腰三角形的周长为5.等腰三角形的两边分别是8,3,这个等腰三角形的周长为6.在等腰三角形ABC中,AB的长是AC的2倍,三角形的周长是40,则AB的长等于_______________.(三)中线分类7.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,求腰长和底长。

8.等腰三角形的底边长为6cm,一腰上的中线把这个三角形的周长分为两部分,这两部分之差是3cm,求这个等腰三角形的腰长(四)高、垂直平分线分类9.已知等腰三角形一腰上的高与另一腰的夹角为25°,求底角的度数10.在ΔABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____________11.(2018·哈尔滨中考)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数12.(2019·白银中考)定义:等腰三角形的顶角与其一个底角的度数的比值b 称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=13.(2018·绍兴中考)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题。

与等腰三角形有关的分类讨论问题

与等腰三角形有关的分类讨论问题

与等腰三角形有关的分类讨论是一种特殊而又十分重要的三角形,就是因为这种特殊性,在具体处理问题时往往又会出现错误,因此,同学们在求解有关等腰三角形的问题时一定要注意分类讨论.一:与角有关的分类讨论例1、已知等腰三角形的一个内角为75°则其顶角为________分析:对于一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解.二:与边有关的分类讨论例2、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________.分析:对于底和腰不等的等腰三角形,若条件中没有明确哪是底哪是腰时,应在符合三角形三边关系的前提下分类讨论.三:与高有关的分类讨论例3、一等腰三角形的一腰上的高与另一腰成35°,则此等腰三角形的顶角是________度.分析:因不知此等腰三角形的顶角是钝角、直角、锐角,应分情况讨论.解:(1)当顶角为锐角时,(如图1)则顶角为90°-35°=55°.(2)当顶角为直角时,不符合题意(如图2),应舍去.(3)当顶角为钝角时(如图3),顶角为180°-(90°-35°)=125°故此等腰三角形的顶角为55°或125°.小结:此题涉及了顶角有“钝角、直角、锐角”之分的分类讨论,特别是当顶角为钝角时的情况容易漏解,请同学们注意体会.30m的草皮铺设一块一边长为10m的等腰三角形绿地,例4、美化环境,计划在某小区内用2请你求出这个等腰三角形绿地的另两边长.分析:例5、在直角坐标系中,O 为坐标原点,已知A (-2,2), 试在x 轴上确定点P ,使△AOP 为等腰三角形, 求符合条件的点P 的坐标 练习:1、等腰三角形一腰上的高与另一腰所成的夹角为45°,这个等腰三角形的顶角的度数_____度. 归纳:三角形的高是由三角形的形状决定的,对于等腰三角形,当顶角是锐角时,腰上的高在三角形内;当顶角是钝角时,腰上的高在三角形外.2、如图,在平面直角坐标系xoy 中,分别平行x 、y 轴的两直 线a 、b 相交于点A (3,4).连接OA ,若在直线a 上存在点P , 使△AOP 是等腰三角形.那么所有满足条件的点P 的坐标 是3、练习如图,在网格图中找格点M ,使△MPQ 为等腰三角形.并画出相应的△MPQ 的对称轴.baxAOA (-2,2)yxoPQPQPOCBA4、变式这样的点M 共有_________个5、如图,△ABC 是等腰直角三角形,∠BAC =90°,点D 是边BC 上一点,△EAD 是等腰直角三角形,∠EAD =90°,ED 与AC 相交于点F , 联结CE . (1)说明∠B =∠ACE 的理由;(2)若△CFE 是等腰三角形,请求出∠BAD 的度数.6、已知如图点O 是等边三角形ABC 内一点,∠AOB =110°, 将点O 绕点A 按顺时针方向旋转60°到点P ,联结OP 、CP (1)求证:△AOP 是等边三角形(2)若△COP 是等腰三角形,求 ∠BOC 的度数。

专题训练等腰三角形中的分类讨论

专题训练等腰三角形中的分类讨论

专题复习——等腰三角形中的分类讨论例1. 已知等腰△ABC中,有一个内角为40o,则另两个内角分别为________________.例2. 在△ABC中,∠A的外角等于110°,△ABC是等腰三角形,那么∠B=。

例3.等腰三角形两内角的度数比为2∶1,则顶角为。

例1.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是例2. 等腰三角形的周长为22 cm,其中一边的长是8 cm,则其余两边长分别为_________.例3. 一等腰三角形的周长是25cm,作某一腰上的中线分得两个三角形的周长一个比另一个长5cm,则腰长是例1. 等腰三角形一腰上的高等于腰长的一半,它的底角为例2. 等腰三角形一腰上的高与另一腰的夹角等于20 ,则等腰三角形的顶角度数为例1. 如图,点B在直线L上,点A在直线L外,在直线L上找点C,使得△ABC为等腰三角形。

(要求保留作图痕迹,写清点C的个数)LB例2.在直角坐标系中,O点为坐标原点,A(2,-4),动点B在坐标轴上。

则满足△OAB为等腰三角形的有B点共有个例3. P为直线1:32l y x A=-上一点,(2,0),求使△PAO为等腰三角形的点P的坐标.等腰三角形中的分类讨论练习姓名:日期:指导老师:侯尧等腰三角形是一种特殊的三角形,它除了具有一般三角形的基本性质以外,还具有许多独特的性质,最主要的体现就是它的两底角相等,两腰相等,正是由于具有这两个相等,所以在解等腰三角形的有关题目时必须全面思考,分类讨论,以防漏解。

下面就常见题型举例说明如下:一、角不确定时需分类讨论1、若等腰三角形的一个角为40°,则其他两个角分别为若等腰三角形的一个角为100°,则其他两个角分别为二、边不确定时需分类讨论2、等腰三角形一边长是10cm,另一边长是6cm,则它的周长是等腰三角形的两边长分别是9cm和4cm,则它的周长是等腰三角形周长是20cm,一边长为8cm,则其他两边长分别是等腰三角形周长是20cm,一边长为4cm,则其他两边长分别是等腰三角形周长是13,其中一边长为3,则该等腰三角形的底边长为三、高不确定时需分类讨论3、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为等腰三角形一腰上的高与底边的夹角为30°,则顶角的度数为等腰三角形一腰上的高与底边的夹角等于顶角的若等腰三角形一腰上的高等于腰长的一半,则底角的度数为四、其它(1)等腰三角形一腰上的中线把该三角形的周长分成12cm和15cm的两部分,求三角形各边的长(2)等腰三角形一腰上的中线把该三角形的周长分成12cm和21cm两部分,求三角形的三边长(3)一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长5、已知点A和点B,以点A和点B为其中两个点作位置不同的等腰三角形,一共可以作个6、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,求等腰三角形的周长7、如图,在等边ΔABC所在的平面内求一点P,使ΔPAB、ΔPBC、ΔPAC都是等腰三角形,你能找到几个这样的点?画图描述他们的位置。

八年级数学等腰三角形中的分类讨论专项练习

八年级数学等腰三角形中的分类讨论专项练习

八年级数学等腰三角形中的分类讨论专项练习类型一:遇角需讨论1.若等腰三角形的一个外角等于110°则底角的度数为()A.70°或40° B.40°或55° C.55°或70° D.70°2.已知等腰三角形一腰上的高线与另一腰的夹角为50°,那么这个等腰三角形的底角的度数为()A.15°或75° B.70° C.20° D.70°或20°3.若等腰三角形一腰上的高与底边的夹角为70°,则顶角的度数为___________________.4.数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.5.【定义】数学课上,陈老师对我们说:如果1条线段将一个三角形分成2个等腰三角形,那么这条线段就称为这个三角形的“好线”;如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】(1)如图①,在△ABC中,∠A=27°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数;(2)如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.【应用】(3)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形中最大内角的所有可能值为____________________________________________;(4)在△ABC中,∠C=27°,AD和DE分别是△ABC的“好好线”,点D在边BC上,点E 在边AB上,且AD=DC,BE=DE,请你根据题意画出示意图,并求∠B的度数.类型二:遇边需讨论6.若一个等腰三角形的一边长为6cm,周长为30cm,则它的另两边长分别为()A.6cm.,18 cm B.12 cm,12 cmC.6 cm,12 cm D.6 cm,18 cm 或12cm,12 cm a,相交于点O,∠1=50°,点A在直线a上,直线b存在点B,使以点O,7.如图,直线bA,B为顶点的三角形是等腰三角形,这样的点B有()A.1个B.2个C.3个D.4个8.如图,有一个三角形纸片ABC,∠A=80°,D是边AC上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是_________________________.9.在等腰三角形ABC中,如果过顶角的顶点A的一条直线AD将△ABC分割成两个等腰三角形,那么∠BAC=_________________________.10.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:画出3种不同的示意图,并在所画等腰三角形长为3的边上标注数字3)类型三:遇中线需讨论11.已知等腰三角形的底边长为10cm,一腰上的中线把这个等腰三角形的周长分为两部分,其中一部分比另一部分长5cm,那么这个等腰三角形的腰长为____________________cm.12.已知等腰三角形一腰上的中线将三角形的周长分成了21和27两个部分,求等腰三角形的底边长和腰长.参考答案CD140°5、6、B7、D 8、15。

专题08 等腰三角形中的分类讨论模型(解析版)

专题08 等腰三角形中的分类讨论模型(解析版)

专题08等腰三角形中的分类讨论模型模型1、等腰三角形中的分类讨论:【知识储备】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。

1)无图需分类讨论①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论;③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。

2)“两定一动”等腰三角形存在性问题:即:如图:已知A ,B 两点是定点,找一点C 构成等腰ABC △方法:两圆一线具体图解:①当AC AB =时,以点A 为圆心,AB 长为半径作⊙A ,点C 在⊙A 上(B ,C 除外)②当BC AB =时,以点B 为圆心,AB 长为半径作⊙B ,点C 在⊙B 上(A ,E 除外)③当BC AC =时,作AB 的中垂线,点C 在该中垂线上(D 除外)例1.(2023秋·河北张家口·八年级统考期末)ABC 是等腰三角形,5,7AB AC ==,则ABC 的周长为()A .12B .12或17C .14或19D .17或19【答案】D【分析】根据等腰三角形的定义分两种情况:当腰为5与腰为7时,即可得到答案.【详解】解:当ABC 的腰为5时,ABC 的周长55717++=;当ABC 的腰为7时,ABC 的周长57719++=.故选:D .【点睛】本题主要考查等腰三角形的定义,掌握等腰三角形的定义是解题的关键.例2.(2023春·四川巴中·七年级统考期末)等腰三角形的周长为32cm ,一边长为8cm ,则其它两边长是()∴150∠=︒,即顶角为150︒;故答案为:30︒或150︒.BAC【点睛】本题考查等腰三角形的性质,注意掌握分类讨论思想和数形结合思想的应用是解题的关键.例5.(2023秋·江苏·八年级专题练习)在如图所示的网格中,在格点上找一点P,使ABP为等腰三角形,则点P有()A.6个B.7个C.8个D.9个【答案】C【分析】分三种情况讨论:以AB为腰,点A为顶角顶点;以AB为腰,点B为顶角顶点;以AB为底.【详解】解:如图:如图,以AB为腰,点A为顶角顶点的等腰三角形有5个;以AB为腰,点B为顶角顶点的等腰三角形有3个;不存在以AB为底的等腰ABP,所以合计8个.故选:C.【点睛】本题考查等腰三角形的定义,网格图中确定线段长度;在等腰三角形腰、底边待定的情况下,分类讨论是解题的关键.例6.(2023·重庆市八年级期中)如图1,一副直角三角板△ABC和△DEF,∠BAC=∠EDF=90°,∠B=45°,∠F=30°,点B、D、C、F在同一直线上,点A在DE上.如图2,△ABC固定不动,将△EDF绕点D逆时针旋转α(0°<α<135°)得△E′DF',当直线E′F′与直线AC、BC所围成的三角形为等腰三角形时,α的大小为___.【答案】7.5°或75°或97.5°或120°【分析】设直线E′F′与直线AC、BC分别交于点P、Q,根据△CPQ为等腰三角形,分三种情况:①当∠PCQ 为顶角时,∠CPQ=∠CQP,如图1,可求得α=7.5°;如图2,△CPQ为等腰三角形中,∠PCQ为顶角,可求得α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,可得∠CPQ=90°,如图3,进而求得α=90°-15°=75°;③如图4,当∠CQP为顶角时,∠CPQ=∠PCQ=45°,可得∠CQP=90°,进而求得α=∠EDE′=∠EDQ+∠QDE′=90°+30°=120°.【详解】解:设直线E′F′与直线AC、BC分别交于点P、Q,∵△CPQ为等腰三角形,∴∠PCQ为顶角或∠CPQ为顶角或∠CQP为顶角,①当∠PCQ为顶角时,∠CPQ=∠CQP,如图1,∵∠BAC=∠EDF=90°,∠B=45°,∠F=30°,∴∠E′DF′=90°,∠ACB=45°,∠E′F′D=30°,∵∠CPQ+∠CQP=∠ACB=45°,∴∠CQP=22.5°,∵∠E′F′D=∠CQP+∠F′DQ,∴∠F′DQ=∠E′F′D-∠CQP=30°-22.5°=7.5°,∴α=7.5°;如图2,∵△CPQ为等腰三角形中,∠PCQ为顶角,∴∠CPQ=∠CQP=67.5°,∵∠E′DF′=90°,∠F′=30°,∴∠E′=60°,∴∠E′DQ=∠CQP-∠E′=67.5°-60°=7.5°,∴α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,∴∠CPQ=90°,如图3,∵∠DE ′F ′=∠CQP +∠QDE ′,∴∠QDE ′=∠DE ′F ′-∠CQP =60°-45°=15°,∴α=90°-15°=75°;③如图4,当∠CQP 为顶角时,∠CPQ =∠PCQ =45°,∴∠CQP =90°,∴∠QDF ′=90°-∠DF ′E ′=60°,∴∠QDE ′=∠E ′DF ′-∠QDF ′=30°,∴α=∠EDE ′=∠EDQ +∠QDE ′=90°+30°=120°;综上所述,α的大小为7.5°或75°或97.5°或120°.故答案为:7.5°或75°或97.5°或120°.【点睛】本题考查了等腰三角形性质,直角三角形性质,旋转的性质,三角形内角和定理等,解题关键是运用数形结合思想和分类讨论思想思考解决问题.例7.(2022秋·江苏徐州·八年级校考期中)如图,70AOB ∠=︒,点C 是边OB 上的一个定点,点P 在角的另一边OA 上运动,当COP 是等腰三角形,OCP ∠=°.【答案】40或70或55【分析】分三种情况讨论:①当OC PC =,②当PO PC =,③当OP OC =,根据等腰三角形的性质以及三角形内角和定理即可得到结论.【详解】解:如图,(1)若点P在BC上,且满足PA PB=,求此时(3)在运动过程中,当t为何值时,ACP△【答案】(1)6516(2)316或52(3)54或32或90ACB∠=︒,5cmAB=在Rt ACP中,由勾股定理得()22234x x∴+-=,解得BP 平分ABC ∠,C ∠在BCP 与BDP △中,∵A B ∠∠=︒+90,90ACP BCP ∠+∠=︒,B BCP ∴∠=∠,CP BP AP ∴==,P ∴是AB 的中点,即15cm 22AP AB ==,524AP t ∴=.②如图,当P 在AB 上且3cm AP CA ==时,∴322AP t ==.③如图,当P 在AB 上且(1)求直线AB 的表达式和点D 的坐标;(2)横坐标为m 的点P 在线段AB 上(不与点A x 轴的平行线交AD 于点E ,设PE 的长为()0y y ≠,求y 与m 之间的函数关系式并直接写出相应的范围;(3)在(2)的条件下,在x 轴上是否存在点F ,使PEF !为等腰直角三角形?若存在求出点若不存在,请说明理由.【答案】(1)()450y x D =-+-,,(2)()33242y m m =+-<<,的运用,解答本题时求出函数的解析式是关键.课后专项训练A.120︒B.75︒【答案】C【答案】D【分析】分为AB AC =、BC BA =,CB CA =三种情况画图判断即可.【详解】解:如图所示:当AB AC =时,符合条件的点有2个;当BC BA =时,符合条件的点有1个;当CB CA =,即当点C 在AB 的垂直平分线上时,符合条件的点有一个.故符合条件的点C 共有4个.故选:D .【点睛】本题考查了等腰三角形的定义,线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.4.(2023·江苏八年级期中)如图,在正方形网格中,每个小正方形的边长都为1,点A 、B 都是格点(小正方形的顶点叫做格点),若△ABC 为等腰三角形,且△ABC 的面积为1,则满足条件的格点C 有()A .0个B .2个C .4个D .8个【答案】C 【分析】根据等腰三角形的性质和三角形的面积解答即可.【详解】解:如图所示:∵△ABC 为等腰三角形,且△ABC 的面积为1,∴满足条件的格点C 有4个,故选C .【点睛】本题考查了等腰三角形的判定;熟练掌握等腰三角形的性质和三角形的面积是解决问题的关键A.3【答案】D故选:满足条件的点M 的个数为2.故选A .【点睛】本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.7.(2022·安徽淮北·九年级阶段练习)如图,在ABC 中,90C ∠=︒,8BC =,6AC =.若点P 为直线BC 上一点,且ABP △为等腰三角形,则符合条件的点P 有().A .1个B .2个C .3个D .4个【点睛】本题考查了等腰三角形的判定和勾股定理的应用,关键要用分类讨论的思想.8.(2022·黑龙江·哈尔滨八年级阶段练习)如图,在平面直角坐标系中,点A 的坐标为()1,1,在x 轴上确定点P ,使AOP 为等腰三角形,则符合条件的点P 有()A.2个B.3个C.4个D.5个【答案】C【分析】先计算OA的长,再以OA为腰或底分别讨论,进而得出答案.【详解】解:如图,22112OA=+=,当AO=OP1,AO=OP3时,P1(﹣2,0),P3(2,0),当AP2=OP2时,P2(1,0),当AO=AP4时,P4(2,0),故符合条件的点有4个.故选:C.【点睛】本题以平面直角坐标系为载体,主要考查了勾股定理和等腰三角形的定义,属于常考题型,全面分类、掌握解答的方法是关键.9.(2022·四川广元·八年级期末)如图,在Rt△ABC中,∠ACB=90°,∠CAB=36°,以C为原点,C所在直线为y轴,BC所在直线为x轴建立平面直角坐标系,在坐标轴上取一点M使△MAB为等腰三角形,符合条件的M点有()A.6个B.7个C.8个D.9个∵BD AC ⊥,∴90ADB ∠=︒,∵∵BD AC ⊥,∴90ADB ∠=︒,∵ABD ∠11【分析】根据等腰三角形一腰上的中线将其周长分别为12和9两部分得到底和要的差是1293-=,再根据周长列式求解即可得到答案;【详解】解:∵等腰三角形一腰上的中线将其周长分别为12和9两部分,∴腰与底的差为:1293-=,①当底边比腰长时,设腰为x ,则底为3x +,由题意可得,32129x x ++=+,解得:6x =,3639x +=+=,②当腰比底边长时,设腰为x ,则底为3x -,由题意可得,32129x x -+=+,解得:8x =,3835x -=-=,故答案为:6,9或8,5.【点睛】本题主要考查三角形中线有关计算,解题的关键是得到腰长与底边之差再分类讨论.14.(2022·黑龙江哈尔滨·八年级期末)在平面直角坐标系xOy 中,已知A (1,2),在y 轴确定点P ,使△AOP 为等腰三角形,则符合条件的点P 有____个.【答案】4.【分析】根据等腰三角形的判定得出可能OA 为底,可能OA 为腰两种情况,依此即可得出答案.【详解】①以A 为圆心,以OA 为半径作圆,此时交y 轴于1个点(O 除外);②以O 为圆心,以OA 为半径作圆,此时交y 轴于2个点;③作线段AO 的垂直平分线,此时交y 轴于1个点;共1+2+1=4.故答案为:4.【点睛】本题考查了等腰三角形的判定的应用,有两边相等的三角形是等腰三角形,注意要进行分类讨论.15.(2022秋·江苏盐城·八年级校考阶段练习)如图,ABC 中,90ACB ∠=︒,10cm AB =,8cm AC =,若点P 从点A 出发,以每秒1cm 的速度沿折线A C B A ---运动,设运动时间为t 秒()0t >,当点P 在边AB 上,【答案】19或20或21.2【分析】利用等腰三角形的性质,依次画图,分类讨论即可.【详解】∵90ACB ∠=当P 在BA 上时,①②当6cm BC CP ==时,过CD PB ⊥于点D ,如图,∴12BD DP BP ==,∵12ABC S AC BC CD ==V g g ,∴ 4.8AC BC CD AB == ,在Rt CBD △中,由勾股定理得:()2226 4.8 3.6cm BD BC CD =--=,∴)22 3.6cm BP BD ==⨯=,∴(()867.221.2s t =++,【答案】5或8【分析】ABP 是以AB 为腰的等腰三角形时,分两种情况:出BP 的长度,继而可求得t 值.【详解】解:在Rt ABC △中,∠②当AB AP =时,28cm 8BP BC t ===,故答案为:5或8.【点睛】本题考查了勾股定理以及等腰三角形的知识,解答本题的关键是掌握等腰三角形的性质,以及分情况讨论,注意不要漏解.15.(2022·河南平顶山·八年级期末)如图,ABC 中,90C ∠=︒,6BC =,ABC ∠的平分线与线段AC 交于点D ,且有AD BD =,点E 是线段AB 上的动点(与A 、B 不重合),连接DE ,当BDE 是等腰三角形时,则BE 的长为___________.【答案】4或4【分析】现根据已知条件得出30CBD ABD BAD ∠=∠=∠=︒,再根据BC =6,分别求出AB 、AC 、BD 、AD 、(2)当BE =DE ,如图:∵BE =DE ∠EDB =∠ABD =30°,∴∠AED =∠EDB ∴∠ADE =180°-∠AED -∠A =180°-60°-30°=90°,∴ ADE 为直角三角形,又∵30A ∠=︒且AD =43,∴DE ,∴BE =4;(3)当BD =DE ,时,点E 与A 重合,不符合题意;综上所述,BE 为4或43.故答案为:4或43.【点睛】本题考查了等腰三角形的性质,直角三角形的性质和判定,勾股定理的应用,16.(2023·上虞市初二月考)在如图所示的三角形中,∠A =30°,点P 和点Q 分别是边AC 和BC 上的两个动点,分别连接BP 和PQ ,把△ABC 分割成三个三角形△ABP ,△BPQ ,△PQC ,若分割成的这三个三角形都是等腰三角形,则∠C 有可能的值有________个.【答案】7【分析】①当AB=AP ,BQ=PQ ,CP=CQ 时;②当AB=AP ,BP=BQ ,PQ=QC 时;③当APB ,PB=BQ ,PQ=CQ 时;④AP=PB,PB=PQ,PQ=QC时;根据等腰三角形的性质和三角形的内角和即可得到结论.【解析】解:如图所示,共有9种情况,∠C的度数有7个,分别为80°,40°,35°,20°,25°,100°,50°.①当AB=AP,BQ=PQ,CP=CQ时;②当AB=AP,BP=BQ,PQ=QC时,③当AP=AB,PQ=CQ,PB=PQ时.④当AP=AB,PQ=PC,BQ=PQ时,⑤当AP=BP,CP=CQ,QB=PQ时,⑥当AP=PB,PB=BQ,PQ=CQ时;⑦AP=PB,PB=PQ,PQ=QC时.⑧AP=PB,QB=PQ,PQ=CC时.⑨BP=AB,PQ=BQ,PQ=PC时.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.17.(2022·浙江·八年级专题练习)已知:如图,线段AC和射线AB有公共端点A.求作:点P,使点P在射线AB上,且ACP为等腰三角形.(利用无刻度的直尺和圆规作出所有符合条件的点P,不写作法,保留作图痕迹)【答案】见解析.【分析】分别作出①AP=CP;②AP=AC;③AC=CP即可.【详解】如图所示,点1P、2P、3P即为所求.△是等腰三角形的三种情况,避免漏答案.【点睛】本题考查尺规作图-作等腰三角形.特别注意ACP18.(2022·山东·周村二中八年级期中)在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.(1)如图,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).(2)如图,在△ABC中,∠A=80°,AB=AC,若点P是△ABC的巧妙点,则符合条件的点P一共有几个?请直接写出每种情况下∠BPC的度数.(3)等边三角形的巧妙点的个数有()A.2个B.6个C.10个D.12个【答案】(1)见解析;(2)6个;∠BPC的度数为40°或160°或140°或80°;(3)C.综上所述:∠BPC的度数40°或80°或140°或160°.(3)如图所示,分别以等边三角形的三条边作其对应边的垂直平分线,再分别以等边三角形的三个顶点为圆心,等边三角形的边长为半径画圆,分别与三条边的垂直平分线的交点和三条垂直平分线的交点即为等边三角形的巧妙点,共有10个,故选:C.【点睛】本题主要考查垂直平分线的性质、等腰三角形的性质,构建等腰三角形的作法:定顶点,定圆心;定腰,定半径;以及等边三角形的性质等.熟练掌握相关性质是解题关键.19.(2022·黑龙江密山·八年级期末)如图,直线MN与x轴、y轴分别相交于B、A两点,()2-+-=.(1)求A,B两点的坐标;(2)若点O到AB的距离为24OA OB6805,求线段AB的长;(3)在(2)的条件下,x轴上是否存在点P,使△ABP是以AB为腰的等腰三角形,若存在请直接写出满足条件的点P的坐标.【答案】(1)A (0,6),B (8,0);(2)AB =10;(3)存在,(-8,0)、(-2,0)、(18,0).【分析】(1)由非负数的性质知OA =6,OB =8,据此可得点A 和点B 的坐标;(2)根据1122OAB S AB d OA OB == △求解可得;(3)先设点P (a ,0),根据A (0,6),B (8,0)得()22222226810100PA a PB a AB =+=-==,,,再分PA =AB 和AB =PB 两种情况分别求解可得.(1)()2680OA OB -+-= ∴O −6=0O −8=068OA OB ∴==则A 点的坐标为A (0,6),B 点的坐标为(8,0)(2)1122OAB S AB d OA OB == △,245d =6810245OA OB AB d ⨯∴=== (3)存在点P ,使△ABP 是以AB 为腰的等腰三角形设点P (a ,0),根据A (0,6),B (8,0)得()22222226810100PA a PB a AB =+=-==,,①若PA =AB ,则22PA AB =,即226100a +=,解得a =8(舍)或a =−8,此时点P (−8,0);②若AB =PB ,即22AB PB =,即()21008a =-解得a =18或a =−2,此时点P (18,0)或(−2,0);综上,存在点P ,使△ABP 使以AB 为腰的等腰三角形,其坐标为(−8,0)或(18,0)或(−2,0).【点睛】本题考察了非负数的性质、直角三角形的面积求法、勾股定理及等腰三角形的性质,分类讨论思想的运用是解决第3问的关键20.(2022秋·四川成都·八年级校考期中)如图,四边形OABC 是一张长方形纸片,将其放在平面直角坐标系中,使得点O 与坐标原点重合,点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为()3,4,D 的坐标为()2,4,现将纸片沿过D 点的直线折叠,使顶点C 落在线段AB 上的点F 处,折痕与y 轴的交点记为E .。

等腰三角形中的分类讨论(含答案)

等腰三角形中的分类讨论(含答案)

等腰三角形中的分类讨论
类型1对顶角和底角的分类讨论
对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.
1.等腰三角形中有一个角为52°,它的一条腰上的高与底边的夹角为多少度?
解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°;
②若已知的这个角为底角,则一腰上的高与底边的夹角为38°.
故所求的一腰上的高与底边的夹角为26°或38°.
类型2对腰长和底长的分类讨论
在解答已知等腰三角形边长的问题时,当题目条件中没有明确说明哪条边是“腰”、哪条边是“底”时,往往要进行分类讨论.判定的依据是:三角形的任意两边之和大于第三边;两边之差小于第三边.
2.(1)已知等腰三角形的一边长等于6 cm,一边长等于7 cm,求它的周长;
(2)等腰三角形的一边长等于8 cm,周长等于30 cm,求其他两边的长.
解:(1)周长为19 cm或20 cm.
(2)其他两边的长为8 cm,14 cm或11 cm,11 cm.
1。

2023年九年级中考数学分类讨论专题之等腰三角形中的分类讨论思想专练

2023年九年级中考数学分类讨论专题之等腰三角形中的分类讨论思想专练

中考数学分类讨论专题之等腰三角形中的分类讨论思想专练一.选择题(共10小题)1.已知一个等腰三角形的三边长分别为3x-2,4x-3,7,则这个等腰三角形的周长为()A.23 B.19.5或23C.9或23 D.9或19.5或232.已知方程x 2 -6x+8=0的根,分别是等腰三角形的底边和腰长,则该三角形的周长为()A.6 B.10 C.8 D.124.已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定5.等腰△ABC的一边长为4,另外两边的长是关于x的方程x 2 -10x+m=0的两个实数根,则m的值是()A.24 B.25 C.26 D.24或25为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.在△ABC中,∠A的相邻外角是110°,要使△ABC为等腰三角形,则底角∠B的度数是()A.70 B.55°C.70°或55°D.60°8.等腰三角形的一个外角等于100°,则这个三角形的三个内角分别为()A.80°、80°、20°B.80°、50°、50°C.80°、80°、20°或80°、50°、50°D.以上答案都不对9.如图,点A、B、P在⊙O上,且∠APB=50°.若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有()A.1个B.2个C.3个D.4个10.等腰三角形的一个外角等于100°,则这个三角形的三个内角分别是()A.50°,50°,50°B.80°,80°,20°C.100°,100°,20°D.50°,50°,80°或80°,80°,20°二.填空题(共5小题)11.等腰三角形的三边长分别为m-2,2m+1,8,则等腰三角形的周长为________ .12.等腰三角形的一条边长为4cm,另一条边长为6cm,则它的周长是________ .13.如图,在矩形ABCD中,AB=4,BC=10,点P在BC上,且PB=3,以AP为腰作等腰三角形APM,使得点M落在矩形ABCD边上,则CM=________ .14.如图,在Rt△ABC中,∠C=90°,点E、F分别是边AB、AC上一点,且AF=EF.若∠CFE=72°,则∠B= ________ °.15.如图,在△ABC中,∠ACB=90°,AC=9,BC=5,点P为△ABC内一动点.过点P作PD⊥AC于点且S △PBC = 152,则D,交AB于点E.若△BCP为等腰三角形,PD的长为________ .三.解答题(共5小题)16.如图矩形ABCD中,AB=2,AD=4,点P是边AD上一点,联结BP,过点P作PE⊥BP,交DC于E点,将△ABP沿直线PE翻折,点B落在点B′处,若△B′PD为等腰三角形,求AP的长.17.(1)已知4a 2 -a-4=0,求代数式(2a-3)(2a+3)+(a-1) 2 +(1+a)(2-a)的值;(2)已知a,b满足a 2 +b 2 -10a-4b+29=0,且a,b为等腰三角形△ABC的边长.求△ABC的周长.18.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)当点P在线段AB上时,BP= ________cm.(用含t的代数式表示)(2)若△BCP为直角三角形,则t的取值范围是________ .(3)若△BCP为等腰三角形,直接写出t的值.(4)另有一动点Q从点C开始,按B→A→C→B的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.请直接写出t为何值时,直线PQ把△ABC的周长分成相等的两部分.19.如图,矩形ABCD,点P是对角线AC上的动点(不与A、C重合),连接PB,作PE⊥PB交射线DC于点E.已知AD=6,AB=8.设AP的长为x.(1)如图1,PM⊥AB于点M,交CD于点N.求证:△BMP∽△PNE.是否是定值?若是,请求出这个值;若不是,请说明理(2)试探究:PEPB由.(3)当△PCE是等腰三角形时,请求出所有x的值.20.如图,CD是△ABC的高,CD=8,AD=4,BD=3,点P是BC边上的一个动点(与B、C不重合),PE⊥AB于点E,DF=DE,FQ⊥AB于点F,交AC于点Q,连接QE.(1)若点P是BC的中点,则QE= ________ ;(2)在点P的运动过程中,①EF+FQ的值为________ ;②当点P运动到何处时,线段QE最小?最小值是多少?③当△AQE是等腰三角形时,求BE的长.。

【初中数学】人教版八年级上册专题训练(四) 等腰三角形问题中的分类讨论思想(练习题)

【初中数学】人教版八年级上册专题训练(四) 等腰三角形问题中的分类讨论思想(练习题)

人教版八年级上册专题训练(四)等腰三角形问题中的分类讨论思想(159)1.已知等腰三角形一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.2.已知一个等腰三角形一边上的高等于这边的一半,求这个三角形顶角的度数.3.等腰三角形的一个外角是60∘,则它的顶角的度数是4.若等腰三角形的周长为16,其中一边长为6,则另两边长为.5.若等腰三角形的一个外角等于110∘,则这个三角形的三个角分别为6.若实数x,y满足|x−4|+√y−8=0,则以x,y的值为边长的等腰三角形的周长为.7.等腰三角形一腰上的高与另一腰的夹角为48∘,则该等腰三角形的底角的度数为.8.在等腰三角形中,马彪同学做了如下探究:已知一个角是60∘,则另两个角是唯一确定的(60∘,60∘);已知一个角是90∘,则另两个角也是唯一确定的(45∘,45∘);已知一个角是120∘,则另两个角也是唯一确定的(30∘,30∘).由此马彪同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数是唯一确定的.马彪同学的结论是的(填“正确”或“错误”).9.等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若三角形ABC的边长为1,AE=2,求线段CD的长.10.一个等腰三角形的一个内角比另一个内角的2倍少30∘,求这个三角形的三个内角的度数.11.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12B.9C.12或9D.9或712.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A,B,请在此点阵图中找一个阵点C,使得以点A,B,C为顶点的三角形是等腰三角形,则符合条件的点C有()A.3个B.4个C.5个D.6个13.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A.1个B.2个C.3个D.4个参考答案1.【答案】:如图,在△ABC中,AB=AC,且AD=BD,设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则{x2+x=15,x 2+y=12,解得{x=10,y=7.(2)当AC+AD=12,BC+BD=15时,有{x2+x=12,x2+y=15,解得{x=8,y=11.且这两种情况下三角形的三边都符合三角形的三边关系,故这个三角形的三边长为10,10,7或8,8,11【解析】:解决此题,注意进行分类讨论.2.【答案】:(1)若这一边为底边,如图①,AB=AC,AD⊥BC,AD=BD=CD,则△ABD和△ACD均为等腰直角三角形,所以∠BAC=45∘+45∘=90∘;(2)若这一边为腰,①当顶角为锐角时,如图②,AB=AC,CD⊥AB,CD=12AB=12AC,则顶角∠A=30∘;②当顶角为钝角时,如图③,AB=AC,CD⊥AB交BA的延长线于点D,因为CD=12AB=1AC,2所以∠DAC=30∘,所以∠BAC=150∘.综上所述,这个等腰三角形的顶角度数为90∘或30∘或150∘.【解析】:解决此题,注意进行分类讨论.3.【答案】:120∘【解析】:等腰三角形的一个外角为60∘,则与它相邻的内角为120∘.因为三角形内角和为180∘,如果这个内角为底角,内角和将超过180∘,所以120∘的角只可能是顶角.故答案为120∘4.【答案】:6,4或5,5【解析】:若6为腰长,则底边长为4,三边长6,6,4可以构成三角形;若6为底边长,则腰长为5,三边长5,5,6也可以构成三角形.故答案为6,4或5,55.【答案】:70∘,55∘,55∘或70∘,70∘,40∘【解析】:当顶角的外角是110∘时,这个三角形的三个角为70∘,55∘,55∘;当底角的外角是110∘时,这个三角形的三个角为70∘,70∘,40∘.所以这个三角形的三个角为70∘,55∘,55∘或70∘,70∘,40∘6.【答案】:20【解析】:由|x−4|+√y−8=0,x−4≥0,√y−8≥0,可得x−4=0,√y−8=0,求解可得x=4,y=8,于是此等腰三角形的三边长为4,4,8或8,8,4.由于4+4=8,利用三角形的三边关系,可得4,4,8不符合题意,同理可得8,8,4符合题意,故等腰三角形的周长为8+8+4=207.【答案】:69∘或21∘【解析】:分两种情况讨论:①若∠A<90∘,如图(a)所示:∵BD⊥AC,∴∠A+∠ABD=90∘.∵∠ABD=48∘,∴∠A=90∘−48∘=42∘.∵AB=AC,∴∠ABC=∠C=12×(180∘−42∘)=69∘.②若∠A>90∘,如图(b)所示:同①可得:∠DAB=90∘−48∘=42∘,∴∠BAC=180∘−42∘=138∘.∵AB=AC,∴∠ABC=∠C=12×(180∘−138∘)=21∘.综上所述,等腰三角形底角的度数为69∘或21∘8.【答案】:错误【解析】:举一个反例即可.如当等腰三角形一个角的度数是50∘时,若这个50∘的角为顶角,则另两个角是65∘,65∘;若这个50∘的角是底角,则另一个底角为50∘,顶角为80∘.综上所述,另两个角是65∘,65∘或50∘,80∘.因此另两个角的度数不是唯一确定的.故马彪同学的结论是错误的9.【答案】:当E在线段BA的延长线上,D在线段BC的延长线上时,如图①所示,过点E作EF⊥BD,垂足为F,可得∠EFB=90∘.∵EC=ED,∴F为CD的中点,即CF=DF=12CD.∵△ABC为等边三角形,∴∠ABC=60∘,∴∠BEF=30∘.∵BE=AB+AE=1+2=3,∴FB=12EB=32,∴CF=FB−BC=12,∴CD=2CF=1.当E在线段AB的延长线上,D在线段CB的延长线上时,如图②所示,过点E作EF⊥BD,垂足为F,可得∠EFC=90∘. ∵EC=ED,∴F为CD的中点,即CF=DF=12CD.∵△ABC为等边三角形,∴∠ABC=∠EBF=60∘,∴∠BEF=30∘.∵BE=AE−AB=2−1=1,∴FB=12BE=12,∴CF=BC+FB=32,∴CD=2CF=3.综上,CD的长为1或3【解析】:解决此题,注意进行分类讨论.10.【答案】:设其中一角的度数为x∘,则另一角的度数为(2x−30)∘,则x+x+2x−30=180或x+2(2x−30)=180或x=2x−30,解得x=52.5或x=48或x=30,所以这个三角形三个内角的度数为52.5∘,52.5∘,75∘或48∘,66∘,66∘或30∘,30∘,120∘.【解析】:设其中一角的度数为x∘,则另一角的度数为(2x−30)∘, 则x+x+2x−30=180或x+2(2x−30)=180或x=2x−30, 解得x=52.5或x=48或x=30, 所以这个三角形三个内角的度数为52.5∘,52.5∘,75∘或48∘,66∘,66∘或30∘,30∘,120∘.11.【答案】:A【解析】:∵一个等腰三角形的两边长分别是2和5,∴当腰长为2时,则2+2<5,此时不成立,当腰长为5时,能组成三角形,则这个等腰三角形的周长为5+5+2=12. 故选A12.【答案】:C13.【答案】:D【解析】:如图,以点O为圆心,OA长为半径画弧,交x轴于点B,C;以点A为圆心,AO长为半径画弧,交x轴于一点D(点O除外),∴以OA为腰的等腰三角形有3个;当以OA为底时,作OA的垂直平分线,交x轴于一点,∴以OA为底的等腰三角形有1个.综上所述,符合条件的点P共有4个。

等腰三角形中的分类讨论63

等腰三角形中的分类讨论63

等腰三角形中的分类讨论:1. 已知等腰三角形的一个内角为75°则其顶角为2、等腰三角形中,一个角是另一个角的两倍,求它各角的度数.3、若等腰三角形的一个外角为70°,则它的底角为____.4、等腰三角形的一个外角等于110°,则顶角的度数为.5、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。

6、等腰三角形一边长是10cm,另一边长是6cm,则它的周长是7、等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为8、若等腰三角形的两边长分别为9cm和4cm,其周长为9、已知等腰三角形的周长为20cm,一边长为8cm,则其它两边长分别是.10、若等腰三角形一腰上的中线分周长为9cm和12cm两部分,这个等腰三角形的底和腰的长分别是。

11、等腰三角形一腰上的中线把该三角形的周长分成12cm和15cm的两部分,三角形各边的长.12、一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,腰长为.13.等腰三角形底边长为5cm,一腰上的中线把周长分成的两部分之差为2cm,则腰长为14. 等腰三角形一腰上的高与另一腰所成的夹角为45°,这个等腰三角形的顶角的度数。

15.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为16.等腰三角形一腰上的高与另一腰的夹角为35 °,则其顶角为17、已知等腰三角形ABC中,BC边上的高12A DB C,∠BAC的度数.18、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,等腰三角形的周长为.19.已知点A和点B,以点A和点B为其中两个点作位置不同的等腰直角三角形,一共可以作出20在等边△ABC所在的平面内求一点P,使△PAB、△PBC、△PAC都是的等腰三角形,你能找到几个这样的点?画图描述它们的位置.21.如图所示,在△ABC中,∠1=∠2,点G为AD的中点,延长BG交AC于点E,F为AB上一点,且CF⊥AD于点H,下列判断中正确的是( )(1)AD是△ABE的角平分线;(2)BE是△ABD边AD上的中线;(3)CH是△ACD边AD上的高.22.如图,△ABC的边BC上的高为AF,AC边上的高为BG,中线为AD,已知AF=6,BC=10,BG=5.(1)求△ABC的面积;(2)求AC的长;(3)说明△ABC和△ACD的面积的关系.23.如图,在△ABC 中,BP 、CP 分别是∠ABC 和∠ACB 的平分线,且PD //AB ,PE //AC ,求△PED 的周长.24.如图,在等腰△ABC 中,∠C=90°,如果点B 到∠A 的平分线AD 的距离为5cm,求AD 的长。

全等三角形等腰三角形中的分类讨论专题测试题含答案

全等三角形等腰三角形中的分类讨论专题测试题含答案

全等三角形等腰三角形中的分类讨论专题测试题含答案一、腰或底边不确定时需讨论1.等腰三角形两边长为3 cm和5 cm,则它的周长是()A.11 cm B.13 cmC.11 cm或13 cm D.以上答案都不正确2.已知等腰三角形的两边长分别为a,b,且a,b满足+(2a+3b-13)2=0,则此等腰三角形的周长为() A.7或8 B.6或10C.6或7 D.7或10二、顶角或底角不确定时需讨论3.等腰三角形一个角为50°,则这个等腰三角形的顶角可能为()A.50°B.65°C.80°D.50°或80°4.等腰三角形的一个外角为100°,则这个等腰三角形的顶角的度数为________________.5.已知△ABC中,∠A=40°,则当∠B=_________________时,△ABC是等腰三角形.三、三角形形状不确定时需讨论6.已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是() A.30°B.60°C.150°D.30°或150°7.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为____________.8.△ABC的高AD,BE所在的直线交于点M,若BM=AC,求∠ABC的度数.四、由题目条件的不确定性引起的分类讨论9.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B.11 C.7或11 D.7或1010.已知O为等边△ABD的边BD的中点,AB=4,E,F分别为射线AB,DA上一动点,且∠EOF=120°,若AF=1,求BE的长.11.已知点P为线段CB上方一点,CA⊥CB,PA⊥PB,且PA=PB,PM⊥BC于M,若CA=1,PM=4.求CB的长.答案:1. C2. A3. D4. 80°或20°5. 70°或100°或40°6. D7. 63°或27°8. 两种情况考虑:当∠ABC 为锐角时,如图1所示,∵AD ⊥DB ,BE ⊥AC ,∴∠MDB =∠AEM =90°,∵∠AME =∠BMD ,∴∠CAD =∠MBD ,在△BMD 和△ACD 中,⎩⎪⎨⎪⎧∠BDM =∠ADC =90°∠DBM =∠DAC ,BM =AC∴△BMD ≌△ACD(A .A .S .),∴AD =BD ,即△ABD 为等腰直角三角形,∴∠ABC =45°当∠ABC 为钝角时,如图2所示,∵BD ⊥AM ,BE ⊥AC ,∴∠BDM =∠BEC =90°,∵∠DBM =∠EBC ,∴∠M =∠C ,在△BMD 和△ACD 中,⎩⎪⎨⎪⎧∠BDM =∠ADC =90°∠M =∠C ,BM =AC∴△BMD ≌△ACD(A .A .S .),∴AD =BD ,即△ABD 为等腰直角三角形,∴∠ABD =45°,则∠ABC =135° .∴综上所述,∠ABC =45°或135°9. C10. 当F 在线段DA 的延长线上,如图1,作OM ∥AB 交AD 于M ,∵O 为等边△ABD 的边BD 的中点,∴OB =2,∠D =∠ABD =60°,∴△ODM 为等边三角形,∴OM =MD =2,∠OMD =60°,∴FM =FA +AM =3,∠FMO =∠BOM =120°,∵∠EOF =120°,∴∠BOE =∠FOM ,而∠EBO =180°-∠ABD =120°,∴△OMF ≌△OBE ,∴BE =MF =3;当F 点在线段AD 上,如图2,同理可证明△OMF ≌△OBE ,则BE =MF =AM -AF =2-1=1.∴综上所述,BE =3或111. 此题分以下两种情况:①如图1,过P 作PN ⊥CA 于N ,∵PA ⊥PB ,∴∠APB =90°,∵∠NPM =90°,∴∠NPA =∠BPM ,在△PMB 和△PNA 中,⎩⎪⎨⎪⎧∠N =∠BMP ∠NPA =∠BPM PA =PB,∴△PMB ≌△PNA ,∴PM =PN =4=CM ,BM =AN =3,∴BC =7;②如图2,过P 作PN ⊥CA 于N ,∵PA ⊥PB ,∴∠APB =90°,∵∠NPM =90°,∴∠NPA =∠BPM ,在△PMB 和△PNA 中,⎩⎪⎨⎪⎧∠N =∠BMP ∠NPA =∠BPM PA =PB,∴△PMB ≌△PNA ,∴PM =PN =4=CM ,BM =AN =5,可得BC =9.综上所述,CB =7或9。

初中数学重难点突破:等腰三角形中的分类讨论问题

初中数学重难点突破:等腰三角形中的分类讨论问题

等腰三角形中的分类讨论问题典例讲解:分类讨论求角度例1:等腰三角形有一个内角是50°,则其余两个内角的度数为 .解:当50°角是顶角时,则底角为(180°-50°)÷2=65°,则其余两个角的度数为65°,65°;当50°角是底角时,则顶角为180°-50°×2=80°,则其余两个角的度数度数为50°,80°.所以,本题的答案为:65°,65°或50°,80°.总结:(1)在等腰三角形中求内角的度数时,要看已知角是否已经确定是顶角或底角.若已确定,则直接利用三角形的内角和定理求解;否则,要分类讨论,分已知角为顶角和已知角为底角两种情况.(2)若等腰三角形中已知的角是直角或钝角,则此角必为顶角,不用再分类讨论.分类讨论求长度解:当3x-1= x+1时,解得x=1,此时三角形的三条边长分别为2,2,5,因为2+2<5,不符合三角形三边关系,所以x=1舍去;当3x-1= 5时,解得x=2,此时三角形的三条边长分别为5,3,5,因为5+3>5,符合三角形三边关系,所以x=2成立;当x+1=5时,解得x=4,此时三角形的三条边长分别为11,5,5,因为5+5<11,不符合三角形三边关系,所以x=4舍去.所以,本题答案为2.总结:利用等腰三角形有两条边长相等的性质求边长或周长时,当不确定哪两条边是腰时,要进行分类讨论,计算出结果后要验证,检验算出的结果是否符号三角形三边关系.提升练习1.已知等腰三角形的两边长a,b满足|a﹣2|+b2﹣10b+25=0,那么这个等腰三角形的周长为()A.8B.12C.9或12D.92.如果等腰三角形两边长是6cm和12cm,那么它的周长是()A.18cm B.24cm C.30cm D.24或30cm3.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为()A.60°B.150°C.60°或120°D.60°或150°4.已知等腰△ABC中,∠A=50°,则∠B的度数为()A.50°B.65°C.50°或65°D.50°或80°或65°5.已知等腰三角形的顶角等于50°,则底角的度数为度.6.等腰三角形一个外角是150°,求一腰上的高与另一腰的夹角是.7.在等腰三角形ABC中,∠A=2∠B,则∠C的度数为.8.在△ABC中,AB=AC,∠B=40°,点D在BC边上,连接AD,若△ABD是直角三角形,则∠DAC的度数是.9.等腰三角形一边长等于4,一边长等于9,它的周长是.10.等腰三角形的一个内角是80°,则它顶角的度数是.11.已知一个等腰三角形的一边长为2cm,另一边长为5cm,则这个等腰三角形的周长是cm.12.一等腰三角形的底边长为15cm,一腰上的中线把三角形的周长分为两部分,其中一部分比另一部分长5cm,那么这个三角形的周长为.13.若等腰三角形一腰上的高与另一腰的夹角为45°,则这个等腰三角形的底角为.14.如图,△ABC中∠ABC=40°,动点D在直线BC上,当△ABD为等腰三角形,∠ADB=.15.等腰三角形的周长为21cm.(1)若已知腰长是底边长的3倍,求各边长;(2)若已知一边长为6cm,求其他两边长.16.如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成18cm和21cm两部分,求△ABC的三边长.17.已知在△ABC中,AB=20,BC=8,AC=2m﹣2.(1)求m的取值范围;(2)若△ABC是等腰三角形,求△ABC的周长.18.已知:在△ABC中,AB=AC,∠BAC=45°.(1)如图,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.求证:BF=CF;(2)若点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.当△BFD是等腰三角形时,求∠FBD的度数.参考答案:1.B . 2.C . 3.C . 4.D .5. 65 . 6. 30°或60° . 7. 45°或72° . 8. 10°或50° .9. 22 . 10. 80°或20° . 11. 12 . 12. 55cm 或35cm .13. 67.5°或22.5° . 14. 40°或100°或70°或20° .15.解:(1)如图,设底边BC =a cm ,则AC =AB =3a cm ,∵等腰三角形的周长是21cm ,∴3a +3a +a =21,∴a =3,∴3a =9,∴等腰三角形的三边长是3cm ,9cm ,9cm ;(2)①当等腰三角形的底边长为6cm 时,腰长=(21﹣6)÷2=7.5(cm );则等腰三角形的三边长为6cm 、7.5cm 、7.5cm ,能构成三角形;②当等腰三角形的腰长为6cm 时,底边长=21﹣2×6=9;则等腰三角形的三边长为6cm ,6cm 、9cm ,能构成三角形.故等腰三角形其他两边的长为7.5cm ,7.5cm 或6cm 、9cm .16.解:∵BD 是AC 边上的中线,∴AD =CD=21AC , ∵AB =AC ,∴AD =CD=21AB , 设AD =CD =x cm ,BC =y cm ,分两种情况:当时,即,解得:, ∴△ABC 的各边长为10cm ,10cm ,7cm ;当时,即,解得:, ∴△ABC 的各边长为14cm ,14cm ,11cm ;综上所述:△ABC 各边的长为10cm ,10cm ,7cm 或14cm ,14cm ,11cm .17.解:(1)在△ABC中,AB=20,BC=8,AC=2m﹣2.∴20﹣8<2m﹣2<20+8,解得:7<m<15;∴m的取值范围为:7<m<15;(2)∵△ABC是等腰三角形,∴分两种情况:当AB=AC=20时,∴△ABC的周长=20+20+8=48;当BC=AC=8时,∵8+8=16<20,∴不能组成三角形;综上所述,△ABC的周长为48.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB,在△BCD与△CBE中,∴△BCD≌△CBE(SAS),∴∠FBC=∠FCB,∴BF=CF;(2)解:∵AB=AC,∠BAC=45°,∴,由(1)知,∠FBC=∠FCB,∴∠DBF=∠ECF,设∠FBD=∠ECF=x,则∠FBC=∠FCB=(67.5°﹣x),∠BDF=∠ECF+∠BAC=x+45°,∠DFB=2∠FBC=2(67.5°﹣x)=135°﹣2x,∵△BFD是等腰三角形,故分三种情况讨论:①.当BD=BF时,此时∠BDF=∠DFB,∴x+45°=135°﹣2x,得x=30°,即∠FBD=30°;②当BD=DF时,此时∠FBD=∠DFB,∴x=135°﹣2x,得x=45°,即∠FBD=45°;③当BF=DF时,此时∠FBD=∠FDB,∴x=x+45°,不符题意,舍去;综上所述,∠FBD=30°或45°.。

等腰三角形中的分类讨论问题归类

等腰三角形中的分类讨论问题归类

初中数学等腰三角形的分类评论辩论等腰三角形是一种特别而又十分主要的三角形,就是因为这种特别性,在具体处理问题时往往又会消失错误,是以,同窗们在求解有关等腰三角形的问题时必定要留意分类评论辩论.那么在什么情况下应当分类评论辩论呢?本文分以下几种情况讲述.一.遇角需评论辩论例 1. 已知等腰三角形的一个内角为75°则其顶角为()A. 30°B. 75°C. 105°D. 30°或75°简析:75°角可能是顶角,也可能是底角.当75°是底角时,则顶角的度数为180°-75°×2=30°;当75°角是顶角时,则顶角的度数就等于75°.所以这个等腰三角形的顶角为30°或75°.故应选D.解释:对于一个等腰三角形,若前提中并没有肯定顶角或底角时,应留意分情况评论辩论,先肯定这个已知角是顶角照样底角,再应用三角形内角和定理求解.二.遇边需评论辩论例2. 已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________.简析:已知前提中并没有指明5和6谁是腰长谁是底边的长,是以应由三角形的三边关系进行分类评论辩论.当5是等腰三角形的腰长时,这个等腰三角形的底边长就是6,则此时等腰三角形的周长等于16;当6是腰长时,这个三角形的底边长就是5,则此时周长等于17.故这个等腰三角形的周长等于16或17.解释:对于底和腰不等的等腰三角形,若前提中没有明白哪是底哪是腰时,应在相符三角形三边关系的前提下分类评论辩论.三.遇中线需评论辩论例3. 若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长.简析:已知前提并没有指明哪一部分是9cm,哪一部分是12cm,是以,应有两种情况.若设这个等腰三角形的腰长是x cm,底边长为y cm,可得⎪⎪⎩⎪⎪⎨⎧=+=+,1221,921y x x x 或⎪⎪⎩⎪⎪⎨⎧=+=+.921,1221y x x x 解得⎩⎨⎧==,9,6y x 或⎩⎨⎧==.5,8y x 即当腰长是6cm 时,底边长是9cm;当腰长是8cm 时,底边长是5cm.解释:这里求出来的解应知足三角形三边关系定理.四.遇高需评论辩论例4. 等腰三角形一腰上的高与另一腰所成的夹角为45°,求这个等腰三角形的顶角的度数.简析:依题意可画出图1和图2两种情况.图1中顶角为45°,图2中顶角为135°.例 5. 为美化情况,筹划在某小区内用230m 的草皮铺设一块一边长为10m 的等腰三角形绿地,请你求出这个等腰三角形绿地的另双方长.简析:在等腰ΔABC 中,设AB=10m ,作CD⊥AB 于D,由3021=⋅⨯=∆CD AB S ABC ,可得CD=6m .如下图,当AB 为底边时,AD=DB=5m ,所以)(6122m AD CD BC AC =+==.如下图,当AB 为腰且ΔABC 为锐角三角形时,m AC AB 10==,所以)(822m CD AC AD =-=,)(102,222m BD CD BC m BD =+==.如下图,当AB 为腰且ΔABC 为钝角三角形时,m BC AB 10==,)(822m CD BC BD =-=, 所以)(106,1822m AD CD AC m AD =+==.解释:三角形的高是由三角形的外形决议的,对于等腰三角形,当顶角是锐角时,腰上的高在三角形内;当顶角是钝角时,腰上的高在三角形外.五.遇中垂线需评论辩论例6.在ΔABC 中,AB=AC,AB 的中垂线与AC 地点直线订交所得的锐角为50°,则底角∠B=____________.简析:按照题意可画出如图1和如图2两种情况的示意图. 如图1,当交点在腰AC 上时,ΔABC 是锐角三角形,此时可求得∠A=40°,所以 ∠B=∠C=21(180°-40°)=70°.如图2,当交点在腰CA 的延伸线上时,ΔABC 为钝角三有形,此时可求得 ∠BAC=140°,所以∠B=∠C=21(180°-140°)=20°故这个等腰三角形的底角为70°或20°.解释:这里的图2最轻易漏失落,求解时必定要卖力剖析题意,画出所有可能的图形,如许才干准确解题.六.和方程问题的分解评论辩论例7. 已知ΔABC 的双方AB,AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 长为5.(1)k 为何值时,ΔABC 是以BC 为斜边的直角三角形?(2)k 为何值时,ΔABC 是等腰三角形,并求ΔABC 的周长. 简析:(1)略.(2)若ΔABC 是等腰三角形,则有AB=AC,AB=BC,AC=BC 这三种情况.方程023)32(22=++++-k k x k x 可化为0)1)(2(=----k x k x ,即21+=k x ,12+=k x ,显然21x x ≠,即AC AB ≠.当AB=BC 或AC=BC 时,5是方程023)32(22=++++-k k x k x 的根.当5=x 时,代入原方程可得01272=+-k k ,解得31=k ,42=k .当3=k 时,原方程的解为4,521==x x ,等腰ΔABC 的三边长分离为5,5,4,周长为14.当4=k 时,原方程的解为5,621==x x ,等腰ΔABC 的三边长分离为5,5,6,周长为16.所以当3=k 或4=k时,ΔABC 是等腰三角形,周长分离为14或16.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形中的分类讨论
分类一、当腰长或底边长不能确定时
【例1】已知等腰三角形的两边长分别为8cm和10cm,求周长.
【例2】等腰三角形的两边长分别为3cm和7cm,求周长.
【拓展】已知一等腰三角形的三边分别是3x-1,x+1,5,试求x的值.
分类二、当顶角或底角不能确定时
【例3】等腰三角形的一个角是另一个角的4倍,求它的各个内角的度数. 【例4】已知等腰三角形的一个外角等于150°,求它的各个内角.
分类三、当高的位置关系不确定时
【例5】等腰三角形一腰上的高与另一边的夹角为25°,求这个三角形的各个内角的度数.
分类四、腰的垂直平分线不确定时
【例6】在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为40°,求底角B的度数.
分类五、腰上中线引起的分类讨论
【例7】等腰三角形ABC底边BC为5,腰AC边上的中线BD把其周长分为差为3的两部分,求腰长.
分类六、几何图形之间的位置关系不明确
【例8】已知C、D两点在线段AB的中垂线上,且∠ACB=50°,∠ADB=80°,求∠CAD 的度数.
【例9】在下图三角形的边上找出一点,使得该点与三角形的两顶点构成等腰三角形.。

相关文档
最新文档