等差数列(第二课时)

合集下载

高中数学第四章数列4.2等差数列4.2.1等差数列的概念第二课时等差数列的性质及其应用课件新人教A版

高中数学第四章数列4.2等差数列4.2.1等差数列的概念第二课时等差数列的性质及其应用课件新人教A版

二、应用性——强调学以致用 2.如图所示,三个正方形的边AB,BC,CD的长组成等差数
列,且AD=21 cm,这三个正方形的面积之和是179 cm2. (1)求AB,BC,CD的长; (2)以AB,BC,CD的长为等差数列的前三项,以第10项为边长的正方形的面 积是多少?
解:(1)设公差为 d(d>0),BC=x,则 AB=x-d,CD=x+d. 由题意得xx- -dd+ 2+xx+2+x+x+dd=2=211,79, 解得dx==47, 或dx==-7,4 (舍去). 所以 AB=3(cm),BC=7(cm), CD=11(cm). (2)正方形的边长组成首项是 3,公差是 4 的等差数列{an}, 所以 a10=3+(10-1)×4=39, a210=392=1 521(cm2). 所求正方形的面积为 1 521 cm2.
(3)若{an}是公差为d的等差数列,则 ①{c+an}(c为任一常数)是公差为d的等差数列; ②{can}(c为任一常数)是公差为cd的等差数列; ③{an+an+k}(k为常数,k∈N*)是公差为2d的等差数列. (4)若{an},{bn}分别是公差为d1,d2的等差数列,则数列{pan+qbn}(p,q是 常数)是公差为pd1+qd2的等差数列.
三、创新性——强调创新意识和创新思维 3.对于给定的正整数k,若数列{an}满足:an-k+an-k+1+…+an-1+an+1+…+
an+k-1+an+k=2kan,对任意正整数n(n>k)总成立,则称数列{an}是“P(k)数 列”.
(1)证明:等差数列{an}是“P(3)数列”; (2)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.
年12月末人口总数为万,则2019年10月末的人口总数为

高中数学 第一章 数列 1.2 等差数列 1.2.2 第2课时 等差数列的综合问题学案(含解析)北师

高中数学 第一章 数列 1.2 等差数列 1.2.2 第2课时 等差数列的综合问题学案(含解析)北师

第2课时等差数列的综合问题知识点一等差数列的性质[填一填](1)若{a n}为等差数列,则距首末距离相等的两项之和都相等,且等于首末两项之和,即a1+a n=a2+a n-1=a3+a n-2=….(2)若{a n}为等差数列,m,n,p,q∈N+,且m+n=p+q,则a m+a n=a p+a q.(3)若{a n}为等差数列,m,k,n成等差数列,则a m,a k,a n也成等差数列(m,k,n∈N+),即若m+n=2k,则a m+a n=2a k.[答一答]1.对于性质:若{a n}为等差数列,m,n,p,q∈N+,且m+n=p+q,则a m+a n=a p +a q,请给出证明.提示:证明:设{a n}的公差为d,则a m=a1+(m-1)d,a n=a1+(n-1)d,a p=a1+(p-1)d,a q=a1+(q-1)d,∴a m+a n=2a1+(m+n-2)d,a p+a q=2a1+(p+q-2)d,∵m+n=p+q,∴a m+a n=a p+a q.知识点二 等差数列前n 项和的性质[填一填](1)等差数列前n 项和公式S n =na 1+n (n -1)2d 可写成S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,即S n =An 2+Bn (A ,B 为常数)的形式,当A ≠0时(即d ≠0),S n 是关于n 的二次函数,其图像是抛物线y =Ax 2+Bx 上的一群孤立的点.(2)若{a n },{b n }都是等差数列,则{pa n +qb n }(p ,q 为常数)是等差数列.(3)若等差数列{a n }的公差为d ,前n 项和为S n ,则数列S k ,S 2k -S k ,S 3k -S 2k ,…(k ∈N +)也是等差数列,其公差等于k 2d .(4)若等差数列{a n }的项数为2n (n ∈N +),则S 2n =n (a n +a n +1)(a n ,a n +1为中间两项),且S偶-S 奇=nd ,S 偶S 奇=a n +1a n.(5)若等差数列{a n }的项数为2n -1(n ∈N +),则S 2n -1=(2n -1)a n (a n 为中间项),且S 奇-S偶=a n ,S 偶S 奇=n -1n .[答一答]2.等差数列前n 项和的“奇偶”性质:在等差数列{a n }中,公差为d ,①若数列共有2n 项,则S 2n =n (a n +a n +1),S 偶-S 奇=nd ,S 偶S 奇=a n +1a n ;②若数列共有2n +1项,则S 2n+1=(2n +1)a n +1,S 偶-S 奇=-a n +1,S 偶S 奇=n(n +1).请给出证明.提示:证明:①若数列共有2n 项,则S 2n =2n (a 1+a 2n )2=2n (a n +a n +1)2=n (a n +a n +1),S 偶=n (a 2+a 2n )2=2na n +12=na n +1,S 奇=n (a 1+a 2n -1)2=2na n2=na n ,S 偶-S 奇=na n +1-na n =n (a n +1-a n )=nd , S 偶S 奇=a n +1a n ;②若数列共有2n +1项,则S 2n +1=(2n +1)(a 1+a 2n +1)2=2(2n +1)a n +12=(2n +1)a n +1,S 偶=n (a 2+a 2n )2=2na n +12=na n +1,S 奇=(n +1)(a 1+a 2n +1)2=2(n +1)a n +12=(n +1)a n +1,S 偶-S 奇=-a n +1, S 偶S 奇=n(n +1).1.三数成等差数列的设法为:a -d ,a ,a +d ,其中d 为公差;四数成等差数列的设法为:a -3d ,a -d ,a +d ,a +3d ,其公差为2d .2.会用方程的思想处理等差数列的有关问题.等差数列的通项公式与前n 项和公式涉及五个量:a 1,d ,n ,a n ,S n ,知道其中任意三个就可以通过列方程组求出另外两个(俗称“知三求二”).解等差数列问题的基本方法是方程法,在遇到一些较复杂的方程组时,要注意整体代换,使运算更加迅速和准确.类型一 等差数列的性质的应用【例1】 在等差数列{a n }中,(1)若a 3+a 4+a 5+a 6+a 7=350,则a 2+a 8=________;(2)若a 2+a 3+a 4+a 5=34,a 2·a 5=52,且a 4<a 2,则a 5=________; (3)若a 3=6,则a 1+2a 4=________.【解析】 若设出a 1,d 从通项公式入手,运算过程较为繁琐,若能利用性质,可使问题简化.(1)∵a 3+a 7=a 4+a 6=2a 5=a 2+a 8,又由已知a 3+a 4+a 5+a 6+a 7=350,∴5a 5=350, ∴a 5=70,∴a 2+a 8=2a 5=140.(2)∵a 2+a 3+a 4+a 5=34,又由等差数列的性质知a 3+a 4=a 2+a 5,∴2(a 2+a 5)=34,∴a 2+a 5=17.又a 2·a 5=52,联立⎩⎪⎨⎪⎧a 2+a 5=17a 2·a 5=52,解之得⎩⎪⎨⎪⎧a 2=4a 5=13,或⎩⎪⎨⎪⎧a 2=13a 5=4,又∵a 4<a 2,∴a 4-a 2=2d <0, ∴d <0,∴a 2>a 5,∴a 5=4.(3)∵a 3=6,∴a 1+2a 4=a 1+a 3+a 5=a 3+(a 1+a 5)=a 3+2a 3=3a 3=18. 【答案】 (1)140 (2)4 (3)18规律方法 等差数列具有一些性质,例如当m +n =p +q (m ,n ,p ,q ∈N +)时,有a m +a n =a p +a q ,特别地,当m +n =2k (m ,n ,k ∈N +)时,有a m +a n =2a k ;a n =a m +(n -m )d 等等.灵活运用这些性质,可大大简化解题过程.【例2】 在等差数列{a n }中,已知a 2+a 5+a 8=9,a 3a 5a 7=-21,求数列的通项公式. 【思路探究】 要求通项公式,需要求出首项a 1及公差d ,由a 2+a 5+a 8=9和a 3a 5a 7=-21直接求解很困难,这就促使我们转换思路.如果考虑到等差数列的性质,注意到a 2+a 8=2a 5=a 3+a 7,问题就容易解决了.【解】 a 2+a 5+a 8=9,a 3a 5a 7=-21,又由等差数列的性质知a 2+a 8=a 3+a 7=2a 5,∴a 5=3, ∴a 2+a 8=a 3+a 7=6,① 又a 3a 5a 7=-21, ∴a 3a 7=-7,②由①②解得a 3=-1,a 7=7或a 3=7,a 7=-1. ∴a 3=-1,d =2或a 3=7,d =-2. 由通项公式的变形公式a n =a 3+(n -3)d , 得a n =2n -7或a n =-2n +13.规律方法 若m +n =p +q ,则a m +a n =a p +a q ,此性质要求等式两边必须是两项和的形式,否则不成立,如a 10≠a 2+a 8,只能是a 2+a 8=a 3+a 7,使用时应切记它的结构特征.在等差数列{a n }中,a 3+a 7=36,则a 2+a 4+a 5+a 6+a 8=90. 解析:a 3+a 7=a 2+a 8=a 4+a 6=2a 5=36, ∴a 2+a 4+a 5+a 6+a 8==36+36+18=90.类型二 等差数列前n 项和的性质【例3】 项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求这个数列的中间项及项数.【思路探究】 根据等差数列中的奇数项依次仍成等差数列,偶数项依次仍成等差数列可求解.【解】 设等差数列{a n }共有(2n +1)项,则奇数项有(n +1)个,偶数项有n 个,中间项是第(n +1)项,即a n +1,所以S 奇S 偶=12(a 1+a 2n +1)·(n +1)12(a 2+a 2n )·n=(n +1)a n +1na n +1=n +1n =4433=43.解得n =3.又因为S 奇=(n +1)·a n +1=44,所以a n +1=11. 故这个数列的中间项为11,共有2n +1=7项.规律方法 在等差数列{a n }中,(1)若项数为2n +1(n ∈N +),则S 奇S 偶=n +1n ,其中S 奇=(n +1)a n +1,S 偶=na n +1;(2)若数列的项数为2n (n ∈N +),则S 偶-S 奇=nd .【例4】 已知等差数列{a n }的前10项和为30,它的前30项和为210,则前20项和为( )A .100B .120C .390D .540【解析】 方法一:设等差数列{a n }的前n 项和为S n =na 1+n (n -1)2d .由题意,得⎩⎪⎨⎪⎧10a 1+45d =30,30a 1+435d =210,解得⎩⎨⎧a 1=65,d =25.∴S n =65n +n (n -1)2·25=15(n 2+5n ).∴S 20=15×(202+5×20)=100.方法二:设S n =An 2+Bn ,由题意,得⎩⎪⎨⎪⎧100A +10B =30,900A +30B =210,解得⎩⎪⎨⎪⎧A =15,B =1.∴S n =15n 2+n .∴S 20=15×202+20=100.方法三:由题意,知S 10,S 20-S 10,S 30-S 20也是等差数列. ∴2(S 20-S 10)=S 10+S 30-S 20,即S 20=13(3S 10+S 30)=S 10+13S 30=100.【答案】 A规律方法 一个等差数列,从首项起,分成项数相等的若干段后,各段内诸项之和组成新的等差数列.若每段含有n 项,则新公差是原公差的n 2倍.(1)已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为3. (2)在等差数列{a n }中,a 1=-2 017,其前n 项和为S n ,若S 1010-S 88=2,则S 2 017的值等于-2_017.解析:(1)由等差数列前n 项和的性质,得S 偶-S 奇=102×d (d 为该数列的公差),即30-15=5d ,解得d =3.(2)方法一:设等差数列{a n }的公差为d ,由S 1010-S 88=2得-2 017×10+10×92d10--2 017×8+8×72d8=2,解得d =2,所以S 2 017=-2 017×2 017+2 017×2 0162×2=-2 017.方法二:由等差数列前n 项和的性质可知,数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列,设其公差为d ,则由S 1010-S 88=2可得2d =2,即d =1.又S 11=-2 017,所以S 2 0172 017=-2 017+(2 017-1)×1=-1,所以S 2 017=-2 017.类型三 等差数列的综合应用题【例5】 已知数列{a n }是等差数列. (1)若a m =n ,a n =m (m ≠n ),求a m +n ; (2)若S m =n ,S n =m (m >n ),求S m +n .【思路探究】 (1)由通项公式或前n 项和公式得a 1和d 的关系,通过解方程组求得a 1和d ,进而求得a m +n 和S m +n .(2)利用等差数列的性质可使问题简化.【解】 设首项为a 1,公差为d , (1)解法一:由a m =n ,a n =m ,得⎩⎪⎨⎪⎧a 1+(m -1)d =n ,a 1+(n -1)d =m ,解得a 1=m +n -1,d =-1.∴a m +n =a 1+(m +n -1)d =m +n -1-(m +n -1)=0. 解法二:由a m =n ,a n =m ,得d =n -mm -n =-1,∴a m +n =a m +(m +n -m )d =n +n ×(-1)=0. (2)解法一:由已知可得 ⎩⎪⎨⎪⎧m =na 1+n (n -1)2d ,n =ma 1+m (m -1)2d ,解得⎩⎪⎨⎪⎧a 1=n 2+m 2+mn -m -nmn ,d =-2(m +n )mn .∴S m +n =(m +n )a 1+(m +n )(m +n -1)2d =-(m +n ).解法二:∵{a n }是等差数列, ∴可设S n =An 2+Bn .则⎩⎪⎨⎪⎧Am 2+Bm =n ,①An 2+Bn =m .②①-②得A (m 2-n 2)+B (m -n )=n -m , ∵m ≠n ,∴A (m +n )+B =-1.∴S m +n =A (m +n )2+B (m +n )=-(m +n ).规律方法 (1)灵活运用性质求等差数列中的量,可以简化运算,提高解题速度及准确性;(2)在应用性质:若m +n =l +k ,则a m +a n =a l +a k 时,首先要找到项数和相等的条件,然后根据需要求解,解决此类问题要有整体代换的意识.数列{a n }满足a 1=1,a n +1=a n +2,且前n 项和为S n . (1)求数列{S nn }的前n 项和T n ;(2)求数列{1T n}的前n 项和.解:(1)由a n +1=a n +2,得数列{a n }是等差数列,且a 1=1,公差d =2, 从而a n =2n -1,∴S n =n (a 1+a n )2=n 2.∴S nn =n ,从而T n =n (n +1)2. (2)由(1)有1T n =2n (n +1)=2(1n -1n +1),其前n 项和为2[(11-12)+(12-13)+(13-14)+…+(1n -1n +1)]=2nn +1.——多维探究系列—— 特殊值法解等差数列问题特殊值法在解一些选择题和填空题中经常用到,就是通过取一些特殊值、特殊点、特殊函数、特殊数列、特殊图形等来求解或否定问题的目的.用特殊值法解题时要注意,所选取的特例一定要简单,且符合题设条件.【例6】 在等差数列{a n }中,a 1=1,前n 项和S n 满足条件S 2n S n =4n +2n +1,n =1,2,…,则a n =________.【思路分析】 因S n =na 1+n (n -1)2d =n +n (n -1)2d ,则S 2n =2na 1+2n (2n -1)2d =2n +n (2n -1)d ,故S 2n S n =2n +n (2n -1)d n +n (n -1)2d=2(2dn +2-d )dn +2-d =4n +2n +1, 解得d =1,则a n =n . 【规范解答】 n已知正数数列{a n }对任意p ,q ∈N +,都有a p +q =a p +a q ,若a 2=4,则a 9=( C ) A .6 B .9 C .18D .20解析:解法一:∵a 2=a 1+1=a 1+a 1=4,∴a 1=2,a 9=a 8+1=a 8+a 1=2a 4+a 1=4a 2+a 1=18.解法二:∵a 2=a 1+1=a 1+a 1=4,∴a 1=2,令p =n ,q =1,所以a n +1=a n +a 1,即a n +1-a n =2,∴{a n }是等差数列,且首项为2,公差为2,故a 9=2+(9-1)×2=18.一、选择题1.设S n 是等差数列{a n }的前n 项和,S 5=10,则a 3的值为( C ) A.65B .1C .2D .3 解析:∵S 5=5(a 1+a 5)2=5a 3,∴a 3=15S 5=15×10=2.2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于( C ) A .1 B.53C .-2D .3解析:由题意,得6=3×4+3×22d ,解得d =-2.3.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项和S 10等于( C ) A .138 B .135 C .95 D .23解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+d +a 1+3d =4,a 1+2d +a 1+4d =10, 解得a 1=-4,d =3,所以S 10=10a 1+10×92d =95. 二、填空题4.在数列{a n }中,a n =5n -105,则当n =20或21时,S n 取最小值.5.已知{a n }是等差数列,S n 为其前n 项和,n ∈N +,若a 3=16,S 20=20,则S 10的值为110.解析:设等差数列{a n }的首项为a 1,公差为d . a 3=a 1+2d =16,S 20=20a 1+20×192d =20. ∴⎩⎪⎨⎪⎧ a 1+2d =16,2a 1+19d =2.解得⎩⎪⎨⎪⎧ a 1=20,d =-2.∴S 10=10a 1+10×92d =200-90=110. 三、解答题6.等差数列{a n }中,a 2+a 3=-38,a 12=0,求S n 的最小值以及相对应的n 值. 解:解法一:(单调性法)设等差数列{a n }的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧ (a 1+d )+(a 1+2d )=-38a 1+11d =0, 解得⎩⎪⎨⎪⎧ a 1=-22d =2.∴当⎩⎨⎧ a n ≤0a n +1≥0, 即⎩⎪⎨⎪⎧-22+2(n -1)≤0-22+2n ≥0时,S n 有最小值,解得11≤n ≤12, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132. 解法二:(配方法)由解法一得⎩⎪⎨⎪⎧a 1=-22d =2,∴S n =-22n +n (n -1)2×2=n 2-23n =⎝⎛⎭⎫n -2322-5294, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132. 解法三:(邻项比较法)由解法二得S n =n 2-23n ,又由⎩⎪⎨⎪⎧ S n ≤S n -1,S n ≤S n +1,得⎩⎪⎨⎪⎧n 2-23n ≤(n -1)2-23(n -1),n 2-23n ≤(n +1)2-23(n +1), 解得11≤n ≤12,故S 11=S 12, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132.。

等差数列的概念(第二课时)等差数列的性质 课件 高二上学期数学人教A版(2019)选择性必修第二册

等差数列的概念(第二课时)等差数列的性质 课件 高二上学期数学人教A版(2019)选择性必修第二册
(2)由等差数列的性质,得 ,所以 ,解得 ,故 .(3)令 ,因为 , 都是等差数列,所以 也是等差数列.设数列 的公差为 ,由已知得 ,由 ,得 ,解得 ,故 .
思考:若数列 是等差数列,首项为 ,公差为 ,在 中每相邻两项之间都插入4个数,若要使之构成一个新的等差数列,你能求出它的公差吗?
解:
解1:
解2:
探究2 等差数列的综合问题
问题1:对于三个数成等差数列,某班同学给出了以下三种设法:
(1)设这三个数分别为 , , .
(2)设该数列的首项为 ,公差为 ,则这三个数分别为 , , .
(3)设该数列的中间项为 ,公差为 ,则这三个数分别为 , , .那么,哪种方法在计算中可能更便捷一些?
若下标成等差数列,则对应的项成等差数列.
新知运用
例1 (1)已知等差数列 , , ,求 的值;
(2)已知等差数列 , ,求 的值;
(3)已知数列 , 都是等差数列,且 , , ,求 的值.
[解析] (1)(法一)设 的公差为 ,则 解得 故 . (法二)因为 ,所以在等差数列 中有 ,从而 . (法三)因为5, , 成等差数列,所以 , , 也成等差数列,因此 ,即 ,解得 .
2A=a+b
第四章 数列
4.2 等差数列
课时2 等差数列的性质及其应用
学习目标
1.能用等差数列的定义推导等差数列的性质.2.能用等差数列的性质解决一些相关问题.3.能用等差数列的知识解决一些简单的应用问题.
探究:观察等差数列: 2, 4, 6, 8, 10, 12, 14, 16,……说出8是哪两项的等差中项?并找到它们满足的规律?
方法总结 等差数列项的常见设法:(1)通项法.(2)对称项设法.对称项设法的优点是:若有 个数构成等差数列,利用对称项设法设出这个数列,则其各项和为 .

等差数列的概念(第二课时)-2021-2022学年高二上学期数学人教A版(2019)选择性必修第二册

等差数列的概念(第二课时)-2021-2022学年高二上学期数学人教A版(2019)选择性必修第二册

相邻两项之间都插入3个数, 使它们和原数列的数一起构成
一个新的等差数列bn. (1)求数列bn的通项公式. bn 2n
(2)b29是不是数列an的项?若是,它是an的第几项?
若不是, 说明理由.
另解: 数列an的各项依次是数列
解:(2)由(1)知,b29 2 29 58, bn的第1,5,9,13, 项,
4.2.1 等差数列的概念
第二课时
上节课知识要点回顾
1.等差数列定义: 1,3,5,7,9 … 公差是2
如果一个数列从第2项起,每一项与它前一项的 差等于同一个常数,那么这个数列叫做等差数列。这 个常数叫做等差数列的公差,通常用字母d表示。 递推公式:an-an-1=d(d是常数,n≥2,n∈N+) 2.等差中项: 注:(1)同一个常数,是由后项减前项;
请看课本P15:练习
4.已知在等差数列an中,a4 a8 20,a7 12.求a4.
a1 0, d 2, a4 6
5.在7和21中插入3个数, 使这5个数成等差数列.
a2 10.5, a3 14, a4 17.5
例3:某公司购置了一台价值为220万元的设备,随着设备在
使用过程中老化, 其价值会逐年减少, 经验表明, 每经过一年其 价值就会减少d (d为正常数)万元.已知这台设备的使用年限为
4.等差数列的性质:
(1)在等差数列an中,
① 若p q s t, 则a p aq as at ② 若m n 2k, 则am an 2ak
③ an1 an1 2an ④ ank ank 2an
学以致用:
1.在等差数列{an}中,若a1+a2+a3=32,a11+a12+
(2)等差数列的单调性: 9,7,5,3,1… 公差是-2 当d>0时,该等差数列是递增数列; 当d<0时,该等差数列是递减数列; 当d=0时,等差数列是常数列。2,2,2,2… d=0

等差数列的前n项和公式课件(第二课时)-高二下学期数学人教A版(2019)选择性必修第二册

等差数列的前n项和公式课件(第二课时)-高二下学期数学人教A版(2019)选择性必修第二册
若 a1>0,d<0,则 Sn 必有最_大___值,其 n 可用不等式组aann≥+1≤0,0 来确定; 若 a1<0,d>0,则 Sn 必有最_小___值,其 n 可用不等式组aann≤+1≥0,0 来确定.
(2) 二次函数法
在等差数列{an}中,由于 Sn=na1+n(n2-1) d=d2 n2+a1-d2 n,则可用求二次 函数最值的方法来求前 n 项和 Sn 的最值,其中,n 的值可由 n∈N*及二次函数图
Sn
13n
1 2
n(n
1) (2)
n2 14n
(n 7)2 49
故当n=7时, Sn取最大值49.
解法2: 由S3=S11, 得d=-2<0 则Sn的图象如下图所示
Sn
3 7 11 n
∴图象的对称轴为 n 3 11 7 2
故当n=7时, Sn取最大值49.
1.已知等差数列{an}中, a1=13且S3=S11, 求n取何值时, Sn取最大值.
解法3: 由S3=S11, 得d=-2<0
∴an=13+(n-1) ×(-2)=-2n+15

an an1
0
0
,

n n
15 2 13 2
故当n=7时, Sn取最大值49.
解法4: 由S3=S11, 得
a4+a5+a6+……+a11=0
而 a4+a11=a5+a10=a6+a9=a7+a8
∵n N*,∴1 n 30. ∴集合M的元素是由1至59共30个奇数组成.
∴这些元素的和为30(1 59) 900. 2
课本P24
*5.已知数列{an }的通项公式为an

等差数列的概念(第2课时)(教学课件)高二数学(人教A版2019选修第二册)

等差数列的概念(第2课时)(教学课件)高二数学(人教A版2019选修第二册)

解得 d=±2
∴当d=2时,这三个数分别为2,4,6;
当d=-2时,这三个数分别为6,4,2.
7. 某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,
其价值会逐年减少.经验表明,每经过一年其价值就会减少d(d为正常数)
万元.已知这台设备的使用年限为10年,超过10年,它的价值将低于购进价
=3
7
∴ a25=a5+(25-5)d =10+20×3=70
(2) a10=a5+(10-5)d =10+5×2=20
6. 三数成等差数列,它们的和为12,首尾二数的积也为12,求此三数.
解:设这三个数分别为a-d,a,a+d, 则
(a-d)+a+(a+d)=12,即3a=12
∴a=4
又∵ (a-d)(a+d)=12,即(4-d)(4+d)=12
第10排的座位有a10 =2 10 13 33(个 ).
n1
18,
2. 画出数列 an
的图象,并求通过图象上所有点
an1 3,1 n 6
的直线的斜率.
解:数列的图象如图示.
an
18
15
12
9
6
由等差数列定义可知,数列{an }是等差数列,且a1 18,ห้องสมุดไป่ตู้ 3. 3
个数,使它们和原数列的数一起构成一个新的等差数列{bn}.
(1)求数列{bn} 的通项公式.
(2) b29是不是数列{an} 的项?若是,它是{an} 的第几项?若不是 ,请说明理由.
分析:(1) {an}是一个确定的数列,只要把a1 ,a2表示为{bn}中的项,就可

等差数列第二课时教案

等差数列第二课时教案

2.2等差数列第二课时人教A版必修五教学目标1.知识与技能在理解等差数列定义及如何判定等差数列, 学习等差数列通项公式的基础上, 掌握等差中项的定义及应用, 明确等差数列的性质, 并用其进行一些相关等差数列的计算.2.过程与方法以等差数列的通项公式为工具, 探究等差数列的性质, 同时进一步培养学生归纳, 总结的一些数学探究的方法.3.情感、态度与价值观在学习的过程中形成主动学习的情感与态度.在运用知识解决问题中体验数学的实际应用价值.教学重点(1)明确等差中项的定义及应用.(2)理解并掌握等差数列的性质.教学难点理解等差数列的性质的应用.教辅手段PPT,多媒体投影幕布教学过程一、复习引入——温故知新【内容设置与处理方式】借助课件引导学生共同回顾所学的等差数列的相关知识1. 等差数列的定义2. 等差数列的通项公式与公差二、 新知探究(一) 等差中项【内容设置与处理方式】直接给出等差中项的定义: 由三个数 组成的等差数列是最简单的等差数列, 此时 叫做 和 的等差中项.同样,在等差数列}{n a 中,就有212+++=n n n a a a 成立.等差中项可应用于判断一个数列是否为等差数列.(二) 等差数列的性质列举几个数列, 观察数列的特点, 研究公差与数列单调性的关系.问题1: 数列1: 1,3,5,7,9,11, ……数列2: 30, 25,20, 15,10,5, ……数列3: 8,8,8,8,8,8, ……引导学生观察, 得到等差数列的一个性质.性质1:若数列 是等差数列, 公差为 .若 >0,则是 递增数列;若 <0,则 是递减数列;若 =0,则 是常数列.2.问题2:在等差数列}{n a 中,探究等差数列中任意两项m n a a ,之间的关系.它们之间的关系可表示为:d m n a a m n )(-+=参考证明: 由等差数列的通项公式 得d m a a m )1(1-+=∴d m n d m a d n a a a m n )(])1([])1([11-=-+--+=-即等式成立由此也可得到公差的另一种表示:mn a a d m n --=性质2: d m n a a m n )(-+=;m n a a d m n --= 问题3: 在等差数列 中, 若 ,则 一定成立吗?特别地, ,则 成立?启发学生应用等差数列的通项公式来证明该问题。

4.2.1等差数列(第二课时)等差数列的证明与性质PPT课件(人教版)

4.2.1等差数列(第二课时)等差数列的证明与性质PPT课件(人教版)

1
2
1
2
=


2( −2)
= ,为常数( ∈ ∗ ).
1

2
1
2
( > 1, ∈
∗ ),记
∴数列{ }是首项为 ,公差为 的等差数列.
=
1
.求证:数
−2
新知探究
证明:(法二:等差中项法)∵ =
∴+2 =
+1
2(+1 −2)
4
=
4−
4

2(4− −2)
(m,n,p,q∈N*)
特别地,设{an}为等差数列,若m+n=2p,则有am+an=2ap. (m,n,p∈N*)
注意:必须是两项相加等于两项相加,否则不一定成立.
例如,15 ≠ 7 + 8 , 但6 + 9 = 7 + 8 ;1 + 21 ≠ 22 ,但1 + 21 = 211 .
[方法二]由等差数列的性质知30 = 37 ,则7 = 10.
故3 − 25 = 3 − (3 + 7 ) = −7 = −10.
新知探究
例3.(1)数列{an}为等差数列,已知a2+a5+a8=9,a3a5a7=-21,求数列{an}的通项公式;
(2)在等差数列{an}中,a15=8,a60=20,求a75的值.
∴ = 1 + ( − 1) × (−20) = 220 − 20.
故从第12年起,该公司经销此产品将亏损.
04
课堂小结
课堂小结
推广:an=am+(n-m)d (n,m∈N*)
首末项两项之间的关系
任意两项之间的关系
an -a1

4.2.1+等差数列的概念(第2课时+等差数列的性质及应用)

4.2.1+等差数列的概念(第2课时+等差数列的性质及应用)
性质2
若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则ak+al=am+an
当k+l=2m时,ak+al=2am
性质3 若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为 2d
若{an}是公差为d的等差数列,则ak,ak+m,ak+2m,…(k,m∈N*)组成公差为
性质4
公差;如果不是,说明理由.
解 (1)首项为am+1=a1+md,公差为d.
(2)首项为a1,公差为2d.
(3)首项为a7=a1+6d,公差为7d.
(4)首项为a1+a2+a3=3a1+3d,公差为9d.
重难探究·能力素养速提升
重难探究·能力素养速提升
探究点一
等差数列与一次函数
【例1】 [北师大版教材例题]已知(1,1),(3,5)是等差数列{是多少?
提示 因为(2an+1+1)-(2an+1)=2(an+1-an)=2d,所以数列
2a1+1,2a2+1,2a3+1,…,2an+1是公差为2d的等差数列.
自主诊断
1.判断正误.(正确的画√,错误的画×)
(1)等差数列{an}中,必有a10=a1+a9.( × )
(1)求数列{an}的通项公式;
(2)画出数列{an}的图象;
(3)判断数列{an}的增减性.
解 (1)因为(1,1),(3,5)是等差数列{an}图象上的两点,所以a1=1,a3=5.
由a3=a1+(3-1)d=1+2d=5,
解得d=2,

4.2.2等差数列的前n项和公式(第二课时)课件(人教版)

4.2.2等差数列的前n项和公式(第二课时)课件(人教版)

n n1
290 ,解得n 261
10,∴an
29.
∴该数列的项数为210 1 19,数列中间一项是29.
例8 某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2 排起后一排都比前一排多2个座位. 问第1排应安排多少个座位.
解:由题意可知,该报告厅各排的座位数构成一个等差数列{an }.
和之比为 32∶27,则该数列的公差为________.
解 1:设该等差数列的首项为 a1,公差为 d,由题意可得 12a1+12×2 11d=354, 6(a61a+1+d)6+×265×2×52×d2d=3227, 解得 d=5.
解 2: 由已知条件,得SS奇 偶+ ∶SS偶 奇= =3325∶4,27, 解得SS偶 奇= =119622,. 又 S 偶-S 奇=6d,∴ d=192-6 162 =5.
练习:项数是偶数的等差数列{an}的公差为2, 所有奇数项之和是15, 所有
偶数项之和为25,则这个数列的项数是__1_0__.
析 : 设项数为2n项, S偶 S奇 nd,25 15 2n, n 5.
练习:等差数列{an }的前12项和是354, 其中偶数项之和与奇数项之和
的比是32 : 27,则该数列的通项公式an __5_n__-__3______.
4.2.2 等差数列的前n项和公式 (第二课时)
等差数列的判定方法 ①定义法:an1 an d (n N * ) {an}为等差数列
②等差中项法:an1 an1 2an (n 2) {an}为等差数列
③通项法:an pn q( p, q为常数) {an}为等差数列
④前n项和公式法:Sn An2 Bn( A, B为常数) {an}为等差数列

2.2.1等差数列第二课时课件(人教B版必修5)

2.2.1等差数列第二课时课件(人教B版必修5)

课堂互动讲练
考点突破 等差数列性质的应用 例1 等差数列{an}中,已知a2+a3+a10+a11 =36,求a5+a8. 【分析】 解答本题既可以用等差数列的性 质,也可以用等差数列的通项公式.
【解】 法一:根据题意设此数列首项为a1, 公差为d,则: a1+d+a1+2d+a1+9d+a1+10d=36, ∴4a1+22d=36,2a1+11d=18, ∴a5+a8=2a1+11d=18. 法二:由等差数列性质得:
(5){an}的公差为d,则d>0⇔{an}为_递__增__数列; d<0⇔{an}为_递__减__数列;d=0⇔{an}为_常__数列.
(6)设{an}是公差为 d 的等差数列,那么 an=am an-am
+_(_n_-__m__)d_或 d=__n_-__m__ (m,n∈N+). 本性质是通项公式的推广,通常适用于“已知 等差数列某一项(或某几项),求数列中另一项” 这类题目. 应用性质应注意,n 与 m 的大小关系是不确定 的,当 n≤m 时,性质仍然成立.
知新益能
1.等差中项 (1)若 a,b,c 成等差数列,则 b 称为 a 与 c 的
a+c 等差中项,且 b=___2___; (2)a,b,c 成等差数列是 2b=a+c 的_充__要__条件;
(3)用递推关系 an+1=12(an+an+2)给出的数列也 是等差数列,an+1 称为_a_n_,__a_n_+_2_的等差中项.
【解】 (1)法一:设等差数列的等差中项为a, 公差为d, 则这三个数分别为a-d,a,a+d, 依题意,3a=6且a(a-d)(a+d)=-24, 所以a=2,代入a(a-d)(a+d)=-24. 化简得d2=16,于是d=±4, 故三个数为-2,2,6或6,2,-2.

人教A版高中数学必修五第二章第2节《等差数列》(第2课时)教案

人教A版高中数学必修五第二章第2节《等差数列》(第2课时)教案

2.2.2等差数列的性质
一、教学目标:
1.明确等差中项的概念;进一步熟练掌握等差数列的通项公式及推导公式,
2.能通过通项公式与图像认识等差数列的性质,能运用等差数列的性质解决某些问题。

二、教学重点难点:
教学重点:等差数列的定义及性质的理解与应用
教学难点:灵活应用等差数列的定义及性质解决一些相关问题
三、教学策略及设计
“数学教学是数学活动的教学”,“数学活动是思维的活动”,新课标也在倡导独立自主,合作交流,积极主动,勇于探索的学习方式。

基于这种理念的指导,在教法上采用探究发现式课堂教学模式,在学法上以学生独立自主和合作交流为前提,重视学生在学习过程中,能否运用等差数列的定义发现和推导等差数列的性质。

设计流程如下:
四、教学过程:。

等差数列的概念第2课时课件上学期高二人教A版(2019)选择性必修第二册

等差数列的概念第2课时课件上学期高二人教A版(2019)选择性必修第二册
解1: (1)依题意得


a1+4d=10
d= − = =3
a1+11d=31
∴ a25=a5+(25-5)d
解得 a1= - 2 , d =3
=10+20×3=70
∴ a25=a1+24d = -2+24×3=70
{
(2) a10=a5+(10-5)d =10+5×2=20
一个新的等差数列{bn}.
(1)求数列{bn} 的通项公式.
(2) b29是不是数列{an} 的项?若是,它是{an} 的第几项?若
不是 ,请说明理由.
分析: (1) {an}是一个确定的数列,只要把a1 ,a2表示为
{bn}中的项,就可以利用等差数列的定义得出{bn}的通项公
式;
(2)设{an}中的第n项是{bn}中的第cn项,根据条件可以求
13
a
=
a
=


2
2
解得

3
3
d =
d =

2
2
∴这四个数所成的等差数列为2, 5, 8, 11或11, 8, 5, 2.
等差数列的性质
设 {an}是公差为d的等差数列,那么
性质1 an =a1+(n-1)d

性质2 d= −
性质3 an =am+(n-m)d
性质4
出n与cn的关系式,由此即可判断b29是否为{an}的项.
例7 已知等差数列{an} 的首项a1=2,d=8 , 在{an}中每
相邻两项之间都插入3个数,使它们和原数列的数一起构成
一个新的等差数列{bn}.

4-2-2等差数列的前n项和公式(第二课时)课件(人教版)

4-2-2等差数列的前n项和公式(第二课时)课件(人教版)
bn 2m 1 T2n1
当m=n时,公式变化? 反之如何证明?
性质2(. 1)若等差数列的项数为2n,则
S2n n
an an1
, S偶
S奇
nd,
S偶 S奇
an1 . an
(2)若等差数列的项数为2n 1,则
S2n1
2n 1 an1, S偶 S奇 an1,
S偶 n . S奇 n 1
解:
当n=1时,a1
S1
12
1 2
1
3 2
当n≥2时,
an
Sn
Sn1
n2
1 2
n
[(n
1) 2
1 2
(n 1)]
2n
1 2

当n=1时也满足①式.
数列{an}的通项公式为an
2n
1 2
,
an an1 2.
由此可知,数列{an}是以
3 2
为首项,公差为2的等差数列.
变式训练

已知数列{an}的前n项和为Sn
为319,所有偶数项之和为290,则该数列的中间项为( )
A. 28
B.29
C.30
D.31
(1)若r=0,则这个数列一定是等差数列. an 2 pn (q p)
(2)若r≠0,则这个数列一定不是等差数列.
an
p q r 2 pn (q
p)
(n 1) (n 1)
Sn
na1
n(n 1) 2
d
d 2
n2
(a1
d )n 2
常数项为0 的关于n的
结论:数列是等差数列等价于 Sn An2 Bn
二次型函数
当A 0即d 0时, Sn是关于n的二次函数式,即Sn An2 Bn的图象是

高二数学等差数列的概念第二课时

高二数学等差数列的概念第二课时
例如:
当d>0时,{an}为递增数列.
an =2n-1
y=2x-1
d=2>0
等差数列的图象2
(2)数列:7,4,1,-2,…




当d<0时,{an}为递减数列.
等差数列的图象3
(3)数列:4,4,4,4,4,4,4,…










等差数列的图象为相应直线上的点。
当d=0时,{an}为常数列.
性质 :设 若 则
等差数列的性质
数列{an}是等差数列,m、n、p、q∈N+,且m+n=p+q,则am+an=ap+aq。
判断:
可推广到三项,四项等注意:等式两边作和的项数必须一样多
∴a8=26-a2=26-4=22.
解析:设此数列的首项为a1,公差为d,则a5+a13=(a1+4d)+(a1+12d) =2a1+16d=40,即a1+8d=20. a8+a9+a10=a1+7d)+(a1+8d)+(a1+9d) =3a1+24d =3(a1+8d) =60.
(2)已知等差数列{an}中, a3 +a4+a5 +a6 +a7=150, 求a2+a8的值
∴ a7+a11 =a3 +a15=30
添加标题
1.若数列{an}是等差数列,p为常数,那么数列{an +c}、{pan} 是否为等差数列,请说明理由.
2.若数列{an}、{bn}都是等差数列,那么数列{an+bn},{an-bn}是否为等差数列,请说明理由.
4.2.1 等差数列的概念
第二课时等差数列的性质
2、等差数列的通项公式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列an是等差数列 , an pn q(其中p为公差)
数列{an}是等差数列,m、n、p、q∈N+, 且m+n=p+q,则am+an=ap+aq。
a4+a5=
()
A.30 B.15 C.5 6 D.10 6
(2)设{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=
100,则a37+b37=
()
A.0 B.37 C.100 D.-37
[解析] (1)∵数列{an}为等差数列,
∴a1+a2+a3+a4+a5=(a1+a5)+(a2+a4)+a3=
2.2.2等差数列
知识回顾
定义
A如A果A一AA个A数AA列A从A第AA2A项起,每一项与
递推公式(定义式)它a前n 一a项n1的差d.(n等于N同).一.个.常. 数. .
等差数列中项公式 通项公式
A ab 2
an=a1+(n-1)d
几何意义
【说明】
等差数列各项对应的点都 在同一条直线上.
∴数列{bn}是首项为12,公差为12的等差数列. (2)由(1)知bn=12+(n-1)×12=12n. ∵bn=an-1 2,∴an=b1n+2=2n+2. Nhomakorabea练习
已知数列 {an} 满足
设 bn

an 2 n 1
求证:
a1 1, an1 2an 2n
(1)数列 bn 为等差数列; (2)求数列 an 的通项公式.
A①公式中 n 2, n N d R
②等差数列的通项公式是关于n的一次函数形式, 当d=0时,为常函数。
探究
已知数列{an} 通项公式为an=pn+q (p、q是
常数),那么这个数列一定是等差数列吗?
若把条件和结论互换, 此说法是否仍然成立?
结论 : 数列an为等差数列 an pn q
小试牛刀
(1)设 c, b 为常数,若数列{an} 为等差数列,则数 列{an b} 及{c an b} 为等差数列.
(2) 设 p, q 为常数,若数列 {an}、{bn}均为等差数列, 则数列 { p an q bn } 为等差数列.
思考:
若数列{an}的通项公式为an=3n+1,则 a1+a6=23,a2+a5=23,a3+a4=23.你能 看出有什么规律吗?
[活学活用]
1.如果等差数列{an}中,a3+a4+a5=12,那么a1+a2+…+a7=
()
A.14
B.12
C.28
D.36
解析:选C ∵a3+a4+a5=12,∴3a4=12,则a4=4, 又a1+a7=a2+a6=a3+a5=2a4, 故a1+a2+…+a7=7a4=28.故选C.
2.已知数列 {an} 满足
5 2
(a2+a4)=
5 2
×6=15.
(2)设cn=an+bn,由于{an},{bn}都是等差数列, 则{cn}也是等差数列,且c1=a1+b1=25+75=100, c2=a2+b2=100, ∴{cn}的公差d=c2-c1=0. ∴c37=100,即a37+b37=100. [答案] (1)B (2)C
等差数列an中,若m n p q,那么
am an与ap aq间存在什么样的关系?
等差数列的性质:
数列{an}是等差数列,m、n、p、 q∈N+,且m+n=p+q,则am+an=ap+aq。 推广: 若m+n=2p,则am+an=2ap。
等差数列的性质应用
[典例] (1)已知等差数列{an}中,a2+a4=6,则a1+a2+a3+
其中p为公差.
判断一个数列是等差数列的常用方法 证明一个数列是等差数列常用的方法有: (1)定义法:利用 an-an-1=d(常数)(n≥2 且 n∈N+)等价 于{an}是等差数列. (2)等差中项法:2an=an-1+an+1(n≥2 且 n∈N+)等价于 {an}是等差数列. (3)an=kn+b(k,b 为常数,n∈N+)等价于{an}是等差数 列.

bn

1 .
an 2
4
a1

4,an

4

(n an1

2),
(1)求证:数列 {bn} 为等差数列; (2)求数列 {an} 的通项公式.
分析:由等差数列的定义,要判断{b n }是不是等差数列,
只要看 bn bn1(n 2)是不是一个与n 无关的
常数就行了.
【解】 (1)证明:∵bn+1-bn=an+11-2-an-1 2 =4-a14n-2-an-1 2=2aan-n 2-an-1 2 =2aann--22=12. 又b1=a1-1 2=12,
相关文档
最新文档