量子力学试题A

合集下载

量子力学基础试题及答案

量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。

答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。

答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。

答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。

答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。

答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。

答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。

2. 描述量子力学中的波函数坍缩现象。

答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。

浙江大学2020—2021学年第 二 学期《 量子力学 》(A卷)考试试题参考答案及评分标准

浙江大学2020—2021学年第 二 学期《 量子力学 》(A卷)考试试题参考答案及评分标准

浙江大学2020—2021学年第二学期《量子力学》(A卷)考试试题参考答案及评分标准一、简答题(每小题5分,共10分)1. 二电子体系中,总自旋,写出()的归一化本征态(即自旋单态与三重态)。

解:()的归一化本征态记为,则自旋单态为自旋三重态为2. 何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应?解:在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。

在弱磁场中,原子发出的每条光谱线都分裂为条(偶数)的现象称为反常塞曼效应。

原子置于外电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。

二、填空题(每小题5分,共30分)3. 一粒子的波函数,则粒子位于间的几率为。

4. 一质量为的粒子在一维无限深方势阱中运动,其状态波函数为,能级表达式为。

5. 粒子在一维势阱中运动,波函数为,则的跃变条件为。

若势阱改为势垒,则的跃变条件为。

6. 给出如下对易关系:7. 一个电子运动的旋量波函数为,则表示电子自旋向上、位置在处的几率密度表达式为,表示电子自旋向下的几率的表达式为。

8. 一维谐振子升、降算符的对易关系式为;粒子数算符与的关系是;哈密顿量用或表示的式子是;(亦即)的归一化本征态为。

三、证明题(每小题8分,共16分)9. 设力学量不显含时间,证明在束缚定态下,。

证:设束缚定态为,即有,,。

因不显含时间,所以,因而。

10. 已知、分别为电子的轨道角动量和自旋角动量,为电子的总角动量。

的共同本征态为。

证明是的本征态,并就和两种情况分别求出其相应的本征值。

解:四、计算题11. 一维运动中,哈密顿量,求(8分)解:,。

12. 一个质量为的粒子在势作用下作一维运动。

假定它处在的能量本征态,①求粒子的平均位置;②求粒子的平均动量;③求;④求粒子的动量在间的几率。

(12分)解:①。

②。

③由S.eq:,(1)而,(2)注意到,(3)将式(2)、(3)代入(1),可解得。

(4)④,——波函数的动量表象(5)粒子的动量在间的几率为(6)13. 一质量为的粒子在一维势箱中运动,其量子态为①该量子态是否为能量算符的本征态?②对该系统进行能量测量,其可能的结果及其所对应的概率为何?③处于该量子态粒子能量的平均值为多少?(12分)解:①在此一维势箱中运动的粒子,其波函数和能量表达式为对波函数的分析可知即粒子处在和的叠加态,该量子态不是能量算符的本征态。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。

2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。

3. 描述量子隧道效应,并解释它在实际应用中的重要性。

三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。

求该粒子的能量E。

2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。

求该电子的动量分布。

答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。

这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。

2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。

例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。

3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。

量子力学考研试题及答案

量子力学考研试题及答案

量子力学考研试题及答案一、单项选择题(每题5分,共20分)1. 量子力学中,波函数的平方代表粒子的什么物理量?A. 动量B. 能量C. 位置D. 概率密度答案:D2. 以下哪项是海森堡不确定性原理的表述?A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程描述的是:A. 经典力学B. 电磁学C. 量子力学D. 热力学答案:C4. 泡利不相容原理适用于:A. 光子B. 电子C. 质子D. 中子答案:B二、填空题(每题5分,共20分)1. 根据量子力学,一个粒子的波函数可以表示为 \(\psi(x, t)\),其中 \(x\) 代表粒子的________,\(t\) 代表时间。

答案:位置2. 量子力学中的波粒二象性表明,粒子既表现出________的性质,也表现出粒子的性质。

答案:波动3. 量子力学中,一个粒子的能量可以表示为 \(E =\frac{p^2}{2m}\),其中 \(p\) 代表粒子的________。

答案:动量4. 量子力学中的隧道效应是指粒子可以穿过________的势垒。

答案:经典物理认为不可能三、简答题(每题10分,共30分)1. 简述德布罗意波的概念及其在量子力学中的意义。

答案:德布罗意波是指物质粒子(如电子)具有波动性,其波长与粒子的动量成反比。

在量子力学中,这一概念是波函数理论的基础,它表明粒子的行为不能完全用经典力学来描述,而是需要用波动方程来描述。

2. 描述一下量子力学中的量子态叠加原理。

答案:量子态叠加原理是指一个量子系统可以同时处于多个可能状态的叠加,直到进行测量时,系统才会坍缩到其中一个特定的状态。

这一原理是量子力学的核心特征之一,它导致了量子力学的非经典行为和概率解释。

3. 解释什么是量子纠缠,并给出一个实际应用的例子。

答案:量子纠缠是指两个或多个量子粒子之间存在的一种非经典的强关联,即使它们相隔很远,一个粒子的状态改变会即时影响到另一个粒子的状态。

2020年级-量子力学试卷及答案A

2020年级-量子力学试卷及答案A

2020年学年第1学期考试试题及答案 (A )卷课程名称 《 量子力学 》 任课教师签名 出题教师签名 审题教师签名 考试方式 (闭)卷 适用专业 考试时间 (120 )分钟一、填空题(25分)1、(2分)Planck 的量子假说揭示了微观粒子的 特性,爱因斯坦的光量子假说揭示了光的 性。

2、(6分)氢原子处于状态()()()()()φθφθφθψ,23,21,,1,1211021--=Y r R Y r R r 中,则氢原子的能量值为 ;角动量平方值为 ;角动量在Z 轴方向分量的平均值为 。

3、(3分)电子处于某能态的寿命为81.0010s -⨯,则该能态能量的最小不确定度E ∆为 。

4、(3分)已知在阱宽为a 的无限深势阱中运动的粒子,设阱内粒子处于()x x =ψ的状态,则在该态下,能量的测值为E 1的几率为 。

5、(3分)一一维自由粒子的初态为()x p i e x 00,η=ψ,则(),x t ψ= 。

6、(2分)微观体系的状态波函数ψ满足的薛定谔方程为 。

7、(2分)量子力学中两力学量能同时有确定值的条件是 。

8、(4分)设体系处于202111Y c Y c +=ψ状态(已归一化,即12221=+c c ),则z L 的可能测值及平均值分别为 和 。

二、简答题(10分)1、(5分)简述势垒贯穿效应,并举例说明其在实际中的应用。

2、(5分)简要说明波函数和它所描写的粒子之间的关系。

三、证明题(10分)1、(5分)证明:在定态中,几率流密度与时间无关。

2、(5分)证明: iz y 1+=ψ为角动量算符x L ˆ的本征值为η的本征态。

四、计算 (55分)1、(15分)粒子在一维势阱()⎪⎩⎪⎨⎧>≤≤-<∞=a x a x U x x U 0000中运动(U 0>0),求证粒子的束缚态能量由式()()E E U E U a tg +--=⎥⎦⎤⎢⎣⎡+0022ημ决定。

量子力学练习答案

量子力学练习答案

《量子力学》试题(A) 答案及评分标准一、简答题(30分,每小题5分) 1.何谓势垒贯穿?是举例说明。

答:微观粒子在能量E 小于势垒高度时仍能贯穿势垒的现象,称为势垒贯穿。

它是一种量子效应,是微观粒子波粒二象性的体现。

例如金属电子冷发射、α衰变等现象都是由隧道效应产生的,利用微观粒子势垒贯穿效应的特性制造了隧道二极管。

2.波函数()t r ,ψ是应该满足什么样的自然条件?()2,t r ψ的物理含义是什么? 答:波函数是用来描述体系的状态的复函数,除了应满足平方可积的条件之外,它还应该是单值、有限和连续的。

()2,t r ψ表示在t 时刻r 附近τd 体积元中粒子出现的几率密度。

3.分别说明什么样的状态是束缚态、简并态、正宇称态和负宇称态?答:当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。

若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是本征值相应的简并度。

将波函数中的坐标变量改变一个负号,若新波函数与原波函数一样,则称其为正宇称态;将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。

4.物理上可观测量应该对应什么样的算符?为什么?答:物理上可观测量对应线性厄米算符。

线性是状态叠加原理要求的,厄米算符的本征值是实数,可与观测值比较。

5.坐标x 分量算符与动量x 分量算符x pˆ的对易关系是什么?并写出两者满足的测不准关系。

答:对易关系为[] i ˆ,=x px ,测不准关系为2≥∆⋅∆x p x 6.厄米算符F ˆ的本征值nλ与本征矢n 分别具有什么性质? 答:本征值为实数,本征矢为正交、归一和完备的函数系二、证明题:(10分,每小题5分)(1)证明:i z y x =σσσˆˆˆ 证明:由对易关系z x y y x i σσσσσˆ2ˆˆˆˆ=-及反对易关系0ˆˆˆˆ=+x y y x σσσσ ,得z y x i σσσˆˆˆ=上式两边乘z σˆ,得2ˆˆˆˆz z y x i σσσσ= ∵ 1ˆ2=z σ ∴ i z y x =σσσˆˆˆ (2)证明幺正变换不改变矩阵的本征值。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。

A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。

答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。

答案:±1/23. 薛定谔方程描述的是粒子的_________。

答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。

答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。

答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。

答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。

在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。

波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。

2. 请简要说明量子力学中的不确定性原理。

答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。

量子力学试题集(a)

量子力学试题集(a)

1、简述量子力学的五大基本假定1)微观体系的状态被一个波函数完全描述,波函数满足连续性、有限性、单纯性。

2)力学量用厄密算符表示,该算符的本征函数具有正交、归一、完全性。

3)将体系的状态波函数ψ用算符F ˆ的本征函数φ展开,∑=nnn C φψ,则在ψ态中测量力学量F 得到结果为本征值n λ的几率为2n C ,而C n 由dx Cn n ⎰*=ψφ求得。

4)体系的状态波函数满足薛定谔方程ψψHti ˆ=∂∂。

5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态。

2、画出电子双窄缝衍射实验图,并用波函数的统计解释和态叠加原理解释之解:粒子在屏B 上一点P 出现的几率为222211222112ψψψψψc c c c +=+=*21*222*12*1ψψψψc c c c ++,第一项等于粒子经过上狭缝出现在P 点几率,第二项是粒子经过下狭缝出现在P 点几率,第三、第四项为干涉项。

3、在量子力学中,微观体系的状态用 来描述,而力学量用 描述。

力学量算符必为 算符,以保证其 为实数。

当对体系的某一力学量进行测量时,测量结果一般说来是不确定的。

测量结果的不确定性来源于 。

波函数、算符、厄密、本征值、态的叠加4、力学量算符必须是 算符,以保证它的本征值为 。

对一个量子体系进行某一力学量的测量时,所得的测量值肯定是 中的某一个,测量结果一般来说是不确定的,除非体系处于 。

测量结果的不确定性来源于 。

两个力学量同时有确定值的条件是 。

厄密,实数,该力学量的本征值,该力学量的某一本征态,态的叠加,两个力学量算符对易5、波函数()kx x cos =ψ是否是自由粒子的能量算符的本征函数?答: 如果是,能量算符的本征值是 。

该波函数是否是动量算符的本征函数?答:是,μ222k ,否6、微观粒子的波粒二象性是指: ;粒子保持完整的颗粒结构在空间以概率波的形式运动的性质就是微观粒子的波粒二象性。

7、电子被100V 的电压加速,则电子的德布罗意波长为 (电子的质量为9.1×10-31kg ,电子的电量为1.602×10-19库仑,普朗克常数 h =6.62559×10-34J ·s );1.220A8、若在一维无限深势阱中运动的粒子的量子数为n ,则距势阱左壁1/4宽度内发现粒子的概率为 ;2sin 2141ππn n - 9、波长2000埃的光照射铯表面时,出射光电子的能量为4.21eV ,则铯的逸出功为 (s m c s J /103,100545.1834⨯=∙⨯=- ); 1.99eV10、有一微观粒子沿x 轴方向运动,描述其运动的波函数为()ixAx +=1ψ,则波函数中归一化常数A 等于 ; π1=A11、若⎪⎪⎪⎭⎫ ⎝⎛-=i i A 1,⎪⎪⎪⎭⎫⎝⎛=12i B ,则=B A3+i12、设氢原子处于状态()()()()()φθφθφθψ,23,21,,1,1211021--=Y r R Y r R r 中,则氢原子的能量值为 。

北京大学量子力学期末试题A及答案

北京大学量子力学期末试题A及答案

北京大学量子力学期末试题A姓名:学号:题号一二三四五六习题 总分成绩一.(10分)若Sˆ是电子的自旋算符,求 a. x S ˆz S ˆx S ˆy S ˆx S ˆ=? b. ?S ˆSˆ=× 二.(12分)若有已归一化的三个态γβα和,,且有8.02.03.0======βγγβαγγααββα ,试用Schmidt 方法构成正交,归一的新的态矢量γβα′′和,.三.(16分) 算符ηηηη/z S ˆi /y S ˆi z /y S ˆi /z S ˆi n e e S ˆe e S ˆϕθθϕ−−=是电子自旋算符zSˆ经幺正变换而得。

试求出它的本征值和相应的本征矢在zS ˆ表象中的表示。

四.(18分)在t=0时,自由粒子波函数为()⎪⎩⎪⎨⎧≥<=b 2x 0b 2x bxsin 2b 0,x πππψ a. 给出在该态中粒子动量的可能测得值及相应的几率振幅;b. 求出几率最大的动量值;c. 求出发现粒子在x dp b b +−ηη区间中的几率;d. ()?t ,x =ψ (积分形式即可)。

五. (18分) 三个自旋为2η的全同粒子,在一维位势())x x x (m 21V 23222123x ,2x ,1x ++=ω 中运动,a. 给出这三个粒子体系的基态和第一激发态的能量及相应 的本征矢;(谐振子波函数以()x u n 表示);b. 它们的简并度分别是多少?六.(16分)质量为m 的粒子处于位势()⎩⎨⎧∞≤<≤<≤<=其他和az 0a y 0,a x 00z ,y ,x V中。

假设它又经受微扰bxy Hˆ=′,试求第一激发态能量的一级修正。

北京大学量子力学期末试题A 答案和评分一. (10分)5分 a. x y x z x s s s s s xy 2x z s s s s −=5x y z 2)2(i s s s 4ηη=−=或 5x y z z y 2)2(i s )s s s s (214ηη=−−=5分b. s i )s s s s (k )s s s s (j )s s s s (i s s x y y x z x x z y z z y ηρρρ=−+−+−=×二.(12分) 1=αα ∴ α=α′4分 )3.0(N )(N α−β=βαα−β=β′由 )..(N ).)(.(N 222230*********+⋅−=α−β−β==β′′2分 91.01N =, )3.0(91.01α−β=β′4分 )2.0(N γβ′β′−α−γ=γ′2020202012....(N ⋅+γ−β′γγβ′−αγ−γγ==γ′γ′)β′γγβ′+β′γγ′−910740309101..).(.=γα−γβ=γ′ 191032602020910740201222222==+−−−⋅..N ).....(N ,2分 67.1N =三. (16分) m 2m m sˆz η= ′=′ϕθθ−ϕ−m e e s ˆe e m s ˆz y y z s ˆi s ˆi z sˆi s ˆi n ηηη如 ′=′θ−ϕ−m e e m y z s ˆi sˆi η, 则 ′=′m m 2m sˆn η 6分 ∴ 它的本征值为 2η± 相应的本征值在z sˆ表象中的表示m )sin i )(cos sin i (cos m m m y z 2222θσ−θϕσ−ϕ′=′′m sin sin i cos sin im sin cos i cos (cos x y 22222222θϕσ+θϕ−θϕσ−θϕ′m )e e (sin )sin im (cos cos m i i 222222ϕ−+ϕ−σ−σθ+ϕ−ϕθ′=6分 1m ,1m 1m ,1m i 1m m i e )(2sin e 2cos =′−=−=′=ϕ±±==′ϕδ±θ+θ=μ 2分 n sˆ本征值为2η,本征表示为 ⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛θθϕϕ−2i 2i e 2sin e 2cos 2分 2η−,本征表示为 ⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛θθ−ϕϕ−2i 2i e 2cos e 2sin四. (18分)6分 a. dx i 2e e 2b e21ibxibx b 2b2x ip p x x−ππ−−−ππ=ϕ∫η dx ]e e [i 41)b()/x p bx (i )x p bx (i 21x x ηη+−−−π=∫]e )p b (i e )p b (i [b i b x)p b (i x bbx)p b (i x xxππ−+−ππ−−++−π=22221141ηηηη2x 2x 21p )b (b2b p 2sin )i 2()b (41−π+π=ηηηη 该态中粒子动量可能测得值为 ∞<<∞−x p5分 b. }]p )b [(b p {sin dp d dp )p (d x x x x x 22222120−π==ϕηη∴ 0422422=−π+ππxxx x p )b (p b p sin b p cos b ηηηη0bp 2sin b p b p 2cos ]p )b [(xx x 2x 2=ππ+π−ηηηη ∴ 有解 b p x η±=3分 c. bxx 23bx p 2b p 2cosb 2)b (i )p (ηηηηη−πππ=ϕ发现粒子在x dp b b +−ηη区间中的几率为x x 2dp b1dp )b (ηη=ϕ4分 d. x t m 2p ip i 21x dpe)2(1)p ()t ,x (2xx ∫−πϕ=ψηηη五. (18分)a. 2分 ω+=εη)21n (n ,3分 ω=η25E 基, ω=η27E 1 基态 2n 0=,1n 1=2分 )()(u )()(u )()(u )()(u )()(u )()(u )()(u )()(u )()(u !3322113322113322113111100000001ββββββααα=ψ )()(u )()(u )(u )()(u )()(u )(u [221331331221311000010000αχ−αχ=)]()(u )()(u )(u 11233210000αχ+1分 )()(u )()(u )(u [331221311000002βχ=ψ )()(u )()(u )(u 22133110000βχ−)]()(u )()(u )(u 11233210000βχ+ 第一激发态 2n 0=,1n 2= 2分 )()(u )()(u )(u [331221312000011αχ=ψ)()(u )()(u )(u 22133120000αχ−)]()(u )()(u )(u 11233220000αχ+ 1分 )()(u )()(u )(u [331221312000012βχ=ψ)()(u )()(u )(u 22133120000βχ−)]1()1(u )23()3(u )2(u 10000βχ+ 2分 )()(u )()(u )(u [331221310001113αχ=ψ )()(u )()(u )(u 22133100011αχ−)]()(u )()(u )(u 11233200011αχ+ 1分 )()(u )()(u )(u [331221310001114βχ=ψ)()(u )()(u )(u 22133100011βχ− )]()(u )()(u )(u 11233200011βχ+b. 4分 基态二重简并第一激发态四重简并 六. (16分)3分 粒子的能量为)n n n (maz y x 2222222++πη 第一激发态为 1 1 21 2 1 2 1 12222220134112a )(ma E ππ=++π=ηη,5分 z a 2sin y a sin x a sin )a 2(123πππ=ρz asin y a 2sin x a sin )a 2(2r 23πππ=ρz asin y a sin x a 2sin )a 2(3r 23πππ=ρdy y a sin y dx x a sin x )a 2(1H ˆ1a 02a 022∫∫π⋅π=′4a dx x a sin x 2a2=π∫ ∴2222ba 41b 4a 4a )a 2(1H 1=⋅⋅⋅=′03H 2H =′=′2a 02a 022ba 41dy y a 2sin y dx x a sin x b )a 2(2H 2=π⋅π=′∫∫dy y a sin y a 2sin y xdx a 2sin x a sin x b )a 2(3H 2a 0a 02∫∫ππ⋅ππ=′42222228164ba 4)9a 8)(9a 8(b )a 2(π⋅=π−π−=2a 02a 022ba 41dy y a sin y dx x a 2sin x b )a 2(3H 3=π⋅π=′∫∫4分 于是有:0E ba 4181ba 464081ba 464E ba 41000E ba 411242421212=−π⋅π⋅−−2分 ∴ 211ba 41E =2分 2424422132344181464418146441ba ])([ba )(ba ba E ,π±=π⋅±=π⋅±=。

量子力学试题含答案

量子力学试题含答案

量子力学试题含答案1. 选择题a) 以下哪个说法正确?A. 量子力学只适用于微观领域B. 量子力学只适用于宏观领域C. 量子力学适用于微观和宏观领域D. 量子力学不适用于任何领域答案:A. 量子力学只适用于微观领域b) 以下哪个量不是量子力学的基本量?A. 质量B. 电荷C. 动量D. 能量答案:D. 能量c) 下面哪个原理是量子力学的基础?A. 相对论B. Newton力学定律C. 不确定性原理D. 统计力学答案:C. 不确定性原理2. 填空题a) 波粒二象性指的是在特定条件下,微观粒子既可表现出波动性,又可以表现出粒子性。

这种相互转化的现象称为________。

答案:波粒二象性的相互转化b) ____________________是描述微观粒子运动的方程。

答案:薛定谔方程c) Ψ(x, t)代表粒子的波函数,那么|Ψ(x, t)|^2表示__________________。

答案:粒子在坐标x处被测量到的概率密度3. 简答题a) 请简要说明波粒二象性的原理和实验观察。

答案:波粒二象性原理指出,微观粒子既可表现出波动性,又可以表现出粒子性。

这意味着微观粒子的行为既可以用波动的方式来描述(例如干涉和衍射现象),也可以用粒子的方式来描述(例如在特定的位置进行观测)。

实验观察可以通过使用干涉仪和双缝实验等经典实验来验证波动性质。

当光或电子通过干涉仪或双缝实验时,会出现干涉和衍射现象,这表明了粒子具有波动性。

同时,通过探测器对光或电子的位置进行测量,可以观察到粒子的粒子性。

b) 请解释量子力学中的不确定性原理及其意义。

答案:不确定性原理是由德国物理学家海森伯提出的,它指出在测量某个粒子的某个物理量的同时,不可避免地会对另一个物理量的测量结果带来不确定性。

不确定性原理的意义在于限制了我们对微观世界的认知。

它告诉我们,粒子的位置和动量无法同时被精确地确定。

这是由于测量过程中的不可避免的干扰和相互关联性导致的。

高中量子力学试题及答案

高中量子力学试题及答案

高中量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是波粒二象性,以下哪个现象不是波粒二象性的体现?A. 光的干涉现象B. 光电效应C. 电子的衍射现象D. 牛顿运动定律2. 根据量子力学,一个粒子的位置和动量不能同时被准确测量,这是由以下哪个原理所描述的?A. 能量守恒原理B. 泡利不相容原理C. 测不准原理D. 相对性原理3. 量子力学中的波函数是用来描述什么?A. 粒子的电荷B. 粒子的动量C. 粒子在空间中的概率分布D. 粒子的质量4. 量子力学中,一个系统的状态可以用一个什么来描述?A. 波函数B. 动量C. 位置D. 能量5. 以下哪个是量子力学中的一个基本假设?A. 所有物体都遵循牛顿运动定律B. 粒子在没有观察时不具有确定的位置C. 所有物体都具有确定的动量和位置D. 能量守恒定律不适用于微观粒子6. 量子力学中的薛定谔方程是用来描述什么的?A. 粒子的动量B. 粒子的位置C. 粒子的波函数随时间的变化D. 粒子的总能量7. 量子力学中的量子态叠加原理指的是什么?A. 粒子的动量和位置可以同时被准确测量B. 粒子可以同时处于多个状态的叠加C. 粒子的状态只能由一个确定的波函数描述D. 粒子的状态不能被准确预测8. 量子纠缠是量子力学中的一个现象,它描述了什么?A. 两个粒子之间的相互作用B. 两个粒子之间的空间关系C. 两个或多个粒子的量子态不能独立于彼此存在D. 两个粒子之间的动量守恒9. 量子力学中的泡利不相容原理指的是什么?A. 两个相同的费米子不能处于同一个量子态B. 两个相同的玻色子不能处于同一个量子态C. 两个不同的费米子可以处于同一个量子态D. 两个不同的玻色子不能处于同一个量子态10. 以下哪个实验支持了量子力学的波粒二象性?A. 双缝实验B. 光电效应实验C. 迈克尔逊-莫雷实验D. 万有引力实验二、简答题(每题5分,共30分)1. 请简述量子力学与经典力学的主要区别。

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论。

2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度;B. Ψ归一化后,ψψ* 代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续。

3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。

4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:AA. *ψ 一定也是该方程的一个解;B. *ψ一定不是该方程的解;C. Ψ 与*ψ 一定等价;D.无任何结论。

5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒。

6.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:BA. ih ∧zlB. ih∧z lC.i∧xl D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA. ψ 一定不是∧B 的本征态;B. ψ一定是 ∧B 的本征态;C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态。

8.如果一个力学量 ∧A 与H∧对易,则意味着∧A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒;D.其本征值出现的几率会变化。

9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒。

10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ; B. )2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D. z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV n E n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题4分,共40分)1. 在量子力学中,一个粒子的状态用波函数表示。

波函数的物理意义是:A. 粒子的位置概率分布B. 粒子的运动速度C. 粒子的自旋状态D. 粒子的能量2. 量子力学的基本假设之一是:A. 粒子的能量是离散的B. 粒子在空间中的轨道是连续的C. 粒子的位置可以同时确定D. 粒子的自旋是固定的3. 哪个原理用于解释原子光谱的发射和吸收现象?A. 波粒二象性原理B. 测不准原理C. 泡利不相容原理D. 量子力学随机性原理4. 薛定谔方程描述了:A. 粒子的位置和动量之间的关系B. 粒子在空间中的运动轨迹C. 粒子的能量和自旋状态D. 粒子波函数随时间的演化5. 量子力学波函数的归一化条件是:A. Ψ(x, t)在全空间上的模长平方的积分等于1B. Ψ(x, t)在全空间上的模长平方的积分等于0C. Ψ(x, t)在无限远处趋于零D. Ψ(x, t)的真实部分等于虚部的共轭6. 两个可观测量的对易关系表示为:[A, B] = AB - BA = 0其中[A, B]表示两个算符的对易子。

这意味着:A. A和B的本征态可以同时存在B. A和B的本征值可以同时测量得到C. A和B的测量结果彼此独立D. A和B的测量结果存在不确定性7. 量子力学中的不确定性原理指出,以下哪一对物理量不能同时精确确定:A. 位置和动量B. 能量和时间C. 自旋在X方向和自旋在Y方向D. 角动量在X方向和角动量在Y方向8. 箱中有一自由粒子,其波函数为:Ψ(x) = A sin(kx)其中A和k为常数,该波函数代表:A. 粒子在箱中处于能量本征态B. 粒子在箱中处于动量本征态C. 粒子在箱中处于位置本征态D. 粒子在箱中处于叠加态9. 双缝干涉实验中,当缝宽减小时,干涉图案的特征是:A. 条纹的间距增大B. 条纹的间距减小C. 条纹的亮度增强D. 条纹的亮度减弱10. 量子隧穿现象解释了:A. 电子在金属中的传导现象B. 光子在光学纤维中的传播现象C. 电子在势垒中的穿透现象D. 光子在介质中的反射现象二、填空题(每题6分,共30分)1. 德布罗意波假设将粒子的运动与________联系起来。

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集量子力学试题集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:C A. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论。

2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度;B. Ψ归一化后,代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续。

3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。

4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:AA. 一定也是该方程的一个解;B. 一定不是该方程的解;C. Ψ 与一定等价;D.无任何结论。

5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒;D粒子不能穿过势垒。

6.如果以l表示角动量算符,则对易运算[lx,ly]为:BA. ihlzB. ihlzC.ilxlxD.h7.如果算符A 、B 对易,且A=A,则:B一定不是B 的本征态;A.一定是B的本征态;B.C.一定是B 的本征态;D. OΨO一定是B 的本征态。

8.如果一个力学量A与H 对易,则意味着A:CA. 一定处于其本征态;B.一定不处于本征态;C.一定守恒;D.其本征值出现的几率会变化。

9.与空间平移对称性相对应的是:B A. 能量守恒;B.动量守恒;C.角动量守恒;D.宇称守恒。

10.如果已知氢原子的n=2能级的能量值为-3.4ev,则n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev 311.三维各向同性谐振子,其波函数可以写为nlm,且l=N-2n,则在一确定的能量(N+2简并度为:B)h 下,A. 1N(N 1)2;B.1(N 1)(N 2)2;C.N(N+1);D.(N+1)(n+2)s12.判断自旋波函数A. 自旋单态;B.自旋反对称态;C.自旋三态;D.12[ (1) (2) (2) (1)]是什么性质:Cz本征值为1.13.6eVn2 ,则电子由n=5 跃迁到n=4 能级时,发出的光子二填空题(每题4分共24分)1.如果已知氢原子的电子能量为En能量为:―――――――――――,光的波长为―――― ――――――――。

量子期末试题及答案

量子期末试题及答案

量子期末试题及答案第一部分:选择题1.下列哪项是描述量子力学的准确说法?a) 量子力学是一种经典物理学理论;b) 量子力学描述了微观粒子的行为;c) 量子力学只适用于宏观物体;d) 量子力学只适用于电磁学领域。

答案:b) 量子力学描述了微观粒子的行为。

2.下列哪个选项是量子力学的基本假设之一?a) 波粒二象性;b) 相对论;c) 牛顿定律;d) 热力学定律。

答案:a) 波粒二象性。

3.对于一个量子系统,其波函数的平方表示什么?a) 粒子的位置;b) 粒子的动量;c) 粒子的波动性;d) 粒子的能量。

答案:c) 粒子的波动性。

4.下列哪项是量子纠缠的特点?a) 粒子之间的状态不相关;b) 粒子之间的状态不确定;c) 粒子之间的状态相关;d) 粒子之间的状态独立。

答案:c) 粒子之间的状态相关。

5.量子力学中的观测算子对应于什么?a) 粒子的位置;b) 粒子的动量;c) 粒子的能量;d) 物理量的测量结果。

答案:d) 物理量的测量结果。

第二部分:简答题1.量子隧穿现象是什么?请简要解释。

答:量子隧穿现象是指在经典物理学中,粒子在能量不足以越过势垒时不可通行,而在量子力学中,粒子可以通过隧穿效应越过势垒。

这是由于波粒二象性的特性,波函数在势垒区域内会有一定的概率分布,因此粒子以概率的形式通过势垒,即使其能量低于势垒高度。

2.什么是量子比特?请简要解释。

答:量子比特(qubit)是量子计算的最小信息单位,类似于经典计算机中的比特(bit)。

而不同之处在于,量子比特允许同时处于多个状态的叠加态,而比特只能处于0或1状态。

量子比特的叠加态可以通过量子叠加原理进行并行计算,从而在某些计算问题上具有优势。

第三部分:计算题1.一粒子处于基态和第一激发态的叠加态上,其波函数可以表示为|ψ⟩=a|0⟩+b|1⟩,其中a和b为复数,且|a|^2+|b|^2=1。

若进行测量得到粒子处于基态的概率为1/3,则计算a和b的值。

量子力学考试题库及答案

量子力学考试题库及答案

量子力学考试题库及答案一、选择题1. 量子力学中,波函数的平方代表粒子在空间某点出现的概率密度。

下列关于波函数的描述中,哪一项是正确的?A. 波函数的绝对值平方代表粒子在空间某点出现的概率密度B. 波函数的绝对值代表粒子在空间某点出现的概率密度C. 波函数的平方代表粒子在空间某点出现的概率D. 波函数的绝对值平方代表粒子在空间某点出现的概率答案:A2. 海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。

以下哪项是海森堡不确定性原理的数学表达式?A. ΔxΔp ≥ ħ/2B. ΔxΔp ≤ ħ/2C. ΔxΔp = ħ/2D. ΔxΔp = ħ答案:A二、填空题3. 在量子力学中,粒子的波函数ψ(x,t)满足________方程,该方程由薛定谔提出,是量子力学的基本方程之一。

答案:薛定谔方程4. 根据泡利不相容原理,一个原子中的两个电子不能具有相同的一组量子数,即不能同时具有相同的________、________、________和________。

答案:主量子数、角量子数、磁量子数、自旋量子数三、简答题5. 简述量子力学中的隧道效应,并给出一个实际应用的例子。

答案:量子隧道效应是指粒子通过一个势垒的概率不为零,即使其能量低于势垒的高度。

这一现象在经典物理学中是不可能发生的。

一个实际应用的例子是扫描隧道显微镜(STM),它利用量子隧道效应来探测物质表面的原子结构。

6. 描述量子力学中的波粒二象性,并解释为什么这一概念是重要的。

答案:波粒二象性是指微观粒子如电子和光子等,既表现出波动性也表现出粒子性。

这一概念重要,因为它揭示了物质在微观尺度上的基本行为,是量子力学的核心概念之一,对理解原子和分子结构、化学反应以及材料的电子性质等方面都有深远的影响。

四、计算题7. 假设一个粒子被限制在一个宽度为L的一维无限深势阱中,求该粒子的基态能量。

答案:基态能量E1 = (π²ħ²)/(2mL²),其中ħ是约化普朗克常数,m是粒子的质量,L是势阱的宽度。

2023年扬州大学研究生自主命题 628量子力学考试真题

2023年扬州大学研究生自主命题 628量子力学考试真题

扬州大学2023年硕士研究生招生考试初试试题(A 卷)科目代码628科目名称量子力学满分150注意:均无效;③本试题纸须随答题纸一起装入试题袋中交回!一、(25分)已知某一维运动的粒子在全空间范围内其状态波函数为()ikx Ae x =ψ,其中A 和k 都是实数。

(1)问:粒子的状态是束缚态,还是散射态?为什么?(2)求:粒子的概率流密度矢量。

(3)求:粒子的动量和粒子的德布罗意波长。

(4)如果满足周期性边界条件()()x L x ψψ=+,L 为固定常数,求:动量的可能值。

二、(25分)在量子力学中,力学量算符应该是厄米算符。

(1)问:具有什么性质的算符就叫厄米算符?(2)证明:厄米算符的本征值为实数。

(3)若算符A ˆ和B ˆ都是厄米算符,它们的对易关系为[]k i B A ˆˆ,ˆ=。

证明:算符kˆ是厄米算符。

三、(25分)在量子力学中,状态确定时,微观粒子力学量的测量值往往是随机的。

(1)问:在什么情况下,力学量的测量值是确定的?此时测量值是什么?(2)问:状态确定,力学量的期望值是否确定?为什么?(3)问:为何有大量微观粒子组成的宏观体系的力学量测量值总是确定的?(4)若粒子在一维线性谐振子势场当中运动,状态波函数为科目代码628科目名称量子力学满分150()()x x x n n 32321)(+-=ψψψ,其中()x n ψ是哈密顿量算符的本征函数。

求:能量的可能值、概率和期望值。

四、(25分)已知在A 表象中,力学量算符Aˆ和B ˆ的矩阵为:⎪⎪⎭⎫ ⎝⎛=2001ˆA ,⎪⎪⎭⎫ ⎝⎛=1221ˆB 。

(1)求:算符Bˆ的本征值和归一化的本征矢量。

(2)求:在B 表象中,算符Aˆ和B ˆ的矩阵形式。

五、(25分)一体系未受微扰作用时0ˆH 有三个不相等的能级:01E 、02E 和03E ,今受到微扰H 'ˆ的作用,微扰矩阵元a H H ='='2112、b H H ='='3223、c H H H ='='='332211,其它微扰矩阵元都为零,a 、b 、c 是实数小量。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 量子力学中,描述一个量子态最基本的方法是()。

A. 波函数B. 哈密顿算符C. 薛定谔方程D. 路径积分答案:A2. 海森堡不确定性原理表明,粒子的()和()不能同时被精确测量。

A. 位置,速度B. 能量,时间C. 动量,位置D. 时间,动量答案:C3. 波函数的绝对值平方代表的是()。

A. 粒子的速度B. 粒子的能量C. 粒子在某一位置出现的概率密度D. 粒子的动量答案:C4. 薛定谔方程是一个()。

A. 线性偏微分方程B. 非线性偏微分方程C. 线性常微分方程D. 非线性常微分方程答案:A5. 在量子力学中,泡利不相容原理指的是()。

A. 两个费米子不能处于同一个量子态B. 两个玻色子不能处于同一个量子态C. 所有粒子都不能处于同一个量子态D. 所有粒子都必须处于同一个量子态答案:A二、填空题1. 在量子力学中,一个粒子的波函数必须满足__________方程,才能保证波函数的归一化条件。

答案:连续性2. 量子力学的基本原理之一是观测者效应,即观测过程会影响被观测的__________。

答案:系统3. 量子纠缠是量子力学中的一种现象,其中两个或多个粒子的量子态以某种方式相互关联,以至于一个粒子的状态立即影响另一个粒子的状态,这种现象被称为__________。

答案:非局域性三、简答题1. 请简述德布罗意假说的内容及其对量子力学的贡献。

德布罗意假说提出了物质波的概念,即所有物质都具有波粒二象性。

这一假说不仅解释了电子衍射实验的现象,而且为量子力学的发展奠定了基础,使得物理学家开始将波动性质引入到粒子的描述中,从而推动了波函数理论的发展。

2. 什么是量子隧穿效应?请给出一个实际应用的例子。

量子隧穿效应是指粒子在遇到一个能量势垒时,即使其能量低于势垒高度,也有可能穿透势垒出现在另一侧的现象。

这一效应是量子力学中特有的,与经典物理学预测的结果不同。

一个实际应用的例子是半导体器件中的隧道二极管,它利用量子隧穿效应来实现电流的传导,具有非常快的开关速度和低功耗的特性。

2008级《量子力学试卷 A》答案

2008级《量子力学试卷 A》答案

c1 c2 c3
0

2c1 ic2 ic1 2c2 ic3
ic2 2c3
,经整理
1
1
1
1
1 2
i 2 1
,同理得
2
1 2
0

1
3
1 2
i2 1
1 0 0
对角化 Ly
0
0
0
0 0 1
0 1 0
(2)根据[Ly , Lz ] i Lx ,将矩阵形式带入,解得 Lx
,即
0 c3 c3
'
2
i 0
i '
i
0 i
c1 c2
0,
' c3
' i 0
这里 ' i ' i 0 ,
2
0 i '
解得: 1' 2 , 2' 0 , 3' 2 ,所以 Lˆy 的本征值依次为 , 0 , 。
1
时,
2 i 2 0
i 2 i
0 i 2
x)
u(x)
2
i E2 E1 t
(2 e
i E1E2 t
e )
与时间无关,是定态;
1 1(x)1*(x) u(x) 2 (2 ei2x ei2x ) , 与时间有关,不是定态;
1/7
3
3
(
x)
* 3
(
x)
u(x)
2
i2Et
(2 e
i 2Et
e )
,与时间有关,不是定态。
3、(10 分)
已知一质量为
5/7
自旋角动量满足与其他角动量相同的对易关系 Sˆ Sˆ i Sˆ ,且在任意方向投影只能取 ± /2 两个值,自旋量子数 s 只有一个数值 1/2。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:量子力学
考试方式:(闭卷)
院:物理与电子科学学院
专业年级:18级电科、电产、微电、微产
二三四
湖北大学2019—2020学年度第2学期课程考试A 试题纸
第2页共2页二、简答题(每小题10分,共20分)
1、简述什么是态叠加原理。

2、写出含时薛定谔方程和定态薛定谔方程。

三、计算题(每小题20分,共20分)
1、线性谐振子在初始时刻处于下面归一化状态:
)()(2
1)(51)(5520x C x x x ψψψψ++=,05>C ,式中)(x n ψ表示谐振子第n 个定态波函数,对应频率为ω。

(1)求系数5C ;(5分)
(2)若0=t 时测量谐振子能量,可能的值及其相应几率分别是多少?求其平均值。

(10分)
(3)写出任意t 时刻的波函数;(5分)
四、证明题(每小题20分,共40分)
1、证明:厄米算符的本征值均为实数(10分);同一个厄米算符的属于不同本征值的本征函数彼此正交(10分)。

2、证明:ϕθϕθψim e r f r 3sin )(),,(=(3±=m 时)是2
ˆL 和x L ˆ的共同的本征函数,并求相应的本征值(20分)。

提示:]sin 1)(sin sin 1[ˆ2
2222ϕθθθθθ∂∂+∂∂∂∂-= L ,ϕ
∂∂-= i L z ˆ。


分得
分得
分。

相关文档
最新文档