物理电场磁场电磁感应知识点
电磁感应知识点
电磁感应知识点
电磁感应是指一个含有电流的导体可以影响另一个不含电流的导体,后者会产生电学
力矩,从而产生电磁制动或推动等作用。
电磁感应由两个基本物理现象组成,即磁场和电场,它们可以互相影响。
磁场是一种
由电流产生的磁力,电场是一种由电荷产生的力,由于它们之间的交互作用,可以在不用
电荷或电流直接接触的情况下影响某一物体的运动。
磁场的特点是向着有磁通的导体的方向流动,这种现象被称为磁电流。
电场的特点是
向着具有电荷的物体流动,这种现象被称为电磁诱导。
在时变磁场和电场中,它们互相影响。
电磁感应是被广泛应用于实际工程中的物理原理。
比如简单的电磁铁,可以由一根导
线绕成线圈,给线圈加上一个时变电流,就可以模拟磁感电磁力;或者可以做一个电磁吸盘,通过将一个带电磁管与磁铁有序排列,同时接地,就可以形成一个吸盘,运用它的磁
吸力做一些简单的实验。
有许多实际应用电磁感应原理的大型装置,常见的有感应主动电机、发电机、变压器、各种电磁开关和电子称等。
感应主动电机利用时变磁场产生电动势,从而使激励线圈转动。
发电机与感应主动电机相反,原理都是利用磁场的时变,将机械能转换成电能。
变压器利
用电磁感应原理,将低压转变为高压,从而完成高压输送。
各种电磁开关利用磁场和电场
相互作用,可以实现电压自动调节,实现电子技术与机械技术的融合。
电子称也是利用电
磁感应原理,将物体的重量转换成电能,从而完成测量重量的任务。
之所以电磁感应可以被广泛使用,是因为它具有多种优势,比如结构简单,容易控制,操作简单,在大小、功耗和效率上都以几乎毫秒级的速度达到了极高的稳定性等。
大学物理知识点(磁学与电磁感应)
y
Idl B
B
dF
dF
I
Idl
x L 任意闭合平面载流导线在均匀磁场中所受的力为零 。 F3 P 注:载流线圈在均匀磁 F2 M 场中所受力矩不一定为 零 B I O F 1 M Npm B en N F4
在均匀磁场中
F BIL
o
P
**应用介质中安培环路定理解题方法**
I 0 Bo
2R
2 IR 0 pm B 0 3 3
2x
2πx
注意:在一定的x处,磁场强弱随载流环的半径变 化,故可用求极值的方法讨论轴线某一定点处磁 场随载流环半径变化的趋势。
无限长柱面电流的磁场
无限长柱体电流的磁场
L1
r
R
I
L2
r
B
0 I
2π R
o R
r
二、磁场的基本性质
1、 感生电动势
S定
B dS i s t
方向由楞次定律判断
o
B变
2、 感生电场
B Ei dl s t dS
感生电场是涡旋场,其电场线与磁感 应强度增大的方向成左手螺旋关系。
3、 感生电场与感生电动势的计算 感生电场 : 当变化的磁场的分布具有特殊对称性时: 1 dB Ei r (r R) 2 dt
五、磁场的能量
1、通电线圈的自感磁能 2、磁场的磁能
1 2 Wm LI 2
目前范畴内:
1 1 2 1 2 w m H B BH 2 2 2
W m V w m dV
电磁学基本物理图象
运动
电荷
激 发
电流
激 发
高中物理:磁场 电磁感应知识点总结
高中物理:磁场电磁感应知识点总结
一、磁场:
1、磁场定义:磁场是一种能够使磁体产生旋转矩力,使磁性物体运动的空间性质。
2、磁场的表示:磁场的大小和方向可以用一个向量来表示,其中,磁场强度表示磁
场的大小;而磁场方向代表磁场的传输路线。
3、磁场的性质:磁场具有外力的作用,它能够对磁性物体施加力,使磁性物体运动;而非磁性物体则不受磁场的影响。
此外,磁场还可以产生电能,为机器提供动力。
二、电磁感应:
1、电磁感应定义:电磁感应指一种电场中存在的磁场和受磁场作用时产生的动作矩。
2、电磁感应的原理:电磁感应的原理是,当一个磁体在电场中存在时,会产生一个
磁场,当另一个电体接近时,会受到这个磁场的作用,产生一个磁力矩,从而引起电体的
变动。
3、电磁感应在实际应用中的作用:电磁感应是电气技术和电工技术中一种重要的基础,电磁感应在实际应用中主要应用于发电、电机、变压器和直流主动电动机等方面。
大学物理电场磁场电磁感应公式总结
对未来学习或研究方向展望
深入学习电磁理论
在大学物理的基础上,可以进一步深入学习电磁场理论,了解电磁波的传播、辐射和散射等现象,为后续的 学术研究或工程应用打下基础。
拓展应用领域
电磁场理论在各个领域都有广泛的应用,如无线通信、电子技术、材料科学等。未来可以将所学的电磁场理 论知识应用到相关领域中,解决实际问题。
交流电的有效值是根据电流的热效应来规定的,对于正弦 交流电,有效值$I = frac{I_m}{sqrt{2}}$。
交流电路中电场、磁场关系分析
电场与磁场相互垂直
在交流电路中,电场和磁场是相 互垂直的,且都垂直于电流的传 播方向。
电磁感应定律
变化的磁场会产生电场,从而产 生感应电动势,感应电动势的大 小与磁通量变化的快慢成正比, 即$e = -n frac{dPhi}{dt}$。
电感和电容
在交流电路中,电感对电流的变 化有阻碍作用,电容对电压的变 化有阻碍作用。电感和电容都是 储能元件,它们在交流电路中的 特性与其在直流电路中的特性有 很大不同。
变压器原理和应用举例
变压器原理
变压器是利用电磁感应原理来改变交流电压的装置。它由两个或多个匝数不同的线圈绕在同一个铁芯上制 成。当原线圈中加上交流电压时,在铁芯中就会产生交变磁通,从而在副线圈中产生感应电动势。
电场
电场强度、电势、高斯定理、静 电场的环路定理等概念和公式, 以及它们在求解电场分布、电势 能和电场力等问题中的应用。
磁场
磁感应强度、磁场线、磁通量、 安培环路定律等概念和公式,以 及它们在求解磁场分布、磁力和 磁矩等问题中的应用。
电磁感应
法拉第电磁感应定律、楞次定律、 自感和互感等概念和公式,以及 它们在求解感应电动势、感应电 流和磁场能量等问题中的应用。
高中物理-电磁感应-知识点归纳
电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
物理模型上下移动导线AB,不产生感应电流左右移动导线AB,产生感应电流原因:闭合回路磁感线通过面积发生变化不管是N级还是S级向下插入,都会产生感应电流,抽出也会产生,唯独磁铁停止在线圈力不会产生原因闭合电路磁场B发生变化开关闭合、开关断开、开关闭合,迅速滑动变阻器,只要线圈A中电流发生变化,线圈B就有感应电流二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。
....中磁通量发生变化2、产生感应电流的常见情况 .(1)线圈在磁场中转动。
(法拉第电动机)(2)闭合电路一部分导线运动(切割磁感线)。
(3)磁场强度B变化或有效面积S变化。
(比如有电流产生的磁场,电流大小变化或者开关断开)3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
(2)“运动不一定切割,切割不一定生电”。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。
三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
(2)“阻碍”的含义.从阻碍磁通量的变化理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。
从阻碍相对运动理解为:阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。
(3)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在克服这种阻碍的过程中,其他形式的能转化成电能。
(4)“阻碍”的形式.1.阻碍原磁通量的变化,即“增反减同”。
2.阻碍相对运动,即“来拒去留”。
3. 使线圈面积有扩大或缩小的趋势,即“增缩减扩”。
(完整版)电与磁知识点总结
引言概述:电与磁是物理学的基本知识,广泛应用于科学、工程和日常生活中。
本文将对电与磁的知识点进行总结,包括电荷、电场、电流、磁场和电磁感应等主要内容。
通过深入理解这些知识点,我们能够更好地理解电子设备的工作原理,以及电和磁在各种应用中的作用。
正文内容:1.电荷:1.1原子结构中的电子与质子1.2电子的带电性质和电荷的量子化1.3电荷守恒定律和库仑定律1.4电磁力和静电场2.电场:2.1电场的概念和性质2.2电场强度和电场线2.3电势和电势差2.4高斯定律和电场能2.5电容和电场中的电介质3.电流:3.1电流的概念和电流密度3.2电阻和欧姆定律3.3环路定律和基尔霍夫定律3.4电源和电动势3.5电功和功率4.磁场:4.1磁场的概念和性质4.2磁感应强度和磁场线4.3洛伦兹力和磁场能4.4磁场中的电流和安培定律4.5磁介质和磁感应强度的量子化5.电磁感应:5.1法拉第电磁感应定律和互感器5.2感生电动势和感应电流5.3洛伦兹力和电磁铁5.4电磁感应中的自感和互感5.5麦克斯韦方程组和电磁波总结:电与磁是物理学中非常重要的知识点,本文总结了电荷、电场、电流、磁场和电磁感应等方面的内容。
通过深入了解这些知识,我们能够更好地理解电子设备的工作原理,如电路中的电流流动和元器件中的电荷分布;同时,我们还能够理解电和磁在医学成像、通信技术和能源转换等领域中的应用。
电与磁的研究也为我们提供了深刻的物理现象和规律,推动了科学技术的发展。
因此,对于电与磁的研究和理解是非常有价值的。
希望通过本文的总结,读者能够加深对电与磁的认识,提高对这一领域的兴趣,并将这些知识应用于实际生活和工作中。
电磁感应知识点总结
电磁感应知识点总结电磁感应是指通过磁场或电场的作用产生电流或电动势的现象。
它是电磁学的重要内容,应用广泛。
下面将从电磁感应的基本原理、应用和影响等方面进行总结。
一、电磁感应的基本原理1. 法拉第电磁感应定律:当磁场的变化穿过闭合回路时,回路中会产生感应电流。
这个定律描述了磁场变化对电流的影响。
2. 楞次定律:感应电流的方向会使得其磁场的改变抵消原来磁场变化的效果。
此定律描述了感应电流对磁场的反作用。
3. 磁通量:磁力线通过单位面积的数量。
磁通量的变化是电磁感应的直接原因。
二、电磁感应的应用1. 发电机:利用电磁感应原理将机械能转化为电能,广泛应用于发电行业。
2. 变压器:利用电磁感应原理实现电压的升降。
3. 感应电炉:利用电磁感应原理将电能转化为热能,用于熔炼金属等工业领域。
4. 电磁感应传感器:利用电磁感应原理测量物理量,如温度、压力等。
5. 电磁制动器和离合器:利用电磁感应原理实现制动和离合的功能。
三、电磁感应的影响1. 电磁辐射:由于电磁感应产生的电流会产生电磁辐射,对人体健康和电子设备产生一定的影响。
2. 电磁波干扰:电磁感应产生的电磁场有可能干扰无线通信、雷达等设备的正常工作。
3. 电磁感应对电路的影响:电磁感应会在电路中引入干扰电压和电流,影响电路的稳定性和性能。
电磁感应作为电磁学的重要内容,其基本原理和应用在现实生活中有着广泛的应用。
了解电磁感应的原理和应用,有助于我们更好地理解和应用电磁学知识,推动科学技术的发展。
同时,我们也需要关注电磁辐射和电磁干扰等问题,合理利用电磁感应技术,保护环境和人类健康。
磁场,电场,电磁感应知识点汇总
高中物理磁场知识点1.磁场(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场. (2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.(3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用. (4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体.(5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向.2.磁感线(1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.(3)几种典型磁场的磁感线的分布:①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F 跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/(A·m).(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向.(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比.(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:(1)地磁场的N极在地球南极附近,S极在地球北极附近.(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.(3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.5★.安培力(1)安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度.(2)安培力的方向由左手定则判定.(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零.6.★洛伦兹力(1)洛伦兹力的大小f=qvB,条件:v⊥B.当v∥B时,f=0.(2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功.(3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定.(4)在磁场中静止的电荷不受洛伦兹力作用.7.★★★带电粒子在磁场中的运动规律在带电粒子只受洛伦兹力作用的条件下(电子、质子、α粒子等微观粒子的重力通常忽略不计),(1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动. (2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动.①轨道半径公式:r=mv/qB ②周期公式: T=2πm/qB8.带电粒子在复合场中运动(1)带电粒子在复合场中做直线运动①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解.②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解. (2)带电粒子在复合场中做曲线运动①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动.处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解.②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解.③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“最大”、“最高” “至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解.高中物理电场知识点1.两种电荷-----(1)自然界中存在两种电荷:正电荷与负电荷. (2)电荷守恒定律:2.★库仑定律(1)内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.(2)公式:(3)适用条件:真空中的点电荷.点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少.3.电场强度、电场线(1)电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性.(2)电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式:E=F/q 方向:正电荷在该点受力方向.(3)电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:①电场线是起始于正电荷(或无穷远处),终止于负电荷(或无穷远处);②电场线的疏密反映电场的强弱;③电场线不相交;④电场线不是真实存在的;⑤电场线不一定是电荷运动轨迹.(4)匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线.(5)电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和.4.电势差U:电荷在电场中由一点A移动到另一点B时,电场力所做的功W AB与电荷量q的比值WAB/q 叫做AB两点间的电势差.公式:U AB =W AB /q 电势差有正负:U AB =-U BA,一般常取绝对值,写成U.5.电势φ:电场中某点的电势等于该点相对零电势点的电势差.(1)电势是个相对的量,某点的电势与零电势点的选取有关(通常取离电场无穷远处或大地的电势为零电势).因此电势有正、负,电势的正负表示该点电势比零电势点高还是低.(2)沿着电场线的方向,电势越来越低.6.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处(电势为零处)电场力所做的功ε=qU7.等势面:电场中电势相等的点构成的面叫做等势面.(1)等势面上各点电势相等,在等势面上移动电荷电场力不做功.(2)等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面.(3)画等势面(线)时,一般相邻两等势面(或线)间的电势差相等.这样,在等势面(线)密处场强大,等势面(线)疏处场强小.8.电场中的功能关系(1)电场力做功与路径无关,只与初、末位置有关.计算方法有:由公式W=qEcosθ计算(此公式只适合于匀强电场中),或由动能定理计算.(2)只有电场力做功,电势能和电荷的动能之和保持不变.(3)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变.9.静电屏蔽:处于电场中的空腔导体或金属网罩,其空腔部分的场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.10.★★★★带电粒子在电场中的运动(1)带电粒子在电场中加速带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量.(2)带电粒子在电场中的偏转带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动.垂直于场强方向做匀速直线运动:Vx=V0,L=V0 t.平行于场强方向做初速为零的匀加速直线运动:(3)是否考虑带电粒子的重力要根据具体情况而定.一般说来:①基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力(但不能忽略质量).②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力.(4)带电粒子在匀强电场与重力场的复合场中运动由于带电粒子在匀强电场中所受电场力与重力都是恒力,因此可以用两种方法处理:①正交分解法;②等效“重力”法.11.示波管的原理:示波管由电子枪,偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX′上加扫描电压,同时加在偏转电极YY′上所要研究的信号电压,其周期与扫描电压的周期相同,在荧光屏上就显示出信号电压随时间变化的图线.12.电容-----(1)定义:电容器的带电荷量跟它的两板间的电势差的比值高中物理电磁感应知识点1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流.(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源.(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流.2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和.3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便.(2)对楞次定律的理解①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量.②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少.(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感).★★★★4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.7.电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画等效电路.(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解.8.电磁感应现象中的力学问题(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.②求回路中电流强度.③分析研究导体受力情况(包含安培力,用左手定则确定其方向).④列动力学方程或平衡方程求解.(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点.9.电磁感应中能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗电功率表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.10.电磁感应中图像问题电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围.另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断.。
物理电场磁场电磁感应知识点
物理电场磁场电磁感应知识点电场知识点⼀、电荷、电荷守恒定律1、两种电荷:“+”“-”⽤⽑⽪摩擦过的橡胶棒带负电荷,⽤丝绸摩擦过的玻璃棒带正电荷。
2、元电荷:所带电荷的最⼩基元,⼀个元电荷的电量为1.6×10-19C,是⼀个电⼦(或质⼦)所带的电量。
说明:任何带电体的带电量皆为元电荷电量的整数倍。
荷质⽐(⽐荷):电荷量q与质量m之⽐,(q/m)叫电荷的⽐荷3、起电⽅式有三种①摩擦起电,②接触起电注意:电荷的变化是电⼦的转移引起的;完全相同的带电⾦属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。
③感应起电——切割B,或磁通量发⽣变化。
4、电荷守恒定律:电荷既不能创造,也不能被消灭,它们只能从⼀个物体转移到另⼀个物体,或者从物体的⼀部分转移到另⼀部分,系统的电荷总数是不变的.⼆、库仑定律1.内容:真空中两个点电荷之间相互作⽤的电⼒,跟它们的电荷量的乘积成正⽐,跟它们的距离的⼆次⽅成反⽐,作⽤⼒的⽅向在它们的连线上。
⽅向由电性决定(同性相斥、异性相吸)2.公式:k=9.0×109N·m2/C2极⼤值问题:在r和两带电体电量和⼀定的情况下,当Q1=Q2时,有F最⼤值。
3.适⽤条件:(1)真空中;(2)点电荷.点电荷是⼀个理想化的模型,在实际中,当带电体的形状和⼤⼩对相互作⽤⼒的影响可以忽略不计时,就可以把带电体视为点电荷.(这⼀点与万有引⼒很相似,但⼜有不同:对质量均匀分布的球,⽆论两球相距多近,r都等于球⼼距;⽽对带电导体球,距离近了以后,电荷会重新分布,不能再⽤球⼼距代替r)。
点电荷很相似于我们⼒学中的质点.注意:①两电荷之间的作⽤⼒是相互的,遵守⽜顿第三定律②使⽤库仑定律计算时,电量⽤绝对值代⼊,作⽤⼒的⽅向根据“同性相排斥,异性相吸引”的规律定性判定。
计算⽅法:①带正负计算,为正表⽰斥⼒;为负表⽰引⼒。
②⼀般电荷⽤绝对值计算,⽅向由电性异、同判断。
三个⾃由点电荷平衡问题,静电场的典型问题,它们均处于平衡状态时的规律。
电磁关系知识点总结
电磁关系知识点总结电磁关系是科学家们研究电力和磁力之间的相互作用的一门学科。
电磁关系是物理学的一个非常重要的分支,它涉及到许多相关的知识点和理论。
本文将对电磁关系的相关知识点进行总结和概述。
一、电磁关系的基本概念1. 电磁力:电磁力是指电荷之间相互作用产生的力。
根据库仑定律,两个点电荷之间的电磁力与它们之间的距离和电荷量的大小成正比。
电磁力不仅可以作用于静止的电荷,还可以作用于运动中的电荷。
2. 电场:电磁力的作用对象是电荷,而围绕电荷周围产生的一种场就是电场。
电场是一种使得在它内部存在电荷时产生相互作用的场。
电场是研究电磁现象的重要基础,通过电场可以了解到电荷的分布情况和电荷之间相互作用的规律。
3. 磁场:磁场是由电流和磁荷所产生的一种场。
磁场可以使得带有磁性的物体相互作用,受到磁力的作用。
磁场对物质的研究非常重要,它可以促进我们对电磁现象的理解,也是电磁关系的一个重要组成部分。
4. 电场强度和磁场强度:电场强度是一个矢量,它表示电场对单位正电荷的作用力。
磁场强度也是一个矢量,它表示磁场对单位磁偶极子的作用力。
电场强度和磁场强度是电磁关系的重要量,它们可以帮助我们研究电磁现象和解决相关的问题。
二、电磁感应1. 法拉第电磁感应定律:法拉第电磁感应定律是电磁关系的一个重要基础。
它指出,当导体中的磁通量发生变化时,导体中就会产生感应电动势。
法拉第电磁感应定律是研究电磁关系的基础,它揭示了电磁感应现象的规律特点。
2. 感应电动势和感应电流:感应电动势是指在导体中由于磁通量的变化而产生的电动势。
感应电流是指在导体中由于感应电动势的存在而产生的电流。
电磁感应是电磁关系中非常重要的一个现象,它在电磁现象的研究和应用中发挥着重要作用。
3. 自感和互感:自感是指一个线圈中的自身电流产生的磁通量对线圈产生的电动势的影响。
互感是指两个线圈之间由于相互感应产生电动势的现象。
自感和互感是电磁关系中的重要内容,它们可以帮助我们理解电磁现象,解决实际问题。
电磁感应与电磁场的知识点总结
电磁感应与电磁场的知识点总结电磁感应是电磁学中的一个重要概念,指的是导体中的电流会受到磁场的影响而产生感应电动势。
而电磁场则是由电荷和电流所产生的物理现象,可以用来描述电磁力的作用。
本文将对电磁感应与电磁场的相关知识点进行总结,帮助读者更好地理解这一领域。
一、电磁感应1. 法拉第电磁感应定律法拉第电磁感应定律是电磁感应研究的基础,它表明当导体中的磁场发生变化时,会产生感应电动势。
具体表达式为:感应电动势等于磁通量变化率的负值乘以线圈的匝数。
这个定律解释了电磁感应现象的产生原理。
2. 楞次定律楞次定律是法拉第电磁感应定律的补充,它描述了感应电流的方向。
根据楞次定律,感应电流的产生会产生磁场,其磁场的方向使得感应电流所产生的磁场与引发感应电流变化的磁场方向相反。
换言之,楞次定律说明了感应电流的方向与磁场变化的关系。
3. 磁通量与磁感应强度磁通量描述的是磁场通过某一平面的程度,与磁场的面积和磁感应强度有关。
磁感应强度表示单位面积上的磁通量,它的方向垂直于磁场线。
通过改变磁通量和磁感应强度,可以实现对电磁感应的控制。
二、电磁场1. 静电场与静电力静电场是由电荷所产生的一种场,它可以通过电场线来表示。
静电力是静电场作用在电荷上的力,根据库仑定律,静电力与电荷之间的距离和大小成反比。
2. 磁场与磁力磁场是由电流所产生的一种场,它可以通过磁感线来表示。
磁力是磁场对电荷和电流所产生的力,它的方向垂直于磁场线和电荷或电流的方向。
3. 电磁场和电磁力电磁场是由电荷和电流共同产生的场,它是电场和磁场的综合体现。
电磁力是电场和磁场对电荷和电流所产生的综合力,它同时包含了静电力和磁力的作用。
4. 麦克斯韦方程组麦克斯韦方程组是描述电磁场性质的基本方程,它由四个方程组成。
其中包括了法拉第电磁感应定律、库仑定律以及电磁场的高斯定律和安培环路定律。
麦克斯韦方程组的推导和理解有助于深入学习电磁场的原理和性质。
总结:电磁感应和电磁场是电磁学中的两个核心概念,通过磁场对导体产生感应电动势,我们可以利用电磁感应现象实现电磁能量的转换和传输。
初中物理电磁感应知识点总结
初中物理电磁感应知识点总结
电磁感应是指由电场、磁场的变化所产生的感应电动势和感应电流的现象。
电磁感应定律有三种:
1.法拉第电磁感应定律:当导体中有变化的磁通量时,导体两端会产生感应电动势,并且大小与变化的磁通量有关。
2.楞次定律:自感电动势的方向要阻碍所产生它的磁通量的变化,电磁感应电动势的方向要阻碍产生它的原因,即磁场的变化。
3.法拉第电磁感应定律的推论:导体在磁场中运动时,会产生感应电势,且大小与导体速度和磁场强度有关。
电磁感应的应用有许多,例如:
1.发电机原理:利用旋转的磁场和导体的运动产生感应电动势,从而实现能量转化。
2.变压器原理:利用交变磁场产生感应电动势,从而实现电压的升降。
3.感应加热:利用感应电流在导体内部产生的焦耳热效应,实现对金属的加热。
电磁感应在现代生活中具有重要的作用,理解它的原理和应用对于我们的科学研究和工程应用具有很大的帮助。
高中物理电磁学知识点归纳大全
高中物理电磁学知识点归纳大全一、电场。
1. 电荷与库仑定律。
- 电荷:自然界存在两种电荷,正电荷和负电荷。
电荷的多少叫电荷量,单位是库仑(C)。
- 库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。
表达式为F = k(q_1q_2)/(r^2),其中k = 9.0×10^9N· m^2/C^2。
2. 电场强度。
- 定义:放入电场中某点的电荷所受的电场力F与它的电荷量q的比值,叫该点的电场强度,E=(F)/(q)。
单位是N/C或V/m。
- 点电荷的电场强度:E = k(Q)/(r^2)(Q为场源电荷电荷量)。
- 电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和。
3. 电场线。
- 电场线是为了形象地描述电场而引入的假想曲线。
电场线从正电荷或无穷远出发,终止于负电荷或无穷远;电场线越密的地方电场强度越大。
4. 电势与电势差。
- 电势:电荷在电场中某一点的电势能与它的电荷量的比值,φ=(E_p)/(q)。
单位是伏特(V)。
- 电势差:电场中两点间电势的差值,U_AB=φ_A - φ_B,也等于把单位正电荷从A点移到B点电场力所做的功,U_AB=frac{W_AB}{q}。
5. 等势面。
- 电场中电势相等的点构成的面叫等势面。
等势面与电场线垂直;电场线总是从电势高的等势面指向电势低的等势面。
6. 电容器与电容。
- 电容器:两个彼此绝缘又相距很近的导体可组成一个电容器。
- 电容:电容器所带电荷量Q与电容器两极板间电势差U的比值,C=(Q)/(U),单位是法拉(F),1F = 1C/V。
平行板电容器的电容C=(varepsilon S)/(4πkd)(varepsilon为介电常数,S为极板正对面积,d为极板间距)。
二、电路。
1. 电流。
- 定义:电荷的定向移动形成电流,I=(Q)/(t),单位是安培(A)。
电场与磁场的相互作用与电磁感应
电场与磁场的相互作用与电磁感应电磁学是研究电场和磁场相互作用的一门学科。
电场和磁场的相互作用是电磁学的基础,而电磁感应则是由于电场和磁场相互作用引起的重要现象。
在本文中,我们将探讨电场与磁场的相互作用以及电磁感应的原理和应用。
首先,我们来了解一下电场与磁场的基本概念。
电场是由电荷产生的一种力场,它对带电粒子施加力。
磁场是由磁荷或者电流产生的一种力场,它对具有磁性的物体或者带电粒子施加力。
电场和磁场都是用场强来描述的,电场强度和磁场强度分别表示单位正电荷和单位磁荷所受到的力。
电场和磁场之间的相互作用是通过电磁场来实现的。
当一个带电粒子在电场中运动时,它会受到电场力的作用,而当一个带电粒子在磁场中运动时,它会受到磁场力的作用。
电磁场的相互作用可以通过洛伦兹力来描述,该力由电荷和电流在电场和磁场中的相互作用产生。
洛伦兹力的方向可以通过右手定则来确定。
在电磁场相互作用下,电荷或者电流受到的力的方向垂直于电场和磁场的方向,并且满足动量守恒定律。
洛伦兹力的大小由电荷或电流的数值以及电磁场的强度确定。
除了相互作用力外,电场和磁场还可以产生能量和传播能量。
当电流经过电阻产生电压时,电场能够转化为热能。
而磁场可以通过磁感线的变化产生涡流,从而将磁能转化为电能。
这种将电能和磁能相互转化的过程就是电磁感应。
电磁感应是由电场和磁场相互作用而产生的一种现象。
当磁场的磁感线穿过一个闭合电路时,闭合电路中就会产生感应电流。
根据法拉第电磁感应定律,感应电流的大小与磁感线的变化速率成正比。
当磁感线的变化速率较大时,感应电流的大小也较大。
电磁感应的应用广泛,其中最重要的就是发电机原理。
发电机利用磁场与线圈的相互作用,将机械能转化为电能。
当发电机的转子旋转时,磁感线就会穿过线圈,从而在线圈中产生感应电流。
这种感应电流可以通过导线输出,供给电器设备使用。
此外,电磁感应还可以应用在变压器和感应加热器等设备中。
变压器利用磁场的变化引起次级线圈中的感应电流,从而实现改变电压的目的。
磁场的感应与电场的变化
磁场的感应与电场的变化磁场和电场是物理学中重要的概念,它们与我们日常生活息息相关。
在物理学中,磁场的感应和电场的变化是两个不可忽视的现象。
本文将详细讨论磁场感应和电场变化之间的关系以及它们在实际应用中的重要性。
一、磁场感应的基本原理在讨论磁场感应之前,首先需要了解磁场。
磁场是由电流和磁铁所产生的物理现象,它具有方向和大小。
一个磁场可以通过磁感应线来表示,磁感应线标志了磁场的方向。
磁场感应是指当一个导体在磁场中运动或磁场的强度发生变化时,产生电动势和感应电流的现象。
磁场感应的基本原理是法拉第电磁感应定律,该定律表明磁感应强度的变化会引起感应电流的产生。
二、电场变化的描述与原理与磁场类似,电场也是由电荷所产生的物理现象。
电场存在于带电体周围,它的存在通过电场线来表示。
电场线是从正电荷流向负电荷的线条。
电场的变化指的是电场强度在空间或时间上的变化。
当电场的强度发生变化时,会引起电荷的移动,从而产生电流。
根据法拉第电磁感应定律,电场的变化也会导致感应电流的产生。
三、磁场感应与电场变化的关系磁场感应和电场变化在物理学中有着密切的联系。
它们之间的关系可以从两个方面来讨论:1. 磁场感应引起电场的变化:根据法拉第电磁感应定律,当一个导体在磁场中运动或磁场的强度发生变化时,会产生感应电流和感应电场。
这是因为磁场的变化会引起电场的变化,从而使导体中的电子发生移动,产生感应电流。
2. 电场变化引起磁场的感应:同样地,根据法拉第电磁感应定律,当电场的强度发生变化时,会引起磁场的感应。
这是因为电场的变化会导致电荷的移动,从而产生电流,进而产生磁场。
综上所述,磁场感应和电场变化是相互影响的过程。
它们之间的关系可以通过法拉第电磁感应定律来描述。
无论是磁场感应还是电场变化,都会导致电流的产生,从而产生各种各样的物理现象。
四、磁场感应和电场变化的应用磁场感应和电场变化在现实生活中有着广泛的应用。
以下是一些常见的应用示例:1. 电磁感应发电:电磁感应是发电机的基本原理之一。
职教物理知识点总结电磁
职教物理知识点总结电磁电磁是物理学中的一个重要分支,涉及电场和磁场的产生和相互作用。
在职教物理学中,电磁知识点的学习对于理解电子技术、电力工程、通信技术等领域都具有重要意义。
本文将从电场和磁场的基础概念出发,详细介绍电磁学的重要知识点和应用。
一、电场电场是由电荷产生的力场,描述了电荷在空间中的作用力。
下面将介绍电场的产生、性质和应用:1. 电荷和电场电荷是物质中特有的一种属性,根据电荷的性质,可以将电荷分为正电荷和负电荷。
当正电荷和负电荷分离时,它们会产生电场。
而电场是一种力场,描述了电荷对空间中其他电荷产生的作用力。
2. 电场强度电场强度是描述电场大小和方向的物理量,通常用E表示。
电场强度的大小与电荷大小、电荷间距和介质特性有关。
电场强度的方向由正电荷指向负电荷,或者沿着电场线的方向。
3. 高斯定理高斯定理是描述电荷在电场中的性质的重要理论定律。
它描述了电场通过任意闭合曲面的电通量与包围曲面的电荷量之间的关系。
利用高斯定理可以方便地求解电荷产生的电场,加深对电场性质的理解。
4. 电场能量电场中的电荷具有电势能,它是由于电荷在电场中的位置而具有的能量。
电场能量可以用来描述电荷之间的相互作用以及电场的储能特性。
在电力工程和电子技术中,电场能量的储存和控制是非常重要的。
5. 应用电场的产生和性质在各个领域都有广泛的应用,例如电力输送、电子设备、静电除尘等。
了解电场的基本原理和应用对于工程领域的从业人员是非常重要的。
二、磁场磁场是由带电粒子运动产生的力场,描述了磁场中物体的受力和运动。
下面将介绍磁场的产生、性质和应用:1. 磁感线和磁通量磁感线是描述磁场强度大小和方向的直观图示,磁场线的方向从磁南极指向磁北极。
磁通量是描述磁场通过某一表面的总磁力线数目,可以用来描述磁场的强弱和方向。
2. 磁感应强度磁感应强度是描述磁场大小和方向的物理量,通常用B表示。
磁感应强度的大小与磁荷大小、距离和介质特性有关。
磁感应强度的方向沿着磁场线的方向。
物理学电场与磁场、电磁感应
当电荷的线度远小于作用距离时可看做点电荷。点 电荷是带电体的一种理想模型。如果在研究的问题 中,带电体的形状、大小可以忽略不计,即可将其 看做是一个几何点,这样的带电体就是点电荷。在 研究带电体间的相互作用时,若带电体的尺寸远小 于它们之间的距离,也可把带电体看成点电荷。
4.2.2 电势差与电场强度的关系
假设电荷所走路径是由A沿直线到达B,则做功
W F AB cos qE AB cos
qE AC
W qU AB
E U AB U AB AC d
4.3.1 磁现象
天然磁石和人造磁铁都叫做永磁体,它们都能吸引铁 质物的性质叫做磁性。磁体的各部分磁性强弱不同, 磁性最强的区域叫做磁极。能够自由转动的磁体,例 如悬吊着的磁针,静止时指南的磁极叫做南极,又叫 S极;指北的磁极叫做北极,又叫N极。
自然界中有且只有两种电荷:丝绸摩擦过的玻璃棒带的 电荷叫正电荷,毛皮摩擦过的橡胶棒带的电荷叫负电荷。
电荷的最基本的性质是:同种电荷相互排斥,异种电荷 相互吸引。
电荷的多少叫电荷量,简称电量,用Q(或q)表示。 国际单位制中,电量的基本单位是库仑,符号为C。
正电荷的电荷为正值,负电荷的电荷为负值。
单个质子、正电子所带的电量与它相同,但符号相反。 人们把这个最小电荷量叫做元电荷。 元电荷是物理学的基本常数之一。所有电荷的电量都 是它的整数倍。 电荷量不是连续变化的,而是分立的。
在电场中,某点电荷的电势能跟它所带的电荷量之比, 叫做这点的电势
EP
q
电势是一个与电荷本身无关的物理量,它与电荷存在与 否无关,是由电场本身的性质决定的。在国际单位制中, 电势的单位是伏特(V)
电势是一个相对量,其零参考点是可以任意选取的。
磁场与电磁感应知识点总结
磁场与电磁感应知识点总结一、磁场(一)磁场的基本性质磁场是一种存在于磁体、电流和运动电荷周围的特殊物质。
它对放入其中的磁体、电流和运动电荷有力的作用。
(二)磁感应强度磁感应强度是描述磁场强弱和方向的物理量,用符号 B 表示。
其定义为:在磁场中垂直于磁场方向的通电导线,所受的安培力 F 跟电流 I 和导线长度 L 的乘积 IL 的比值,即 B = F /(IL)。
磁感应强度是矢量,其方向就是磁场的方向。
(三)磁感线磁感线是为了形象地描述磁场而引入的假想曲线。
磁感线上某点的切线方向表示该点的磁场方向,磁感线的疏密程度表示磁场的强弱。
常见磁体的磁感线分布如条形磁铁、蹄形磁铁、通电直导线、通电螺线管等。
(四)几种常见的磁场1、条形磁铁的磁场:外部从 N 极到 S 极,内部从 S 极到 N 极,形成闭合曲线。
2、蹄形磁铁的磁场:与条形磁铁类似,也是闭合曲线。
3、通电直导线的磁场:右手螺旋定则(安培定则),用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。
4、通电螺线管的磁场:同样用右手螺旋定则,右手握住螺线管,让弯曲的四指所指的方向跟电流的方向一致,大拇指所指的方向就是螺线管内部磁感线的方向,也就是螺线管的 N 极。
二、安培力(一)安培力的大小当磁场 B 与电流 I 垂直时,安培力的大小为 F = BIL;当磁场 B 与电流 I 夹角为θ 时,安培力的大小为 F =BILsinθ。
(二)安培力的方向安培力的方向总是垂直于磁场方向和电流方向所确定的平面,可用左手定则来判断。
伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,大拇指所指的方向就是通电导线在磁场中所受安培力的方向。
三、洛伦兹力(一)洛伦兹力的大小当电荷运动速度 v 与磁场 B 垂直时,洛伦兹力的大小为 F = qvB;当电荷运动速度 v 与磁场 B 夹角为θ 时,洛伦兹力的大小为 F =qvBsinθ。
高中物理11章知识点归纳总结
高中物理11章知识点归纳总结### 高中物理第十一章知识点归纳总结第十一章:电磁场和电磁波1. 电磁场的基本概念- 电场:电荷周围存在的一种特殊物质,能够对电荷施加力。
- 磁场:磁体或运动电荷周围存在的一种特殊物质,对磁体或运动电荷产生力的作用。
- 场强:描述场的强弱和方向的物理量,电场强度和磁感应强度是描述电磁场的基本物理量。
2. 电场和磁场的产生- 静电场:由静止电荷产生的电场。
- 感应电场:由变化的磁场产生的电场。
- 恒定磁场:由永久磁体或电流产生的磁场。
3. 电磁感应- 法拉第电磁感应定律:描述变化磁场产生感应电动势的规律。
- 楞次定律:描述感应电流方向的规律,即感应电流的磁场总是阻碍原磁场的变化。
4. 麦克斯韦方程组- 高斯定律:描述电场和电荷的关系。
- 高斯磁定律:描述磁场和电流的关系。
- 法拉第电磁感应定律:描述变化的磁场产生电场的规律。
- 安培定律:描述电流和磁场的关系,包括位移电流。
5. 电磁波- 电磁波的产生:由变化的电场和磁场相互激发产生。
- 电磁波的性质:包括波长、频率、速度等。
- 电磁波谱:包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。
6. 电磁波的传播- 波的传播:电磁波在介质中传播时,电场和磁场交替变化,形成波形。
- 波的反射、折射和干涉:电磁波在不同介质界面上发生的反射、折射和干涉现象。
7. 电磁波的应用- 通信:无线电波用于无线通信。
- 医疗:X射线用于医学成像。
- 能源传输:太阳能电池板将太阳光转化为电能。
8. 电磁波的防护- 电磁污染:电磁波可能对人体健康和电子设备产生影响。
- 防护措施:包括屏蔽、吸收和距离等方法。
9. 电磁场的能量和动量- 能量守恒:电磁场的能量在传播过程中守恒。
- 动量守恒:电磁波具有动量,可以对物体产生推动作用。
通过以上知识点的归纳总结,我们可以看到电磁场和电磁波在物理学中的重要性,它们不仅在理论研究中占有重要地位,而且在实际应用中也发挥着巨大作用。
物理高中电学知识点总结
物理高中电学知识点总结高中物理电学部分是学习电磁现象和电路知识的重要章节,对于学生理解电力的基本原理和运用具有重要的意义。
以下是对高中物理电学知识点的总结,希望对同学们的学习有所帮助。
一、电学基本概念1.静电现象:摩擦起电、感应起电、电荷守恒定律。
2.电荷:元电荷、点电荷、电荷分布。
3.电场:电场强度、电场线、电势、电势差。
4.电容:电容器的定义、电容的计算、电容器的串并联。
5.磁场:磁感应强度、磁感线、磁通量。
6.电流:电流的定义、电流的种类、电流的测量。
7.电阻:电阻的定义、电阻的计算、电阻的串并联。
8.电动势:电源的电动势、闭合电路的欧姆定律。
二、电路分析1.简单电路:串联电路、并联电路、混联电路。
2.基本电路定律:欧姆定律、基尔霍夫定律。
3.电阻电路:电阻的星三角变换、电阻的功率计算。
4.动态电路:电容电路、电感电路、换路定律。
5.非线性电路:非线性电阻、稳压二极管、变阻器。
三、电磁感应1.法拉第电磁感应定律:磁通量的变化、感应电动势。
2.动生电动势:导体在磁场中运动产生的电动势。
3.感应电流:楞次定律、自感现象、互感现象。
4.变压器:理想变压器的原理、变压器的效率。
5.交流电:正弦交流电、交流电的有效值、交流电的功率。
四、电磁波1.电磁波的产生:振荡电路、电磁波的传播。
2.电磁波的性质:电磁波的传播速度、电磁波的波长、频率和能量。
3.电磁波的传播:反射、折射、衍射、干涉。
4.电磁波的应用:无线电波、微波、红外线、可见光、紫外线等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电场知识点一、电荷、电荷守恒定律1、两种电荷:“+”“-”用毛皮摩擦过的橡胶棒带负电荷,用丝绸摩擦过的玻璃棒带正电荷。
2、元电荷:所带电荷的最小基元,一个元电荷的电量为1.6×10-19C,是一个电子(或质子)所带的电量。
说明:任何带电体的带电量皆为元电荷电量的整数倍。
荷质比(比荷):电荷量q与质量m之比,(q/m)叫电荷的比荷3、起电方式有三种①摩擦起电,②接触起电注意:电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。
③感应起电——切割B,或磁通量发生变化。
4、电荷守恒定律:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷总数是不变的.二、库仑定律1.内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。
方向由电性决定(同性相斥、异性相吸)2.公式:k=9.0×109N·m2/C2极大值问题:在r和两带电体电量和一定的情况下,当Q1=Q2时,有F最大值。
3.适用条件:(1)真空中;(2)点电荷.点电荷是一个理想化的模型,在实际中,当带电体的形状和大小对相互作用力的影响可以忽略不计时,就可以把带电体视为点电荷.(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r)。
点电荷很相似于我们力学中的质点.注意:①两电荷之间的作用力是相互的,遵守牛顿第三定律②使用库仑定律计算时,电量用绝对值代入,作用力的方向根据“同性相排斥,异性相吸引”的规律定性判定。
计算方法:①带正负计算,为正表示斥力;为负表示引力。
②一般电荷用绝对值计算,方向由电性异、同判断。
三个自由点电荷平衡问题,静电场的典型问题,它们均处于平衡状态时的规律。
① “三点共线,两同夹异,两大夹小”②中间电荷靠近另两个中电量较小的。
③中间点电荷的平衡求间距,两边之一平衡求中间点电荷的电量,关系式为或④ q1、q3固定时,q2的平衡位置具有唯一性,且与q2的电量多少,电性正负无关。
三、电场:1、存在于带电体周围的传递电荷之间相互作用的特殊媒介物质.电荷间的作用总是通过电场进行的。
电场:只要电荷存在它周围就存在电场,电场是客观存在的,它具有力和能的特性。
力(电场强度);能(磁通量)若电荷不动周围的是静电场,若电荷运动周围不单有电场而且产生磁场,2、电场的基本性质-------①是对放入其中的电荷有力的作用。
②能使放入电场中的导体产生静电感应现象3、电场可以由存在的电荷产生,也可以由变化的磁场产生。
四、电场强度(E)——描述电场力特性的物理量。
(矢量)1.定义:放入电场中某一点的电荷受到的电场力F跟它的电量q的比值叫做该点的电场强度,表示该处电场的强弱2.求E的规律及方法(有如下5种):①E=F/q (定义普遍适用)单位是:N/C或V/m;“描述自身的物理量”统统不能说××正比,××反比(下同)② E=kQ/r²(导出式,真空中的点电荷,其中Q是产生该电场的电荷)③ E=U/d(导出式,仅适用于匀强电场,其中d是沿电场线方向上的距离)④电场的矢量叠加:当存在几个场源时,某处的合场强=各个场源单独存在时在此处产生场强的矢量和⑤利用对称性求解。
3.方向:①与该点正电荷受力方向相同,与负电荷的受力方向相反;②电场线的切线方向是该点场强的方向;③场强的方向与该处等势面的方向垂直.平行板电容器边缘除外。
4.在电场中某一点确定了,则该点场强的大小与方向就是一个定值,与放入的检验电荷无关,即使不放入检验电荷,该处的场强大小方向仍不变。
检验电荷q充当“测量工具”的作用.某点的E取决于电场本身,(即场源及这点的位置,)与q检的正负,电何量q检和受到的电场力F 无关.这一点很相似于重力场中的重力加速度,点定则重力加速度定.与放入该处物体的质量无关,即使不放入物体,该处的重力加速度仍为一个定值.5、电场强度是矢量,电场强度的合成按照矢量的合成法则.(平行四边形法则和三角形法则)6、电场强度和电场力是两个概念,电场强度的大小与方向跟放入的检验电荷无关,而电场力的大小与方向则跟放入的检验电荷有关,五、电场线:定义:在电场中为了形象的描绘电场而人为想象出或假想的曲线[描述E的强弱(疏密)和方向]。
电场线实际上并不存.但E又是客观存在的,电场线是人为引入的研究工具。
电场线是人为引进的,实际上是不存在的;法拉第首先提出用电场线形象生动地描绘电场或磁场。
①切线方向表示该点场强的方向,也是正电荷的受力方向.②静电场电场线有始有终:始于“+”,终止于“-”或无穷远,从正电荷出发到负电荷终止,或从正电荷出发到无穷远处终止,或者从无穷远处出发到负电荷终止.③疏密表示该处电场的强弱,也表示该处场强的大小.越密,则E越强④匀强电场的电场线平行且等间距直线表示.(平行板电容器间的电场,边缘除外)⑤没有画出电场线的地方不一定没有电场.⑥沿着电场线方向,电势越来越低.但E不一定减小;沿E方向电势降低最快的方向。
⑦电场线⊥等势面.电场线由高等势面批向低等势面.⑧静电场的电场线不相交,不终断,不成闭合曲线。
但变化的电场的电场线是闭合的。
⑨电场线不是电荷运动的轨迹.也不能确定电荷的速度方向。
除非三个条件同时满足:①电场线为直线,②v0=0或v0方向与E方向平行。
③仅受电场力作用。
六、熟记几种典型电场的电场线特点:(重点)匀强电场、点电荷与带电平板、等量异种点电荷的电场、等量同种点电荷的电场、孤立点电荷周围的电场①孤立点电荷周围的电场;②等量异种点电荷的电场(连线和中垂线上的电场特点);③等量同种点电荷的电场(连线和中垂线上的电场特点);④匀强电场;⑤点电荷与带电平板;⑥具有某种对称性的电场;⑦均匀辐射状的电场⑧周期性变化的电场。
②电场能的性质(电势)一、电势差U (是指两点间的)①定义:电场中两点间移动检验电荷q(从A→B),电场力做的功W AB跟其电量q的比值叫做这两点间的电势差,U AB=W AB/q 是标量.U AB的正负只表示两点电势谁高谁低。
U AB 为正表示A点的电势高于B点的电势。
②数值上=单位正电荷从A→B过程中电场力所做的功。
③等于A、B的电势之差,即U AB=φA-φB④在匀强电场中U AB= Ed E (d E表示沿电场方向上的距离)意义:反映电场本身性质,取决于电场两点,与移动的电荷无关,与零电势的选取无关,电势差对应静电力做功,电能其它形式的能。
电动势对应非静电力做功电能其它形式的能点评:电势差很类似于重力场中的高度差.物体从重力场中的一点移到另一点,重力做的功跟其重量的比值叫做这两点的高度差h=W/G.二、电势(是指某点的)描述电场能性质的物理量。
必须先选一个零势点,(具有相对性)相对零势点而言,常选无穷远或大地作为零电势。
正点电荷产生的电场中各点的电势为正,负点电荷产生的电场中各点的电势为负。
①定义:某点相对零电势的电势差叫做该点的电势,是标量.②在数值上=单位正电荷由该点移到零电势点时电场力所做的功.特点:⑴标量:有正负,无方向,只表示相对零势点比较的结果。
⑵电场中某点的电势由电场本身因素决定,与检验电荷无关。
与零势点的选取有关。
⑶沿电场线方向电势降低,逆。
(但场强不一定减小)。
沿E方向电势降得最快。
⑷当存在几个场源时,某处合电场的电势等于各个场源在此处产生电势代数和的叠加。
电势高低的判断方法:1根据电场线的方向判断;2电场力做功判断;3电势能变化判断。
PS:类似于重力场中的高度.某点相对参考面的高度差为该点的高度.注意:(1) 高度是相对的.与参考面的选取有关,而高度差是绝对的与参考面的选取无关.同样电势是相对的与零电势的选取有关,而电势差是绝对的,与零电势的选取无关.(2) 一般选取无限远处或大地的电势为零.当零电势选定以后,电场中各点的电势为定值.(3) 电场中A、B两点的电势差等于A、B的电势之差,即U AB=φA-φB,沿电场线方向电势降低.三、电势能E1概念:由电荷及电荷在电场中的相对位置决定的能量,叫电荷的电势能。
电势能具有相对性,与零参考点的选取有关(通常选地面或∞远为电势能零点)特别指出:电势能实际应用不大,常实际应用的是电势能的变化。
电荷在电场中某点的电势能=把电荷从此点移到电势能零处电场力所做的功。
E=q φA→0四、电场力做功与电势能1.电势能:电场中电荷具有的势能称为该电荷的电势能.电势能是电荷与所在电场所共有的。
2.电势能的变化:电场力做正功电势能减少;电场力做负功电势能增加.重力势能变化:重力做正功重力势能减少;重力做负功重力势能增加.电场力做功:由电荷的正负和移动的方向去判断(4种情况)功的正负电势能的变化(重点和难点知识)正、负电荷沿电场方向和逆电场方向的4种情况。
(上课时一定要搞清楚的,否则对以后的学习带来困难)电场力做功过程就是电势能与其它形式能转化的过程(电势差),做功的数值就是能量转化的多少。
W=FSCOS (匀强电场) W=qEd (d为沿场强方向上的距离)W=qU=-△Ep,U为电势差,q为电量.重力做功:W=Gh,h为高度差,G为重量.电场力做功跟路径无关,是由初末位置的电势差与电量决定重力做功跟路径无关,是由初末位置的高度差与重量决定.四、等势面、线、体1.电场中电势相等的点所组成的面为等势面.2.特点(1) 各点电势相等,等势面上任意两点间的电势差为零,在特势面上移动电荷(不论方式如何,只要起终点在同一等势面上)电场力不做功电场力做功为零,路径不一定沿等势面运动,但起点、终点一定在同一等势面上。
(2) 画法规定:相领等势面间的电势差相等等差等势面的蔬密可表示电场的强弱.(3) 处于静电平衡状态的导体:整个导体是一个等势体,其表面为等势面.E内=0,任两点间U AB=0越靠近导体表面等势面越密,形状越与导体形状相似,等势面越密电场强度越大,曲率半径越小(越尖)的地方,等势面(电场线)都越密,这就可解释尖端放电现象,如避雷针。
(4) 匀强电场,电势差相等的等势面间距离相等,点电荷形成的电场,电势差相等的等势面间距不相等,越向外距离越大.(5) 等势面上各点的电势相等但电场强度不一定相等.(6) 电场线⊥等势面,且由电势高的面指向电势低的面,没电场线方向电势降低。
(7) 两个等势面永不相交.规律方法1、一组概念的理解与应用电势、电势能、电场强度都是用来描述电场性质的物理,,它们之间有十分密切的联系,但也有很大区别,解题中一定注意区分,现列表进行比较(1)电势与电势能比较:电势φ电势能ε1 反映电场能的性质的物理量荷在电场中某点时所具有的电势能2 电场中某一点的电势φ的大小,只跟电场本身有关,跟点电荷无关电势能的大小是由点电荷q和该点电势φ共同决定的3 电势差却是指电场中两点间的电势之差,ΔU=φA-φB,取φB=0时,φA=ΔU 电势能差Δε是指点电荷在电场中两点间的电势能之差Δε=εA-εB=W,取εB=0时,εA=Δε4 电势沿电场线逐渐降低,取定零电势点后,某点的电势高于零者,为正值.某点的电势低于零者,为负值正点荷(十q):电势能的正负跟电势的正负相同负电荷(一q):电势能的正负限电势的正负相反5 单位:伏特单位:焦耳6 联系:ε=qφ,w=Δε=qΔU(2)电场强度与电势的对比电场强度E 电势φ1 描述电场的力的性质描述电场的能的性质2 电场中某点的场强等于放在该点的正点电荷所受的电场力F跟正点电荷电荷量q的比值·E=F/q,E在数值上等于单位正电荷所受的电场力电场中某点的电势等于该点跟选定的标准位置(零电势点)间的电势差,φ=ε/q,φ在数值上等于单位正电荷所具有的电势能3 矢量标量4 单位:N/C;V/m V(1V=1J/C)5 联系:①在匀强电场中U AB=Ed (d为A、B间沿电场线方向的距离).②电势沿着电场强度的方向降落2、公式E=U/d的理解与应用(1)公式E=U/d反映了电场强度与电势差之间的关系,由公式可知,电场强度的方向就是电势降低最快的方向.(2)公式E=U/d只适用于匀强电场,且d表示沿电场线方向两点间的距离,或两点所在等势面的范离.(3)对非匀强电场,此公式也可用来定性分析,但非匀强电场中,各相邻等势面的电势差为一定值时,那么E越大处,d越小,即等势面越密.3、电场力做功与能量的变化应用电场力做功,可与牛顿第二定律,功和能等相综合,解题的思路和步骤与力学中的完全相同,但要注意电场力做功的特点——与路径无关知识简析一、电场中的导体1、静电感应:把金属导体放在外电场E外中,由于导体内的自由电子受电场力作用定向移动,使得导体两端出现等量的异种电荷,这种由于导体内的自由电子在外电场作用下重新分布的现象叫做静电感应。