井身结构
(完整word)井身结构
(完整word)井身结构井身结构石油和天然气的开采过程中需要在地面和地下油气层之间建立一条油气通道,这条通道就是井。
这条数十米或是几千米的油气通道需要用多层套管和水泥环进行固定、封闭。
井身结构是指由直径、深度和作用各不相同,且均注水泥封固环形空间而形成的轴心线重合的一组套管与水泥环的组合。
主要由导管、表层套管、技术套管、油层套管和各层套管外的水泥环等组成。
是钻井中途遇到高压油气水层、漏失层和坍塌层等复杂地层时为钻至目的地层而下的套管,其层次由复杂层的多少而定。
井身结构主要由导管、表层套管、技术套管、油层套管和各层套管外的水泥环等组成.1.导管:井身结构中下入的第一层套管叫导管。
其作用是保持井口附近的地表层不被冲垮,建立起泥浆循环,引导钻具的钻进,保证井眼钻凿的垂直等。
技术要求:①下入深度一般取决于地表层的深度,通常导管下入深度为2-40m。
导管直径一般450mm和375mm。
②管外用水泥封牢固.2.表层套管:井身结构中第二层套管叫表层套管,一般为几十至几百米.下入后,用水泥浆固井返至地面。
其作用是封隔上部不稳定的松软地层和水层以利于后续钻进、防止后续钻进中井壁垮塌和钻井液对上部淡水层的污染、安装防止井喷用的设备、支撑技术套管和生产套管的重量。
技术要求:①表层套管的下入深度一般取决于上部疏松岩层的位置,下入深度一般为30-150m(或300—400m)。
直径尺寸400mm和324mm。
②管外用水泥浆封固牢,水泥上返至地面。
3.技术套管:表层套管与油层套管之间的套管叫技术套管。
是钻井中途遇到高压油气水层、漏失层和坍塌层等复杂地层时为钻至目的地层而下的套管,其层次由复杂层的多少而定.作用是封隔难以控制的复杂地层,保持钻井工作顺利进行。
技术要求:下入技术套管的层次、深度以及水泥上返高度,以能够封住复杂的地层为基本原则。
其局限性是增大了钻井成本,故现实中很少采用。
4.油层套管:井身结构中最内的一层套管叫油层套管。
井身结构的基本知识
根据实测值与预测值的对比分析,找出统计误差作为破裂压力安全系数。
3、关于井涌允量Sk的确定
a.统计所研究地区异常高压层以及井涌事故易发生的层位、井深和地层压力值。
b.根据现有地层压力检测技术水平以及井涌报警的精度和灵敏度,确定允许地层流体进入井眼的体积量(如果井场配有综合录井仪,一般将地层流体允许进入量的体积报警限定为3~5m3)。
b.记录卡钻层位的地层孔隙压力.
c.统计卡钻事故发生前井内曾用过的最大泥浆密度,以及卡钻发生时的泥浆密度.
d.根据卡钻井深、卡点地层压力、井内最大安全泥浆密度计算单点压差卡钻允值.
e.统计分析各单点压差卡钻允值,确定适合于所研究地区的压差卡钻允值.
某地区井身结构设计基础参数
抽吸压力系数和激动压力系数( g/cm3 ) 0.05~0.07
对深层钻井,尤其是深探井钻井来说,一般对所钻地区深层的地层资料掌握不清,中心目标应是怎样切实保证钻达目的层,提高深探井的钻井成功率。
在不同的钻进井深,井眼内的抽吸和激动压力系数并不是一个定值。上部井眼内的系数普遍较小,下部井眼则较大。
另外,井身结构设计还与某些特殊因素有关,也就是常说的“必封点”,有的油田要求油层段浸泡时间小于7天,对于深井有浅层或中深层油层的,就考虑多下一层套管。另外随着水平井、大斜度井的增加,为降低钻井风险,也常常增加技术套管的层数。
井身结构的基本知识
搜刮了点井身结构的基本知识与大家共享
一、井身结构设计所需要的基本钻井地质环境
资料
二、井身结构设计基本参数的确定
三、井身结构设计方法
(一)需要的基本钻井地质环境资料
描述一口井井身结构数据信息的句子
描述一口井井身结构数据信息的句子
【原创实用版】
目录
1.井身结构概述
2.井身数据信息详细描述
正文
【井身结构概述】
一口井的井身结构通常由井口、井颈、井身、井底等部分组成。
井口是井的最上部,通常为圆形或方形,其大小和形状取决于井的设计和用途。
井颈是井口向下延伸的部分,通常呈锥形或圆柱形,用于支撑井壁和稳定井身。
井身是井的主体部分,通常呈圆柱形或圆锥形,用于容纳井水和支撑井壁。
井底是井的最下部,通常为平底或锥形,用于防止井水外溢和支撑井身。
【井身数据信息详细描述】
井身数据信息主要包括井口直径、井颈直径、井身直径、井底直径、井深等。
井口直径是指井口的宽度,通常以厘米或米为单位。
井颈直径是指井颈的宽度,也通常以厘米或米为单位。
井身直径是指井身的宽度,通常以厘米或米为单位。
井底直径是指井底的宽度,通常以厘米或米为单位。
井深是指井口到井底的垂直距离,通常以米或英尺为单位。
第1页共1页。
井身结构图绘制
02 井身结构图绘制前准备工 作
收集相关资料和数据
井身结构设计资料
包括井身结构类型、各层 套管尺寸和下入深度等。
地质资料
收集地层岩性、厚度、倾 角等地质信息,以便在图 中准确表示。
工程数据
获取钻井、完井等工程数 据,如井深、井径、井斜 等。
确定绘图比例和尺寸范围
根据实际井深和图纸尺寸,选择合适 的绘图比例,确保图纸清晰易读。
01 确保绘图软件或工具设置正确的比例尺;
02
对比实际井身尺寸与图纸尺寸,调整图形比 例;
03
使用专业的绘图软件或插件,以确保比例准 确;
04
在绘制过程中定期检查比例,避免误差累积 。
关键元素缺失或错误纠正
核对井身结构图所需的关键元素 清单,如井口、井底、套管、油 管等;
对于缺失或错误的元素,及 时进行补充和更正;
优化措施
介绍针对井身结构图绘制过程中存在的问题所采取的优化措施, 如改进数据收集方式、优化图层设置等。
效率提升
分析优化措施实施后绘图效率的提升情况,包括缩短绘图时间、减 少修改次数等。
质量改善
评价优化措施实施后井身结构图的质量改善情况,如提高图面清晰 度、增强图件实用性等。
06 井身结构图绘制总结与展 望
05 井身结构图在实际应用中 案例分析
案例一:某油田勘探项目应用实例
项目背景
介绍该油田的地质特征、勘探目的及井身结构图在其中的应用重要 性。
绘图过程
详细描述井身结构图的绘制流程,包括数据收集、图层设置、符号 标注等关键步骤。
应用效果
分析井身结构图在油田勘探中的实际应用效果,如提高钻井效率、优 化开发方案等。
对照实际井身结构和相关规范, 检查图中元素是否齐全、正确;
《井身结构设计》课件
井身材料
常用井身材料包括钢筋混凝 土、混凝土、钢和玻璃钢等。
井身结构设计的目的
提高井身稳定性
井身结构设计的目的是为了提高 井身的稳定性,确保石油井的平 稳生产。
降低事故风险
合理的井身结构设计可以减少石 油井事故的概率,保障工人的生 命安全。
提高生产效率
通过优化井身结构设计,可以提 高石油井的生产效率,降低维护 成本。
1
基础工程
进行基础开挖、标出基坑轮廓线、安置钢筋骨架等。
2
混凝土浇筑
进行钢筋模板组装、浇筑混凝土等。
3
砼强度与养护
根据测量计算、检验、养护高强度混凝土的质量。
预应力混凝土结构井的施工
预应力钢筋制作
预应力混凝土井筒需要应用预应 力钢筋,进行钢筋的制作和预应 力张拉。
施工工艺
构件之间的连接
进行预制整体与预制分段两种工 艺,将预制件安装到已完成地基 的基础上,进行钢束拉紧与固定。
井身结构设计实例分享
பைடு நூலகம்
1
长江三峡水电站井身设计
针对高水压和高岸坡等复杂工况,设计了多层钢筋混凝土结构的井身,确保水电 站的正常运行。
2
渤海海洋油田厂房井身设计
针对海洋环境的复杂性,设计高强度钢结构井身,提高了设施稳定性和运行效率。
3
南海油田纯海上井身设计
针对纯海上井身不稳定等特点,设计了预制单元式混凝土井身结构,解决了海上 施工难度大的问题。
井身结构的安全性检查
1 验收检查
在施工完成后,进行对井身结构的检查,确认是否符合设计要求。
2 日常检查
对井身结构进行日常管护与维修,确保井身结构的稳定性和安全性。
3 保护检查
井身结构设计
ρ m ≥ ρ P max + S w
ρ mE = ρ P max + S w + S g ρ P max + S w + S g + S f ≤ ρ f min
下钻中使用这一钻井液密度, 在井内将产生一定的激动压力Sg 考虑地层破裂压力检测误差,给予一 个安全系数Sf。则该层套管可行裸露 段底界(或该层套管必封点深度)
工程约束条件下封点深度的确定
(1)正常作业工况(起下钻、钻进) )正常作业工况(起下钻、钻进) 在满足近平衡压力钻井条件下, 在满足近平衡压力钻井条件下,某一层套管井段钻进中所用最大钻井液密度 应大或等于该井段最大地层压力梯度当量密度ρ ρ m应大或等于该井段最大地层压力梯度当量密度ρPmax与该井深区间钻进 中可能产生的最大抽汲压力梯度当量密度S 之和, 中可能产生的最大抽汲压力梯度当量密度 w 之和 , 以防止起钻中抽汲造 成溢流。 成溢流。即:
井身结构设计原理— 井身结构设计原理—液体压力体系的当
量梯度分布
Pm Pm = 0.0981ρ m H Gm Gm = 0.0981ρ m
非密封液柱体系的压力 分布和当量梯度分布
ρm
Po
Pm Pm = Po + 0.0981ρ m H
Gm
Pm
P Gm = o + 0.0981Pm H
密封液柱体系的压力 分布和当量梯度分布
Pf ≥ PmE ≥ PP
裸眼井内钻井液有效液柱压力必须大于或等于地层压力,防止井喷, 裸眼井内钻井液有效液柱压力必须大于或等于地层压力,防止井喷,但 又必须小于等于地层破裂压力,防止压裂地层发生井漏。 又必须小于等于地层破裂压力,防止压裂地层发生井漏。 考虑到井壁的稳定,还应补充一个与时间有关的不等式: 考虑到井壁的稳定,还应补充一个与时间有关的不等式: 井壁的稳定
井身结构工程结构力学
《钻井与完井工程》
主要内容
1、定义
套管层次、套管下入深度以及井眼尺寸(钻头尺寸)与套管尺寸的配合
2、目的
安全、优质、快速和经济地钻达目的层
3、内容
下入套管层数
各层套管的下入深度
选择合适的套管尺寸与钻头尺寸组合
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)4、套管类型
✷导管
●钻表层井眼时,将钻井液从地表引导到钻台平面上来。
✷表层套管
●防止浅层水受污染,封闭浅层流砂、砾石层及浅层气,
支撑井口设备装置,悬挂依次下入的各层套管的载荷。
✷技术套管(中间套管)
●封隔坍塌地层及高压水层
●封隔不同的压力体系
●继续钻井的需
✷油层套管(生产套管)
●为油气生产提供流通通道
4、套管类型(续)
✷尾管
●技术尾管
●生产尾管
●尾管回接
主要内容有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
2、安全钻井必要条件
深井筒压力要与地层平衡,井内钻井液有效液柱压力
必须满足:
P≥
主要内容
三、井身结构实例分析
三、井身结构实例分析
36〞导管*1791.48m
20〞套管*2694.82m
16〞套管*4100.97m
13-5/8〞套管*4449.72m
11-3/4〞套管*4889.4m
9-7/8〞可膨胀套管*5459.8m
8-5/8〞套管*5914.9m
7-7/8〞裸眼*6652m
思考与拓展。
石油工程技术 井下作业 井身结构及完井方法
井身结构及完井方法1井身结构所谓井身结构,就是在已钻成的裸眼井内下入直径不同、长度不等的几层套管,然后注入水泥浆封固环形空间间隙,最终形成由轴心线重合的一组套管和水泥环的组合。
如图1所示。
图1井身结构示意图1—导管;2—表层套管;3—技术套管;4—油层套管;5—水泥环1.1导管井身结构中靠近裸眼井壁的第一层套管称为导管。
导管的作用是:钻井开始时保护井口附近的地表层不被冲垮,建立起泥浆循环,引导钻具的钻进,保证井眼钻凿的垂直等,对于不同的油田或地层,导管的下入要求也不同。
钻井时是否需要下入导管,要依据地表层的坚硬程度与结构状况来确定。
下入导管的深度一般取决于地表层的深度。
通常导管下入的深度为2~40m。
下导管的方法较简单,是把导管对准井位的中心铅垂直方向下入,导管与井壁中间填满石子,然后用水泥浆封固牢。
1.2表层套管井身结构中的第二层套管叫做表层套管。
表层套管的下入深度一般为300~400m,其管外用水泥浆封固牢,水泥上返至地面。
表层套管的作用是加固上部疏松岩层的井壁,供井口安装封井器用。
1.3技术套管在表层套管里面下入的一层套管(即表层套管和油层套管之间)叫做技术套管。
下入技术套管的目的主要是为了处理钻进过程中遇到的复杂情况,如隔绝上部高压油(气、水)层、漏失层或坍塌层,以保证钻进的顺利进行。
下入技术套管的层次应依据钻遇地层的复杂程度以及钻井队的技术水平来决定。
一般为了加速钻进和节省费用,钻进过程中可以通过采取调整泥浆性能的办法控制复杂层的喷、坍塌和卡钻等,尽可能不下或少下技术套管。
下入技术套管的层次、深度以及水泥上返高度,以能够封住复杂地层为基本原则。
技术套管的技术规范应根据油层套管的规范来确定。
1.4油层套管油井内最后下入的一层套管称为油层套管,也称为完井套管,简称套管,油层套管的作用是封隔住油、气、水层,建立一条封固严密的永久性通道,保证石油井能够进行长时期的生产。
油层套管下入深度必须满足封固住所有油、气、水层。
井身结构
技术术语
1.完钻井深
2.套管深度 3.人工井底
第一章 绪 论
1.1 井身结构 1.2 完井方法
1.3 完井井口装置
油井完成方法依据钻开油、气层和下入油层套管的先 后次序,分为先期完井法和后期完井法两种类型。 先期裸眼完井法 尾管射孔完井法 衬管完井法
先下入油层 套管再钻开 油、气层
先期完井法
完 井 方 法
最后射孔,射孔弹射穿套管、 水泥环并穿至油层某一深度,
层水、底水和气顶,避开夹层
建立起油流通道。
深度要求严格,固井质量要求
高,水泥浆可能损害油气层。
2)尾管射孔完井是 在钻头钻至油层顶界后,
下套管注水泥固井,然后
用小一级的钻头钻穿油层 至设计井深,用钻具将尾 管送下并悬挂在套管上, 再对尾管注水泥固井,然
2、 射孔完井法
1)套管射孔完井是钻至油
层直至设计井深,然后下套 管到油层底部注水泥固井,
优点:既可以选择性地射开不 同压力、不同物性的油层,以 避免层间干扰,还可以避开夹 的坍塌,具备实施分层注、采 和选择性压裂或酸化等分层作 业的条件。 缺点:出油面积小、完善程度
套管射孔完井方式示意图 1-表层套管;2-油层套管;3水泥环;4-射孔孔眼头
几个重要术语: 1.方补心:旋转钻井时,带动井下工具旋转的转盘中间用 来卡住方钻杆的部件。 2.油补距(补心高差): 是钻井转盘上平面到套管四通上
法兰面之间的距离。
3.套补距:是指钻井转盘上平面到套管短节法兰上平面之 间的距离。 4.联入:是指钻井转盘上平面(方补心)到第一根套管接 箍的距离。
后射孔。
深井
尾管射孔完井示意图 1-表层套管;2-技术套管; 3-尾管;4-射孔孔眼; 5-油层;6-水泥环;7-悬挂器
井深结构设计
井身结构包括套管层次和下入深度以及井眼尺寸(钻头尺寸)与套管尺寸的配合。
井身结构设计是钻井工程设计的基础。
一、套管柱类型(1) 表层套管;(2) 中间套管(技术套管)(3) 生产套管(油层套管)(4) 尾管。
二、井眼中压力体系在裸眼井段中存在着地层孔隙压力、泥浆液柱压力、地层破裂压力。
三个压力体系必须同时满足于以下情况:p m f p p p ≥≥ (1-1) 式中 f p -地层的破裂压力,MPa ;m p -钻井液的液柱压力,MPa ;p p -地层孔隙压力,MPa 。
即泥浆液柱压力应稍大于孔隙压力以防止井涌,但必须小于破裂压力以防止压裂地层发生井漏。
由于在非密闭的洗井液压力体系中(即不关封井器憋回压时),压力随井深是呈线性变化的,所以使用压力梯度概念是较方便的。
式(1-1)可写成:p m t G G G ≥≥ (1-2)式中 t G -破裂压力梯度,MPa/m ;m G -液柱压力梯度,MPa/m ;p G -孔隙压力梯度,MPa/m 。
一、井身结设计所需基础资料(一) 地质资料(1) 岩性剖面及事故提示(2) 地层压力数据(3) 地层破裂压力数据(二) 工程资料(1) 抽吸压力与激动压允许值(g b S S 与)各油田应根据各自的情况来确定。
(2) 地层压裂安全增值(f S )。
该值是为了避免将上层套管鞋处地层压裂的安全增值,它与预测破裂压力值的精度有关,可以根据该地区的统计数据来确定。
以等效密度表示g/cm 3。
美国现场将f S 取值为0.024,中原油田取值为0.03。
(3) 井涌条件允许值(k S )。
此值是衡量井涌的大小,用泥浆等效密度差表示(用于压井计算,另一种计量方法是以进入井眼的流体的总体积来表示,多用于报警)。
美国现场取值为0.06。
该值可由各油田根据出现井涌的数据统计和分析后得出。
中源油田将k S 值定为0.06~0.14。
(4) 压差允值(a N P P ∆∆与)。
裸眼中,泥浆液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行地固井和完井工作。
井身结构
尾管射孔完井优点
可以采用与油层相配伍的钻井液, 以平衡压力,欠平衡压力的方法打开 油层,有利于保护油层;
可以减少套管重量和固井水泥的 用量,从而降低完井成本
完井方式
适用的地质条件
有气顶,或有底水,或有含水夹层及易塌夹层等复杂地质条件, 因而要求实施分隔层段的储层
射孔完井
各分层之间存在压力、岩性等差异,因而要求实施分层测试、分 层采油、分层注水、分层处理的油层 要求实施大规模水力压裂作业的低渗透储层 含油层段长、夹层厚度大、不适于裸眼完井的构造复杂的油气藏 岩性坚硬致密、天然裂隙发育、井壁稳定不坍塌的碳酸盐岩或砂 岩储层
5
8
〃
2、井身结构的组成—— 生产套管
导管 表层套管
作用: 用以封隔油、气、水层,
保证油井的顺利生产。保护井 壁,隔断上履地层和油层的通 路,在套管内形成举升油气的 良好通道。 下入深度:取决于目的层位臵
技术套管
套管尺寸:5½〃和7〃
生产套管 实质:将生产层与其它层分开,使
其不同压力的油、气、水层分开。还 将作为油气生产和井下作业的通道, 并用以实现油气井分层开采、分层测 试、分层注水、分层改造。
裸眼完井
无气顶、无底水、无含水夹层及易塌夹层的储层 单一厚储层,或压力、岩性基本一致的多层储层 不准备实施封隔层段及选择性处理的储层
复合型完井
同裸眼完井
有气顶或储层顶届附近有高压水层,但无底水的储层
二、完井方式——类型
(3)割缝衬管完井方式——改进前
用同尺寸钻头钻穿油层
后,套管柱下端连接衬管 下入油层部位,通过套管 外封隔器和注水泥 接头固 井封隔油层顶界以上的环
岩性疏松且出砂严重的中、粗、细砂粒储层 有气顶,或有底水,或有含水夹层及易塌夹层等复杂地 质条件,因而要求实施分隔层段的储层
井身结构设计与固井
执行情况回顾
定期对安全保障措施的执行情况进行回顾和总结,分析存在的问题和不足,提出改进措 施和建议。
持续改进方向和目标设定
持续改进方向
根据风险评估和安全保障措施执行情况 ,明确井身结构设计与固井过程中需要 持续改进的方向和重点。
压力监测
实时监测注浆过程中的压力变 化,确保注浆过程平稳、安全 。
异常情况处理
对注浆过程中出现的异常情况 ,如漏失、气窜等,及时采取
有效措施进行处理。
顶替效率提升措施实施
优化顶替流态
通过调整顶替液的性能、流量等参数,优化 顶替流态,提高顶替效率。
增加顶替排量
在保证安全的前提下,适当增加顶替排量, 提高顶替速度和效率。
VS
目标设定
设定明确、可量化的改进目标,包括降低 风险等级、提高安全保障措施的有效性等 ,为持续改进提供明确的方向和动力。
THANKS FOR WATCHING
感谢您的观看
材料准备
根据设计要求,准备好所需的 水泥、添加剂等材料,并对其
进行质量检验。
施工方案制定
根据井身结构、地质条件等因 素,制定详细的施工方案和应
急预案。
注水泥浆过程监控
水泥浆性能监控
实时监测水泥浆的密度、流动 性、失水量等性能指标,确保
其符合设计要求。
注浆速度控制
根据井深、井径等因素,合理 控制注浆速度,避免出现注浆 不均、堵管等问题。
井身结构的重要性
井身结构设计的合理与否直接影 响到钻井施工安全、速度和成本 ,以及后续油气开采的效率和效 益。
设计原则与规范要求
设计原则
培训3井身结构
补心上平面是计算钻井的完钻深度、下井各类管柱的下深、测井仪 下深、层位深度等的起算点。
一、井身结构及井口设备
(1)、沉砂口袋:从人工井底到所射油层底部的一段套管内容积。用
于沉积随油流带出来的砂石及压裂沉砂(或其它赃物),一般留15-25 米。 (2)、油补距:带套管四通的采油树,其油补距是四通上法兰至补心 上平面的距离;不带套管四通的采油树,其油补距是油管挂平面至补心 上平面的距离。 (3)、套补距:带套管四通的采油树,其套补距是套管短节法兰至补 心上平面的距离,等于油补距加四通高度;不带套管四通的采油树,其 套补距等于油补距。 (4)、套管深度=套补距+法兰短节长度+套管总长 油管深度=油补距+油管头长度+油管总长
面。一般油管的公称直径为φ 50.8mm,φ 63.5mm ,φ 76.2二节 井口设备及井口工艺流程
(一)井口设备:井口装置是控制和调节油井生产的主要设备。它一
般由套管头、油管头、采油树及其附件组成。
1、套管头:套管头装在整个井口装置最下端,老式采油树中,其作用是连接井 内各层套管,并密封各层套管的环形空间。 只有油层套管的井不用套管头,而将套管四通的下法兰直接座在油层套管 的法兰上。 2、油管头位于套管头上面,包括套管四通和油管悬挂器。其作用是悬挂下入井 内的油管、井下工具、密封油套环形空间。
一、井身结构及井口设备
4、油层套管:把生产层和其它地层封隔开,使不同压力的油气水层互 相不串通,便于油层部位射孔、分层作业,加固油层井壁的套管叫做油 层套管。 其下入的深度视其生产层位和完井方法而定。目前常用的管径为 φ 139.7mm或φ 177.8mm。 随着钻井技术的发展,根据条件现在很多油田只下油层套管,不下 技术套管,达到降低钻井成本的目的。 5、油管:下入油层套管中间的钢管。井内的油、气沿着油管上升到地
井身结构设计
确定套管的层数 确定各层套管的下深 确定套管尺寸与井眼尺寸的配合
影响因素
地层压力(地层压力、破裂压力、地层坍塌压力) 工程参数 地层必封点
地层压力理论及预测方法
静液柱压力(Hydrostatic pressure) Ph
定义
静液压力是由液柱重力引起的 压力。
计算
Ph 0.00981 H (MPa )
地层压力理论及预测方法
声波时差法预测地层压力
预测步骤
在标准声波时差测井资料上选择泥质含量大于 80%的泥页岩层段,以5m为间隔点读出井深相 应的声波时差值,并在半对数坐标上描点;
建立正常压实趋势线及正常压实趋势线方程; 将测井曲线上的声波时差值代入趋势线方程,
求出等效深度HE; 用等效深度法计算地层压力PP。
岩石强度参数的确定
内聚力 内摩擦角 抗拉伸强度
静态弹性参数的确定
泊松比 弹性模量
地层有效应力系数α的确定
利用声波时差测井参数
井身结构设计
定义
套管层次、套管下入深度以及井眼 尺寸(钻头尺寸)与套管尺寸的配 合。
目的
保证安全、优质、快速和经济地钻达 目的层
内容
下入套管层数 各层套管的下入深度 选择合适的套管尺寸与钻头尺寸组合
第二章:井身结构设计
第一节:地层压力理论及预测方法
Dc指数 声波时差 地震层速度法
第二节:地层破裂压力预测
理论计算 地破试验
第三节:地层坍塌压力预测 第四节:井身结构设计 第五节:生产套管尺寸设计(自学)
井身结构
定义
套管层次、套管下入深度以及井眼尺寸(钻头尺寸 )与套管尺寸的配合。
地层压力理论及预测方法
Dc指数法预测的原理
井身结构的定义
井身结构的定义什么是井身结构?井身结构是钻井工程中的一个重要概念,它是指从地面到井底的整个井筒的建造和组成部分。
井身结构主要包括井壁、井眼、套管等构件。
井身结构在钻井过程中起着关键的作用。
它不仅要保证钻井工作的顺利进行,还要确保井筒的稳定和完整性。
井身结构的设计和施工是钻井工程中的重要环节,直接关系到井的安全和效益。
井壁井壁是井身结构的一部分,它是在地面上打井时用来固定井筒的部分。
井壁可以通过钻井液、固井材料等方式来增强井筒的稳定性。
井壁的设计需要考虑到不同地质条件和井筒的直径以及井深等因素。
井壁的主要作用有以下几个方面: - 确保井筒的稳定性,防止井筒塌陷。
- 控制井筒中的钻井液流动,维持井筒的良好环境。
- 提供支撑和保护井筒,防止井筒破坏。
井眼井眼是井筒内径的一部分,也是井身结构的组成部分。
井眼的大小和形状直接影响井筒中钻具的通行。
井眼一般是通过钻头在地下进行钻探过程中形成的。
井眼的大小对钻井工程的效率和安全性有着重要的影响。
如果井眼太小,可能会导致钻具卡住或者无法正常工作;如果井眼太大,可能会导致井壁不稳定,井筒塌陷的风险增加。
为了保持井眼的稳定和形状的标准,钻井中通常会使用套管进行衬砌。
套管可以提供强度和支撑,保持井眼的形状和稳定性。
套管套管是井身结构中的重要组成部分。
它是通过在井筒中嵌入的一系列管道来加固和保护井眼的。
套管可以固定井眼的形状,并防止井筒失稳和塌陷。
套管一般由一系列管道组成,依次从地面到井底嵌入井筒中。
每根管道都与上下两段管道相连接,形成一个完整的井眼保护体系。
套管的选择和设计要考虑到井深、地质条件、井眼直径等因素。
设计合理的套管可以提供井眼的稳定性和完整性,防止井筒塌陷和泥浆漏失等问题。
井身结构的建造过程井身结构的建造是钻井工程的重要部分,它需要经历以下几个主要步骤:1.打井:首先,需要在地面上选择合适的位置,使用钻机进行钻井作业。
通过钻具和钻头的旋转、冲击等作用,逐渐形成井筒。
井身结构的定义
井身结构的定义一、引言井身结构是指钻井过程中所使用的钻井设备和管柱的组合,它是油气勘探开发中非常重要的一环。
本文将从井身结构的定义、组成、分类、特点等方面进行详细阐述。
二、定义井身结构是指钻井过程中所使用的各种管柱和连接件,包括钻杆、套管、油管等,并且这些管柱和连接件按照一定顺序组成一个整体,从而完成井的钻探和完井作业。
三、组成1. 钻杆:是一种长条形金属杆,用于连接钻头和钻机。
根据不同的工作条件和要求,钻杆可以分为普通钢质钻杆、高强度合金钢质钻杆等。
2. 套管:是一种长条形金属管,用于衬装井孔壁。
根据不同的工作条件和要求,套管可以分为油套管、水套管等。
3. 油管:是一种长条形金属管,用于输送原油或天然气。
根据不同的工作条件和要求,油管可以分为各种规格和型号。
4. 连接件:用于连接不同类型的管柱,包括各种接头、套管夹等。
四、分类1. 按照用途分类:可以分为探井结构、开发井结构、注水井结构等。
2. 按照组成方式分类:可以分为整体式井身结构和组装式井身结构两种。
3. 按照工作条件分类:可以分为陆上井身结构和海洋井身结构两种。
五、特点1. 高强度:由于钻探过程中需要承受大量的压力和拉力,所以井身结构必须具备足够的强度和刚性。
2. 耐腐蚀:由于钻探过程中会遇到各种化学物质和高温高压环境,所以井身结构必须具备良好的耐腐蚀性能。
3. 稳定性好:由于钻探过程中会遇到各种地质条件和工作环境,所以井身结构必须具备良好的稳定性,以确保钻探作业的安全和稳定。
六、总结本文从定义、组成、分类、特点等方面进行了详细阐述。
可以看出,井身结构在油气勘探开发中具有非常重要的作用,它的质量和性能直接影响到钻探作业的效率和安全。
因此,在井身结构的选型和使用过程中,必须严格按照相关标准和规范进行操作,以确保井身结构的质量和稳定性。
井深结构设计
井身结构包括套管层次和下入深度以及井眼尺寸(钻头尺寸)与套管尺寸的配合。
井身结构设计是钻井工程设计的基础。
一、套管柱类型(1) 表层套管;(2) 中间套管(技术套管)(3) 生产套管(油层套管)(4) 尾管。
二、井眼中压力体系在裸眼井段中存在着地层孔隙压力、泥浆液柱压力、地层破裂压力。
三个压力体系必须同时满足于以下情况:p m f p p p ≥≥ (1-1) 式中 f p -地层的破裂压力,MPa ;m p -钻井液的液柱压力,MPa ;p p -地层孔隙压力,MPa 。
即泥浆液柱压力应稍大于孔隙压力以防止井涌,但必须小于破裂压力以防止压裂地层发生井漏。
由于在非密闭的洗井液压力体系中(即不关封井器憋回压时),压力随井深是呈线性变化的,所以使用压力梯度概念是较方便的。
式(1-1)可写成:p m t G G G ≥≥ (1-2)式中 t G -破裂压力梯度,MPa/m ;m G -液柱压力梯度,MPa/m ;p G -孔隙压力梯度,MPa/m 。
一、井身结设计所需基础资料(一) 地质资料(1) 岩性剖面及事故提示(2) 地层压力数据(3) 地层破裂压力数据(二) 工程资料(1) 抽吸压力与激动压允许值(g b S S 与)各油田应根据各自的情况来确定。
(2) 地层压裂安全增值(f S )。
该值是为了避免将上层套管鞋处地层压裂的安全增值,它与预测破裂压力值的精度有关,可以根据该地区的统计数据来确定。
以等效密度表示g/cm 3。
美国现场将f S 取值为0.024,中原油田取值为0.03。
(3) 井涌条件允许值(k S )。
此值是衡量井涌的大小,用泥浆等效密度差表示(用于压井计算,另一种计量方法是以进入井眼的流体的总体积来表示,多用于报警)。
美国现场取值为0.06。
该值可由各油田根据出现井涌的数据统计和分析后得出。
中源油田将k S 值定为0.06~0.14。
(4) 压差允值(a N P P ∆∆与)。
裸眼中,泥浆液柱压力与地层孔隙压力的差值过大,除使机械钻速降低外,而且也是造成压差钻的直接原因,这会使下套管过程中,发生卡套管事故,使已钻成的井眼无法进行地固井和完井工作。
井身结构设计
一、井身结构设计
一、井身结构 设计的任务
套管下入层次 每层套管的下入深度 各层套管相应的井眼尺寸(钻头尺寸) 各层套管外的水泥返深
➢ 确定井身结构的主要依据 钻井地质设计(地层压力、地层
破裂压力、地层坍塌压力、完井方 式)、复杂地层深度、地表水源情 况、钻井技术水平和采、试油、气 的技术要求等。。
✓ 井身结构设计的原则 (1)有效地保护油气层; (2)有效地避免漏、喷、塌、卡等井下复杂事故,保证安全、 快速钻井; (3)当发生井涌时,具有压井处理溢流的能力; (4)钻下部高压地层时,井内液柱压力不会压漏上层套管鞋处 的裸露地层。 (5)下套管过程中,不产生压差卡套管现象。 (6)对于压力不清楚或复杂深探井,套管设计应留有余量。 (7)同一裸眼井段,尽量不存在两个压力体系。 (8)地质预告有浅气层的井,应用套管封住。
➢ 裸眼井段应满足的力学平衡条件
在裸眼井段中存在着地层孔隙压力、钻井液液柱压力、地层破裂压力。
(1)防井涌
ρdmax≥ρpmax+ Sb (抽汲压力系数)
(2)防压差卡钻 0.00981 Dpmin (ρdmax-ρpmin) ≤ △P(△PN、△PA)
(3)防井漏 ρdmax+ Sg(激动压力系数)+ Sf(压裂安全系数)≤ρfmin
Dpmin — 最小地层孔隙压力所处的井深,m;
ρfmin — 裸眼井段最小地层破裂压力的当量钻液密度,g/cm3
Dc1 — 套管下入深度,m;
ρfc1 — 套管鞋处地层破裂压力的当量钻井液密度, g/cm3;
四、井身结构设计方法及步骤
下→上,内→外 五、设计举例
某井设计井深为4400m,地层压力梯度和地
第10章_井身结构设计
正文: p 表示压力; G 表示压 力梯度;t表示时间。
下标: f 表示破裂; m 表示泥 浆(钻井液);p表示孔隙; s 表示坍塌。
二、套管柱类型及井身结构概念
1. 套管作用 2. 套管柱的不同类型 3. 井身结构示例 4. 井身结构定义
二、套管柱类型及井身结构概念
四、井身结构设计中所需要的基础数据
地质方面的数据 工程类数据
四、井身结构设计中所需要的基础数据
4.1 地质方面的数据
(1)岩性剖面及其故障提示; (2)地层孔隙压力剖面; (3)地层破裂压力剖面。
四、井身结构设计中所需要的基础数据
4.2 工程类数据
(1)抽汲压力允许值(Sb)与激动压力允许值(Sg) (2)地层压裂安全增值(Sf) (3)井涌条件(Kick size)允许值(Sk) (4)压差允许值 正常压力地层ΔpN 异常压力地层ΔpA
(1)各层套管(油层套管除外)下入深度初选点Hn
的确定; ( 2 )校核各层套管下到初选点深度 Hni 时是否发生 压差卡套管; (3)当中间套管下入深度浅于初选点(Hn<Hni)时,
则需要下尾管并要确定尾管下入深度Hn+1;
(4)必封点的确定。
五、井身结构设计方法及步骤
5.1 确定各层套管(油层套管除外)下入深度初选点Hn
五、井身结构设计方法及步骤
5.1 确定各层套管(油层套管除外)下入深度初选点 Hn (2)最大钻井液密度ρmmax 由起钻时的压力平衡条件确定 最大钻井液密度
m Sb p
取临界状态
m max p max Sb
钻井液密度 地层孔隙压力梯度 意义:起钻时,井内压力要大于地层压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
套管射孔完井是钻穿 油层直至设计井深,然 后下生产套管至油层底 部注水泥固井,最后射 孔。射孔弹射穿油层套 管,水泥环并穿透油层 至某一深度,建立起油 流的通道。
套管射孔完井优点
可选择性的射开不同压力,不同物性 的油层,以避免层间干扰 可避开夹层水,底水和气顶,避开夹 层的坍塌 具备实施分层注、采和选择性压裂或 酸化等分层作业的条件
√
× × √
√
× × √
×
√ × √
√
√ √ √
×
√ √ √
产层中含有易塌的粘土夹层或含水夹层
产层被分割为压力、物性不同的若干分层 产层和井眼之间具有最大的渗流接触面积 产层受钻井液伤害小
×
× √ √
×
× √ ×
×
× √ √
√
√ √ ×
√
√ √ ×
工 程 要 求
产层受水泥浆伤害小
能为使用优质钻井液或平衡钻井创造条件 具备进行选择性增产措施或选择性采油条件 完井工艺简单成本低
适用的地质条件
无气顶、无底水、无含水夹层及易塌夹层的储层 单一厚储层,或压力、岩性基本一致的多层储层
割缝衬管完 井
不准备实施分隔层段及选择性处理的储层
岩性较为疏松的中、粗砂粒储层
无气顶、无底水、无含水夹层的储层
裸眼砾石充 填 单一厚储层,或压力、岩性基本一致的多层储层 不准备实施分隔层段及选择性处理的储层 岩性疏松且出砂严重的中、粗、细砂粒储层 有气顶,或有底水,或有含水夹层及易塌夹层等复杂地 质条件,因而要求实施分隔层段的储层 套管内砾石 充填 各分层之间存在压力、岩性等差异,因而要求实施选择性处理 的储层 岩性疏松且出砂严重的中、粗、细砂粒储层
二、完井方式——类型
4、砾石充填完井方式——预制砾石充填 该方法是在地面预先将符合油层 特性要求的砾石填入具有内、外双 层绕丝筛管的环形空间而制成的防 砂管,将此种筛管下入井内,对准 出砂层位进行防砂。
二、完井方式——类型
4、砾石充填完井方式——绕丝筛管的应用
(1)割缝衬管的缝口宽度由于受加工割刀强度的限制, 最小为0.5mm,因此它适用于中、粗砂粒油层;而绕丝筛管 的缝隙宽度最小可达0.12mm,故其适用范围广。 (2)绕丝筛管是由绕丝形成一种连续缝隙,流体通过 筛管时几乎没有压降,且绕丝筛管的断面为梯形,具有一定 的“自洁作用”,轻微的堵塞可被产出流体疏通,其流通面 积比割缝衬管大。 (3)绕丝筛管以不锈钢为原料,其耐腐蚀性强,使用 寿命长,综合经济效益高。
不更换钻头, 直至钻穿油层至 设计井深,然后 下套管至油层顶 界附近,注水泥 固井。
裸眼完井优点
油层完全裸露,油层具 有最大的渗流面积,产能较 高,完善程度高。
裸眼完井缺点
不能克服井壁坍塌和油层出砂对油井 生产的影响 不能克服生产层范围内不同压力的油、 气、水层的相互干扰 无法进行选择性酸化或压裂 先期裸眼完井法在下套管固井时不能 完全掌握该生产层的真实资料,以后 钻进时如遇到特殊情况,会给钻井和 生产造成被动
二、完井方式——类型
4、砾石充填完井方式——套管内砾石充填
钻头钻穿油层至设计井深后, 下油层套管于油层底部,注水泥 固井,然后对油层部位射孔。
要求采用高孔密、大孔径射孔 以增大充填流通面积,有时还把 套管外的油层砂冲掉,以便向孔 眼外的周围油层填入砾石,避免 砾石和地层砂混合而增大渗流阻 力。
完井方式
割缝衬管完井优点
油层不会遭受固井水泥浆的损害; 可以采用与油层相配伍的钻井液或其 他保护油层的钻井技术钻开油层;
当割缝衬管发生磨损或失效时也可以 起出修理或更换。
完井方式
适用的地质条件
无气顶、无底水、无含水夹层及易塌夹层的储层 单一厚储层,或压力、岩性基本一致的多层储层
割缝衬管完 井
不准备实施分隔层段及选择性处理的储层
同裸眼完井
有气顶或储层顶届附近有高压水层,但无底水的储层
二、完井方式——类型
(3)割缝衬管完井方式——改进前
用同尺寸钻头钻穿油层
后,套管柱下端连接衬管 下入油层部位,通过套管 外封隔器和注水泥 接头固 井封隔油层顶界以上的环
形空间。
二、完井方式——类型
(3)割缝衬管完井方式——改进后
钻头钻至油层顶界后,先下 套管注水泥固井,再从套管中 下入直径小一级的钻头钻穿油 层至设计井深,最后在油层部 位下入预选的割缝衬管,依靠 衬管顶部的衬管悬挂器,将衬 管挂在套管上,并密封衬管和 套管之间的环形空间,使油气 通过衬管的割缝流入井筒。
要求实施大规模水力压裂作业的低渗透储层 含油层段长、夹层厚度大、不适于裸眼完井的构造复杂的油气藏 岩性坚硬致密、天然裂隙发育、井壁稳定不坍塌的碳酸盐岩或砂 岩储层
裸眼完井
无气顶、无底水、无含水夹层及易塌夹层的储层 单一厚储层,或压力、岩性基本一致的多层储层 不准备实施封隔层段及选择性处理的储层
复合型完井
尾管射孔完井优点
可以采用与油层相配伍的钻井液, 以平衡压力,欠平衡压力的方法打开 油层,有利于保护油层;
可以减少套管重量和固井水泥的 用量,从而降低完井成本
完井方式
适用的地质条件
有气顶,或有底水,或有含水夹层及易塌夹层等复杂地质条件, 因而要求实施分隔层段的储层
射孔完井
各分层之间存在压力、岩性等差异,因而要求实施分层测试、分 层采油、分层注水、分层处理的油层
完井方式
适用的地质条件
有气顶,或有底水,或有含水夹层及易塌夹层等复杂地质条件, 因而要求实施分隔层段的储层
射孔完井
各分层之间存在压力、岩性等差异,因而要求实施分层测试、分 层采油、分层注水、分层处理的油层
要求实施大规模水力压裂作业的低渗透储层 含油层段长、夹层厚度大、不适于裸眼完井的构造复杂的油气藏 岩性坚硬致密、天然裂隙发育、井壁稳定不坍塌的碳酸盐岩或砂 岩储层
缺点:出油面积小,完善程度差
对井深和射孔深度要求严格
对固井质量要求高,水泥浆可能 损害油气层
二、完井方式——类型
(2)射孔完井方式——尾管射孔完井
尾管射孔完井是 在钻头钻至油层顶界 后,下套管注水泥固 井,然后用小一级的 钻头钻穿油层至设计 井深,用钻具将尾管 送下并悬挂在套管上, 再对尾管注水泥固井, 然后射孔
裸眼完井
无气顶、无底水、无含水夹层及易塌夹层的储层 单一厚储层,或压力、岩性基本一致的多层储层 不准备实施封隔层段及选择性处理的储层
复合型完井
同裸眼完井
有气顶或储层顶届附近有高压水层,但无底水的储层
二、完井方式——类型
(2)射孔完井方式
套管射孔完井 射孔完井方式分为 尾管射孔完井
二、完井方式——类型
完 井 方 法 的 选 择
在选择完井方法时,一定要对产层的物性、开采方式合综合经济指标进行分
析对比,主要考虑以下因素:储集层类型、储集层的均质程度、产层岩性的稳
定性、产层附近有无底水或气顶、产层的渗透性等,然后选用与产层相匹配且
能满足采油工艺要求的完井方法,以达到保护油气层,提高产量,延长油井寿 命的目的。
二、完井方式——类型
(1)裸眼完井方式
先期裸眼完井 裸眼完井方式分为 复合型完井方式
后期裸眼完井
二、完井方式——类型
(1)裸眼完井方式——先期裸眼完井方式
表层套管
生产套管
水泥环
先期裸眼完井方式是 钻头钻至油层顶界附近 后,下套管注水泥固井。 水泥浆上返至预定的设 计高度后,再从套管中 下入直径较小的钻头, 钻开油层至设计井深完 井。
二、完井方式——类型
4、砾石充填完井方式 裸眼砾石充填 直接充填砾石
砾石充填
预制充填砾石
套管内砾石充填
二、完井方式——类型
4、砾石充填完井方式——裸眼砾石充填
钻头钻至油层顶界以上约3m后, 下生产套管注水泥固井,再用小一级 的钻头钻穿水泥塞,钻开油层至设计 井深,然后更换扩张式钻头将油层部 位的井径扩大到生产套管的1.5-2倍, 以确保充填砾石时有较大的环形空间, 增加防砂层的厚度,提高防砂效果。
5
8
〃
2、井身结构的组成—— 生产套管
导管 表层套管
作用: 用以封隔油、气、水层,
保证油井的顺利生产。保护井 壁,隔断上履地层和油层的通 路,在套管内形成举升油气的 良好通道。 下入深度:取决于目的层位臵
技术套管
套管尺寸:5½〃和7〃
生产套管 实质:将生产层与其它层分开,使
其不同压力的油、气、水层分开。还 将作为油气生产和井下作业的通道, 并用以实现油气井分层开采、分层测 试、分层注水、分层改造。
岩性较为疏松的中、粗砂粒储层
无气顶、无底水、无含水夹层的储层
裸眼砾石充 填 单一厚储层,或压力、岩性基本一致的多层储层 不准备实施分隔层段及选择性处理的储层 岩性疏松且出砂严重的中、粗、细砂粒储层 有气顶,或有底水,或有含水夹层及易塌夹层等复杂地 质条件,因而要求实施分隔层段的储层 套管内砾石 充填 各分层之间存在压力、岩性等差异,因而要求实施选择性处理 的储层 岩性疏松且出砂严重的中、粗、细砂粒储层
油层
二、完井方式——类型
(1)裸眼完井方式——复合型完井方式 有的厚油层适合于 裸眼完成,但上部有气 顶或顶界附近又有水层 时,可以将生产套管下 过油气界面,使其封隔 油气的上部,然后裸眼 完井,必要时再射开其 中的含油段,称之为复 合型完井方式。
二、完井方式——类型
(1)裸眼完井方式——后期裸眼完井方式
人工井底深 套管深度: 套补距:钻 射开油层底 套管直径:下 射开油层顶 度:完井时 下入油层套 井时的方补 入油层套管的 部深度:射 部深度:射 套管内最下 管的深度, 心与套管头 公称直径,单 开井段最下 开井段最上 部水泥顶界 单位为米 的距离,单 位为毫米 部至方补心 部至方补心 面至方补心 ( 位为米 m)。 (m)。 的距离,单 ( mm )。 的距离,单 的距离,单 位为米 (m) 。 位为米 (m) 。 位为米(m)。