基因工程概论
基因工程概论
主要基因工程产品的研制、开发、上市时间
产品
人生长激素释放抑制素(SRM) 人胰岛素 人生长激素(HGH)
时间
1977 1978 1979
国家 用途
日本 巨人症 美国 糖尿病 美国 侏儒症
上市时间 国家
1982 1985
欧洲 美国
人α-干扰素(IFN)
乙肝疫苗(HBsAgV)
1980
198破了常规育种难以突破的物种之间界限,可使
原核生物与真核生物之间、动物与植物之间、甚至人与其
他生物之间的遗传信息进行重组和转移。 缩短了新物种出现的时间。
基因工程的基本操作程序
供体细胞
目的基因
载体 重 组D N A分 子
受体细胞 转化细胞
基因治疗 基因诊断
多肽药物 疫苗、抗体
(二)克隆载体研究
基因工程的发展是与克隆载体构建密切相关的; Ti质粒的发现使植物基因工程研究迅速发展起来;
动物病毒克隆载体的构建,使动物基因工程研究也有
一定的进展。可以认为构建克隆载体是基因工程技术路线 中的核心环节。 构建适合于高等动植物转基因的表达载体和定位整合 载体是今后研究的重要内容。
(三)受体系统的研究
就基因药物而言,最理想的表达场所是 转基因动物的乳腺。
1)乳腺是一个外分泌器官,乳汁不进入体内循环,不
会影响转基因动物本身的生理代谢反应。 2)从乳汁中获取目的基因产物,产量高,易提纯,表 达的蛋白质已经过充分的修饰加工,具有稳定的生物活性。 3)从乳汁中源源不断获得目的基因的产物的同时,转
基因动物又可无限繁殖。
基因工程 Gene Engineering
生物工程
包括基因工程、细胞工程、发酵工
程、蛋白质工程和酶工程等。
19基因工程概论20141022
类型
来源 相同点
功能 差别
E·coli DNA 连接酶
T4DNA连接酶
大肠杆菌 恢复 只能连接黏性末端
磷酸
T4噬菌体 二酯键
能连接黏性末端和 平末端(效率较低)
G AA TT C
G AA TT C
C TT AA G
C TT AA G
用同种限制酶切割
G AA TT C
G AA TT C
C TT AA G
标记基因, 便于检测。
载体
常用载体: 质粒、噬菌体和动、植物病毒等
条 件: ①能够在宿主细胞中复制并稳定地保存 ②具有多个限制酶切点,以便与外源基因连接 ③具有标记基因,便于进行筛选
载体--分类
1、克隆载体:以繁殖DNA片段为目的的载体。 如pBR322及其衍生质粒。
2、穿梭载体:既能在真核细胞中复制又能在 原核细胞中复制的载体。
环境污染治理
通常一种假单孢杆菌只能分解石油中的一种烃类。 基因工程的“超级细菌”能吞食和分解多种污染物
环境治理 抗虫转基因植物
抗虫棉花--问题探讨:
普通棉花 抗虫棉
苏云金芽孢杆菌含有一种可 以合成毒蛋白的基因。
让细菌的毒蛋白基因在棉花 细胞中表达,可培育出抗虫棉。
想一想:完成抗虫棉的培育,需要哪些关键工作?
反对派的观点
▪ 一英国科学家声称,转基因马铃薯会减弱老 鼠免疫系统功能;
▪ 美国康乃尔大学也发现,转基因玉米会危害 蝴蝶幼虫及其相关生态环境。
▪ 环保团体认为未经长期安全测试,长期食用 可能对人类及生态环境造成负面影响。
基因工程培育抗虫棉的简要过程:
苏云金芽孢杆菌
普通棉花(无抗虫特性)
提取
通过运载体导入
基因工程概论(6-7)
核糖体结合位点
核糖体结合位点对外源基因表达的影响
SD序列的影响:
一般来说,mRNA与核糖体的结合程度越强,翻译的起始效
率就越高,而这种结合程度主要取决于SD序列与16S rRNA的碱
基互补性,其中以GGAG四个碱基序列尤为重要。对多数基因而 言,上述四个碱基中任何一个换成C或T,均会导致翻译效率大幅 度降低
核糖体结合位点
核糖体结合位点对外源基因表达的影响
ori
含有外源启动子活性的重组克隆
启动子
启动子的构建
启动子
PlL
-35 区序列
T T G A C A
-10 区序列
G A T A C T
PrecA
PtraA Ptrp Plac Ptac
T T G A T A
T A G A C A T T G A C A T T T A C A T T G A C A
核糖体结合位点
核糖体结合位点对外源基因表达的影响
起始密码子及其后续若干密码子的影响: 大肠杆菌中的起始tRNA分子可以同时识别AUG、GUG和UUG 三种起始密码子,但其识别频率并不相同,通常GUG为AUG的50% 而UUG只及AUG的25%。除此之外,从AUG开始的前几个密码子碱 基序列也至关重要,至少这一序列不能与mRNA的5’ 端非编码区
过终止子结构继续转录质粒上邻近的DNA序列,形成长短不一的mRNA混合物
过长转录物的产生在很大程度上会影响外源基因的表达,其原因如下: 转录产物越长,RNA聚合酶转录一分子mRNA所需的时间就相应增加,外源基因
1基因工程概论
6. 其他 除以上争论外,对转基因食品安全性的争议还表现在
微生物作为宿主细胞的安全性问题,转基因动物激素、食 品、饲料添加剂等对动物本身的生长、发育和繁殖的安全 性问题等方面。
基于上述诸多方面的异议,转基因食品的安全性问题 的研究成为转基因技术研究的一个热点。
所以关于GMO(genetic modified origanism)的争论主 要集中于安全性,宗教,贸易
1.实验室的物理安全
P1——P4是关于基因工程实验室物理安全防护上的装备规定。 P1级实验室为一般的装备良好的普通微生物实验室;
P2级实验室,在P1级实验室的基础上,还需装备负压的安全操 作柜;
P3级实验室,即全负压的实验室,同时还要装备安全操作柜;
P4级实验室是具有最高安全防护措施的实验室,要求建设专用 的实验大楼,周围与其它建筑物之间应留有一定距离的隔离带, 细菌操作带手套进行,以及使用其他必要的隔离装置,使研究 者不会直接同细菌接触。
一.基因工程的诞生
1. Berg的开创性实验
1972年斯坦福大学的Paul Berg小组完成了首次体外重 组实验:将SV40的DNA片断与噬菌体的DNA片断连 接起来(用DNA末端转移酶,而非限制性内切酶)。
2. Boyer-Cohen实验
1973年斯坦福大学的S. Cohen小组将含有卡那霉素抗性基因的 大肠杆菌R6-5质粒与含有四环素抗性基因的另一种大肠杆菌质 粒pSC101连接成重组质粒,具有双重抗药性。
二.揭示了DNA分子的双螺旋结构模型和半保留复制机 理,解决了基因的自我复制和传递的问题。
1953年James D. Watson和Francis H. C. Crick揭 示了DNA分子的双螺旋结构和半保留复制机制。
基因工程概论复习重点
复习题一、名词解释1. 原核基因(Prokaryotic gene):由原核生物(如大肠杆菌)基因组编码的基因,以及高等生物细胞器线粒体基因组和叶绿体基因组等编码的基因,统称原核基因。
2. 真核基因(Eukaryotic gene):真核生物基因组DNA编码的基因,以及感染真核细胞的DNA病毒和反转录病毒基因组编码的基因,统称真核基因。
3. .前导序列(Leader sequence):又叫前导序列区或5'-非翻译区(5'-UTR),,系指位于mRNA5'-起始密码子之前的一段长数百个核苷酸的不翻译的RNA 区段。
4. 尾随序列(Tai1er sequence):又称尾随序列区或3'-非翻译区(3'-UTR),系指位于mRNA3'-终止密码子之后一段100多核苷酸的不翻译的RNA区段。
5 复制子(Replicon):指有一个复制起始区(oriC)和起始基因的DNA复制单元。
例如细菌染色体、病毒基因组、质粒基因组等,凡其DNA能够进行复制的遗传单元,均称复制子。
真核细胞基因组的复制子是指含有一个复制起始位点的DNA(RNA)的复制子特称复制单元。
6. 增强子(Enhancer):又叫增强子序列或增强子元件,是真核基因中发现的一种特异序列,能够在距离目标基因50kb以上的位置,从上游或下游的不同位置及方向增强该基因的转录活性。
7. 沉默子(Silencer)在真核基因启动子中除了增强子之外,沉默子同样也是一种可远距离调控相关基因转录活性的顺式元件。
与增强子一样,沉默子也能够从启动子的上游、下游甚至是基因内部三种不同的位置以及正向或反向,影响相关基因启动子的转录起始效率。
同时沉默子往往是以组织特异性或时间特异的作用方式,控制基因的表达作用。
但与增强子的功能效应相反,沉默子只能抑制而不能激活相关基因的转录起始活性。
8. 绝缘子(Insulator)亦即是增强子活性的物理边界元件(physical boundaryelement),它是一段能够抑制或隔离增强子功能效应的顺式转录调节序列。
基因工程概论(3)
5’ … G-C-T-C-A-G-C-T-G-G-A-G-T… 3’
3’ … C-G-A-G-T-C A-C-C-T-C-A… 5’
Zn2+
T-G-G-A-G-T… 3’
A-C-C-T-C-A… 5’
gap
核酸修饰酶 末端脱氧核苷酰转移酶(TdT):
TdT的基本特性:来自小牛胸腺
不需要模板的DNA聚合酶,随机掺入dNTPs 5’ p 3’ HO
3’ HO
TdT
5’ p 3’ HO AAAAAAAAAAA
Co2+
dATP AAAAAAAAAAAAAA OH 3’
p 5’
3 基因工程的基本条件
B 用于基因克隆的载体
载体的功能及特征
质粒(plasmid) 噬菌体或病毒DNA
考斯质粒(cosmid)
载体的功能及特征 载体的功能:
运送外源基因高效转入受体细胞 为外源基因提供复制能力或整合能力 为外源基因的扩增或表达提供必要的条件
DNA pol I
5’ ppp dN Mg2+
3’ … G-C-T-C-A-G-C-T-G-G-A-G-A… 5’
5’ … C-G-A-G-T-C-G-A-C-C-OH
DNA聚合酶 大肠杆菌DNA聚合酶 I 大片段( Klenow ) :
Klenow 酶的基本性质:
大肠杆菌DNA聚合酶I经枯草杆菌蛋白酶处理,获得C端三分之二的大 肽段,即为Klenow酶。 Klenow酶仍拥有5’→3’的DNA聚合酶活性和3’→5’的核酸外切酶活性,
5’ … G-C-T-G-A-A-T-T-OH
3’ … C-G-A-C-T-T-A-A-P
… 3’
… 5’
基因工程第1讲概论课件
理论上的可行性。
41
二、分子遗传学新方法是基因工程的 技术基础(六大技术)
首当其冲的是要解决: ① 如何自如地得到目的基因; ② 如何在体外改造基因,得到重 组体; ③ 如何在体外转移重组基因;
直到20世纪70年代中期,相继出现了 几项关键性技术,梦想成真。
42
实际上的可操作性 材料、实验条件、时空条件、
经济条件和政策。 基础方面的基本条件(可能性+ 可行性+ 可操作性)具备, 尚需人的科学创新 思维+ 艰苦的实践。才能得到创新的发明、 发现
49
1970年, MIT 的 科学家率先提出在体 外把不同来源的遗传 物质进行重组的设想, 但遭到反对, 不予支
50
办
不
不
到
到
的
的
22
第一节 基因工程的 发生与发展
23
一、基因工程诞生的理论基础
2生物遗传的物质基础是 DNA 肺炎链球菌光滑型和粗糙型的转化 试验
24
● 1944年, 美 国微生物学家 Avery证明基 因就是DNA分 子, 提出 DNA 是遗传信息的 载体。
32
遗 传 密 码 表
目 录33
mRNA分子上从5 至3 的方向,每3个核 苷酸构建一个密码子, 编码某一特定氨基酸或 作为蛋白质合成的起始、终止信号, 称为三联 体密码(triplet codon), 也称遗传密码子(genetic codon)。
解决了信息语言的对应关系。
34
•密码: 43 = 64
14
(4)利用重组DNA技术可以在体外大 量扩增、纯化人们感兴趣的基因, 研 究其结构、功能及调控机制, 从而拓 宽了分子生物学的研究领域。
基因工程概论
一、简述基因研究所取得主要成就,及其与基因工程创立与发展的关系。
1、基因学说的创立孟德尔提出遗传因子学说到后来的摩尔根染色体理论,揭示了在染色体上基因的线性排列。
2、DNA是遗传物质从Avery的细菌转化实验到沃森和克里克揭示了DNA的双螺旋模型及半保留复制机理,表明DNA是遗传物质。
3、DNA是基因的载体4、基因是细胞中RNA及蛋白质的“蓝图”。
5、随着中心法则的提出和64种密码子的破译,基因碱基顺序与蛋白质氨基酸顺序得到对应。
6、随着基因克隆和DNA序列分析技术的发展,人们对基因的分子结构有了进一步的认识。
7、随着操纵子模型的提出,人们对基因的表达调控有了进一步的认识。
8、随着基因分离与克隆技术的不断改良与发展,基因组文库、cDNA文库、分子探针、PCR 等技术不断被人们运用。
9、目前,不仅能够分离天然基因,还能结合化学合成等方法,在实验室内进行基因的合成、构建,并进行相应的表达分析。
基因工程是在分子生物学和分子遗传学等学科综合发展的基础上诞生的一门新兴学科,它的创立和发展,直接依赖于基因及其分子生物学研究的进步,基因及其研究为基因工程的创立奠定了坚实的理论基础。
二、基因工程建立的三大理论基础和技术条件是什么?并简述其在基因工程中的应用。
1、三大理论基础:(1)1940年艾弗里(O.Avery)等人通过肺炎球菌的转化试验证明了生物的遗传物质是DNA,而且证明了通过DNA可以把一个细菌的性状转移给另一个细菌;(2)1950年沃森(J.D.Watson)和克里克(F.Crick)发现了DNA分子的双螺旋结构及DNA半保留复制机理;(3)1960年关于遗传信息中心法则的确立。
2、三大技术条件:(1)限制性内切核酸酶和DNA连接酶的发现;(2)基因工程载体;(3)大肠杆菌转化体系的建立。
3、应用:通过限制性内切核酸酶和DNA连接酶,可以将切割得到的目的基因与载体连接在一起,经由大肠杆菌转化体系增值复制,为基因工程的后续研究提供基础材料。
基因工程概论(华东理工大学张惠展(1)
天然细胞
干细胞
工程干细胞 分离工程
工程细胞 发酵工程 细胞工程 代谢工程 分离工程 酶工程
分离工程
组织工程
酶
生物活性物质
组织器官个体
组织器官个体
生物活性物质
1 基因工程的基本概念
F 基因工程的基本形式
第一代基因工程 蛋白多肽基因的高效表达 经典基因工程 第二代基因工程 蛋白编码基因的定向诱变 蛋白质工程 第三代基因工程 代谢信息途径的修饰重构 途径工程 第四代基因工程 基因组或染色体的转移
基因工程的基本概念基因工程的基本概念基因工程的基本原理基因工程的基本原理基因工程的基本条件基因工程的基本条件基因工程的操作过程基因工程的操作过程目的基因的分离克隆目的基因的分离克隆大肠杆菌的基因工程大肠杆菌的基因工程真核酵母的基因工程真核酵母的基因工程基因工程的基本概念研究对象研究对象研究层次研究层次量子量子分子分子细胞细胞组织组织个体个体群体群体细菌细菌真菌真菌病毒病毒植物植物动物动物人类人类遗传遗传生理生理生物生物生态生态仿生仿生分子生物学分子生物学细胞生物学细胞生物学化学工程化学工程生命科学生命科学生物工程生物工程生物技术生物技术研究内容研究内容基因工程的基本概念工程细胞工程细胞基因工程蛋白质工程代谢途径工程细胞工程基因工程蛋白质工程代谢途径工程细胞工程发酵工程细胞工程发酵工程细胞工程分离工程分离工程酶工程酶工程组织工程组织工程野生细胞野生细胞野生细胞野生细胞生物活性物质生物活性物质组织器官组织器官干细胞干细胞细胞工程细胞工程基因工程的基本概念生命本质的高度有序和统一表现在基因的主宰性基因研究和操作的目的就是认识改造优化生命基因是一段具有物质编码功能的dna或rna序列健康和长寿是人类永恒的主题细胞循环细胞通讯免疫识别肿瘤发生胚胎发育神经传导机体衰老记忆思维生物进化基因调控基因工程的基本概念重组dna技术是指将一种生物体供体的基因与载体在体外进行拼接重组然后转入另一种生物体受体内使之按照人们的意愿稳定遗传并表达出新产物或新性状的dna体外操作程序也称为分子克隆技术
基因工程的概述
基因工程的概述定义:狭义的基因工程仅指用体外重组DNA技术去获得新的重组基因;广义的基因工程则指按人们意愿设计,通过改造基因或基因组而改变生物的遗传特性。
如用重组DNA技术,将外源基因转入大肠杆菌中表达,使大肠杆菌能够生产人所需要的产品;将外源基因转入动物,构建具有新遗传特性的转基因动物;用基因敲除手段,获得有遗传缺陷的动物等。
基因工程又被称为基因拼接技术或者DNA重组技术,可分为微生物基因工程、动物基因工程和植物基因工程三种生物转基因技术。
其主要特点是通过人工转移的方式,将一种生物的基因转移到另外一个受体细胞中,并使该转移基因在受体细胞中表达,从而获得全新的具有生物活性的产物。
基因工程技术为遗传物质研究和医药研究提供了重要的技术支撑。
动物基因工程技术利用先进的生物技术手段对动物基因进行编辑和改造,以达到揭示基因功能和利用基因治疗疾病等目的。
常见的动物基因工程技术包括基因敲除、基因敲入、基因编辑和转基因技术等。
通过使用基因编辑工具精确地切割和删除目标基因的特定区域,使该基因在动物个体中的表达缺失,可以揭示该基因在特定生理过程中的功能和调控机制。
基因治疗能够通过修复或替换患有遗传性疾病的动物个体的缺陷基因来达到治疗和预防遗传疾病的目的。
如利用基因编辑技术可以修复猫头鹰视网膜变性等遗传性视网膜疾病,从而改善视力。
微生物具有结构简单、迅速繁殖的特性,在其繁殖发展中应用生物基因工程技术能取得显著的效果。
将外源基因转入微生物中表达,使微生物能够生产人所需要的产品,如抗体和药用蛋白质等。
利用基因工程技术开发的重组亚单位疫苗、重组活载体疫苗及基因疫苗,有利于打破传统疫苗的局限性。
植物细胞具有全能性,在特定环境下,植物组织或者细胞能够生长出完整的植株。
所以,可以将药物基因组合到植物细胞内,通过分别培养,得到具有药物基因的植株。
植物独特的稳定遗传特性为医药领域的发展提供了充足而良好的条件。
目前,借助植物基因工程制造的药物有纯化的血清蛋白、干扰素与脑啡肽等。
基因工程概论(4-5)
5' 5'
人工粘性末端的连接 平头末端
5' G 3' C TdT C 3' G dTTP 5' G 3' C TdT C 3' G dATP
GTTTTTTTTTT 3' C C 3' TTTTTTTTTTG
G 3' AAAAAAAAAAC
CAAAAAAAAAA 3' G
退火
5' 5'
T4-DNA ligase
应始终悬浮在10.3%的蔗糖等渗溶液中。与原生质体接触的所
有器皿应保持无水无去污剂
转化的原理与技术
细菌原生质体的转化
细菌原生质体的转化:
取0.2 - 1ml的原生质体悬浮液(108-109个原生质体),加
入10 - 20 ml DNA重组连接液,同时加入含有PEG1000和Ca2+
的等渗溶液,混匀 细菌原生质体的再生: 原生质体再生的主要目的是使细菌重新长出细胞壁。再生 在特殊的固体培养基上进行,内含脯氨酸和微量元素
5'
4 基因工程的操作过程
B 重组DNA分子的转化和扩增(转与增)
转化的原理与技术 转化率
转化细胞的扩增
转化的原理与技术
Ca2+诱导的完整细菌细胞的转化
Ca2+诱导的完整细胞的转化适用于革兰氏阴性细菌(如 大肠杆菌等),1970年建立此技术,其原理是Ca2+与细菌外 膜磷脂在低温下形成液晶结构,后者经热脉冲发生收缩作用, 使细胞膜出现空隙,细菌细胞此时的状态叫做感受态
TG AC
CA GT
粘性末端的更换
5' BamHI 5' GGATCC CCTAGG 5'
2023年中国农科院历年考博试题汇总
中国农科院历年考博基因工程概论试题2023年中国农科院博士入学基因工程概论试题一、简答题1、聚丙烯酰胺、琼脂糖在dna电泳中的区别是什么?2、举出动物转基因的两种方法,并说明其原理。
3、双脱氧法测序的原理。
4、以拟南芥或玉米为例,说明转座子标签法进行基因转移的原理。
5、southern印迹的原理及应用。
三、试论述植物基因工程研究进展以及在农业生产上的意义。
2023年中国农科院博士入学基因工程概论试题一、名词解释1、限制性内切酶2、同裂酶3、核酶4、2μ环5、hat选择6、ti质粒7、t-dna8、同功trna9、反义trna 10、有义链11、α互补12、基因文库13、cdna 14、染色体步查二.简答题01、举两种植物基因转移的方法?简述其原理。
2、southern印迹的基本原理,这种方法有何应用。
3、噬菌体与cos作载体有何区别?4、aflp的原理及其应用5、普通pcr与rapd有何区别,何谓普通pcr?6、何谓双元载体,简述其组装过程及其作用机理?三、判断题1、无论用哪种转化方法均可用pbr322作载体2、进入细菌的外来dna之所以被降解,是由于细菌只修饰自身dna,不修饰外来dna3、只有粘粒端才可以被连接起来4、用自身作引物合成的cdna链,往往cdna并不完整1998年中国农科院博士入学基因工程概论试题一、什么是基因工程,基因工程在农业生产上有何意义?二、简答:1、聚丙烯酰胺凝胶电泳和琼脂糖凝胶电泳应用有何特点?2、举两种植物基因转移的方法?简述其原理。
3、双脱氧法测序的原理4、转座子标签法克隆植物基因的原理5、southern印迹的基本原理,这种方法有何应用?6、在dna复制过程中会形成一种复制体(replisome)的结构,它是由哪几部分组成的?7、sanger测序法的基本原理是什么?1999年中国农科院博士入学基因工程概论试题一.名词解释:1.cdna 2 ti质粒3. 2u环4. hat选择5 a互补6 yac 7 转导8 基因文库9 限制性内切酶10 染色体步查二.问答题:1 举例说明两种植物转基因的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章基因工程概论
第一节基因工程的基本概述
一、基因工程的基本概念
1、基因工程的基本定义:
按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA 直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。
广义基因工程:DNA重组技术的产业化设计与应用。
分为上游和下游技术。
2、上游技术:外源基因重组、克隆和表达的设计与构建(狭义基因工程)
3、下游技术:含有外源基因的生物细胞(基因工程菌或细胞)的大规模培养以及外源基因的表达、分离、纯化过程。
基因工程又称为:gene manipulation, gene cloning, recombinant DNA technoglogy, genetic modification, new genetics, molecular agriculture
二、基因工程的基本过程:
1、材料的准备:目的基因、载体、工具酶和受体细胞(宿主)的准备。
用限制性内切酶分别将外源DNA和载体分子切开。
2、目的基因与载体DNA的体外重组,形成重组DNA分子。
3、重组的DNA分子引入受体细胞,并建立起无性繁殖系。
4、筛选出所需要的无性繁殖系,并保证外源基因在受体细胞中稳定遗传、正确表达。
进一步可将基本步骤概括为:切、接、转、增、检[步骤演示]
图1-1 基因工程的基本步骤
三、基因工程的基本原理:
主体战略思想是外源基因的高效表达,可从四方面达到目的:
1、利用载体DNA在受体细胞中独立于染色体DNA而自主复制的特性与载体分子重组,通过载体分子的扩增提高外源基因在受体细胞中的剂量,借此提高宏观表达水平。
2、筛选、修饰重组基因表达的转录调控元件:启动子、增强子、上游调控序列、操作子、终止子。
3、修饰和构建蛋白质生物合成的翻译调控元件:序列、密码子。
4、工程菌(微型生物反应器)的稳定生产及增殖。
第二节基因工程的发展
一、基因工程的诞生
基因工程是一项新兴的工程技术,它的诞生需要理论和技术上的支持:
1. 理论上的三大发现:
证明了生物的遗传物质是DNA(基因工程的先导)
DNA的双螺旋结构和半保留复制机理
遗传信息的传递方式(中心法则)和三联体密码子系统的建立
2. 技术上的三大发现
限制性内切酶和DNA连接酶的发现(标志着DNA重组时代的开始)
载体的使用
1970年,逆转录酶的发现。
1973年,C o h e n等获得了抗四环素和新霉素的重组菌落T c r N e r,标志着基因工程的诞生。
二、基因工程的发展:
1. 1972-1976年,日本人,somatostatin;
2. 1978年,美国人,生长激素基因(HGH);
3. 1980年,美国/瑞士人,a干扰素-基因;
4. 1984年,日本人,白细胞介素2(IL-2);
三、基因工程的腾飞:
1. 1982年,美国人,大鼠生长激素基因转入小鼠;
2. 1983年,美国人,Ti质粒导入植物细胞(细菌Neor基因)
3. 1990年,美国人,腺苷脱氨酶(ADA)基因治疗,重度联合免疫缺陷症(SDID)
4. 1991年,美国倡导,人类基因组计划109bp,15年时间30亿USD;
5. 1997年,美国人,威尔英特克隆多利绵羊
大鼠生长激素基因转入小鼠
第三节基因工程的研究意义
基因工程可以绕过远缘有性杂交的困难,使基因在微生物、植物、动物之间交流,迅速并定向的获得人类需要的新的生物类型。
概括地讲,其意义体现在以下三个方面:
大规模生产生物分子;
设计构建新物种;
搜集、分离、鉴定生物信息资源
一、第四次工业大革命:
1980年11月15日,美国纽约证券交易所开盘的20分钟内,Genentech公司的新上市股要从3.5USD上至89USD,胰岛素基因表达
1. 医学:抗病毒、抗癌因子、新型抗生素、疫苗、抗衰老保健品、心脏血管药物、生长因子诊断剂
2. 轻工食品:氨基酸、助鲜剂、甜味剂、淀粉酶、纤维素酶、脂肪酶蛋白酶、生物拆分混旋体
3. 能源:石油二次开采、纤维素分解、太阳能转换
4. 环保:微生物生态种群
5. 信息:蛋白芯片、基因芯片
日本政府称基因工程为战略工业
二、第二次农业大革命:
1. 蛋白类杀虫剂(生物农药)、抗广谱虫害植物;
2. 农作物品种改良;高营养、长保存、抗环境压力、花卉颜色与型状;
3. 畜牧业;高蛋白乳汁、鱼生长激素、饲料利用率
4. 固氮
三、第二次医学大革命:(麻醉外科术是第一次医学大革命)
1. 分子病:(文明病富贵病)基因治疗,遗传病、心脑血管病、糖尿病、癌症过度肥胖综合症、老年痴呆症、骨质疏松症
2. 抗衰老:端粒酶编码基因
基因疗法
补充突变基因原始产物、更换突变基因。