北师大版八年级数学下册应用题方案设计优化专项训练:《一元一次不等式》(解析版)
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组重点解析试题(含答案解析)
第二章一元一次不等式和一元一次不等式组重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A.B.C.D.2、如图,已知直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b≤kx-1的解集在数轴上表示正确的是()A .B .C .D .3、下列式子:①5<7;②2x >3;③y ≠0;④x ≥5;⑤2a +l ;⑥113x ->;⑦x =1.其中是不等式的有( )A .3个B .4个C .5个D .6个4、下列判断不正确的是( )A .若a b >,则33a b +>+B .若a b >,则33a b -<-C .若22a b >,则a b >D .若a b >,则22ac bc >5、已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围( ) A .﹣3≤a <﹣2 B .﹣3≤a ≤﹣2 C .﹣3<a ≤﹣2 D .﹣3<a <﹣26、一次函数y 1=kx +b 与y 2=mx +n 的部分自变量和对应函数值如表:则关于x 的不等式kx +b >mx +n 的解集是( )A .x >0B .x <0C .x <﹣1D .x >﹣17、如图,数轴上表示的解集是( )A .﹣3<x ≤2B .﹣3≤x <2C .x >﹣3D .x ≤28、设m 为整数,若方程组3131x y m x y m+=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是( ) A .4 B .5 C .6 D .79、不等式组3x x a >⎧⎨>⎩的解是x >a ,则a 的取值范围是( ) A .a <3 B .a =3 C .a >3 D .a ≥310、已知a >b ,下列变形一定正确的是( )A .3a <3bB .4+a >4﹣bC .ac 2>bc 2D .3+2a >3+2b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若方程组31323x y k x y k-=+⎧⎨+=-⎩的解满足2x ﹣3y >1,则k 的的取值范围为 ___. 2、已知关于x 的不等式组53120x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是_____________. 3、根据“3x 与5的和是负数”可列出不等式 _________.4、如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围为_____________.5、若关于x 的不等式1x m +>的解集如图所示,则m 的值为_____.三、解答题(5小题,每小题10分,共计50分)1、解不等式组()24018202x x +≤⎧⎪⎨+->⎪⎩,并把解集在数轴上表示出来. 2、由于新能源汽车越来越受到消费者的青睐,某经销商决定分两次购进甲、乙两种型号的新能源汽车(两次购进同一种型号汽车的每辆的进价相同).第一次用270万元购进甲型号汽车30辆和乙型号汽车20辆;第二次用128万元购进甲型号汽车14辆和乙型号汽车10辆.(1)求甲、乙两种型号汽车每辆的进价;(2)经销商分别以每辆甲型号汽车8.8万元,每辆乙型号汽车4.2万元的价格销售后,根据销售情况,决定再次购进甲、乙两种型号的汽车共100辆,且乙型号汽车的数量不少于甲型号汽车数量的3倍,设再次购进甲型汽车a 辆,这100辆汽车的总销售利润为W 万元.①求W 关于a 的函数关系式;②若每辆汽车的售价和进价均不变,该如何购进这两种汽车,才能使销售利润最大?最大利润是多少?3、已知一次函数26y x =--.(1)画出函数图象.(2)不等式26x -->0的解集是_______;不等式26x --<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.4、有一批产品需要生产装箱,3台A型机器一天刚好可以生产6箱产品,而4台B型机器一天可以生产5箱还多20件产品.已知每台A型机器比每台B型机器一天多生产40件.(1)求每箱装多少件产品?(2)现需生产28箱产品,若用1台A型机器和2台B型机器生产,需几天完成?(3)若每台A型机器一天的租赁费用是240元,每台B型机器一天的租赁费用是170元,可供租赁的A型机器共3台,B型机器共4台.现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算).5、已知关于x的一次函数y=(2k-3)x+k-1的图象与y轴的交点在x轴的上方,且y随x的增大而减小,求k的取值范围.-参考答案-一、单选题1、A【分析】根据天平的图片得到m的取值范围,在数轴上表示m的取值,问题得解.【详解】解:由图可知,12mm⎧⎨⎩><,∴m的取值范围在数轴上表示如图:.故选:A【点睛】本题考查了用数轴表示不等式的取值范围,理解题意,正确得到不等式组是解题关键.2、D【分析】由图像可知当x≤-1时,1x b kx+≤-,然后在数轴上表示出即可.【详解】直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,关于x的不等式1x b kx+≤-的解集满足直线y1=x+b图像与y2=kx-1图形的交点及其下所对应的自变量取值范围,由图像可知当x≤-1时,1x b kx+≤-,∴可在数轴上表示为:故选D.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1≤y2时x的范围是函数y1的图象在y2的图象下方时对应的自变量的范围,反之亦然.3、C【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:①②③④⑥均为不等式共5个.故选:C【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.4、D【分析】根据不等式得性质判断即可.【详解】A. 若a b >,则不等式两边同时加3,不等号不变,选项正确;B. 若a b >,则不等式两边同时乘-3,不等号改变,选项正确;C. 若22a b >,则不等式两边同时除2,不等号不变,选项正确;D. 若a b >,则不等式两边同时乘2c ,有可能2c =0,选项错误;故选:D .【点睛】本题考查不等式得性质,需要特别注意不等式两边同时乘(除)一个正数不等号不变,同时乘(除)一个负数不等号改变.5、C【分析】先求出不等式解组的解集为2a x ≤<,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即可得到答案.【详解】解:0521x a x -≥⎧⎨->⎩①②解不等式①得x a ≥;解不等式②得2x <;∵不等式组有解,∴不等式组的解集是2a x ≤<,∴不等式组只有4个整数解,∴不等式组的4个整数解是:1、0、-1、-2,∴32a -<≤-故选C .【点睛】本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法.6、D【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y 1=kx +b 中y 随x 的增大而增大;y 2=mx +n 中y 随x 的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x >﹣1时,kx +b >mx +n .故选:D .【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.7、A【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x >﹣3且x ≤2∴在数轴上表示的解集是﹣3<x ≤2,故选A .【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.8、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=,把25mx-=代入①得6315my m-+=-,解得125my--=,∵175x y+>-,∴21217555m m---+>-,即131755m->-,解得6m<,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.9、D【分析】根据不等式组的解集为x>a,结合每个不等式的解集,即可得出a的取值范围.【详解】解:∵不等式组3xx a>⎧⎨>⎩的解是x>a,∴3a≥,故选:D.【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.10、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A .在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a >3b ,故A 不正确,不符合题意;B .无法证明,故B 选项不正确,不符合题意;C .当c =0时,不等式不成立,故C 选项不正确,不符合题意;D .不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D 选项正确,符合题意. 故选:D .【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.二、填空题1、34k >## 【分析】将①-②即可得2342x y k -=-,结合题意即可求得k 的范围.【详解】31323x y k x y k -=+⎧⎨+=-⎩①② ①-②得,2342x y k -=-2x ﹣3y >1421k ∴->解得34k > 故答案为:34k >【点睛】本题考查了解二元一次方程组,一元一次不等式,利用加减消元法得出方程组的解是解题关键. 2、4a ≥【分析】先把a 当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.【详解】解:53120x a x -≥-⎧⎨-<⎩①② 由①得:2x ≤ 由②得:2a x > 不等式组无解 ∴22a ≥ 4a ≥故答案为4a ≥.【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.3、350x +<【分析】3x 与5的和为35x +,和是负数即和小于0,列出不等式即可得出答案.【详解】3x 与5的和是负数表示为350x +<.故答案为:350x +<.【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键.4、1<m <2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m >1,由第二幅图得m <2,故1<m <2;故答案是:1<m <2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.5、3【分析】由数轴可以得到不等式的解集是x >﹣2,根据已知的不等式可以用关于m 的式子表示出不等式的解集.就可以得到一个关于m 的方程,可以解方程求得.【详解】解:解不等式x +m >1得1x m >-由数轴可得,x >﹣2,则12m -=-解得,m =3.故答案为:3.【点睛】本题主要考查了解一元一次不等式,数轴上表示不等式的解集,解一元一次方程,注意数轴上的空心表示不包括﹣2,即x >﹣2.并且本题是不等式与方程相结合的综合题.三、解答题1、42x -<≤-,作图见解析【分析】结合题意,根据一元一次不等式组的性质,求解得不等式组公共解,结合数轴的性质作图,即可得到答案.【详解】 解:()24018202x x +≤⎧⎪⎨+->⎪⎩ 解不等式240x +≤,得2x -≤ 不等式()18202x +->, 去括号,得:840x +->移项、合并同类项,得:4x >-∴不等式组的解为:42x -<≤-数轴如下:.【点睛】本题考查了数轴、一元一次不等式组的知识;解题的关键是熟练掌握一元一次不等式组的性质,从而完成求解.2、(1)甲、乙两种型号汽车每辆的进价分别为7万元、3万元(2)①W 关于a 的函数关系式为W =0.6a +120(0≤a ≤25);②甲型汽车25辆,乙型汽车75辆,最大利润是135万元【分析】(1)设甲种型号汽车的进价为a 元、乙种型号汽车的进价为b 元,根据题意,可以得到相应的二元一次方程组,然后即可得到甲、乙两种型号汽车每辆的进价;(2)①根据总利润=甲型汽车的利润+乙型汽车的利润可以得到利润与购买甲种型号汽车数量的函数关系;②根据乙型号汽车的数量不少于甲型号汽车数量的3倍,可以得到购买甲种型号汽车数量的取值范围,然后根据一次函数的性质,即可得到最大利润和此时的购买方案.(1)(1)设甲种型号汽车的进价为a 元、乙种型号汽车的进价为b 元,30202701410128a b a b +=⎧⎨+=⎩, 解得:73a b =⎧⎨=⎩, 即甲、乙两种型号汽车每辆的进价分别为7万元、3万元;(2)(2)①由题意得:购进乙型号的汽车(100﹣a )辆,W =(8.8﹣7)a +(4.2﹣3)×(100﹣a )=0.6a +120,乙型号汽车的数量不少于甲型号汽车数量的3倍,∴100﹣a ≥3a ,且a ≥0,解得,0≤a ≤25,∴W 关于a 的函数关系式为W =0.6a +120(0≤a ≤25);②W=0.6a+120,∵0.6>0,∴W随着a的增大而增大,∵0≤a≤25,∴当a=25时,W取得最大值,此时W=0.6×25+120=135(万元),100﹣25=75(辆),答:获利最大的购买方案是购进甲型汽车25辆,乙型汽车75辆,最大利润是135万元.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的二元一次方程组,利用一次函数的性质和不等式的性质解答.3、(1)见解析;(2)x<-3;x>-3;(3)BC=【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x<-3时,一次函数y=-2x-6的图象在x轴上方;当x>-3时,一次函数y=-2x-6的图象在x轴下方.∴不等式-2x-6>0的解集是x<-3;不等式-2x-6<0的解集是x>-3.故答案是:x<-3,x>-3;(3)∵B(-3,0),C(0,-6),∴OB=3,OC=6,∴BC=【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.4、(1)60件;(2)6天;(3)A型机器前2天租3台,第3天租2台;B型机器每天租3台【分析】(1)设每箱装x件产品,根据“每台A型机器比每台B型机器一天多生产40件”列出方程求解即可;(2)根据第(1)问的答案可求得每台A 型机器每天生产120件,每台B 型机器每天生产80件,根据工作时间=工作总量÷工作效率即可求得答案;(3)先将原问题转化为“若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用”,再设租A 型机器a 台次,则租B 型机器的台次数为16801203(21)802a a -=-台次,由此可求得a 的取值范围,进而可求得符合题意的a 的整数解,再分别求得对应的总费用,比较大小即可.【详解】解:(1)设每箱装x 件产品, 根据题意可得:65204034x x +-=, 解得:60x =,答:每箱装60件产品;(2)由(1)得:每台A 型机器每天生产666012033x ⨯==(件), 每台B 型机器每天生产520560208044x +⨯+==(件), ∴2860(120280)⨯÷+⨯1680280=÷ 6=(天),答:若用1台A 型机器和2台B 型机器生产,需6天完成;(3)根据题意可把问题转化为:若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用.设租A 型机器a 台次,则租B 型机器的台数为16801203(21)802a a -=-台次, ∵共有12台次B 型机器可用, ∴321122a -≤,解得a ≥6,∵共有9台次A 型机器可用,∴a ≤9,∴6≤9≤9,又∵a 为整数,∴若a =9,则3217.52a -=,需选B 型机器8台次,此时费用共为240×9+170×8=3520(元);若a =8,则32192a -=,需选B 型机器9台次,此时费用共为240×8+170×9=3450(元);若a =7,则32110.52a -=,需选B 型机器11台次,此时费用共为240×7+170×11=3550(元);若a =6,则321122a -=,需选B 型机器12台次,此时费用共为240×6+170×12=3480(元);∵3450<3480<3520<3550,∴3天中选择共租A 型机器8台次,B 型机器9台次费用最省,如:A 型机器前两天租3台,第3天租2台,B 型机器每天租3台,此时的费用最省,最省总费用为3450元,答:共有4种方案可选择,分别为:3天中共租A 型机器9台次,B 型机器8台次;3天中共租A 型机器8台次,B 型机器9台次;3天中共租A 型机器7台次,B 型机器11台次;3天中共租A型机器6台次,B型机器12台次,其中3天中共租A型机器8台次,B型机器9台次(如A型机器前两天租3台,第3天租2台,B型机器每天租3台),此时的费用最省,最省总费用为3450元.【点睛】本题考查了一元一次方程的应用以及解一元一次不等式,解题的关键是:找准等量关系,正确列出一元一次方程以及根据各数量之间的关系,正确列出一元一次不等式.5、3 12k<<【分析】根据题意易得23010kk-<⎧⎨->⎩,然后求解即可.【详解】解:∵关于x的一次函数y=(2k-3)x+k-1的图象与y轴的交点在x轴的上方,且y随x的增大而减小,∴23010kk-<⎧⎨->⎩,解得:312k<<.【点睛】本题主要考查一次函数的图象与系数的关系,熟练掌握一次函数的图象与系数的关系是解题的关键.。
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. x 与1的和是非负数,用不等式表示为.( ) A. x +1<0B. x +1≤0C. x +1≥0D. x +1>02. 下列式子: ①x +y =1; ②x >y; ③x +2y; ④x −y ≥1; ⑤x <0中,属于不等式的有( )A. 2个B. 3个C. 4个D. 5个3. 由ax >b 得到x <ba ,则a 应满足的条件是.( ) A. a ≤0B. a >0C. a ≥0D. a <04. 已知实数a 、b ,若a >b ,则下列结论正确的是( ) A. a −5<b −5B. 2+a <2+bC. −a4>−b4D. 3a >3b5. 下列不等式的一个解是x =3的是.( ) A. x +3>5B. x +3>6C. x +3>7D. x +3>86. 下列各数中,是不等式2(x −5)<x −8的解的是.( ) A. 4 B. −5C. 3D. 57. 解不等式2+x3>2x−15的过程中,下列错误的一步是.( ) A. 5(2+x)>3(2x −1) B. 10+5x >6x −3 C. 5x −6x >−3−10D. x >138. 不等式4x −a >7x +5的解集是x <−1,则a 的值为.( ) A. −2B. 2C. 5D. 89. 如图,直线y =x +32与y =kx −1相交于点P ,点P 的纵坐标为12,则关于x 的不等式x +32>kx −1的解集是( )A. x >−1B. x <−1C. x>12D. x<1210. 如图是一次函数y1=kx+b与y2=x+a的图象,则不等式kx+b<x+a的解集是( )A. x<3B. x>3C. x>a−bD. x<a−b11. 定义新运算“☆”如下:当a>b时,a☆b=ab+b;当a<b时,a☆b=ab−b.若3☆(x+2)>0,则x的取值范围是.( )A. −1<x<1或x<2B. x<−2或1<x<2C. −2<x<1或x>1D. x<−2或x>212. 一个关于x的一元一次不等式组的解集在数轴上的表示如图所示,则该不等式组的解集是.( )A. x>1B. x≥1C. x>3D. x≥3第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 某生物兴趣小组要在温箱里培养A,B两种菌苗,A种菌苗的生长温度x(℃)的范围是35≤x≤38,B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)的范围是____.14. 若a>b,则ac2_______bc2.15. 如图,函数y=3x+b和y=ax−3的图像交于点P(−2,−5),则不等式3x+b>ax−3的解集是.16. 一元一次不等式组中各个不等式解集的,叫做这个一元一次不等式组的解集.三、解答题(本大题共9小题,共72.0分。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (38)
(共25题)一、选择题(共10题)1. 如果关于 x 的不等式组 {3x −a >0,2x −b ≤0 的整数解仅有 1,2,那么适合这个不等式组的整数 a ,b组成的有序数对 (a,b ) 共有 ( ) A . 2 个 B . 4 个 C . 6 个 D . 8 个2. 若 a >b ,则下列不等式变形错误的是 ( ) A . a +1>b +1 B . a 2>b2C . 3a −4>3b −4D . 4−3a >4−3b3. 若关于 x 的不等式 3x −2m ≥0 的负整数解为 −1,−2,则 m 的取值范围是 ( ) A . −6≤m <−92 B . −6<m ≤−92 C . −92≤m <−3D . −92<m ≤−34. 由 a >b 得到 ma <mb ,则 m 的取值范围是 ( ) A . m >0B . m <0C . m ≥0D . m ≤05. 根据如图所示,对 a ,b ,c 三种物体的重量判断正确的是 ( )A . a <bB . b <cC . a >cD . a <c6. 如果关于 x 的不等式组{x−m2>0,x−43−x <−4的解集为 x >4,且整数 m 使得关于 x ,y 的二元一次方程组 {mx +y =8,3x +y =1 的解为整数(x ,y 均为整数),则符合条件的所有整数 m 的和是 ( )A . −2B . 2C . 6D . 107. 不等式组 {x +1>0,x −4≤−2 的解集是 ( )A . x >−1B . x >−1 或 x ≤2C . x ≤2D . −1<x ≤28. 如果关于 x 的分式方程x x−2+m+12−x=3 有非负整数解,关于 y 的不等式组{y2+1≥y+235(y −1)<y −(m +3),有且只有 2 个整数解,则所有符合条件的 m 的和是 ( )A . 3B . 5C . 8D . 109. 已知关于 x 的不等式组 {x −m <1,x −m >−2 的解集中任意一个 x 的值都不在 −1≤x ≤2 的范围内,则 m 的取值范围是 ( ) A . −2≤m ≤4 B . m ≤−2 或 m ≥4 C . −2<m <4D . m <−2 或 m >410. 不等式组 {x −1>0,5−2x ≥1的解集在数轴上表示正确的是 ( )A .B .C .D .二、填空题(共7题)11. 已知关于 x 的一元一次不等式 ax −1>0 的解集是 x >3,则 a 的值是 .12. 若不等式组 {x −a >2,b −2x >0 的解集是 −1<x <1,则 (a +b )2019= .13. 对于三个数 a ,b ,c ,用 M {a,b,c } 表示这三个数的中位数,用 max {a,b,c } 表示这三个数中最大的数.例如:M {−2,−1,0}=−1;max {−2,−1,0}=0,max {−2,−1,a }={a,a ≥−1−1,a <−1.根据以上材料,解决下列问题:若 max {3,5−3x,2x −6}=M {1,5,3},则 x 的取值范围为 .14. 若不等式组 {x −3≥0,a −2x >0 的解集是 3≤x <6,则 a = .15. 不等式:(√3−2)x <1 的解集是 .16. 满足不等式 1−x <0 的最小整数解是 .17. 不等式组 {x +3>2(x −1),x−13>1的解为 .三、解答题(共8题)18. 解不等式组 {x−32+3≥x +1,1−3(x −1)<8−x, 并把解集在数轴上表示出来.19. 解不等式组:{3x +1≥2x ⋯⋯①,2x −3≤5 ⋯⋯②,并把解集在数轴上表示出来.20. 某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过 1900 本科技类书籍和 1620 本人文类书籍,组建中、小型两类图书角共 30 个.已知组建一个中型图书角需科技类书籍 80 本,人文类书籍 50 本;组建一个小型图书角需科技类书籍 30 本,人文类书籍 60 本.(1) 符合题意的组建方案有几种?请你帮学校设计出来;(2) 若组建一个中型图书角的费用是 860 元,组建一个小型图书角的费用是 570 元,试说明(1)中哪种方案费用最低,最低费用是多少元?21. 对 x ,y 定义一种新运算 T ,规定:T (x,y )=ax +2by −1(其中 a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)=a ⋅0+2b ⋅1−1=2b −1. (1) 已知 T (1,−1)=−2,T (4,2)=3.①求 a ,b 的值.②若关于 m 的不等式组 {T (2m,5−4m )≤4,T (m,3−2m )>p 恰好有 2 个整数解,求实数 p 的取值范围.(2) 若 T (x,y )=T (y,x ) 对任意实数 x ,y 都成立(这里 T (x,y ) 和 T (y,x ) 均有意义),则 a ,b 应满足怎样的关系式?22. 根据下面的数量关系列不等式:(1) x 的 3 倍与 2 的差是非负数; (2) c 与 40 的和的 30% 大于 −2; (3) m 除以 4 的商加上 3 至多为 2; (4) a 与 b 的和的平方不小于 3,23. 解不等式2(x−1)5≤3(1−x )10,并求出非负整数解.24.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后进价(元/部)40002500售价(元/部)43003000可获毛利润共2.1万元.(毛利润=(售价−进价)×销售量)(1) 该商场计划购进甲、乙两种手机各多少部?(2) 通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.25.某渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.(1) 一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2) 该渣土运输公司决定派出大、小两种型号的渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?答案一、选择题(共10题) 1. 【答案】C【解析】 ∵ 解不等式 3x −a >0 得:x >a3, 解不等式 2x −b ≤0 得:x ≤b2,∴ 不等式组的解集是 a 3<x ≤b2,∵ 关于 x 的不等式组 {3x −a >0,2x −b ≤0 的整数解仅有 1,2,∴0≤a 3<1,2≤b2<3,解得:0≤a <3,4≤b <6,即 a 的值是 0,1,2,b 的值是 4,5,即适合这个不等式组的整数 a ,b 组成的有序数对 (a,b ) 共有 6 个,是 (0,4),(0,5),(1,4),(1,5),(2,4),(2,5).【知识点】含参一元一次不等式组2. 【答案】D【解析】A .在不等式 a >b 的两边同时加上 1,不等式仍成立,即 a +1>b +1.故本选项变形正确.B .在不等式 a >b 的两边同时除以 2,不等式仍成立,即a 2>b 2,故本选项变形正确.C .在不等式 a >b 的两边同时乘以 3 再减去 4,不等式仍成立,即 3a −4>3b −4,故本选项变形正确.D .在不等式 a >b 两边同时乘以 −3 再减去 4,不等号方向改变,即 4−3a <4−3b ,故本选项变形错误.【知识点】不等式的性质3. 【答案】D【解析】不等式 3x −2m ≥0, 解得:x ≥23m ,∵ 不等式的负整数解只有 −1,−2, ∴−3<23m ≤−2, ∴−92<m ≤−3.故选D.【知识点】含参一元一次不等式4. 【答案】B【解析】根据“不等式的两边都乘(或除以)同一个负数,不等号的方向改变”,得m<0.故选B.【知识点】不等式的性质5. 【答案】C【解析】∵2个a=3个b,∴a>b,∵2个b=3个c,∴b>c,∴a>b>c.【知识点】不等式的概念6. 【答案】B【解析】解不等式组{x−m2>0, ⋯⋯①x−43−x<−4, ⋯⋯②解不等式①得:x−m>0,x>m,解不等式②得x−4−3x<−12,−2x<−8,x>4,∵原不等式组的解集为x>4,∴m≤4.解二元一次方程组{mx+y=8, ⋯⋯③3x+y=1, ⋯⋯④由③ −④得,(m−3)x=7,x=7m−3,将x=7m−3代入④得y=1−21m−3.∵该方程组的解为整数解,m也为整数,∴m−3既是7的约数也是21的约数,∴m−3=±1或±7,∴m=4或10或2或−4,∴同时满足两个条件的m的整数值为:2,−4,4,∴所有满足条件的整数m的和为2+4−4=2.【知识点】含参一元一次不等式组、含参二元一次方程组7. 【答案】D【解析】{x+1>0, x−4≤−2,解不等式①得:x>−1,解不等式②得:x≤2,∴不等式组的解集为−1<x≤2,∵A,B,C选项错误,不符合题意.【知识点】常规一元一次不等式组的解法8. 【答案】C【解析】xx−2+m+12−x=3.x−(m+1)=3(x−2),x−m−1=3x−6,x−3=−6+m+1,x=5−m2.∵分式方程有非负整数解,∴5−m2≥0,且5−m2为整数.∴m≤5,且m为奇数.由y2+1≥y+23,得,3y+6≥2y+4,y≥−2.由5(g−1)<g−(m+3),得5y−5<y−m−3,4y<−m+2,y<−m+24.∴−2≤y<−m+24.∵不等式组有且只有2个整数解,∴−1<−m+24≤0.∴2≤m<6.∴2≤m≤5且m为奇数,∴m=3或5.∴和是3+5=8.故选C.【知识点】含参一元一次不等式组9. 【答案】B【知识点】含参一元一次不等式组10. 【答案】C【解析】 {x −1>0, ⋯⋯①5−2x ≥1. ⋯⋯②由①得:x >1, 由②得:x ≤2,∴ 不等式的解为 1<x ≤2.【知识点】常规一元一次不等式组的解法二、填空题(共7题) 11. 【答案】 13【解析】 ax −1>0, 移项得 ax >1,当 a <0 时,系数化为 1 得 x <1a ,舍去; 当时 a >0,系数化为 1 得 x >1a , 因为不等式 ax −1>0 的解集是 x >3, 所以 1a =3 即 a =13,故本题填 13. 【知识点】含参一元一次不等式12. 【答案】 −1【知识点】有理数的乘方、含参一元一次不等式组13. 【答案】 23≤x ≤92【解析】 ∵max {3,5−3x,2x −6}=M {1,5,3}=3, ∴{5−3x ≤3,2x −6≤3,∴23≤x ≤92.【知识点】常规一元一次不等式组的解法14. 【答案】 12【解析】 {x −3≥0, ⋯⋯①a −2x >0. ⋯⋯②由①得,x ≥3,由②得,x <a2,∵ 不等式组 {x −3≥0,a −2x >0 的解集是 3≤x <6,∴a 2=6∴a =12.【知识点】含参一元一次不等式组15. 【答案】 x >−√3−2【知识点】常规一元一次不等式的解法、分母有理化16. 【答案】 2【解析】 ∵1−x <0, ∴x >1,则不等式的最小整数解为 2. 【知识点】常规一元一次不等式的解法17. 【答案】 4<x <5【解析】 {x +3>2(x −1), ⋯⋯①x−13>1. ⋯⋯②解①得:x +3>2x −2, ∴3+2>2x −x , ∴x <5,解②得 x −1>3, ∴x >4, ∴4<x <5.【知识点】常规一元一次不等式组的解法三、解答题(共8题)18. 【答案】{x−32+3≥x +1, ⋯⋯①1−3(x −1)<8−x. ⋯⋯②∵ 解不等式①得:x ≤1.解不等式②得:x >−2.∴不等式组的解集为:−2<x ≤1.在数轴上表示不等式组的解集为:【知识点】常规一元一次不等式组的解法19. 【答案】解不等式 ①,得x ≥−1.解不等式 ②,得x ≤4.把不等式 ① 和 ② 的解集在数轴上表示出来,如图所示.∴不等式组的解集为:−1≤x ≤4. 【知识点】常规一元一次不等式组的解法20. 【答案】(1) 设组建中型图书角 x 个,则组建小型图书角为(30−x )个.由题意,得{80x +30(30−x )≤1900,50x +60(30−x )≤1620,化简得{50x ≤1000,10x ≥180,解这个不等式组,得18≤x ≤20.由于x 只能取整数,∴x 的取值是 18,19,20. 当 x =18 时,30−x =12; 当 x =19 时,30−x =11; 当 x =20 时,30−x =10. 故有三种组建方案:方案一,中型图书角 18 个,小型图书角 12 个; 方案二,中型图书角 19 个,小型图书角 11 个; 方案三,中型图书角 20 个,小型图书角 10 个. (2) 方案一的费用是 860×18+570×12=22320(元); 方案二的费用是 860×19+570×11=22610(元); 方案三的费用是 860×20+570×10=22900(元). 故方案一费用最低,最低费用是 22320 元. 【知识点】一元一次不等式组的应用21. 【答案】(1) ①由题意可得 {a −2b −1=−2,4a +4b −1=3,解得 {a =13,b =23.②由题意得{2m 3+4(5−4m )3−1≤4,m 3+4(3−2m )3−1>p,解得 514≤m <9−3p7,因为原不等式组有 2 个整数解, 所以 2<9−3p 7≤3,所以 −4≤p <−53.(2) T (x,y )=ax +2by −1,T (y,x )=ay +2bx −1, 所以 ax +2by −1=ay +2bx −1, 所以 (a −2ba )x −(a −2b )y =0, (a −2b )(x −y )=0, 所以 a =2b .【知识点】含参一元一次不等式组、因式分解的应用22. 【答案】(1) 3x −2≥0.(2) (c +40)×30%>−2.(3) m 4+3≤2.(4) (a +b )2≥3.【知识点】不等式的概念23. 【答案】去分母得:4(x −1)≤3(1−x ),去括号得:4x −4≤3−3x ,移项得:4x +3x ≤3+4,合并得:7x ≤7,解得:x ≤1,则不等式的非负整数解为 0,1.【知识点】常规一元一次不等式的解法24. 【答案】(1) 设商场计划购进甲种手机 x 部,乙种手机 y 部,由题意,得{0.4x +0.25y =15.5,0.03x +0.05y =2.1,解得{x =20,y =30.答:商场计划购进甲种手机 20 部,乙种手机 30 部. (2) 设甲种手机减少 a 部,则乙种手机增加 2a 部,由题意,得0.4(20−a )+0.25(30+2a )≤16,解得a ≤5.设全部销售后获得的毛利润为 W 元,由题意,得W =0.03(20−a )+0.05(30+2a )=0.07a +2.1. ∵k =0.07>0,∴W 随 a 的增大而增大,∴ 当 a =5 时,W 最大=2.45.答:当该商场购进甲种手机 15 部,乙种手机 40 部时,全部销售后获利最大.最大毛利润为2.45 万元.【知识点】二元一次方程(组)的应用、一次函数的应用、一元一次不等式的应用25. 【答案】(1) 设一辆大型渣土运输车一次可运输土方 x 吨,一辆小型渣土运输车一次可运输土方 y 吨.根据题意得{2x +3y =31,5x +6y =70.解得{x =8,y =5.答:一辆大型渣土运输车一次可运输土方 8 吨,一辆小型渣土运输车一次可运输土方 5 吨.(2) 设派出 a 辆大型渣土运输车,(20−a ) 辆小型渣土运输车.根据题意得{20−a ≥2,8a +5(20−a )≥148.解得16≤a ≤18.其中 a 是正整数. 当 a =16 时,20−a =4;当a=17时,20−a=3;当a=18时,20−a=2.故有三种派车方案,第一种方案:派出16辆大型渣土运输车时,派出4辆小型渣土运输车;第二种方案:派出17辆大型渣土运输车时,派出3辆小型渣土运输车;第三种方案:派出18辆大型渣土运输车时,派出2辆小型渣土运输车.【知识点】综合应用、一元一次不等式组的应用。
《第二章5一元一次不等式与一次函数》作业设计方案-初中数学北师大版12八年级下册
《一元一次不等式与一次函数》作业设计方案(第一课时)一、作业目标本作业设计旨在通过一元一次不等式与一次函数的综合练习,加深学生对基本概念的理解,提高学生的运算能力和解题技巧,同时培养学生的逻辑思维和问题解决能力。
二、作业内容作业内容主要围绕一元一次不等式与一次函数的认知、性质及运用展开。
具体包括:1. 回顾一次函数的基本概念,包括函数表达式、图像特征及性质。
2. 掌握一元一次不等式的解法,包括不等式的变形、求解及解集的表示。
3. 结合一次函数与一元一次不等式,进行实际应用题的练习。
例如,利用一次函数解决生活中的最值问题,利用一元一次不等式描述现实生活中的数量关系等。
4. 强化学生对函数图像与不等式解集关系的理解,通过绘制函数图像,分析解集的几何意义。
5. 布置一定量的练习题,包括选择题、填空题和解答题,题型涵盖基础知识和拔高知识,以满足不同层次学生的学习需求。
三、作业要求1. 学生需独立完成作业,不得抄袭他人答案或使用网络搜索答案。
2. 要求学生按照课本知识和课堂讲解的内容进行答题,注重理解题目中的关键词和隐含条件。
3. 对于需要画图的题目,要求使用数学工具准确绘制函数图像,并在图像上标明关键点。
4. 解题过程要清晰,步骤完整,结果准确。
对于解答题,需写出详细的解题思路和步骤。
5. 作业需按时提交,迟到或未交作业将按照班级规定处理。
四、作业评价1. 教师将根据学生的答题情况,对作业进行批改和评价。
2. 评价标准包括知识点的掌握程度、解题思路的正确性、计算过程的准确性以及答案的完整性等。
3. 对于优秀作业,将在班级内进行展示和表扬,激励学生积极学习。
4. 对于存在问题的作业,教师将给出详细的批改意见和指导建议,帮助学生改进学习方法。
五、作业反馈1. 教师将通过作业反馈,及时了解学生的学习情况,以便调整教学策略。
2. 针对学生在作业中出现的共性问题,将在课堂上进行讲解和指导。
3. 学生应根据教师的反馈意见,认真反思自己的学习过程,找出不足之处并加以改进。
2.6 一元一次不等式组 北师大版八年级下册数学作业(含答案)
6一元一次不等式组(打“√”或“×”)1.是一元一次不等式组. (×)2.在平面直角坐标系中,点A(2x-5,6-2x)在第四象限,则x的取值范围是<x<3. (×)3.不等式组的解集是x<-1. (×)4.已知不等式组则x可取的整数是0,1,2. (×)5.根据“x的2倍大于4,且x的三分之一与1的和不大于2”列出的不等式组是(×)·知识点1一元一次不等式组的概念1.下列不等式组是一元一次不等式组的是 (B)A. B.C. D.·知识点2一元一次不等式组的解集2.(2021·泉州丰泽区期末)下列不等式组中,无解的是(D)A. B. C. D.3.关于x的不等式组的解集是x<-3,则m的取值范围是m≥-3.·知识点3解一元一次不等式组4.(2021·厦门集美区模拟)不等式组的解集是(C)A.x>-1B.x>-C.x≥-D.-1<x≤-5.若不等式组无解,则a的取值范围是a≥2.·知识点4一元一次不等式组的特殊解6.若关于x的不等式组恰有3个整数解,则实数a的取值范围是(C)A.7<a<8B.7<a≤8C.7≤a<8D.7≤a≤87.不等式组的最大整数解是x=-4.·知识点5一元一次不等式组的实际应用8.(2021·福州马尾区期中)《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为6.1.(2021·湘潭中考)不等式组的解集在数轴上表示正确的是(D)2.(2021·南平延平区期末)已知且0<x-y<1,则k的取值范围为(B)A.<k<1B.0<k<C.0<k<1D.-1<k<-3.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[3.2]=3,[2]=2,[-2.3]=-3.如果[]=2,则x的取值范围是(D)A.5≤x≤7B.5<x≤7C.5<x<7D.5≤x<74.如图,是甲、乙、丙三人玩跷跷板的示意图(支点在板的中点处),则甲的体重m的取值范围是.(C)A.0<m<45B.45≤m<60C.45<m<60D.45<m≤605.(2021·三元区质检)先阅读理解下面的例题,再按要求完成后面的问题:例:解不等式(x-2)(x+1)>0.【解析】由有理数的乘法法则“两数相乘,同号得正,异号得负”得: ①,或②解不等式组①,得:x>2.解不等式组②,得:x<-1.所以(x-2)(x+1)>0的解集为x>2或x<-1.根据上述方法解析下列问题:(1)解一元二次不等式x2-4>0;(2)解不等式<0.【解析】见全解全析易错点1:依据不等式组的解集确定不等式组中参数的值时,忽略等号导致漏解1.(2021·菏泽中考)如果不等式组的解集为x>2,那么m 的取值范围是(A)A.m≤2B.m≥2C.m>2D.m<2易错点2:套用解方程组的方法直接把两个不等式相加或相减得出其解集造成错误2.解不等式组【解析】见全解全析6一元一次不等式组必备知识·基础练【易错诊断】1.×2.×3.×4.×5.×【对点达标】1.B A.是二元一次不等式组,故本选项不符合题意;B.是一元一次不等式组,故本选项符合题意;C.是一元二次不等式组,故本选项不符合题意;D.是二元一次不等式组,故本选项不符合题意.2.D A.的解集为x<-3,故本选项不合题意;B.的解集为-3<x<2,故本选项不合题意;C.的解集为x>2,故本选项不合题意;D.无解,故本选项符合题意.3.【解析】解不等式2x-1>3x+2,得:x<-3,∵关于x的不等式组的解集是x<-3,∴m≥-3.答案:m≥-34.C解不等式2x≥-1,得:x≥-,又x>-1,∴不等式组的解集为x≥-.5.【解析】解不等式x+2>2a,得:x>2a-2,∵不等式组无解,∴a≤2a-2,解得a≥2.答案:a≥26.C解不等式①,得x>4.5.解不等式②,得x≤a.所以不等式组的解集是4.5<x≤a,∵关于x的不等式组恰有3个整数解(整数解是5,6,7),∴7≤a<8.7.【解析】由①得:x<-3.由②得:x≤3.∴不等式组的解集为x<-3.则不等式组最大的整数解为x=-4.答案:x=-48.【解析】设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),依题意,得:∵a,b均为整数.∴4<b<7,∴b最大可以取6.答案:6关键能力·综合练1.D解不等式x+1≥2,得:x≥1.解不等式4x-8<0,得:x<2.则不等式组的解集为1≤x<2.将不等式组的解集表示在数轴上如下:2.B两个方程相减,得:x-y=1-2k,∵0<x-y<1,∴0<1-2k<1,解得0<k<.3.D∵[]=2,∴2≤<3,解得5≤x<7.4.C∵甲的体重>乙的体重,∴m>45,∵甲的体重<丙的体重,∴m<60.∴45<m<60.5.【解析】(1)(x+2)(x-2)>0,原不等式可转化为①,或②解不等式组①,x>2.解不等式组②,x<-2.即一元二次不等式x2-4>0的解集为x>2或x<-2;(2)原不等式可转化为①,或②解不等式组①,-<x<.解不等式组②无解.即分式不等式<0的解集为-<x<.【易错必究】1.A解不等式x+5<4x-1,得:x>2,∵不等式组的解集为x>2,∴m≤2.2.【解析】由①得:x≤3.由②得:x≥-1.即不等式组的解集为-1≤x≤3.。
北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习
第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.若关于x的一元一次不等式组122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.1a≥B.1a>C.1a≤-D.1a<-2.若关于x的不等式组()212xa x⎧->⎨-<⎩的解集为x>a,则a的取值范围是() A.a<2B.a≤2C.a>2D.a≥23.已知关于x 的不等式组255332xxxt x+⎧->-⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t的取值范围是()A.﹣6<t<112-B.1162t-≤<-C.1162t-<≤-D.1162t-≤<-4.把不等式组21123xx+>-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.若方程组3133x y kx y+=+⎧⎨+=⎩的解x,y满足01x y<+<,则k的取值范围是()A.10k-<<B.40k-<<C.08k<<D.4k>-6.如图所示为在数轴上表示的某不等式组的解集,则这个不等式组可能是()A.31215xx-≥⎧⎨->⎩B.31526xx->⎧⎨⎩C.35215xx+≥⎧⎨-<⎩D.322313x xxx<+⎧⎪+⎨--⎪⎩7.已知点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A.B .C.D.8.已知关于x的不等式组()()25513322xxxt x+⎧->⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t的取值范围是()A.1992t<<B.1992t≤<C.1992t<≤D.1992t≤≤9.关于x的不等式组12xx m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m的取值范围为()A.m>-3B.m<-2C.m-3≤<-2D.m-3<≤-2 10.不等式组111324(1)2()xxx x a-⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a的取值范围是()A.65a-≤<-B.65a-<≤-C.65a-<<-D.65a-≤≤-评卷人得分二、填空题11.不等式组273(1)2342363x xxx+>+⎧⎪+⎨-≤⎪⎩的非负整数解有_____个.12.运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x 后程序操作进行了两次停止,则x的取值范围是______.13.在平面直角坐标系中,已知点A(7-2m,5-m)在第二象限内,且m为整数,则点A的坐标为_________.14.不等式组2425x a x b +>⎧⎨-<⎩的解集是0<x <2,那么a+b 的值等于_____. 15.关于x 的不等式组,22213x b x b -≥⎧⎨-≤⎩无解,则常数b 的取值范围是__________ 16.关于x 的不等式组1234x m x +⎧⎨-≥-⎩有3个整数解,则m 的取值范围是_____. 17.同时满足332x x ->-和34x x +>的最大整数是_______. 18.若关于x 的不等式组1423x x x m+⎧-≥⎪⎨⎪>⎩的所有整数解的和是﹣9,则m 的取值范围是_____.19.已知x =3是方程2x a -—2=x—1的解,那么不等式(2—5a )x <13的解集是______.20.若数m 使关于x 的不等式组2122274x x x m -⎧≤-+⎪⎨⎪+>-⎩,有且仅有三个整数解,则m 的取值范围是______.评卷人得分 三、解答题 21.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.22.解下列不等式(组):(1)4123x x -<-(2)()543113125x x x x ⎧+<+⎪⎨--≥⎪⎩.23.涡阳苏果超市计划购进甲,乙两种商品共100件,这两种商品的进价、售价如表所示:进价(元/件)售价(元/件)甲种商品1015乙种商品2030设其中甲种商品购进x件,售完此两种商品总利润为y元.(1)写出y与x的函数关系式;(2)该商场计划最多投入1500元用于购进这两种商品共100 件,则至少要购进多少件甲种商品?若售完这些商品,商场可获得的最大利润是多少元?24.某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)25.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.(1)在方程320x -=①,210x +=①,()315x x -+=-①中,写出是不等式组25312x x x x -+>-⎧⎨->-+⎩的相伴方程的序号 . (2)写出不等式组213133x x x -<⎧⎨+>-+⎩的一个相伴方程,使得它的根是整数: . (3)若方程1, 2x x ==都是关于x 的不等式组22x x m x m <-⎧⎨-≤⎩的相伴方程,求m 的取值范围.26.阅读下面的材料,回答问题:如果(x-2)(6+2x)>0,求x 的取值范围. 解:根据题意,得20620x x ->⎧⎨+>⎩或20620x x -<⎧⎨+<⎩,分别解这两个不等式组,得第一个不等式组的解集为x >2,第二个不等式组的解集为x <-3.故当x >2或x <-3时,(x-2)(6+2x)>0.(1)由(x-2)(6+2x)>0,得出不等式组20620x x ->⎧⎨+>⎩或20620x x -<⎧⎨+<⎩,体现了_____思想; (2)试利用上述方法,求不等式(x-3)(1-x)<0的解集.27.某超市准备购进A、B两种品牌台灯,其中A每盏进价比B进价贵30元,A售价120元,B售价80元.已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A进行降价促销,A台灯每盏降价m(8<m<15)元,B不变,超市如何进货获利最大?参考答案:1.A【解析】【分析】先求出不等式组中的每个不等式的解集,然后根据不等式组无解即可得出答案.【详解】解:解不等式122x x ->-,得1x <,解不等式0x a ->,得x a >,①不等式组1220x x x a ->-⎧⎨->⎩无解, ①1a ≥.故选:A .【点睛】本题考查了一元一次不等式组的解法,属于常考题型,正确理解题意、熟练掌握解一元一次不等式组的方法是解题的关键.2.D【解析】【分析】先求出每一个不等式的解集,然后根据不等式组有解根据已知给的解集即可得出答案.【详解】 ()2120x a x ⎧->⎨-<⎩①②, 由①得2x >,由①得x a >,又不等式组的解集是x >a ,根据同大取大的求解集的原则,①2a >,当2a =时,也满足不等式的解集为2x >,①2a ≥,故选D.【点睛】本题考查了解一元一次不等式组,不等式组的解集,熟练掌握不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.3.C【解析】【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题.【详解】①2553x x +->-, ①20x <;①32x t x +->, ①32x t >-;①不等式组的解集是:2032t x <<-.①不等式组恰有5个整数解,①这5个整数解只能为 15,16,17,18,19,故有143215t ≤-<,求解得:1162t -<≤-. 故选:C .【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可.4.B【解析】【分析】分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则逐个判断即可.【详解】解:解不等式2x +1>-1,得:x >-1,解不等式x +2≤3,得:x ≤1,①不等式组的解集为:-1<x ≤1,故选:B .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【解析】【分析】理解清楚题意,运用二元一次方程组的知识,解出k 的取值范围.【详解】①0<x+y <1,观察方程组可知,上下两个方程相加可得:4x+4y=k+4,两边都除以4得,x+y=44k +, 所以44k +>0, 解得k >-4;44k +<1, 解得k <0.所以-4<k <0.故选B .【点睛】当给出两个未知数的和的取值范围时,应仔细观察找到题中所给式子与它们和的关系,进而求值.6.C【解析】【分析】数轴上表示的解集是2≤x <3,再根据不等式组的求法,先分别求出不等式组中每个不等式的解,即可得到不等式的解集,最后根据所求不等式组的解集是否与题干中的解集进行判断,即可得到答案.【详解】解:数轴上表示的解集是2≤x <3, A 、31215x x -≥⎧⎨->⎩①②,①解不等式①得:x≤2,解不等式①得:x>3,①不等式组无解,故本选项不符合题意;B、31526xx->⎧⎨⎩①②①解不等式①得:x>2,解不等式①得:x≤3,①不等式组的解集是2<x≤3,故本选项不符合题意;C、35 215 xx+≥⎧⎨-<⎩①②①解不等式①得:x≥2,解不等式①得:x<3,①不等式组的解集是2≤x<3,故本选项符合题意;D、322313x xxx<+⎧⎪⎨+--⎪⎩①②①解不等式①得:x<2,解不等式①得:x≥3,①不等式组无解,故本选项不符合题意;故选C.【点睛】本题考查数轴和求不等式组的解集,解题的关键是读懂数轴,掌握解不等式组的方法. 7.D【解析】【分析】直接利用关于x轴对称点的性质得出对应点坐标,进而利用第四象限内点的性质得出答案.【详解】解:①点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,①对称点坐标为:(1﹣2m,m﹣1),则1﹣2m>0,且m﹣1<0,解得:m<12,如图所示:.故选D .【点睛】本题考查了关于x 轴对称点的性质以及不等式的解法,正确得出m 的取值范围是解题的关键.8.C【解析】【分析】先求出不等式的解集,再根据x 有5个整数解确定含t 的式子的值的范围,特别要考虑清楚是否包含端点值,这点极易出错.再求出t 的范围即可.【详解】解:由(1)得x<-10,由(2)x>3-2t,,所以3-2t<x<-10, ①x 有5个整数解,即x=-11,-12,-13,-14,-15,①163215t -≤-<-①1992t <≤ 故答案为C .【点睛】本题考查根据含字母参数的不等式组的解集来求字母参数的取值范围,关键是通过解集确定含字母参数的式子的范围,特别要考虑清楚是否包含端点值,这点极易出错. 9.C【解析】【详解】分析:首先确定不等式组的解集,先利用含m 的式子表示,可表示出整数解,根据所有整数解的积为2就可以确定有哪些整数解,从而求出m 的范围.详解:原不等式组的解集为m <x ≤12-.整数解可能为-1,-2,-3…等又因为不等式组的所有整数解的积是2,而2=-1×(-2),由此可以得到-3≤m<-2.故选C.点睛:本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍.10.B【解析】【分析】解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.【详解】解:不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()(),由13x-﹣12x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()()有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.【点睛】本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.11.4【解析】【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【详解】解不等式2x+7>3(x+1),得:x<4,解不等式2342363xx+-≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为4.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.148 3x<≤【解析】【分析】根据运行程序,第一次运算结果小于等于18,第二次运算结果大于18列出不等式组,然后求解即可.【详解】解:由题意得:36183(36)618xx-≤⎧⎨-->⎩①②,解不等式①,得:8x≤,解不等式①,得:143 x>,则x得取值范围是:148 3x<≤;故答案为148 3x<≤.【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.13.(-1,1)【解析】【详解】根据平面直角坐标系的象限特点,第二象限的点的符号为(-,+),所以可得720 50mm-⎧⎨-⎩<>,解不等式可得72<m <5,由于m 为整数,所以m=4,代入可得7-2m=-1,5-m=1,即A 点的坐标为(-1,1).故答案为(-1,1).14.1【解析】【详解】试题分析:先分别用a 、b 表示出各不等式的解集,然后根据题中已知的解集,进行比对,从而得出两个方程,解答即可求出a 、b .24{25x a x b >①<②+-, ①由①得,x >4-2a ;由①得,x <5+2b , ①此不等式组的解集为:4-2a <x <5+2b , ①不等式组24{25x a x b +-><的解是0<x <2, ①4-2a=0,5+2b =2, 解得a=2,b=-1,①a+b=1考点:解一元一次不等式组.15.b >-3【解析】【分析】先求出不等式的解集,再根据不等式无解可得出b 的取值范围.【详解】22213x b x b -≥⎧⎨-≤⎩①② 解不等式①得:22≥+x b解不等式①得:312+≤b x所以不等式组的解集为31222++≤≤b b x ①此不等式无解,①31222++>b b 解得:3b >-故答案为:3b >-.【点睛】本题考查不等式组无解问题,关键是掌握不等式组解集的口诀:同大取大,同小取小,大小小大取中间,大大小小找不到(无解).16.01m ≤<【解析】【分析】解不等式组的两个不等式,根据其整数解的个数得m 的取值范围可得.【详解】解:解不等式x+1≥m ,得:x≥m ﹣1,解不等式2﹣3x≥﹣4,得:x≤2,①不等式组有3个整数解,①110m ≤﹣<﹣,即01m ≤<,故答案为0<m≤1.【点睛】本题是对不等式知识的考查,熟练掌握不等式知识是解决本题的关键.17.2【解析】【分析】根据题意列出不等式组,求出x 的取值范围,再找出符合条件的x 的整数值即可.【详解】根据题意得33234x x x x -⎧>-⎪⎨⎪+>⎩ 解得:-2<x<3.同时满足x 3x 32->-和3x 4x +>的最大整数是2, 故答案为2【点睛】本题考查的是求不等式组解集的方法,即同大取较大,同小去较小,大小小大中间找,大大小小解不了的原则.18.-5≤m <-4.【解析】【分析】先求出不等式的解集,根据已知不等式组的整数解得和为-9即可得出答案.【详解】解:1423x x x m +⎧-≥⎪⎨⎪>⎩①②解不等式①得:x≤-2,①m <x≤-2又①不等式组的所有整数解得和为-9,①-4+(-3)+(-2)=-9①-5≤m <-4;故答案为-5≤m <-4.【点睛】本题主要考查了解一元一次不等式组,是一道较为抽象的题,利用数轴就能直观的理解题意,列出关于m 的不等式组,临界数-5的取舍是易错的地方,要借助数轴做出正确的取舍.19.x <19 【解析】【详解】先根据x=3是方程2x a --2=x-1的解,代入可求出a=-5,再把a 的值代入所求不等式(2—5a )x <13,由不等式的基本性质求出x 的取值范围x <19. 故答案为x <19.20.114m -<≤-【解析】【分析】先解不等式组,求出解集,再根据“有且仅有三个整数解的条件”确定m 的范围.【详解】解:解不等式组2122274x x x m-⎧≤-+⎪⎨⎪+>-⎩ 得:437m x +-< 由有且仅有三个整数解即:3,2,1.则:4017m +-< 解得:114m -<≤-【点睛】本题考查了一元一次不等式组,利用不等式的解得出关于m 的不等式组是解题关键. 21.(1)每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个(2)3【解析】【分析】(1)根据“每辆大客车的乘客座位数-小客车乘客座位数=15;6辆大客车乘客+5辆小客车乘客=310”列出二元一次方程组解之即可.(2)根据题意,设租用a 辆小客车才能将所有参加活动的师生装载完成,利用“大客车乘客+小客车乘客≥310+20”解之即可.【详解】(1)设每辆小客车的乘客座位数是x 个,大客车的乘客座位数是y 个,根据题意,得1556310y x x y -=⎧⎨+=⎩解得2035x y =⎧⎨=⎩ 答:每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个.(2)设租用a 辆小客车才能将所有参加活动的师生装载完成,则20a+35(11-a)≥310+20,解得a≤323,符合条件的a 的最大整数为3.答:租用小客车数量的最大值为3.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解决本题的关键是找到题目中蕴含的数量关系.22.(1)x<-1;(2)x≤-3.【解析】【分析】(1)由移项,合并,系数化为1,即可得到答案;(2)先分别求出每个不等式的解集,然后取解集的公共部分,即可得到不等式组的解集.【详解】解:(1)4123x x -<-,①4231x x -<-+,①22x <-,①1x <-;(2)()543113125x x x x ⎧+<+⎪⎨--≥⎪⎩①②, 解不等式①,得:12x <-; 解不等式①,得:3x ≤-;①不等式组的解集为:3x ≤-.【点睛】 本题考查了解一元一次不等式组,解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤.23.(1)y=-5x+1000(0≤x≤100),(2)至少要购进50件甲种商品,商场可获得的最大利润是750元.【解析】【分析】(1)根据题意建立函数模型,利用利润=一件的利润×数量即可解题,(2)根据最多投入1500元建立不等式,再根据一次函数的性质求出最值即可.【详解】解:(1)①购进甲,乙两种商品共100件,设其中甲种商品购进x 件,①乙种商品购进(100-x )件,①y=(15-10)x+(30-20)(100-x)=-5x+1000(0≤x≤100),(2)由题意得,10x+20(100-x)≤1500,解得:x≥50,①至少要购进50件甲种商品,①y=-5x+1000,k=-5<0,①y 随着x 的减小而增大,①当x=50时,y 最大=750,①若售完这些商品,商场可获得的最大利润是750元.【点睛】本题考查了一次函数的实际应用,不等式的实际应用,函数的性质,中等难度,运用销售问题的等量关系求出一次函数的解析式是解题关键.24.(1)共有三种方案,分别为①A 型号16辆时, B 型号24辆;①A 型号17辆时,B 型号23辆;①A 型号18辆时,B 型号22辆;(2)当16x =时,272W =最大万元;(3)甲钢板4吨,乙钢板8吨;甲钢板10吨,乙钢板3吨两种生产方案.【解析】【分析】(1)设A 型号的轿车为x 辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;(2)根据“利润=售价-成本”列出一次函数的解析式,然后根据一次函数的性质解答即可; (3)根据(2)中方案求出利润,然后设生产甲钢板m 吨,乙钢板n 吨,列方程求解即可.【详解】(1)设生产A 型号x 辆,则B 型号(40-x )辆,得:1536≤34x +42(40-x )≤1552,解得1618x ≤≤,x 可以取值16,17,18,共有三种方案,分别为:A 型号16辆时,B 型号24辆,A 型号17辆时,B 型号23辆,A 型号18辆时,B 型号22辆.(2)设总利润W 万元,则W =()5840x x +-=3320x -+30k =-<∴w 随x 的增大而减小当16x =时,272W =最大万元;(3)272 2.5%=6.8⨯(万元),设生产甲钢板m 吨,乙钢板n 吨,①50006000 6.810000m n +=⨯,化简得:5668m n +=,①当m =4,n =8时,甲钢板4吨,乙钢板8吨;当m =10,n =3时,甲钢板10吨,乙钢板3吨.【点睛】本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.25.(1)①;(2)1x =;(3)01m ≤<.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为1的方程即可; (3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)由不等式组25312x x x x -+>-⎧⎨->-+⎩得,3 3.54x <<, 由320x -=,解得,x =23,故方程①320x -=不是不等式组的相伴方程, 由210x +=,解得,x =1-2,故方程①210x +=不是不等式组25312x x x x -+>-⎧⎨->-+⎩的相伴方程,由 ()315x x -+=-,解得 x =2,故方程①()315x x -+=- 是不等式25312x x x x -+>-⎧⎨->-+⎩的相伴方程,故答案为①;(2)由不等式组213133x x x -<⎧⎨+>-+⎩,解得,122x << ,则它的相伴方程的解是整数, 相伴方程x=1故答案为1x =;(3)解不等式组22x x m x m <-⎧⎨-≤⎩得2m x m <≤+ 方程12x x ==,都是不等式组的相伴方程 122m m ∴<<≤+01m ∴≤<【点睛】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.26.(1)转化;(2)x >3或x <1【解析】【分析】(1)将一个二次不等式转化为不等式组的形式,该过程体现了转化的数学思想; (2)根据两式相乘,同号得正,异号得负,则转化为30301010x x x x ->-<⎧⎧⎨⎨-<->⎩⎩或 ,再分别解两个不等式组即可.【详解】解:(1)转化;(2)由(x -3)(1-x )<0,可得3010x x -⎧⎨-⎩>,<或3010.x x -⎧⎨-⎩<,> 分别解这两个不等式组,得x >3或x <1.所以不等式(x -3)(1-x )<0的解集是x >3或x <1.【点睛】本题目是一道新型材料题目,考察学生的知识的迁移能力,根据两数相乘,同号得正,异号得负,将二次不等式转化为两个不等式组,解这两个不等式组,即可.27.(1)A 进价80元,B 进价50元;(2)16种;(3)当8<m<10时,A40盏,B60盏,利润最大;当m=10时,A 品牌灯数量在40至55间,利润均为3000;当8<m<10时,A55盏,B45盏,利润最大.【解析】【详解】试题分析:(1)根据:“1040元购进的A 品牌台灯的数量=650元购进的B 品牌台灯数量”相等关系,列方程求解可得;(2)根据:“3400≤A 、B 品牌台灯的总利润≤3550”不等关系,列不等式组,可知数量范围,确定方案数;(3)利用:总利润=A 品牌台灯利润+B 品牌台灯利润,列出函数关系式,结合函数增减性,分类讨论即可.试题解析:(1)设A 品牌台灯进价为x 元/盏,则B 品牌台灯进价为(x-30)元/盏,根据题意得104065030x x -=, 解得x=80,经检验x=80是原分式方程的解.则A 品牌台灯进价为80元/盏,B 品牌台灯进价为x-30=80-30=50(元/盏),答:A 、B 两种品牌台灯的进价分别是80元/盏,50元/盏.(2)设超市购进A 品牌台灯a 盏,则购进B 品牌台灯有(100-a )盏,根据题意,有 ()()()()()()12080805010034001208080501003550a a a a ⎧-+--≥⎪⎨-+--≤⎪⎩解得,40≤a≤55.①a 为整数,①该超市有16种进货方案.(3)令超市销售台灯所获总利润记作w ,根据题意,有w=(120-m-80)a+(80-50)(100-a )=(10-m)a+3000①8‹m‹15①①当8<m<10时,即10-m<0,w随a的增大而减小,故当a=40时,所获总利润w最大,即A品牌台灯40盏、B品牌台灯60盏;①当m=10时,w=3000;故当A品牌台灯数量在40至55间,利润均为3000;①当10<m<15时,即10-m>0,w随a的增大而增大,故当a=55时,所获总利润w最大,即A品牌台灯55盏、B品牌台灯45盏.。
2020-2021学年北师大版八年级下册 第2章《一元一次不等式与不等式组》实际应用常考题专练(二)
八年级下册第2章《一元一次不等式与不等式组》实际应用常考题专练(二)1.今年中考期间,我县部分乡镇学校的九年级考生选择在一中、二中的学生宿舍住宿,某学校将若干间宿舍分配给该校九年级一班的女生住宿,已知该班女生少于25人,若每个房间住4人,则剩下3人没处住;若每个房间住6人,则空一间房,并且还有一间房有人住但住不满.问分配给该校九年级一班女生多少间宿舍,该班有多少名女生?2.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少人?3.某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B种产品需甲种原料4kg和乙种原料8kg.(1)设生产x件A种产品,写出x应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B 产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)4.阅读以下材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2,3}=;min{﹣1,2,3}=﹣1;min{﹣1,2,a}=解决下列问题:(1)min{,,}=若min{2,2x+2,4﹣2x}=2,则x的范围为;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么(填a,b,c的大小关系)”.证明你发现的结论;③运用②的结论,填空:若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,2x﹣y},则x+y=.5.某城市为开发旅游景点,需要对古运河重新设计,加以改造,现需要A、B两种花砖共50万块,全部由某砖瓦厂完成此项任务.该厂现有甲种原料180万千克,乙种原料145万千克,已知生产1万块A砖,用甲种原料4.5万千克,乙种原料1.5万千克,造价1.2万元;生产1万块B砖,用甲种原料2万千克,乙种原料5万千克,造价1.8万元.(1)利用现有原料,该厂能否按要求完成任务?若能,按A、B两种花砖的生产块数,有哪几种生产方案?请你设计出来(以万块为单位且取整数);(2)试分析你设计的哪种生产方案总造价最低,最低造价是多少?6.每年3月12日是植树节,某学校植树小组若干人植树,植树若干棵.若每人植4棵,则余20棵没人植,若每人植8棵,则有一人比其他人植的少(但有树植),问这个植树小组有多少人?共有多少棵树?7.某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A,B两种园艺造型共50个,摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明哪种方案成本最低,最低成本是多少元?8.为举办蔬菜博览会,某地有关部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉情况如下表所示:造型甲乙A90盆30盆B40盆100盆结合上述信息,解答下列问题(1)设需要搭配x个A种造型,则需要搭配个B种造型;(2)符合题意的搭配方案有哪几种?(3)若搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1200元,试说明选用(1)中哪种方案成本最低?9.某单位谋划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠.该单位选择哪一家旅行社支付的费用较少?10.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨,水果169吨全部运到灾区已知一辆甲种货车同时可装蔬菜18吨,水果10吨:一辆乙种货车同时可装蔬菜16吨,水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1600元,乙种货车每辆需付燃油费1200元,应选(1)种的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?11.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.12.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨,水果169吨全部运到灾区.已知一辆甲种货车同时可装蔬菜18吨,水果10吨;一辆乙种货车同时可装蔬菜16吨,水果11吨.(1)若将这批货物一次性运到灾区,请写出具体的租车方案?(2)若甲种货车每辆需付燃油费1400元,乙种货车每辆需付燃油费1000元,则应选(1)种的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?13.列不等式(组)解应用题:一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运动,已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.14.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具5套B玩具6套,则需950元,A类玩具3套B玩具2套,则需450元(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店购进B类玩具比A类玩具的2倍多4套,且B类玩具最多可购进40套,若玩具店将销售1套A类玩具获利30元,销售1套B类玩具获利20元,且全部售出后所获得利润不少于1200元,问有几种进货方案?如何进货?15.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?参考答案1.解:设分配给该校九年级一班女生x间宿舍,则该班有(4x+3)名女生,根据题意得:,解得:<x<,∵x为正整数,∴x=5,4x+3=23.答:分配给该校九年级一班女生5间宿舍,该班有23名女生.2.解:设有x个学生,那么共有(3x+8)本书,则:,解得5<x≤6.5,所以x=6,共有6×3+8=26本.答:有26本书,6个学生.3.解:(1)由题意.(2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A产品318件,B产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.4.解:(1)min{,,}=;由min{2,2x+2,4﹣2x}=2,得,即0≤x≤1.(2)①∵M{2,x+1,2x}=min{2,x+1,2x},∴,即,∴x=1②证明:由M{a,b,c}=min{a,b,c},可令,即b+c=2a⑤;又∵,解之得:a+c≤2b⑥,a+b≤2c⑦;由⑤⑥可得c≤b;由⑤⑦可得b≤c;∴b=c;将b=c代入⑤得c=a;∴a=b=c.③据②可得,解之得y=﹣1,x=﹣3,∴x+y=﹣4.5.解:(1)设生产A种花砖数x万块,则生产B种花砖数50﹣x万块,由题意:,解得:30≤x≤32.∵x为正整数∴x可取30,31,32.∴该厂能按要求完成任务,有三种生产方案:甲:生产A种花砖30万块,则生产B种花砖20万块;乙:生产A种花砖31万块,则生产B种花砖19万块;丙:生产A种花砖32万块,则生产B种花砖18万块;(2)方法一:甲种方案总造价:1.2×30+1.8×20=72,同理,生产乙种方案总造价为71.4万元,生产丙种方案总造价70.8万元,故第三种方案总造价最低为70.8万元.方法二:由于生产1万块A砖的造价较B砖的低,故在生产总量一定的情况下,生产A 砖的数量越多总造价越低,故丙方案总造价最低为1.2×32+1.8×18=70.8万元.答:丙方案总造价最低为70.8万元.6.解:设个植树小组有x人去植树,共有y棵树.由“每人植4棵,则余20棵没人植”和“若每人植8棵,则有一人比其他人植的少(但有树植)”得:,将y=4x+20代入第二个式子得:0<4x+20﹣8(x﹣1)<8,5<x<7.答这个植树小组有6人去植树,共有4×6+20=44棵树.7.解:(1)设搭配A种造型x个,则B种造型为(50﹣x)个,依题意得,解这个不等式组得:31≤x≤33,∵x是整数,∴x可取31,32,33,∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.(2)设总成本为W元,则W=200x+360x(50﹣x)=﹣160x+18000,∵k=﹣160<0,∴W随x的增大而减小,则当x=33时,总成本W取得最小值,最小值为12720元.8.解:(1)设需要搭配x个A种造型,则需要搭配(50﹣x)个B种造型;故答案为:(50﹣x);(2)依题意有,解得30≤x≤32,所以x=30或31或32.第一方案:A种造型32个,B种造型18个;第二种方案:A种造型31个,B种造型19个;第三种方案:A种造型30个,B种造型20个.(3)总成本为:1000x+1200(50﹣x)=60000﹣200x,显然当x取最大值32时成本最低,为60000﹣200×32=53600.答:第一种方案成本最低,最低成本是53600.9.解:设甲旅行社有x人更优惠,0.75x<(x﹣1)•0.8,x>16.当人数超过16人小于等于25人时,甲优惠,等于16人花钱一样多,小于16人大于等于10人时,乙优惠.10.解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,由①得x≥5,由②得x≤7,∴5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)方法一:由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y元,由题意得y=1600x+1200(16﹣x),=400x+19200,∵400>0,∴y随x值增大而增大,当x=5时,y有最小值,∴y=400×5+19200=21200元;最小方法二:当x=5时,16﹣5=11辆,5×1600+11×1200=21200元;当x=6时,16﹣6=10辆,6×1600+10×1200=21600元;当x=7时,16﹣7=9辆,7×1600+9×1200=22000元.答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是21200元.11.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m当m=80时,w始终等于8000,取值与a无关.12.解:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,由①得x≥5,由②得x≤7,∴5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)由(1)知,租用甲种货车x辆,租用乙种货车为(16﹣x)辆,设两种货车燃油总费用为y元,由题意得y=1400x+1000(16﹣x),=400x+16000,∵400>0,∴y随x值增大而增大,当x=5时,y有最小值,=400×5+16000=18000元.∴y最小13.解:设租用甲型汽车x辆,则租用乙型汽车(6﹣x)辆,依题意得:,解得2≤x≤4,∵x的值是整数∴x的值是2,3,4.∴该公司有三种租车方案:①租用甲型汽车2辆,租用乙型汽车4辆,费用为5000元;②租用甲型汽车3辆,租用乙型汽车3辆,费用为4950元;③租用甲型汽车4辆,租用乙型汽车2辆,费用为4900元.∴最低的租车费用为4900元.14.解:(1)设A种玩具每套进价为x元,B种玩具每套进价为y元,根据题意得:,解得:.答:A种玩具每套进价为100元,B种玩具每套进价为75元.(2)设购进A种玩具m套,则购进B种玩具(2m+4)套,根据题意得:,解得:16≤m≤18,∴共有3种进货方案:①购进A种玩具16套,购进B种玩具36套;②购进A种玩具17套,购进B种玩具38套;③购进A种玩具18套,购进B种玩具40套.15.解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥130,解得a≤3∴2≤a≤3.∵a是正整数,∴a=2或a=3.共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车;。
北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)
第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a <b ,c <0,那么下列不等式成立的是( )A .a +c <bB .a ﹣c >b ﹣cC .ac +1<bc +1D .a (c ﹣2)<b (c ﹣2)2、不等式270x -<的最大整数解为( )A .2B .3C .4D .53、一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3-4、已知关于x 的不等式组3x x a≤⎧⎨>⎩有解,则a 的取值不可能是( ) A .0 B .1 C .2 D .35、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 26、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <27、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣48、如果a >b ,下列各式中正确的是( )A .﹣2021a >﹣2021bB .2021a <2021bC .a ﹣2021>b ﹣2021D .2021﹣a >2021﹣b9、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .2810、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +1 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任何一个以x 为未知数的一元一次不等式都可以变形为_____(a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.2、从2-,1-,0,13,1,2这六个数字中,随机抽取一个数记为a ,则使得关于x 的不等式组102321x a x ⎧->⎪⎨⎪-+≤⎩只有三个整数解的概率是 __. 3、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2ac _______2b c(3)c -a _______c -b(4)-a |c |_______-b |c |4、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为3:1:1第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨50%,洁柔超值装的价格是其促销价的53,而妮飘进口装的价格在其第一天的基础上增加了14,第二天洁柔体验装与妮飘进口装的销量之比为4:3,洁柔超值装的销量比第一天的销量减少了20%.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、若(m -2)23m x --2≥7是关于x 的一元一次不等式,求m 的值. 2、(1)解方程组:2523517x y x y +=⎧⎨-=⎩ (2)解不等式组()20 2131x x x +>⎧⎨+≥-⎩ 3、关于x 的方程6422x a x a +-=+的解大于1,求a 的取值范围.4、解不等式3x ﹣1≤x +3,并把解在数轴上表示出来.5、某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?-参考答案-一、单选题1、A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】x-<,解:270x<,277x<,2则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.3、D【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m=-3.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.4、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a 的取值范围,然后根据a 的取值范围解答即可.【详解】解:∵关于x 的不等式组3x x a ≤⎧⎨>⎩有解, ∴a <3,∴a 的取值可能是0、1或2,不可能是3.故选D .【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.5、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.6、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243n m -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.7、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.8、C【分析】根据不等式的性质即可求出答案.【详解】解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B、∵a>b,∴2021a>2021b,故B错误;C、∵a>b,∴a﹣2021>b﹣2021,故C正确;D、∵a>b,∴2021﹣a<2021﹣b,故D错误;故选:D.【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.9、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:32222210y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩①②,解不等式①得:2y>-,解不等式②得:y a≤∴不等式组的解集为:1yy a>-⎧⎨≤⎩,∵由不等式组至少有3个整数解,∴2a≥,即整数a=2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.二、填空题1、ax +b >0或ax +b <0 y =ax +b 自变量【分析】根据一次函数图象与一元一次不等式的关系解答.【详解】解:任何一个以x 为未知数的一元一次不等式都可以变形为ax +b >0或ax +b <0 (a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数y =ax +b 的值大于0或小于0时,求自变量的取值范围. 故答案为:ax +b >0或ax +b <0;y =ax +b ;自变量.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b (k ≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b (k ≠0)在x 轴上(或下)方部分所有的点的横坐标所构成的集合.2、13【分析】解关于x 的不等式组,由不等式组整数解的个数求出a 的范围,再从6个数中找到同时满足以上两个条件的情况,从而利用概率公式求解可得.【详解】解:解不等式组12321x ax⎧->⎪⎨⎪-+≤⎩,得:12a<x≤2,∵不等式组只有3个整数解,∴不等式组的整数解为2、1、0,则-1≤12a<0,即-2≤a<0∴在所列的六个数字中,同时满足以上两个条件的只有-2,-1,∴只有三个整数解的概率是21 = 63故答案为:13.【点睛】题主要考查的是解一元一次不等式组的解集和概率的知识,解题的关键是熟练掌握解一元一次不等式组的能力及概率公式的应用.3、>><<【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b>,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.4、14960【分析】设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,第二天,洁柔体验装的原价为: (150%)x +,销售量为1a 包,洁柔超值装的原价为: 53y ,销售量为1b 包,妮飘进口装的原价为: 1(1)4z +,销售量为 1c 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得()()175767x y c c +-=,进而可得 1755913x y c c +=⎧⎨-=⎩,x y 为整数,即可求得x y +,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 5135482828c <<,由 121753c c ,都是整数,则 5135482828c <<能被 3和5整除的数即能被15整除,即可求得c ,则这两天妮飘进口装的总销售额为11(1)4zc z c ++,即 ()()965x y c +-,代入数值求解即可. 【详解】解:设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,()44060::3:1:1z x y z a b c ⎧=+⎪<≤⎨⎪=⎩1015x y ∴<+≤,33a b c ==, 则35a b c c c c c ++=++=第二天,洁柔体验装的原价为:(150%)x +,销售量为1a 包,洁柔超值装的原价为:53y ,销售量为1b 包,妮飘进口装的原价为:1(1)4z +,销售量为1c 包, 11:=4:3a c ,即1143a c = ()1120%b b =-4=5b 4=5c 则11111144743535a b c c c c c c ++=++=+ 第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦()()3(344)75ax by cz c x y z c x y x y c x y ++=++=+++=+()111150%14x a z c ⎛⎫+++ ⎪⎝⎭ 1151.54()4xa x y c =+⨯+1111.555xa xc yc =++111345523x c xc yc =⨯++ 1175xc yc =+()175x y c =+∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦即1(75)(75)c x y c x y +-+767=即()()175767x y c c +-=7671359=⨯1755913x y c c +=⎧∴⎨-=⎩或 1751359x y c c +=⎧⎨-=⎩ 1015x y <+≤505575x y ∴<+≤7550x y ∴+>1755913x y c c +=⎧∴⎨-=⎩ 5975x y -∴=,x y 为整数,解得29x y =⎧⎨=⎩或 72x y =⎧⎨=⎩洁柔体验装的原价为:(150%)x + 1.5x =是整数,则7x ≠,洁柔超值装的原价为:53y 是整数则2y ≠ ∴ 29x y =⎧⎨=⎩4()44z x y ∴=+=第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,∴()()11196120a b c a b c ≤++-++≤113c c -=1c c ∴>()()111a b c a b c ++-++=117421753553c c c c c ⎛⎫-+=-⎪⎝⎭ ∴217633591(13)5315153c c c ⎛⎫--=-+ ⎪⎝⎭2891153c =+ 即289196120153c <+< 解得5135482828c <<121753c c ,都是整数,则5135482828c <<能被3和5整除的数即能被15整除 ∴45c =11(1)4zc z c ++=()()11554444zc zc x y c x y c +=+++ ()()145x y c c =++()()4513x y c c =++-⎡⎤⎣⎦()()965x y c =+-44=⨯()94565⨯-14960=故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键. 5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、m =-2【分析】由题意可知:m2-3=1,m-2≠0,即可解答.【详解】解∵不等式(m-2) 23mx- -2≥7是关于x的一元一次不等式,∴m2-3=1,m-2≠0,解得m=-2当m=-2时,不等式是关于x的一元一次不等式【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.2、(1)43xy=⎧⎨=⎩;(2)﹣2﹤x≤3.【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523 517x yx y+=⎧⎨-=⎩①②①+②×5得:27x=23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、a>0【分析】先解方程得出x=44a+,根据方程的解大于1得出关于a的不等式,解之即可.【详解】解:解不等式6x+a−4=2x+2a,得x=44a+,根据题意,得:44a+>1,解得a>0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、x≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.5、当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.【分析】设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,根据题意可得甲乙两种购买方式得函数解析式,分三种情况讨论:当12y y >时;当12y y =时;当12y y <时;分别进行计算得出自变量的取值范围即可得出在什么情况下选择哪种方案更优惠.【详解】解:设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,则根据题意可得:()()1600016000125%45001500y x x =+⨯⨯=+--(x 为正整数);()2·6000120%4800y x x =⨯=-(x 为正整数);当12y y >时,学校选择乙商场购买更优惠,即450015004800x x +>,解得5x <,即15x <<;当12y y =时,学校选择甲、乙两商场购买一样优惠,即450015004800x x +=,解得5x =;当12y y <时,学校选择甲商场购买更优惠,即450015004800x x +<,解得5x >.∴当购买数量少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买数量多于5台电脑时,学校选择甲商场购买更优惠.【点睛】题目主要考查一次函数应用中的方案选择,理解题意,列出相应函数解析式,求解不等式是解题关键.。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》复习题含答案解析 (1)
一、选择题(共10题)1. 若实数 a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是 ( )A . ac >bcB . a +b >c +bC . a +c >b +cD . ab >cb2. 关于 x 的不等式组 {x −3<6(x −2)−1,x −2a ≤0. 有三个整数解,则 a 的取值范围 ( )A . a >2B . 52≤a <3C . 2≤a <3D . 52<a ≤33. 在下列不等式2+x 3>2x−15的变形过程中,错误的步骤是 ( )① 去分母,得 5(2+x )>3(2x −1); ② 去括号,得 10+5x >6x −3; ③ 移项、合并同类项,得 −x >−13; ④ 系数化为 1,得 x >13. A . ① B . ② C . ③ D . ④4. 若关于 x 的不等式组 {x2+x+13>0,3x +5a +4>4(x +1)+3a恰有三个整数解,则 a 的取值范围是 ( ) A . 1≤a <32 B . 1<a ≤32 C . 1<a <32D . a ≤1 或 a >325. 若整数 a 既使关于 x 的分式方程x−1x−3−a−2x (3−x )=1 的解为非负数,又使不等式组 {x2+a+34>0,−3x +8>5x有解,且至多有 5 个整数解,则满足条件的 a 的和为 ( )A . −5B . −3C . 3D . 26. 若关于 x 的不等式组 {x+13<x2−1,x <4m,无解,则 m 的取值范围为 ( )A . m ≤2B . m <2C . m ≤2D . m >27. 四个小朋友玩跷跷板,他们的体重分别为 P ,Q ,R ,S ,如图所示,则他们的体重关系是 ( )A . P >R >S >QB . Q >S >P >RC . S >P >Q >RD . S >P >R >Q8. 把不等式组 {2−x ≤5,x+32<2的解集在数轴上表示出来,正确的是 ( )A .B .C .D .9. 若关于 x 的不等式组 {2−x2>2x−43,−3x >−2x −a的解集是 x <2,则 a 的取值范围是 ( )A . a ≥2B . a <−2C . a >2D . a ≤210. 若关于 x 的不等式组 {x −m <03−2x ≤1 所有整数解的和是 10,则 m 的取值范围是 ( )A . 4<m ≤5B . 4<m <5C . 4≤m <5D . 4≤m ≤5二、填空题(共7题)11. 不等式组 {12x +1>0,1−x >0 的解集为 .12. 若不等式组 {x −a >1,bx +3≥0 的解集是 −1<x ≤1,则 a = ,b = .13. 已知 {x +y +z =15,−3x −y +z =−25, x ,y ,z 为非负数,且 N =5x +4y +z ,则 N 的取值范围是 .14. 为了提高学校的就餐效率,巫溪中学实践小组对食堂就餐情况进行调研后发现:在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部的人数各是一个固定值,并且发现若开一个窗口,45 分钟可使等待的人都能买到午餐,若同时开 2 个窗口,则需 30 分钟.还发现,若能在 15 分钟内买到午餐,那么在单位时间内,去小卖部就餐的人就会减少 80%.在学校总人数一定且人人都要就餐的情况下,为方便学生就餐,总务处要求食堂在 10 分钟内卖完午餐,至少要同时开 个窗口.15. 如果关于 x 的不等式 3x −k +1≤0 有且只有 4 个正整数解,则 k 的取值范围是 .16. 不等式 x −3<0 的解集是 .17. 已知关于 x 的不等式组 {x −a ≥0,3−2x ≥−1 的整数解共有 5 个,则 a 的取值范围是 .三、解答题(共8题)18. 解不等式组 {2x +5≤−1, ⋯⋯①2x +1<3. ⋯⋯②请结合题意填空,完成本题的解答. (Ⅰ)解不等式 ①,得 ; (Ⅰ)解不等式 ②,得 ;(Ⅰ)把不等式 ① 和 ② 的解集在数轴上表示出来: (Ⅰ)原不等式组的解集为 .19. 解不等式组:{2x +3>x −2,6x −2(x −1)<6,3(2x +1)−5<2(x −3).20. 甲,乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案.在甲商场累计购物超过 100 元后,超出 100 元的部分按 90% 收费;在乙商场累计购物超过 50 元后,超出 50 元的部分按 95% 收费.设小红在同一商场累计购物 x 元,其中 x >100.(1) 根据题意,填写下表:(单位:元)累计购物金额130290⋯x在甲商场实际花费127⋯ 在乙商场实际花费126⋯(2) 当 x 取何值时,小红在甲,乙两商场的实际花费相同?(3) 当小红在同一商场累计购物超过 100 元时,在哪家商场的实际花费少?21. 快递公司准备购买机器人来代替人工分拣已知购买一台甲型机器人比购买一台乙型机器人多 2 万元;购买 2 台甲型机器人和 3 台乙型机器人共需 24 万元. (1) 求甲、乙两种型号的机器人每台的价格各是多少万元;(2) 已知甲型、乙型机器人每台每小时分拣快递分别是 1200 件、 1000 件,该公司计划最多用41 万元购买 8 台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?22. 馨浓商品批发商场共用 22000 元同时购进A ,B 两种型号背包各 400 个,购进A 型号背包 30个比购进B 型背包 15 个多用 300 元.(1) 求A ,B 两种型号背包的进货单价各为多少元?(2) 若商场把A ,B 两种型号背包均按每个 50 元定价进行零售,同时为扩大销售,拿出一部分背包按零售价的 7 折进行批发销售.商场在这批背包全部售完后,若总获利不低于 10500 元,则商场用于批发的背包数量最多为多少个?23. 已知抛物线 G:y =x 2−2tx +3 ( t 为常数)的顶点为 P .(1) 求点 P 的坐标;(用含 t 的式子表示)(2) 在同一平面直角坐标系中,存在函数图象 H ,点 A (m,n 1) 在图象 H 上,点 B (m,n 2) 在抛物线 G 上,对于任意的实数 m ,都有点 A ,B 关于点 (m,m ) 对称. ①当 t =1 时,求图象 H 对应函数的解析式;②当 1≤m ≤t +1 时,都有 n 1>n 2 成立,结合图象,求 t 的取值范围.24. 已知 ∣x −2∣+(3x +y +m )2=0,当 m 为何值时,y ≥0?25. 如图,数轴上两点 A ,B 对应的数分别是 −1,1,点 P 是线段 AB 上一动点,给出如下定义:如果在数轴上存在动点 Q ,满足 ∣PQ∣∣=2,那么我们把这样的点 Q 表示的数称为连动数,特别地,当点 Q 表示的数是整数时我们称为连动整数.(1) −3,0,2.5 是连动数的是 ;(2) 关于 x 的方程 2x −m =x +1 的解满足是连动数,求 m 的取值范围 ;(3) 当不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时,求 a 的取值范围.答案一、选择题(共10题) 1. 【答案】D【知识点】不等式的性质2. 【答案】D【解析】 {x −3<6(x −2)−1, ⋯⋯①x −2a ≤0. ⋯⋯②解不等式①得 x >2, 解不等式②得 x <2a , 因为不等式组有三个整数解, 所以整数解一定为 3,4,5, 所以 5<2a ≤6, 解得 52<a ≤3.【知识点】含参一元一次不等式组3. 【答案】D【知识点】常规一元一次不等式的解法4. 【答案】B【解析】解不等式 x2+x+13>0,得 x >−25,解不等式 3x +5a +4>4(x +1)+3a , 得 x <2a ,∵ 不等式组恰有三个整数解, ∴ 这三个整数解为 0,1,2, ∴2<2a ≤3, 解得 1<a ≤32.【知识点】含参一元一次不等式组5. 【答案】A【解析】不等式组整理得:{x >−a−32,x <1,由且至多有 5 个整数解,得到 −5≤−a−32<1,解得:−5<a≤7,即a=−3,−2,−1,0,1,2,3,4,5,6,7,分式方程去分母得:x(x−1)+(a−2)=x(x−3),解得:x=2−a2,由分式方程的解为非负数,得到a=−3,−2,−1,0,1之和为−5.【知识点】含参一元一次不等式组6. 【答案】A【解析】解不等式x+13<x2−1,得x>8,∵不等式组无解,∴4m≤8,解得m≤2.【知识点】含参一元一次不等式组7. 【答案】D【解析】由三个图分别可以得到{S>P,P>R,P+R>Q+S,而Q+S>Q+P,代入第三个式子得到P+R>Q+P,所以R>Q.所以他们的大小关系为S>P>R>Q.【知识点】不等式的性质8. 【答案】C【解析】{2−x≤5, ⋯⋯①x+32<2, ⋯⋯②解不等式①得:x≥−3,解不等式②得:x<1,故不等式组的解集为:−3≤x<1,在数轴上表示为:【知识点】常规一元一次不等式组的解法9. 【答案】A【知识点】含参一元一次不等式组10. 【答案】A【解析】解不等式 x −m <0 得:x <m , 解不等式 3−2x ≤1,得:x ≥1, 因为不等式组所有整数解的和为 10,所以不等式组的整数解有 1,2,3,4 这 4 个, 则 4<m ≤5.【知识点】含参一元一次不等式组二、填空题(共7题) 11. 【答案】 −2<x <1【知识点】常规一元一次不等式组的解法12. 【答案】 −2 ; −3【解析】 {x −a >1, ⋯⋯①bx +3≥0. ⋯⋯②∵ 解不等式①得:x >1+a , 解不等式②得:x ≤−3b,∴ 不等式组的解集为:1+a <x ≤−3b , ∵ 不等式组 {x −a >1,bx +3≥0 的解集是 −1<x ≤1,∴ 1+a =−1,−3b =1,解得:a =−2,b =−3,故答案为:−2,−3. 【知识点】含参一元一次不等式组13. 【答案】 55≤N ≤65【解析】 ∵{x +y +z =15,−3x −y +z =−25,∴ 解关于 y ,z 的方程可得:{y =20−2x,z =x −5,∵x ,y ,z 为非负数, ∴{y =20−2x ≥0,z =x −5≥0,x ≥0,解得 5≤x ≤10 ,∴N =5x +4y +z =5x +4(20−2x )+(x −5)=−2x +75, ∵−2<0,∴N 随 x 增大而减小,∴ 故当 x =5 时,N 有最大值 65; 当 x =10 时,N 有最小值 55, ∴55≤N ≤65.【知识点】常规一元一次不等式组的解法、三元一次方程(组)的解法14. 【答案】 9【解析】设每个窗口每分钟能卖 x 人的午餐,每分钟外出就餐有 y 人,学生总数为 z 人,并设同时开 n 个窗口,依题意有{45x =z −45y, ⋯⋯①2×30x =z −30y, ⋯⋯②10nx ≥z −10(1−80%)y. ⋯⋯③由①,②得y =x,z =90x.代入③得10nx ≥90x −2x.所以 n ≥8.8. 因此,至少要同时开 9 个窗口. 【知识点】一元一次不等式的应用15. 【答案】 13≤k <16【知识点】含参一元一次不等式16. 【答案】 x <3【知识点】常规一元一次不等式的解法、不等式的性质17. 【答案】 −3<a ≤−2【知识点】含参一元一次不等式组三、解答题(共8题)18. 【答案】 x ≤−3;x <1;略;x ≤−3【知识点】常规一元一次不等式组的解法19. 【答案】 −5<x <−1.【知识点】常规一元一次不等式组的解法20. 【答案】(1) 271;0.9x +10;278;0.95x +2.5(2) 根据题意,得0.9x +10=0.95x +2.5,解得x =150.∴ 当 x =150 时,小红在甲,乙两商场的实际花费相同.(3) 令0.9x +10<0.95x +0.25,解得x >150;∴ 当小红累计购物超过 150 元时,在甲商场实际花费少;当小红累计购物超过 100 元但不足 150 元时,在乙商场实际花费少. 【知识点】一元一次不等式组的应用、方案决策21. 【答案】(1) 设甲型机器人每台的价格是 x 万元,乙型机器人每台的价格是 y 万元.依题意,得:{x −y =2,2x +3y =24.解得:{x =6,y =4.答:甲型机器人每台的价格是 6 万元,乙型机器人每台的价格是 4 万元.(2) 设购买 m 台甲型机器人,则购买 (8−m ) 台乙型机器人. 依题意,得:6m +4(8−m )≤41.解得:m ≤412.∵m 为整数,∴m ≤4. ∵1200>1000,∴ 每小时的分拣量随购买甲型机器人增大而增大.∴ 当公司购买 4 台甲型机器人、 4 台乙型机器人时,每小时的分拣量最大.【知识点】二元一次方程组的应用、一元一次不等式的应用22. 【答案】(1) 设A 种型号背包进货价 x 元, 22000÷400=55(元),所以B 种背包的进货价为(55−x )元, 根据题意得:30x −15×(55−x )=300,解得x =25,55−25=30(元),答:A 种背包进货价 25 元,B种背包进货价 30 元.(2) 设商场用于批发的背包数量为 a 个.由题意得50×(800−a )+50×0.7a −22000≥10500,解得:a ≤500,答:商场用于批发的背包数量最多为 500 个.【知识点】一元一次不等式的应用、和差倍分23. 【答案】(1)y =x 2−2tx +3=x 2−2tx +t 2−t 2+3=(x −t )2−t 2+3.∴ 顶点 P 的坐标为 (t,−t 2+3).(2) ①当 t =1 时,得 G 的解析式为:y =x 2−2x +3, 点 B (m,n 2) 在 G 上, ∴n 2=m 2−2m +3,∵ 点 A (m,n 1) 与点 B 关于点 (m,m ) 对称,则点 A ,B 到点 (m,m ) 的距离相等,此三点横坐标相同,有 n 2−m =m −n 1. ∴(m 2−2m +3)−m =m −n 1, 整理,得 n 1=−m 2+4m −3,由于 m 为任意实数,令 m 为自变量 x ,n 1 为 y . 即可得 H 的解析式为:y =−x 2+4x −3;②关于抛物线 G 的性质: 点 B (m,n 2) 在 G 上, ∴n 2=m 2−2tm +3, 由 G:y =x 2−2tx +3,知抛物线 G 开口向上,对称轴为 x =t ,顶点 P (t,−t 2+3),且图象恒过点 (0,3) . ∴ 当 t ≤x ≤t +1 时,图象 G 的 y 随着 x 的增大而增大.当 x =t +1 时,y 取最大值 −t 2+4;当 x =t 时,y 取最小值 −t 2+3;最大值比最小值大 1 .关于图象 H 的性质:∵ 点 A (m,n 1) 与点 B 关于点 (m,m ) 对称, 有 n 2−m =m −n 1,(m 2−2tm +3)−m =m −n 1, 整理,得 n 1=−m 2+2tm +2m −3.∴ 图象 H 的解析式为:y H =−x 2+2tx +2x −3 . 配方,得 y H =−[x −(t +1)]2+(t 2+2t −2)∴ 图象 H 为一抛物线,开口向下,对称轴为 x =t +1,顶点 P (t +1,t 2+2t −2),且图象恒过点 (0,−3) .∴ 当 t ≤x ≤t +1 时,图象 H 的 y 随着 x 的增大而增大.当 x =t +1 时,y 取最大值 t 2+2t −2;当 x =t 时,y 取最小值 y =t 2+2t −3,即过 Q (t,t 2+2t −3);最大值比最小值大 1.情况 1:当 P ,Q 两点重合,即两个函数恰好都经过 (t,t ),(t +1,t +1) 时,把 (t,t ) 代入 y =x 2−2tx +3 得 t =t 2−2t ⋅t +3, 解得,t =−1+√132或 t =−1−√132.分别对应图 3,图 4 两种情形,由图可知,当 m =t ,或 m =t +1 时,A 与 B 重合,即有 n 1=n 2,不合题意,舍去; 情况 2:当点 P 在点 Q 下方,即 t >−1+√132时,大致图象如图 1,当 t <−1−√132时,大致图象如图 2,都有点 A 在点 B 的上方,即 n 1>n 2 成立,符合题意; 情况 3:当点 P 在点 Q 上方,即 −1−√132<t <−1+√132时,大致图象如图 5,图 6,当 t ≤m ≤t +1 时,存在 A 在 B 的下方,即存在 n 1<n 2,不符合题意,舍去; 综上所述,所求 t 的取值范围为:t >−1+√132或 t <−1−√132.【知识点】二次函数的顶点、二次函数的最值、二次函数与不等式、y=ax^2+bx+c 的图象24. 【答案】由非负数性质,得 {x −2=0,3x +y +m =0.11 ∴{x =2,y =−6−m.∵y ≥0,∴−6−m ≥0.∴m ≤−6.【知识点】常规一元一次不等式的解法25. 【答案】(1) −3,2.5(2) −4≤m ≤−2 或 0≤m ≤2(3) {x+12>−1, ⋯⋯①1+2(x −a )≤3, ⋯⋯② 由 ① 得,x >−3;由 ② 得,x ≤a +1,∵ 不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时, ∴ 四个连动整数解为 −2,−1,1,2, ∴2≤a +1<3,∴1≤a <2∴a 的取值范围是 1≤a <2.【解析】(2) 解关于 x 的方程 2x −m =x +1 得,x =m +1.∵ 关于 x 的方程 2x −m =x +1 的解满足是连动数,∴{−1−m −1≤2,1−m −1≥2或 {m +1−1≤2,m +1+1≥2, 解得 −4≤m ≤−2 或 0≤m ≤2.【知识点】常规一元一次不等式组的解法、含参一元一次方程的解法、数轴的概念、含参一元一次不等式组、不等式组的整数解。
压轴题:一元一次不等式及不等式组综合专练20题(解析版)八年级数学下学期期末精选题汇编(北师大版)
压轴题02:一元一次不等式及不等式组综合专练20题(解析版)一、单选题1.已知关于x 的不等式组100x x a ->⎧⎨-≤⎩,有以下说法: ①如果它的解集是1<x ≤4,那么a =4;①当a =1时,它无解;①如果它的整数解只有2,3,4,那么4≤a <5;①如果它有解,那么a ≥2.其中说法正确的个数为( )A .1个B .2个C .3个D .4个【答案】C【分析】分别求出每个不等式的解集,再根据各结论中a 的取值情况逐一判断即可.【详解】解:由x ﹣1>0得x >1,由x ﹣a ≤0得x ≤a ,①如果它的解集是1<x ≤4,那么a =4,此结论正确;①当a =1时,它无解,此结论正确;①如果它的整数解只有2,3,4,那么4≤a <5,此结论正确;①如果它有解,那么a >1,此结论错误;故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.正整数n 小于100,并且满足等式236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中[]x 表示不超过x 的最大整数,例如:[][]1.5122==,,则满足等式的正整数的个数为() A .2B .3C .12D .16【答案】D【分析】利用不等式[x ]≤x 即可求出满足条件的n 的值.【详解】 解:若2n ,3n ,6n 有一个不是整数, 则22n n ⎡⎤⎢⎥⎣⎦<或者33n n ⎡⎤⎢⎥⎣⎦<或者66n n ⎡⎤⎢⎥⎣⎦<, ∴][][236236n n n n n n n ⎡⎤++++=⎢⎥⎣⎦<, ∴2n ,3n ,6n 都是整数,即n 是2,3,6的公倍数,且n <100, ∴n 的值为6,12,18,24,......96,共有16个,故选:D .【点睛】本题主要考查不等式以及取整,关键是要正确理解取整的定义,以及[x ]≤x <[x ]+1式子的应用,这个式子在取整中经常用到.3.定义,图象与x 轴有两个交点的函数y =24()24()x x m x x m -+≥⎧⎨+<⎩叫做关于直线x =m 的对称函数,它与x 轴负半轴交点记为A ,与x 轴正半轴交点记为B 例如:如图:直线l :x =1,关于直线l 的对称函数y =24(1)24(1)x x x x -+≥⎧⎨+<⎩与该直线l 交于点C ,当直线y =x 与关于直线x =m 的对称函数有两个交点时,则m 的取值范围是( )A .0≤m ≤43B .-2<m ≤43C .-2<m ≤2D .-4<m <0【答案】B【分析】 根据定义x 轴上存在,A B 即可求得22m -<<,根据题意联立,24,y x y x =⎧⎨=+⎩,24,y x y x =⎧⎨=-+⎩即可求得m 的范围,结合定义所求范围即可求解 【详解】①一次函数图象与x 轴最多只有一个交点,且关于m 的对称函数()24,24()x x m y x x m ⎧-+≥=⎨+<⎩,与x 轴有两个交点, ①组成该对称函数的两个一次函数图象的部分图象都与x 轴有交点.①240x ±+=解得2x =或2-①22m -<<.①直线y =x 与关于直线x =m 的对称函数有两个交点,①直线y =x 分别与直线24()y x x m =-+≥和24()y x x m =+<各有一个交点.对于直线y =x 与直线24()y x x m =+<,联立可得,24,y x y x =⎧⎨=+⎩解得4,4x y =-⎧⎨=-⎩, ①直线y =x 与直线24()y x x m =+<必有一交点(4,4)--.对于直线y =x 与直线24()y x x m =-+≥,联立可得,24,y x y x =⎧⎨=-+⎩解得4,343x y ⎧=⎪⎪⎨⎪=⎪⎩, ①22m -<<, ①43x =必须在x m ≥的范围之内才能保证直线y =x 与直线24()y x x m =-+≥有交点. ①43m ≤. ①423m -<≤. ①m 的取值范围是423m -<≤. 故选B【点睛】本题考查了新定义,两直线交点问题,一次函数的性质,掌握一次函数的性质,数形结合是解题的关键.4.如图,长方形ABKL ,延CD 第一次翻折,第二次延ED 翻折,第三次延CD 翻折,这样继续下去,当第五次翻折时,点A 和点B 都落在①CDE =α内部(不包含边界),则α的取值值范围是( )A .3645α︒<≤B .3036α︒<≤C .3645α︒≤<D .3036α︒<<【答案】D【分析】 利用翻折前后角度总和不变,由折叠的性质列代数式求解即可;【详解】解:第一次翻折后2a +①BDE =180°,第二次翻折后3a +①BDC =180°,第三次翻折后4a +①BDE =180°,第四次翻折后5a +①BDC =180°,若能进行第五次翻折,则①BDC ≥0,即180°-5a ≥0,a ≤36°,若不能进行第六次翻折,则①BDC ≤a ,即180°-5a ≤a ,a ≥30°,当a =36°时,点B 落在CD 上,当a =30°时,点B 落在ED 上,①30°<a <36°,故选:D ;【点睛】本题考查了图形的规律,折叠的性质,一元一次不等式的应用;掌握折叠前后角度的变化规律是解题关键.5.关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩ 只有5个整数解,则a 的取值范围是( ) A .1162a -<<-B .1162a -≤<-C .1162a -<≤-D .1162a -≤≤- 【答案】C【分析】先解x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩,然后根据整数解的个数确定a 的不等式组,解出取值范围即可. 【详解】 解:不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩, 解得:2032x x a <⎧⎨>-⎩, 不等式组只有5个整数解,即解只能是15x =,16,17,18,19,a ∴的取值范围是:32143215a a -≥⎧⎨-<⎩, 解得:1162a -<≤-. 故选:C .【点睛】 本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解的个数确定关于a 的不等式组.6.若实数a 使得关于x 的不等式组52232x a x x x +≤-⎧⎪⎨--<⎪⎩有且只有2个整数解,且使得关于x 的一次函数()15y a x a =+-+不过第四象限,则符合条件的所有整数a 的和为( )A .7B .9C .12D .14【答案】C【分析】先解不等式组,根据不等式组的解只有2个整数解,列出关于a 的不等式,求出此时a 的取值范围;再根据一次函数的图像不过第四象限,列出关于a 的不等式组,再次求出a 的取值范围,两项综合求出a 最终的取值范围,则问题得解.【详解】 52232x a x x x +≤-⎧⎪⎨--<⎪⎩①② 解不等式①得:24a x +≥, 解不等式①得:4<x ,不等式有解,则解为:244a x +≤<, ①不等式组有两个整数解,则这两个整数解为3,2, ①2124a +≤<,解得26a ≤<; ①一次函数()15y a x a =+-+不过第四象限,①则有1050a a +⎧⎨-+≥⎩>,解得15a -≤<; 综上:25a ≤<①a 的整数值有:3,4,5,则其和为:3+4+5=12,故选:C .【点睛】本题考查了解不等式组和一次函数的图像的性质,根据不等式组只有两个整数解和函数不过第四象限等条件求出a 的取值范围是解答本题的关键.7.对于实数,a b ,定义符号{},min a b 其意义为:当a b ≥时,{},min a b b =;当a b <时,{},min a b a =.例如:21{},1min -=-,若关于x 的函数2{}1,3y min x x =--+,则该函数的最大值是( )A .1B .43C .53D .2【答案】C【分析】根据定义先列不等式:213x x --+和213x x --+,确定其{21y min x =-,3}x -+对应的函数,画图象可知其最大值.【详解】解:由题意得:213y x y x =-⎧⎨=-+⎩,解得:4353x y ⎧=⎪⎪⎨⎪=⎪⎩, 当213x x --+时,43x, ∴当43x 时,{21y min x =-,3}3x x -+=-+,由图象可知:此时该函数的最大值为53; 当213x x --+时,43x, ∴当43x 时,{21y min x =-,3}21x x -+=-, 由图象可知:此时该函数的最大值为53; 综上所述,{21y min x =-,3}x -+的最大值是当43x =所对应的y 的值, 如图所示,当43x =时,53y =,故选:C【点睛】本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.8.已知正整数a ,b ,c ,d 满足:a <b <c <d ,a +b +c +d =2022,22222022d c b a -+-=,则这样的4元数组(a ,b ,c ,d )共有( )A .251组B .252组C .502组D .504组【答案】D【分析】根据题意得出321a b c d +≤+≤+≤,继而得出()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=,再由已知条件构造()10102a c a a =+≥++,即可解答.【详解】因为a ,b ,c ,d 为正整数,且a b c d <<<,所以321a b c d +≤+≤+≤.所以()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=.因此1d c -=,1b a -=,即1d c =+,1b a =+.所以()()112022a b c d a a c c +++=+++++=,因此1010a c +=.又2a c +≤,所以()10102a c a a =+≥++,因此1504a ≤≤.所以符合条件的4元数组(),,,a b c d 为(),1,1010,1011a a a a +--,其中1504a ≤≤.所以符合条件的4元数组有504组.故选:D .【点睛】本题考查了整式的应用,解题的关键是根据题目已知等式构造不等式,属于竞赛题.二、填空题9.重庆云阳巴阳镇精准化发展枇杷产业切实带动低收入农户增收,成为一大“亮点”——“万亩枇杷,醉美巴阳”成为了重庆云阳的一大名片.今年5月又是一个丰收季,全镇枇杷种植面积达1万余亩,种植了“普通”、“白肉”、“大五星”三个品种的枇杷,其中6000亩用于村民集体采摘,其余部分用于游客自助采摘.这6000亩中种植“白肉”枇杷的面积是“普通”枇杷面积的2倍,“大五星”枇杷面积不超过“白肉”枇杷面积的1.2倍,种植“白肉”的面积不超过2300亩,现在正值采摘季节,若干村民进行采摘,每人每天可以采摘“普通”枇杷1.8亩,或“白肉”枇杷1.2亩,或“大五星”枇杷2亩,这6000亩枇杷预计20天采摘完,则需要村民_______人参与采摘.【答案】191人【分析】设“普通”枇杷面积x 亩,则“白肉”枇杷面积为2x 亩,“大五星”枇杷面积为()60003x -亩,有m 人采摘,采摘“普通”枇杷a 天, “白肉”枇杷为b 天,“大五星”枇杷为()20a b --天,先求解x 的范围,再用含m 的代数式表示x ,再解不等式组即可得到答案.【详解】解:设“普通”枇杷面积x 亩,则“白肉”枇杷面积为2x 亩,“大五星”枇杷面积为()60003x -亩,有m 人采摘,采摘“普通”枇杷a 天, “白肉”枇杷为b 天,“大五星”枇杷为()20a b --天,根据题意得:600032 1.222300x x x -≤⨯⎧⎨≤⎩ 解得:100001150,9x ≤≤同时可得:()1.81.2222060003am x bm xm a b x ⎧=⎪=⎨⎪--=-⎩55,,93am x bm x ∴== 101040224060003,93m ma mb m x x x ∴--=--=- 整理得:36054000,13m x -=∴ 10000360540001150,913m -≤≤ 1300003605400014950,9m ∴≤-≤ 616000360689509m ∴≤≤, 1019190191,8136m ∴≤≤ m 为正整数,∴ 191.m =故答案为:191.【点睛】本题考查不等式组的实际应用,解题的关键是仔细阅读找出题中的等量关系与不等关系列方程与不等式组.10.某商家需要更换店面的瓷砖,商家打算用1500元购买彩色和单色两种地砖进行搭配,并且把1500元全部花完.已知每块彩色地砖25元,每块单色地砖15元,根据需要,购买的单色地砖数要超过彩色地砖数的2倍,并且单色地砖数要少于彩色地砖数的3倍,那么符合要求的一种购买方案是________.【答案】购买24块彩色地砖,60块单色地砖 或 购买27块彩色地砖,55块单色地砖【分析】设购买x 块彩色地砖,购买单色地砖y 块,进而由题意得到2x <y <3x ,再根据总费用为1500元,且x 、y 均为正整数,将y 用x 的代数式表示,然后解一元一次不等式组即可求解.【详解】解:设购买x 块彩色地砖,购买单色地砖y 块,则2x <y <3x ,25x +15y =1500, ①1500255100(1)153x y x , 又已知有:23xy x ,①510033510023x x x x ⎧-<⎪⎪⎨⎪->⎪⎩,解得3003001411x , 又x 为正整数,且30021.414,30027.311,①x =22,23,24,25,26,27;由(1)式中,x y ,均为正整数,①x 必须是3的倍数,①24x =或27x =,当24x =时,单色砖的块数为15002425=6015; 当27x =时,单色砖的块数为15002725=5515; 故符合要求的购买方案为:购买24块彩色地砖,60块单色地砖 或 购买27块彩色地砖,55块单色地砖.【点睛】本题考查了一元一次不等式的实际应用,本题的关键点是将单色砖的块数用彩色砖的块数的代数式表示,进而解不等式组,注意实际问题考虑解为正整数的情况.11.春暖花开,又到了踏青赏花的好季节,某植物园决定在今年4月份购进一批花苗:绣球花苗、蔷薇花苗、铁线莲花苗和月季花苗.已知每株绣球花苗的价格是每株蔷薇花苗价格的12,每株月季花苗的价格是每株铁线莲花苗价格的3倍.另外,购进的绣球花苗数量是铁线莲花苗数量的2倍,蔷薇花苗的数量是月季花苗数量的3倍,且铁线莲花苗和蔷薇花苗的总数量不超过600株.已知一株绣球花苗和一株铁线莲花苗的价格之和为30元,最后,购进绣球花苗和蔷薇花苗的总费用比铁线莲花苗和月季花苗的总费用多14400元,则今年4月用于购进铁线莲花苗和月季花苗的总费用的最大值为______元.【答案】7200.【分析】根据题意可设蔷薇花苗价格为x 元,每株铁线莲花苗价格为y 元,则绣球花苗价格为12x 元,月季花苗为3y 元,根据已知关系列出不等关系3600a b +,表示购进铁线莲花苗和月季花苗的总费用,利用不等关系求解.【详解】解:设每株蔷薇花苗价格为x 元,每株铁线莲花苗价格为y 元,则绣球花苗价格为12x 元,月季花苗为3y 元,由题意得,1302x y +=①,设购进铁线莲花苗数量为a ,月季花苗数量为b ,则绣球花苗为2a ,蔷薇花苗为3b , 由题意可知,3600a b +,1231440032x a x b a y b y ⨯+⨯-=⋅+⨯, 整理得(3)()14400a b x y +-=,3600a b +, 24x y ∴-①,由①得602x y =-代入①得,60224y y --,解得12y ,用于购进铁线莲花苗和月季花苗的总费用为,3(3)ay by a b y +=+,3600a b +,12y ,∴用于购进铁线莲花苗和月季花苗的总费用的最大值为600127200⨯=(元),故答案为:7200. 【点睛】本题以购买的最大费用为背景考查了一元一次不等式的应用,关键根据数量关系表示未知量,然后根据不等关系求解.12.小李和小张大学毕业后准备合伙开一家工作室创业.他们在某写字楼租了一间空高为3米的房间作办公地点(如图),准备装修后开始办公.小李和小张分别提出两套装修方案(如表格).其中,每平方米木地板的装修费用与每平方米木质吊顶的装修费用之和等于每平方米复合材料墙面的装修费用;每平方米地砖的装修费用与每平方米乳胶漆的装修费用之和等于每平方米木质墙面的装修费用,以上各项装修单价均为整数.每平方米木地板、木质墙面、木质吊顶的装修费用之和不少于600元;每平方米复合材料墙面比木质墙面的装修费用多,且差价不大于90元,不少于80元.经测算,小李方案的总装修费用比小张方案的总装修费用多1260元.若x ,y 均为整数,且满足y<x<2y ,则小张的方案装修总费用最少为________元.【答案】234041401260y y +- 【分析】设每平方米木地板a 元,木制吊顶b 元,地砖m 元,乳胶漆n 元,则复合材料墙面()a b +元,木质墙面m n 元,根据题意列出不等式组,得到340345a b m n +≥⎧⎨+≥⎩,根据“小李方案的总装修费用比小张方案的总装修费用多1260元”列式即可求解. 【详解】解:设每平方米木地板a 元,木制吊顶b 元,地砖m 元,乳胶漆n 元, 则复合材料墙面()a b +元,木质墙面m n 元,根据题意可得6008090a b m n a b m n +++≥⎧⎨≤+--≤⎩,解得340345a b m n +≥⎧⎨+≥⎩,小李的总花费()()()()()2336xya xyb m n y x xy a b m n x y ++++=++++, 小张的总花费()()()()()2336xym xyn a b y x xy m n a b x y ++++=++++, ①()()()()()()661260xy a b m n x y xy m n a b x y ++++-+-++=, ①2y x y <<,①()()()61260xy a b m n x y ++++-()23406345126034041401260y y y y y y ≥⋅⨯+⨯+-=+-, 故答案为:234041401260y y +-. 【点睛】本题考查不等式组的实际应用,根据题意列出不等式是解题的关键.13.如图,设BAC θ∠=(090θ︒<<︒).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.从点1A开始,用等长的小棒依次向右摆放,其中12A A为第一根小棒,且11223341AA A A A A A A====⋅⋅⋅=,若只能摆放4根小棒,则θ的范围为________.【答案】18°≤θ<22.5°.【分析】根据等边对等角可得①BAC=①AA2A1,①A2A1A3=①A2A3A1,①A3A2A4=①A3A4A2,再根据三角形的一个外角等于与它不相邻的两个内角的和可得θ1=2θ,θ2=3θ,θ3=4θ,求出第三根小木棒构成的三角形,然后根据三角形的内角和定理和外角性质列出不等式组求解即可.【详解】解:如图,①小木棒长度都相等,①①BAC=①AA2A1,①A2A1A3=①A2A3A1,①A3A2A4=①A3A4A2,由三角形外角性质得,θ1=2θ,θ2=3θ,θ3=4θ;①只能摆放4根小木棒,①490 590θθ︒︒⎧<⎨≥⎩,解得18°≤θ<22.5°.故答案为:18°≤θ<22.5°.【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,也考查了一元一次不等式组的应用,列出不等式组是解题的关键.14.若不等式231x x x a-+++-≥对一切数x都成立,则a的取值范围是________.【答案】5a ≤ 【分析】要使不等式231x x x a -+++-≥对一切数x 都成立,则a 需小于等于231x x x -+++-的最小值,再分3x <-、31x -≤<、12x ≤<和2x ≥四种情况,分别化简绝对值求出最小值即可得.【详解】要使不等式231x x x a -+++-≥对一切数x 都成立,则a 需小于等于231x x x -+++-的最小值, 由题意,分以下四种情况: (1)当3x <-时,2312313x x x x x x x -+++-=---+-=-,此时39x ->; (2)当31x -≤<时,2312316x x x x x x x -+++-=-+++-=-,此时569x <-≤; (3)当12x ≤<时,2312314x x x x x x x -+++-=-+++-=+,此时546x ≤+<; (4)当2x ≥时,2312313x x x x x x x -+++-=-+++-=,此时36x ≥;综上,231x x x -+++-的最小值为5, 则5a ≤, 故答案为:5a ≤. 【点睛】本题考查了化简绝对值、一元一次不等式组等知识点,将问题转化为求231x x x -+++-的最小值是解题关键.15.已知非负实数x y 、、z 满足123234x y z ---==,记23M x y z =++.则M 的最大值减去最小值的差为________. 【答案】283. 【分析】 设123234x y z k ---===,将x y 、、z 用k 表示出来,由x y 、、z 均为非负实数得关于k 的不等式组,求出k 取值范围,再将23M x y z =++转化为k 的代数式,由k 的范围即可确定M 的最大值和最小值,从而即可求差. 【详解】 设123234x y z k ---===, ①21x k =+,23y k =-,43z k =+, ①0x ≥,0y ≥,0z ≥,①210230430k k k +≥⎧⎪-≥⎨⎪+≥⎩, 解不等式组得1223k -≤≤,①23M x y z =++,①()()()21238142343M k k k k =+++=+-+, ①58108143k ≤+≤,即58103M ≤≤, M 的最大值为583,最小值为10, M 的最大值减去最小值的差58281033=-=, 故答案为:283. 【点睛】本题主要考查了不等式的性质的应用,解题关键是设比例式值为k ,通过已知确定k 的取值范围. 三、解答题16.商店销售10台A 型和20台B 型电脑的利润为40000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元. ①求y 关于x 的函数关系式:①该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调()0100m m <<元,且限定商店最多购进A 型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【答案】(1)A 100元,B 150元;(2)①5015000y x =-+;①A 34台,B 66台;(3)当050m <<时,A 34台B 66台;当50m =时,A 34~70内均可;当50100m <<时,A 70台B 30台 【分析】(1)设每台A 型加湿器和B 型加湿器的销售利润分别为a 元,b 元,然后根据题意列出二元一次方程组解答即可;(2)①据题意得即可确定y 关于x 的函数关系式,利用A 型利润与B 型利润即可求出总利润y 与x 的关系,并确定x 的范围即可;①根据一次函数的增减性,解答即可;(3)根据题意列出函数数关系式,分以下三种情况①0<m<50,①m=50,① 50 <m < 100时,m-50 >0结合函数的性质,进行求解即可. 【详解】(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元,根据题意得:1020400020103500a b a b +=⎧⎨+=⎩ 解得=100150a b ⎧⎨=⎩ 答:每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元;(2)①设购进A 型电脑x 台,每台A 型电脑的销售利润为100元,A 型电脑销售利润为100x 元, 每台B 型电脑的销售利润为150元,B 型电脑销售利润为()150100x -元()100150100y x x =+-,即这100台电脑的销售总利润为:5015000y x =-+;1002x x -≤,解得1333x ≥.且x 为正整数,150********y x x ⎛⎫=-+≥ ⎪⎝⎭,其中x 为正整数,①5015000y x =-+中,k=500-<,y ∴随x 的增大而减小.x 为正整数,1333x ≥ ①当34x =时,y 取得最大值,此时10066x -=.答:商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大; (3)根据题意得()()100150100y m x x =++-,即()5015000y m x =-+,其中133703x ≤≤,且x 为正整数.①当050m <<时,k=500m -<,y ∴随x 的增大而减小,①当34x =时,y 取得最大值,即商店购进34台A 型电脑和66台B 型电脑才能获得最大利润; ①当50m =时,k=500m -=,15000y ∴=,即商店购进A 型电脑数量满足133703x ≤≤的整数时,均获得最大利润;①当50 <m < 100时,k=500m ->,y ∴随x 的增大而增大.①当70x =时,y 取得最大值.即商店购进70台A 型电脑和30台B 型电脑才能获得最大利润. 【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,掌握一次函数的增减性是解答本题的关键.17.某市A ,B 两个蔬菜基地得知黄岗C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点,从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨. (1)请填写下表,用含x 的代数式填空,结果要化简:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元()0m >,其余线路的运费不变,试讨论总运费最小的调动方案.【答案】(1)()240x -,()40x -,()300x -;(2)29200w x =+;A →C :200吨,A →D : 0吨,B →C :40吨,B →D :260吨;(3)2m =时,在40240x ≤≤的前提下调运方案的总费用不变;215m <<时,240x =总费用最小,其调运方案为:A →C :0吨,A →D : 200吨,B →C :240吨,B →D :60吨; 【分析】(1)根据题意,从A 处调运到C 处的数量为(240-x )t ;从A 处调往D 处的数量为[200-(240-x )]t ;则从B 调运到D 处的数量为(300-x )t ;(2)根据调运总费用等于四种调运单价乘以对应的吨数的积的和,易得w 与x 的函数关系,根据调运的数量非负即可不等式组,求得x 的范围,从而可求得总费用的最小的调运方案;(3)由题意可得w 与x 的关系式,根据x 的取值范围不同而有不同的解,分情况讨论:当0<m <2时;当m =2时;当2<m <15时,根据一次函数的性质即可解决. 【详解】 (1)填表如下:故答案为:()240x -,()40x -,()300x -;(2)w 与x 之间的函数关系为:()()()202402540151830029200w x x x x x =-+-++-=+ 由题意得:240040003000x x x x -≥⎧⎪-≥⎪⎨≥⎪⎪-≥⎩ ①40240x ≤≤①在29200w x =+中,20> ①w 随x 的增大而增大 ①当40x =时,总运费最小此时调运方案为:(3)由题意得()()()()2024025401518300w x x m x x =-+-+-+- 即()29200w m x =-+,其中40240x ≤≤ ①02m <<,(2)中调运方案总费用最小;2m =时,在40240x ≤≤的前提下调运方案的总费用不变;215m <<时,240x =总费用最小,其调运方案如下:【点睛】本题是一次函数在实际问题中的应用,具有较强的综合性与较大的难度.它考查了一次函数的性质,求一次函数的解析式,解一元一次方程组等知识,用到分类讨论思想.18.如图,在长方形ABCD 中,AB =4,AD =2.P 是BC 的中点,点Q 从点A 出发,以每秒1个单位长度的速度沿A →D →C →B →A 的方向终点A 运动,设点Q 运动的时间为x 秒. (1)点Q 在运动的路线上和点C 之间的距离为1时,x = 秒. (2)若①DPQ 的面积为S ,用含x 的代数式表示S (0≤x <7).(3)若点Q 从A 出发3秒后,点M 以每秒3个单位长度的速度沿A →B →C →D 的方向运动,M 点运动到达D 点后立即沿着原路原速返回到A 点.当M 与Q 在运动的路线上相距不超过2时,请直接写出相应x 的取值范围.【答案】(1)5或7;(2)42(02)11(26)2212(67)x x S x x x x -≤<⎧⎪⎪=-<≤⎨⎪-<<⎪⎩,(3)45x ≤≤或79x ≤≤或1012x ≤≤.【分析】(1)根据题意,点Q 与点C 的距离为1,设Q 运动的路程为a ,则61a -=,根据速度为1,进而求得时间x ;(2)分三种情况讨论,①点Q 在AD 边上运动;①点Q 在CD 边上运动;①点Q 在BC 边上运动;根据情形写出①DPQ 的面积即可;(3)分三种情形讨论,①M 点未到达D 点时,①M 点原路原速返回时,根据情形分相遇和追及问题写出路程差不超过2时,①当M 点回到点A ,当M 与Q 在运动的路线上相距不超过2时,列出不等式组求解即可,注意两点运动的总时间会影响取值范围,即M 点先停止运动. 【详解】 (1)4,2AB AD ==,∴246AD DC +=+=,设Q 运动的路程为a ,依题意则,61a -=, 解得5a =或7a =,速度为每秒1个单位长度,515x ∴=÷=或者717x =÷=,故答案为:5或7;(2)速度为每秒1个单位长度,Q 运动的时间为x 秒. ∴点Q 的路程为1x x ,①点Q 在AD 边上运动;2,4AD CD BC ===,∴2DQ DA AQ x =-=-,11(2)422S DQ DC x ∴=⨯=⨯-⨯42x =-(02x ≤<),①点Q 在CD 边上运动;P 是BC 的中点,112PC BC ∴==,2DQ x AD x =-=-,111(2)11222S DQ CP x x =⨯=-⨯=-(26x <≤), ①点Q 在CP 边上运动,6PQ t AD DC t =--=-,11(6)421222S PQ CD x x ∴=⨯=-⨯=-(67x <<), 综合①①①得:42(02)11(26)2212(67)x x S x x x x -≤<⎧⎪⎪=-<≤⎨⎪-<<⎪⎩,(3)速度为每秒1个单位长度,Q 运动的时间为x秒.∴点Q 的路程为1x x ,设M 的运动时间为t ,根据题意,Q 从A 出发3秒后,M 才出发,则3t x =-,即3x t =+,M 的路程为3t ,Q 点的路程为3t +,42410DC BC AB ++=++=,∴M 点全路程所用时间为2010233⨯÷=秒, 则Q 点的全路程所用时间为12112÷=秒,分三种情形讨论,①M 点未到达D 点时,Q 点出发3秒后,,M Q 共同完成的路程为39AD DC BC AB +++-=根据题意,当M 与Q 在运动的路线上相距不超过2时,则,9(33)2t t -++≤,即9(33)2(33)92t t t t -++≤⎧⎨++-≤⎩, 解得12t ≤≤,45x ∴≤≤,①M 点原路原速返回时,根据题意,当M 与Q 在运动的路线上相距不超过2时,则,(310)2t t --≤,即(310)2(310)2t t t t --≤⎧⎨--≤⎩,解得46t ≤≤,79x ∴≤≤.①当M 点回到点A ,根据题意,当M 与Q 在运动的路线上相距不超过2时,则1012x ≤≤; 综合①①①可得x 的取值范围为45x ≤≤或79x ≤≤或1012x ≤≤.【点睛】本题考查了动点问题,路程问题,一元一次不等式的应用,弄清动点运动的方向和路程是解题的关键. 19.在平面直角坐标系xOy 中,对于M 、N 两点给出如下定义:若点M 到x 、y 轴的距离中的最大值等于点N 到x 、y 轴的距离中的最大值,则称M 、N 两点互为“等距点”,例如:点P (2,2)与Q (-2,-1)到x 轴、y 轴的距离中的最大值都等于2,它们互为“等距点”.已知点A 的坐标为(1,3).(1)在点B (5,3)、C (﹣3,1)、D (﹣2,﹣2)中,点 与点A 互为“等距点”(2)已知直线l :4y kx k =--① 若k =1,点E 在直线l 上,且点E 与点A 互为“等距点”,求点E 的坐标;①若直线l 上存在点F ,使得点F 与点A 互为“等距点”,求k 的取值范围(直接写出结果).【答案】(1)C ;(2)①(2,3)E -或(3,2)-;① 12k ≥或14k ≤-. 【分析】(1)根据新定义“等距点”的定义即可求解; (2)①k=1可得5y x =- 设,5E m m -(), 讨论353m m =-=或 即可,①设(),4F f kf k --,根据点F与点A 互为“等距点”,分两种情况讨论即可:343f kf k ⎧=⎪⎨--≤⎪⎩和343f kf k ⎧≤⎪⎨--=⎪⎩. 【详解】解:(1)①点A (1,3)到x 、y 轴的距离中最大值为3,点C (﹣3,1)到x 、y 轴的距离中最大值为3,①与A 点是“等距点”的点是C .(2)①①直线l :4y kx k =--当k=1时,5y x =- ,①点A (1,3)到x 、y 轴的距离中最大值为3,点E 到点A 互为“等距点”,点E 到坐标轴的最大距离为3,设,5Em m -() , ①EM m =,5EN m =- ①353m m ⎧=⎪⎨-≤⎪⎩或35=3m m ⎧≤⎪⎨-⎪⎩解得:3m =或=2m当3m =时,52m -=-,点E (3,﹣ 2),当=2m 时,53m -=-,点E (2,﹣3),故点E (3,﹣ 2)或E (2,﹣3),① 点F 在直线l :4y kx k =--上,设(),4F f kf k --, ①343f kf k ⎧=⎪⎨--≤⎪⎩①②或343f kf k ⎧≤⎪⎨--=⎪⎩③④ 由①得到:3f =±,当3f =时,243k -≤,解得1722k ≤≤, 当3f =-时,443k --≤,解得7144k -≤≤-, 由①得到:43kf k --=±,当43kf k --=,即7k f k+=时,则73k k +≤, 解得72k ≥或74k ≤-, 当43kf k --=-,即1k f k+=时,则13k k +≤, 解得12k ≥或14k ≤-, 综上所述:12k ≥或14k ≤-. 【点睛】本题考查新定义的应用和点坐标到坐标轴之间的距离,涉及到一元一次不等式,解题的关键是正确理解题意,学会利用分类讨论的思想.20.在平面直角坐标系中,若P 、Q 两点的坐标分别为()11,P x y 和()22,Q x y ,则定12x x -和12y y -中较小的一个(若它们相等,则任取其中一个)为P 、Q 两点的“直角距离小分量”,记为min (,)d P Q .例如:(2,3),(0,2)P Q -,因为12122,0,|20|2x x x x =-=-=--=;12123,2,|32|1y y y y ==-=-=,而|32||20|-<--,所以min (,)|32|1d P Q =-=.(1)请直接写出()3,2A -和()1,1B -的直角距离小分量()min ,d A B =_________;(2)点D 是坐标轴上的一点,它与点()3,1C -的直角距离小分量()min ,2d C D =,求出点D 的坐标; (3)若点(1,22)M m m +-满足以下条件:a )点M 在第一象限;b )点M 与点()5,0N 的直角距离小分量()min ,2d M N <c )45MON ∠>︒,O 为坐标原点.请写出满足条件的整点(横纵坐标都为整数的点)M 的坐标_______.【答案】(1)3;(2)(0,1)D 或(0,3)D -;(3)(5,6)M 或(6,8)【分析】(1)根据新概念求得即可;(2)分两种情况,根据“直角距离小分量”的定义得出即可;(3)根据题意得出10220m m +>⎧⎨->⎩,解出m 的取值范围,再由45MON ∠>︒可推导出2211OM m K m -=>+,解出m 的取值范围,根据横纵坐标都为整数的点取m 的值即可.【详解】解:(1)(3,2)A -,(1,1)B -,|31|4∴+=>|21|3--=,()min ,3d A B ∴=;故答案为3;(2)点D 是坐标轴上的一点,若D 在x 轴上,设(a,0)D ,由于|01|12+=<与题意矛盾,故点D 是在y 轴上的一点,|1|2b ∴+=,解得:1b =或3-,(0,1)D ∴或(0,3)D -;(3)由题意得:10220m m +>⎧⎨->⎩, 解得1m , |15||4|,|220|2|1|m m m m +-=---=-,∴[]222(4)2(1)312m m m ---=-+, 当12m <<时,()min ,2|1|2d M N m =-<,解得:02m <<,当2m ≥时,()min ,|4|2d M N m =-<,解得:26m <<,m ∴的取值范围是:02m <<或26m <<,45MON ∠>︒恰好为OM l 的倾斜角,1OM K ∴>,2211OM m K m -=>+, 解得:1m <-或3m >综上:m 的取值范围是:36m <<,横纵坐标都为整数,4m ∴=和5,(5,6)M ∴或(6,8),故答案为:(5,6)M 或(6,8).【点睛】本题考查了坐标与图形的性质,解一元一次不等式组,解题的关键是根据新概念列出不等式组.。
北师大版八年级下册数学 第二章 一元一次不等式与一元一次不等式组 同步课时练习题(含答案)
北师大版八年级下册数学第二章一元一次不等式与一元一次不等式组同步课时练习题2.1不等关系01基础题知识点1不等式的意义1.(2017·太原期中)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是(A)A.两种客车总的载客量不少于500 人B.两种客车总的载客量不超过500 人C.两种客车总的载客量不足500人D.两种客车总的载客量恰好等于500人2.有下列数学表达式:①3<0;②4x+5>0;③x=3;④x+x;⑤x≠-4;⑥x+2>x+1.其中是不等式的有4 个.2知识点2列不等式3.某电梯标明“载客不超过13人”,若载客人数为x,x 为自然数,则“载客不超过13人”用不等式表示为(C)A.x<13 C.x≤13 B.x>13 D.x≥134.如图为一隧道入口处的指示标志牌,图1 表示汽车的高度不能超过3.5 m,由此可知图2 表示汽车的宽度l(m)应满足的关系为l≤3.限制高度限制宽度图1 图25.用适当符号表示下列关系:(1)x的绝对值是非负数;解:|x|≥0.15(2)a的3倍与b的的和不大于3;1解:3a+b≤3.5(3)x与17的和比它的5 倍小.解:x+17<5x.02中档题6.小新买了一罐八宝粥,看到外包装标明:净含量为330±10 g,那么这罐八宝粥的净含量x 的范围是(D)A.320<x<340 C.320<x≤340 B.320≤x<340 D.320≤x≤3407.下列叙述:①a是非负数,则a≥0;②“a减去10不大于2”可表示为a-10<2;③“x 的倒数超过10”可表2 21x示为>10;④“a,b两数的平方和为正数”可表示为a2+b2>0.其中正确的个数是(C)A.1 C.3 B.2 D.48.在数轴上,点A 表示2,点B 表示-0.6,点C 在线段A B 上,点C 表示的数为a,则用不等关系表示为-0.6≤a≤2.9.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5 分,娜娜得分要超过90分,设她答对了n 道题,则根据题意可列不等式为10n-5(20-n)>90.03 综合题10.请设计不同的实际背景来表示下列不等式:(1)x>y ;(2)2.0≤x ≤2.6;(3)3a +4b ≤560.解:答案不唯一,如:(1)八年级(1)班的男生比女生多,其中男生 x 人,女生 y 人.(2)某班级男生立定跳远成绩 x 在 2.0 米到 2.6 米之间.(3)3 条长裤和 4 件上衣的总价不超过 560 元,其中长裤单价 a 元,上衣单价 b 元.2.2 不等式的基本性质01 基础题知识点 1 不等式的基本性质1.若 a<b ,则下列各式中一定成立的是(B)A .-3a<-3b C .a +c>b +cB .a -3<b -3D .2a>2b2.(2017·成都期末)若 x>y ,则下列式子中错误的是(D)x y A .x -3>y -3 C .x +3>y +3B. > 3 3D .-3x>-3y 3.(2017·株洲)已知实数 a ,b 满足 a +1>b +1,则下列选项错误的为(D)A .a >bB .a +2>b +2D .2a >3bC .-a <-b 4.下列说法不一定成立的是(C)A .若 a >b ,则 a +c >b +cB .若 a +c >b +c ,则 a >bC .若 a >b ,则 ac >bc 2 2D .若 ac >bc 则 a >b2 2, 5.由不等式 a >b 得到 am <b m 的条件是 m <0.6.已知 m <n ,下列关于 m ,n 的命题:①6m >6n ;②-3m <-3n ;③m -5<n -5;④2m +5>2n +5.其中正确命 题的序号是③.7.小燕子竟然推导出了 0>5 的错误结论.请你仔细阅读她的推导过程,指出问题到底出在哪里.已知 x >y ,两边都乘 5,得 5x >5y .①两边都减去 5x ,得 0>5y -5x .②即 0>5(y -x).③两边都除以(y -x),得 0>5.④解:错在第④步.∵x >y ,∴y -x <0.不等式两边同时除以负数(y -x),不等号应改变方向才能成立.知识点 2 将不等式化为“x >a ”或“x <a ”的形式8.(2017·太原期中)下列不等式的变形过程中,正确的是(D)A .不等式-2x >4 的两边同时除以-2,得 x >2B .不等式 1-x >3 的两边同时减去 1,得 x >2C .不等式 4x -2<3-x 移项,得 4x +x <3-2x 3 x 2D .不等式 <1- 去分母,得 2x <6-3x 9.将下列不等式化成“x>a”或“x<a”的形式.(1)x -5<1; (2)2x>x -2;解:x<6. 解:x>-2.12(3)x>-3;(4)-5x<-2.2解:x>-6.解:x>.502中档题10.若点P(x-2,y-2)在第二象限,则x与y的关系正确的是(D)A.x≥y C.x≤y B.x>y D.x<y11.设“▲”“●”“■”分别表示三种不同的物体,现用天平称两次,情况如图所示,那么▲,●,■这三种物体按质量从大到小排列应为(C)A.■●▲C.■▲●B.▲■●D.●▲■12.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是(B)A.a-c>b-c C.ac>bc B.a+c<b+c a cD.<b b13.已知x-y=3,若y<1,则x的取值范围是x<4.14.下列变形是怎样得到的?1 21 2(1)由x>y,得x-3>y-3;1 21 2解:两边都除以2,得x>y.1 21 2两边都减去3,得x-3>y-3.1 21 2(2)由x>y,得(x-3)>(y-3);解:两边都减去3,得x-3>y-3.1 21 2两边都除以2,得(x-3)>(y-3).(3)由x>y,得2(3-x)<2(3-y).解:两边都除以-1,得-x<-y.两边都加上3,得3-x<3-y.两边都乘2,得2(3-x)<2(3-y).15.阅读下面的解题过程,再解题.已知 a >b ,试比较-2 018a +1 与-2 018b +1 的大小.解:因为 a >b ,①所以-2 018a >-2 018b .②故-2 018a +1>-2 018b +1.③问:(1)上述解题过程中,从第②步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.解:(2)错误地运用了不等式的基本性质 3,即不等式两边都乘同一个负数,不等号的方向没有改变.(3)因为 a >b ,所以-2 018a <-2 018b .故-2 018a +1<-2 018b +1.03 综合题16.比较大小:(1)如果 a -1>b +2,那么 a>b ;(2)试比较 2a 与 3a 的大小:①当 a>0 时,2a<3a ;②当 a =0 时,2a =3a ;③当 a<0 时,2a>3a ;(3)试比较 a +b 与 a 的大小;(4)试判断 x -3x +1 与-3x +1 的大小.2 解:(3)当 b>0 时,a +b>a ;当 b =0 时,a +b =a ;当 b<0 时,a +b<a .(4)∵x ≥0,2 ∴x 2-3x +1≥-3x +1.2.3 不等式的解集01 知识点 1 不等式的解和解集1.下列数值中不是不等式 5x ≥2x +9 的解的是(D)A .5B .4C .32.下列说法中,错误的是(C)基础题D .2A .不等式 x <2 的正整数解只有一个B .-2 是不等式 2x -1<0 的一个解C .不等式-3x >9 的解集是 x >-3D .不等式 x <10 的整数解有无数个3.(2016·安徽)不等式 x -2≥1 的解集是 x ≥3.知识点 2 用数轴表示不等式的解集4.用不等式表示如图所示的解集,其中正确的是(C) A .x >-2 C .x ≥-2 B .x <-2D .x ≤-25.在数轴上表示不等式 x -1<0 的解集,正确的是(B)6.将下列不等式的解集分别表示在数轴上:(1)x ≤2;解:如图所示:(2)x>-2.解:如图所示:02 中档题7.(2017·太原期末)若一个不等式的正整数解为 1,2,则该不等式的解集在数轴上的表示可能是(D)8.如果关于 x 的不等式 ax +4<0 的解集在数轴上表示如图,那么(C)A .a >0B .a <0D .a =2C .a =-2 9.(2017·西安期中)若关于 x 的不等式(a +1)x >a +1 的解集为 x >1,则 a 的取值范围是 a >-1.10.不等式 2x ≥-9 有多少个负整数解?请全部写出来.解:由题意,得 x ≥-9,2 所以不等式有 4 个负整数解:-1,-2,-3,-4.03 综合题11.小华在解不等式 x >2x -1 时,发现所有的负数都满足不等式,于是他有理有据地说:“如果x<0,那么 x>2x , 而 2x>2x -1,所以 x>2x -1 成立.”小华得到了这样的结论:x>2x -1 的解集是 x<0.小华说得对吗?说说你的观点.1 2解:小华前面说明负数是不等式 x >2x -1 的解是对的,但结论不对.因为解集包含所有的解,如 x = 是不等式 x 1 2 >2x -1 的解,但 >0,所以 x<0 不是 x>2x -1 的解集.15.阅读下面的解题过程,再解题.已知 a >b ,试比较-2 018a +1 与-2 018b +1 的大小.解:因为 a >b ,①所以-2 018a >-2 018b .②故-2 018a +1>-2 018b +1.③问:(1)上述解题过程中,从第②步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.解:(2)错误地运用了不等式的基本性质 3,即不等式两边都乘同一个负数,不等号的方向没有改变.(3)因为 a >b ,所以-2 018a <-2 018b .故-2 018a +1<-2 018b +1.03 综合题16.比较大小:(1)如果 a -1>b +2,那么 a>b ;(2)试比较 2a 与 3a 的大小:①当 a>0 时,2a<3a ;②当 a =0 时,2a =3a ;③当 a<0 时,2a>3a ;(3)试比较 a +b 与 a 的大小;(4)试判断 x -3x +1 与-3x +1 的大小.2 解:(3)当 b>0 时,a +b>a ;当 b =0 时,a +b =a ;当 b<0 时,a +b<a .(4)∵x ≥0,2 ∴x 2-3x +1≥-3x +1.2.3 不等式的解集01 知识点 1 不等式的解和解集1.下列数值中不是不等式 5x ≥2x +9 的解的是(D)A .5B .4C .32.下列说法中,错误的是(C)基础题D .2A .不等式 x <2 的正整数解只有一个B .-2 是不等式 2x -1<0 的一个解C .不等式-3x >9 的解集是 x >-3D .不等式 x <10 的整数解有无数个3.(2016·安徽)不等式 x -2≥1 的解集是 x ≥3.知识点 2 用数轴表示不等式的解集4.用不等式表示如图所示的解集,其中正确的是(C) A .x >-2 C .x ≥-2 B .x <-2D .x ≤-25.在数轴上表示不等式 x -1<0 的解集,正确的是(B)6.将下列不等式的解集分别表示在数轴上:(1)x ≤2;解:如图所示:(2)x>-2.解:如图所示:02 中档题7.(2017·太原期末)若一个不等式的正整数解为 1,2,则该不等式的解集在数轴上的表示可能是(D)8.如果关于 x 的不等式 ax +4<0 的解集在数轴上表示如图,那么(C)A .a >0B .a <0D .a =2C .a =-2 9.(2017·西安期中)若关于 x 的不等式(a +1)x >a +1 的解集为 x >1,则 a 的取值范围是 a >-1.10.不等式 2x ≥-9 有多少个负整数解?请全部写出来.解:由题意,得 x ≥-9,2 所以不等式有 4 个负整数解:-1,-2,-3,-4.03 综合题11.小华在解不等式 x >2x -1 时,发现所有的负数都满足不等式,于是他有理有据地说:“如果x<0,那么 x>2x , 而 2x>2x -1,所以 x>2x -1 成立.”小华得到了这样的结论:x>2x -1 的解集是 x<0.小华说得对吗?说说你的观点.1 2解:小华前面说明负数是不等式 x >2x -1 的解是对的,但结论不对.因为解集包含所有的解,如 x = 是不等式 x 1 2 >2x -1 的解,但 >0,所以 x<0 不是 x>2x -1 的解集.15.阅读下面的解题过程,再解题.已知 a >b ,试比较-2 018a +1 与-2 018b +1 的大小.解:因为 a >b ,①所以-2 018a >-2 018b .②故-2 018a +1>-2 018b +1.③问:(1)上述解题过程中,从第②步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.解:(2)错误地运用了不等式的基本性质 3,即不等式两边都乘同一个负数,不等号的方向没有改变.(3)因为 a >b ,所以-2 018a <-2 018b .故-2 018a +1<-2 018b +1.03 综合题16.比较大小:(1)如果 a -1>b +2,那么 a>b ;(2)试比较 2a 与 3a 的大小:①当 a>0 时,2a<3a ;②当 a =0 时,2a =3a ;③当 a<0 时,2a>3a ;(3)试比较 a +b 与 a 的大小;(4)试判断 x -3x +1 与-3x +1 的大小.2 解:(3)当 b>0 时,a +b>a ;当 b =0 时,a +b =a ;当 b<0 时,a +b<a .(4)∵x ≥0,2 ∴x 2-3x +1≥-3x +1.2.3 不等式的解集01 知识点 1 不等式的解和解集1.下列数值中不是不等式 5x ≥2x +9 的解的是(D)A .5B .4C .32.下列说法中,错误的是(C)基础题D .2A .不等式 x <2 的正整数解只有一个B .-2 是不等式 2x -1<0 的一个解C .不等式-3x >9 的解集是 x >-3D .不等式 x <10 的整数解有无数个3.(2016·安徽)不等式 x -2≥1 的解集是 x ≥3.知识点 2 用数轴表示不等式的解集4.用不等式表示如图所示的解集,其中正确的是(C) A .x >-2 C .x ≥-2 B .x <-2D .x ≤-25.在数轴上表示不等式 x -1<0 的解集,正确的是(B)6.将下列不等式的解集分别表示在数轴上:(1)x ≤2;解:如图所示:(2)x>-2.解:如图所示:02 中档题7.(2017·太原期末)若一个不等式的正整数解为 1,2,则该不等式的解集在数轴上的表示可能是(D)8.如果关于 x 的不等式 ax +4<0 的解集在数轴上表示如图,那么(C)A .a >0B .a <0D .a =2C .a =-2 9.(2017·西安期中)若关于 x 的不等式(a +1)x >a +1 的解集为 x >1,则 a 的取值范围是 a >-1.10.不等式 2x ≥-9 有多少个负整数解?请全部写出来.解:由题意,得 x ≥-9,2 所以不等式有 4 个负整数解:-1,-2,-3,-4.03 综合题11.小华在解不等式 x >2x -1 时,发现所有的负数都满足不等式,于是他有理有据地说:“如果x<0,那么 x>2x , 而 2x>2x -1,所以 x>2x -1 成立.”小华得到了这样的结论:x>2x -1 的解集是 x<0.小华说得对吗?说说你的观点.1 2解:小华前面说明负数是不等式 x >2x -1 的解是对的,但结论不对.因为解集包含所有的解,如 x = 是不等式 x 1 2 >2x -1 的解,但 >0,所以 x<0 不是 x>2x -1 的解集.。
一元一次不等式之整数解问题 专题训练 北师大版八年级数学下册
2022-2023学年北师大版八年级数学下册《2.4一元一次不等式之整数解问题》专题训练(附答案)一.选择题1.满足不等式3(x+2)>2x的最小负整数是()A.﹣7B.﹣6C.﹣8D.﹣52.关于x的不等式3x﹣a>6有最小整数解x=3,则a的取值范围是()A.0<a≤3B.0≤a<3C.a<3D.a≤33.不等式的最大整数解是()A.0B.﹣1C.﹣2D.﹣34.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2B.﹣3≤b<﹣2C.﹣3≤b≤﹣2D.﹣3<b≤﹣2 5.不等式4(x﹣2)<2x﹣3的非负整数解的个数为()A.2个B.3个C.4个D.5个6.下列说法中,错误的是()A.不等式﹣3x>12的解集是x<﹣4B.不等式x>﹣3的正整数解有无限个C.﹣1是不等式﹣3x>9的解D.若﹣a>﹣b,则m+2a<m+2b7.对点(x1,y1)和(x2,y2)定义一种新运算:(x1,y1)⊙(x2,y2)=x1x2+y1y2,关于x的不等式(x,﹣1)⊙(4,x﹣1)≥p恰好有2个负整数解,则实数p的取值范围是()A.﹣11<p≤﹣8B.﹣11≤p<﹣8C.﹣8<p≤﹣5D.﹣8≤p<﹣5二.填空题8.不等式﹣3≤5﹣2x的正整数解是.9.不等式2x﹣1<6的正整数解有个.10.一元一次不等式的解集在数轴上如图表示,该不等式有两个负整数解,则a的取值范围是.11.满足x>2021的最小整数是.12.若关于x的一元一次不等式3(x﹣1)<x+n有且只有一个正整数解,则n的取值范围为.13.我们定义一种新运算:x⊗y=﹣2y,如2⊗3=﹣2×3=﹣4,则关于a的不等式2⊗a≥2的最大整数解为.14.我们知道,那么的整数部分就是1.如果a为的整数部分,且关于x的不等式ax+m>1只有2个负整数解,则实数m的取值范围是.三.解答题15.求不等式的正整数解.16.解不等式x﹣3(x﹣2)>2(2x﹣3),然后把解集在数轴上表示出来,并写出最大整数解x的值.17.已知关于x的不等式只有三个负整数解,求m的取值范围.18.整式3(﹣m)的值为P.(1)当m=2时,求P的值;(2)若P的取值范围如图所示,求m的负整数值.19.我们定义:如果两个一元一次不等式有公共解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)不等式x≥3 (选填“是”或“不是”)x≤3的“云不等式”.(2)若关于x的不等式x﹣2a≥0与不等式1﹣2x>x﹣11互为“云不等式”且有2个公共的整数解,求a的取值范围.20.计算:(1)已知关于x,y的二元一次方程组的解满足3x+2y≤0,求m的取值范围;(2)若关于x的不等式的最小整数解为2,求a的取值范围.参考答案一.选择题1.解:去括号,得:3x+6>2x,移项,得:3x﹣2x>﹣6,合并同类项,得:x>﹣6,∴不等式的最小负整数为﹣5,故选:D.2.解:由3x﹣a>6,得:x>,∵不等式有最小整数解x=3,∴2≤<3,解得0≤a<3,故选:B.3.解:,去分母得:2x﹣3(x﹣1)≥6,去括号得:2x﹣3x+3≥6,移项得:2x﹣3x≥6﹣3,合并得:﹣x≥3,系数化为1得:x≤﹣3,则不等式的最大整数解为﹣3.故选:D.4.解:∵x﹣b>0,∴x>b,∵不等式x﹣b>0恰有两个负整数解,∴﹣3≤b<﹣2.故选:B.5.解:∵4(x﹣2)<2x﹣3,∴x<2.5,∵x为非负整数,∴x=2,1,0,故选:B.6.解:A、不等式﹣3x>12的解集是x<﹣4,故此选项正确;B、不等式x>﹣3的正整数解有无限个,故此选项正确;C、由﹣3x>9可得x<﹣3,知﹣1不是该不等式的解,故此选项错误;D、若﹣a>﹣b,则a<b,所以m+2a<m+2b,故此选项正确;故选:C.7.解:根据题中的新定义化简得:4x﹣(x﹣1)≥p,去括号得:4x﹣x+1≥p,移项合并得:3x≥p﹣1,解得:x≥,∵不等式恰好有2个负整数解,即﹣2,﹣1,∴﹣3<≤﹣2,解得:﹣8<p≤﹣5.故选:C.二.填空题8.解:不等式﹣3≤5﹣2x,移项得:2x≤5+3,合并得:2x≤8,系数化为1得:x≤4,则不等式的正整数解为1,2,3,4.故答案为:1,2,3,4.9.解:2x﹣1<6,2x<6+1,2x<7,x<3.5,∴该不等式的正整数解为:3,2,1,∴不等式2x﹣1<6的正整数解有3个,故答案为:3.10.解:由数轴可得,x≥a,∵该不等式有两个负整数解,∴这两个负整数解是﹣1,﹣2,∴﹣3<a≤﹣2,故答案为:﹣3<a≤﹣2.11.解:∵x>2021,∴最小整数解是2022,故答案为:2022.12.解:3(x﹣1)<x+n,3x﹣3<x+n,3x﹣x<3+n,2x<3+n,x<,∵一元一次不等式有且只有一个正整数解,∴1<≤2,∴2<3+n≤4,∴﹣1<n≤1,故答案为:﹣1<n≤1.13.解:∵x⊗y=﹣2y,∴2⊗a=﹣2a=﹣,∴2⊗a≥2即﹣≥2,解得a≤﹣,∴关于a的不等式2⊗a≥2的最大整数解为﹣2.故答案为:﹣2.14.解:∵4,∴a=4,将a=4代入不等式中,得4x+m>1,解得x>,∵关于x的不等式ax+m>1只有2个负整数解,∴﹣3,解得9<m≤13.故答案为:9<m≤13.三.解答题15.解:去分母得:3(2+x)≥2(2x﹣4)+12,去括号得:6+3x≥4x﹣8+12,移项、合并同类项得:﹣x≥﹣2,∴x≤2,∴不等式的正整数解是1,2.16.解:去括号,得:x﹣3x+6>4x﹣6,移项,得:x﹣3x﹣4x>﹣6﹣6,合并同类项,得:﹣6x>﹣12,系数化为1,得:x<2,最大整数解x的值为117.解:去分母,得:3(x﹣1)+18>2(x+m),去括号,得:3x﹣3+18>2x+2m,化简整理,得x>2m﹣15,因为关于x的不等式只有三个负整数解,所以﹣4≤2m﹣15<﹣3,即≤m<6.18.解:(1)根据题意得,P=3(﹣2)=3×(﹣)=﹣5;(2)由数轴知,P≤7,即3(﹣m)≤7,解得m≥﹣2,∵m为负整数,∴m=﹣1.﹣2.19.解:(1)∵x≥3与x≤3有一个公共解x=3,∴不等式x≥3是x≤3的“云不等式”,故答案为:是;(2)解不等式x﹣2a≥0,得x≥2a,解不等式1﹣2x>x﹣11,得x<4,∵关于x的不等式x﹣2a≥0与不等式1﹣2x>x﹣11互为“云不等式”且有2个公共的整数解,∴1<2a≤2,解得:,∴a的取值范围是:.20.解:(1),①×2﹣②,得3x=﹣2m,解得x=﹣m.将x=﹣m代入②,得﹣m+2y=2,解得y=1+m.∵3x+2y≤0,∴﹣2m+2+m≤0,解得m≥.故m的取值范围是m≥.(2)解不等式,得:x>2﹣3a,∵不等式有最小整数解2,∴1≤2﹣3a<2,解得:0<a≤,故a的取值范围是0<a≤.。
北师大八年级数学下册一元一次不等式应用题精讲及分类训练(分类训练含答案)
一元一次不等式(组)解应用题精讲及分类练习识别不等式(组)类应用题的几个标志,供解题时参考.一.下列情况列一元一次不等式解应用题1.应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等.例1.为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电” 价),22:00至次日8:00每千瓦时0.28元(“谷电” 价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元.当“峰电”用量不超过...每月总电量的百分之几时,使用“峰谷”电合算?分析:本题的一个不等量关系是由句子“当‘峰电’用量不超过...每月总电量的百分之几时,使用‘峰谷’电合算”得来的,文中带加点的字“不超过...”明显告诉我们该题是一道需用不等式来解的应用题.解:设当“峰电”用量占每月总用电量的百分率为x 时,使用“峰谷”电合算,月用电量总量为y.依题意得0.56xy+0.28y(1-x)<0.53y.解得x <89℅答:当“峰电”用量占每月总用电量的89℅时,使用“峰谷”电合算.2.应用题仍含有一个不等量关系,但这个不等量关系不是用明显的不等字眼来表达的,而是用比较隐蔽的不等字眼来表达的,需要根据题意作出判断.例2.周未某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一段路程所用的时间之比为2:3.⑴直接写出甲、乙两组行进速度之比;⑵当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米.试问山脚离山顶的路程有多远?⑶在题⑵所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B 处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件).解:⑴甲、乙两组行进速度之比为3:2.⑵设山腰离山顶的路程为x 千米,依题意得方程为232.1=-x x , 解得x =6.3(千米).经检验x =6.3是所列方程的解,答:山脚离山顶的路程为6.3千米.⑶可提问题:“问B 处离山顶的路程小于多少千米?”再解答如下:设B 处离山顶的路程为m千米(m>0)甲、乙两组速度分别为3k 千米/时,2k 千米/时(k >0) 依题意得k m 3<km 22.1-,解得m<0.72(千米). 答:B 处离山顶的路程小于0.72千米.说明:本题由于所要提出的问题被两个条件所限制,因此,所提问题应从句子“乙组从A 处继续登山,甲组到达山顶后休息片刻....,再从原路下山,并且在山腰B 处与乙组相遇”去突破,若注意到“甲组到达山顶后休息片刻....”中加点的四个字,我们就可以看出题中隐含着这样一个不等关系:乙组从A 处走到B 处所用的时间比甲组从山顶下到B 处所用的时间来得少,即可提出符合题目要求的问题且可解得正确的答案.二.下列情况列一元一次不等式组解应用题1.应用题中含有两个(或两个以上,下同)不等量的关系.它们是由两个明显的不等关系体现出来,一般是讲两件事或两种物品的制作、运输等.例3.已知服装厂现有A 种布料70米,B 种布料52米,现计划用这两种面料生产M,N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利45元;做一套N 型号的时装需用A 种布料1.1米,B 种布料0.4米,可获利润50元.若设生产N 型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y 元.(1)求y(元)与x(套)的函数关系式,并求出自变量x 的取值范围;(2)服装厂在生产这批时装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少? 分析:本题存在的两个不等量关系是:①合计生产M 、N 型号的服装所需A 种布料不大于70米;②合计生产M 、N 型号的服装所需B 种布料不大于52米.解:(1)=y ()x x 508045+-,即36005+=x y .依题意得⎩⎨⎧≤+-≤+-.524.0)80(9.0;701.1)80(6.0x x x x 解之,得40≤x ≤44.∵x 为整数,∴自变量x 的取值范围是40,41,42,43,44.(2)略2.两个不等关系直接可从题中的字眼找到,这些字眼明显存在着上下限.例4.某校为了奖励在数学竞赛中获胜的学生,买了若干本课外读物准备送给他们.如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足..3.本..设该校买了m 本课外读物,有x 名学生获奖.请回答下列问题:(1)用含x 的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.分析:不等字眼“不足..3.本.”即是说全部课外读物减去5(x -1)本后所余课外读物应在大于等于0而小于3这个范围内.解:(1)m=3x+8(2)由题意,得⎩⎨⎧<--+≥--+.3)1(5830)1(583x x x x ∴不等式组的解集是:5<x ≤213 ∵x 为正整数,∴x=6.把x=6代入m=3x+8,得m=26.答:略例5.某城市的出租汽车起步价为10元(即行驶距离在5千米以内都需付10元车费),达到或超过5千米后,每行驶1千米加1.2元(不足1千米也按1千米计).现某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?分析:本题采用的是“进一法”,对于不等关系的字眼“不足1千米也按1千米计”,许多同学在解题时都视而不见,最终都列成了方程类的应用题,事实上,顾客所支付的17.2元车费是以上限11公里来计算的,即顾客乘车的范围在10公里至11公里之间.理论上收费是按式子10+1.2(x-5)来进行的,而实际收费是取上限值来进行的.解:设从甲地到乙地的路程大约是x 公里,依题意,得10+5×1.2<10+1.2(x-5)≤17.2解得10<x ≤11 答:从甲地到乙地的路程大于10公里,小于或等于11公里.用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (6)
(共25题)一、选择题(共10题)1. 若不等式组 {x >1,x <a 无解,则 a 的取值范围是 ( )A . a >1B . a ≥1C . a <1D . a ≤12. 下列各数轴上表示的 x 的取值范围可以是不等式组 {x +2>a,(2a −1)x −6<0的解集的是 ( )A .B .C .D .3. 不等式 −x +2≤0 的解集为 ( )A . x ≤−2B . x ≥−2C . x ≤2D . x ≥24. 若关于 x 的不等式 (a +2019)x >a +2019 的解为 x <1,则 a 的取值范围是 ( ) A . a >−2019B . a <−2019C . a >2019D . a <20195. 若关于 x 的不等式组 {2x −1>4x +7,x >a 无解,则实数 a 的取值范围是 ( )A .a <−4B .a =−4C .a >−4D .a ≥−46. 不等式组 {2x +1>3,3x −5≤1的解集在数轴上表示正确的是 ( )A .B .C .D .7. 为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户 1 只;若每户发放母羊 5 只,则多出 17 只母羊,若每户发放母羊 7 只,则有一户可分得母羊但不足 3 只,这批种羊共 ( )A . 55 只B . 72 只C . 83 只D . 89 只8. 下面给出了 5 个式子:① 3>0;② 4x +3y >0;③ x =3;④ x −1;⑤ x +2≤3;其中不等式有 ( ) A . 2 个 B . 3 个 C . 4 个 D . 5 个9. 已知关于 x 的不等式组 {x −a ≥0,3−2x ≥−1 的整数解共有 3 个,则 a 的取值范围是 ( )A . −1≤a ≤0B . −1<a ≤0C . 0≤a ≤1D . 0<a ≤110. 若关于 x 的不等式组 {2−x2>2x−43,−3x >−2x −a的解集是 x <2,则 a 的取值范围是 ( )A . a ≥2B . a <−2C . a >2D . a ≤2二、填空题(共7题) 11. 叫做解不等式.12. 已知 x −y =3.①若 y <1,则 x 的取值范围是 ; ②若 x +y =m ,且 {x >2,y <1,则 m 的取值范围是 .13. 不等式 x >√2x +1 的解集是 .14. 不等式组 {x >4,x >m 的解集是 x >4,那么 m 的取值范围是 .15. 不等式组 {x−32+3>x +1,1−3(x −1)≤8−x所有整数解的和是 .16. “九月已经霜,蟹肥菊桂香”,古往今来,每至农历九月,蟹都是人们翘首以待的珍馐.某大闸蟹养殖户十月捕捞了第一批成熟的大闸蟹,并以每只相同的价格(价格为整数)批发给某经销商.十一月该养殖户捕捞了第二批成熟的大闸蟹,这次决定与某电商合作,将这批大闸蟹根据品质及重量分为 A (小蟹)、 B (中蟹)、 C (大蟹)三类,每类按照不同的单价(价格都为整数)网上销售,若 2 只 A 类蟹、 1 只 B 类蟹和 3 只 C 类蟹的价格之和正好是第一批蟹 8 只的价格,而 6 只 A 类蟹、 3 只 B 类蟹和 2 只 C 类蟹的价格之和正好是第一批蟹 12 只的价格,且 A 类蟹与 B 类蟹每只的单价之比为 3:4,根据市场有关部门的要求 A ,B ,C 三类蟹的单价之和不低于 40 元、不高于 60 元,则第一批大闸蟹每只价格为 元.17. 已知不等式 {2x −a <1,x −2b >3 的解集为 −1<x <1,求 (a +1)(b −1) 的值为 .三、解答题(共8题)18. 对于三个数 a ,b ,c ,用 M {a,b,c } 表示这三个数的平均数;用 min {a,b,c } 表示这三个数中最小的数.例如 M {1,2,3}=13×(1+2+3)=2,min {1,2,3}=1,min {2,2,2}=2⋯.解答下列问题:(1) 填空:M{√3,√12,√18}= ,min{2√2,π,√7}= . (2) 如果 M {−2,x −1,2x }=min {−2,x −1,2x },求 x 的值.(3) 在同一直角坐标系中作出函数 y =12x −3,y =−12x −1,y =−2x +4 的图象(不需列表描点),通过观察图象,填空:min {12x −3,−12x −1,−2x +4} 的最大值为 .19. 解不等式:1−x+26<2x−33,并把它的解集在数轴上表示出来.20. 解答下列各题:(1) 解方程组 {5x +6y =7,2x +3y =4.(2) 解不等式组 {x −4<3(x −2),1+2x 3+1>x.21. 解答下列问题.(1) 解方程组:{5x −2y =4,2x −y =1;(2) 解不等式组:{3x −2≥1,x +9>3(x +1).22. 某出租汽车公司计划购买A 型和B 型两种节能汽车,若购买A 型汽车 4 辆,B 型汽车 7 辆,共需 310 万元;若购买A 型汽车 10 辆,B 型汽车 15 辆,共需 700 万元. (1) A 型和B 型汽车每辆的价格分别是多少万元?(2) 该公司计划购买A 型和B 型两种汽车共 10 辆,费用不超过 285 万元,且A 型汽车的数量少于B 型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.23. 解不等式组 {3x −5>2(x −3),x+43≥x,并写出该不等式组的所有非负整数解.24. 为迎接“军运会”,某商店准备采购 500 件纪念品,现有甲、乙两种纪念品可供选择.其中甲种纪念品的进价为 80 元/件,售价为 112 元/件;乙种纪念品的进价为 64 元/件,售价为 80 元/件.设购进甲种纪念品 x (x 为整数)件,所购纪念品全部售完时利润为 y 元. (1) 求 y 关于 x 的函数关系式.(2) 若乙种纪念品的数量不少于甲种纪念品数量的 3 倍,且利润 y 不低于 9600 元,请通过计算说明商店有几种采购方案.(3) 若甲种纪念品每件售价降低 3a 元,乙种纪念品毎件售价上涨 2a 元,在(2)的条件下,最大利润为 11500 元,求 a 的值.25. 如图,数轴上两点 A ,B 对应的数分别是 −1,1,点 P 是线段 AB 上一动点,给出如下定义:如果在数轴上存在动点 Q ,满足 ∣PQ∣∣=2,那么我们把这样的点 Q 表示的数称为连动数,特别地,当点 Q 表示的数是整数时我们称为连动整数.(1) −3,0,2.5 是连动数的是 ;(2) 关于 x 的方程 2x −m =x +1 的解满足是连动数,求 m 的取值范围 ;(3) 当不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时,求 a 的取值范围.答案一、选择题(共10题) 1. 【答案】D【解析】 ∵ 不等式组 {x >1,x <a 无解,∴a 的取值范围是 a ≤1, 故选:D .【知识点】含参一元一次不等式组2. 【答案】B【解析】由 x +2>a ,得 x >a −2, A 选项,由数轴知 x >−3,则 a −2=−3, ∴a =−1,∴−3x −6<0,解得 x >−2,与数轴不符合; B 选项,由数轴知 x >0,则 a −2=0, ∴a =2,∴3x −6<0,解得 x <2,与数轴相符合; C 选项,由数轴知 x >2,则 a −2=2, ∴a =4,∴7x −6<0,解得 x <67,与数轴不符合;D 选项,由数轴知 x >−2,则 a −2=−2, ∴a =0,∴−x −6<0,解得 x >−6,与数轴不符合. 【知识点】含参一元一次不等式组3. 【答案】D【知识点】常规一元一次不等式的解法4. 【答案】B【解析】 ∵ 不等式 (a +2019)x >a +2019 的解为 x <1, ∴a +2019<0, 则 a <−2019. 【知识点】不等式的性质5. 【答案】D【解析】提示:解 2x −1>4x +7 ,得 x <−4 . 【知识点】常规一元一次不等式组的解法6. 【答案】D【知识点】常规一元一次不等式组的解法7. 【答案】C【解析】设该村有 x 户,则这批种羊中母羊有 (5x +17) 只,根据题意可得 {5x +17−7(x −1)>0,5x +17−7(x −1)<3, 解得 10.5<x <12, 因为 x 为正整数, 所以 x =11,所以这批种羊共有 11+5×11+17=83(只). 【知识点】一元一次不等式组的应用8. 【答案】B【知识点】不等式的概念9. 【答案】B【知识点】含参一元一次不等式组、不等式组的整数解10. 【答案】A【知识点】含参一元一次不等式组二、填空题(共7题)11. 【答案】求不等式的解集的过程【知识点】不等式的解集12. 【答案】 x <4 ; 1<m <5【知识点】二元一次方程、常规一元一次不等式组的解法13. 【答案】 x <−√2−1【知识点】常规一元一次不等式的解法、分母有理化14. 【答案】 m ≤4【解析】不等式组 {x >4,x >m的解集是 x >4,得 m ≤4. 【知识点】含参一元一次不等式组15. 【答案】 −3【知识点】常规一元一次不等式组的解法16. 【答案】14【解析】A类蟹与B类蟹每只单价之比为3:4,设A类蟹价格为3x,B类蟹价格为4x.∵批发时每只价格相同,依题意可得,∴2A+B+3C8=6A+3B+2C12,24A+12B+36C=48A+24B+16C,∵A=3x,B=4x,∴C=6x,∵A,B,C三类单价之和不低于40元,不高于60元,∴40≤A+B+C≤60,即:40≤13x≤60,∵A(3x),B(4x),C(6x)单价均为整数,∴4013≤x≤6013,x取整为x=4.∴A=3x=12,B=4x=16,C=6x=24.第一批大闸蟹每只价格为:2A+B+3C8=2×12+16+24×38=14元.故第一批大闸蟹每只价格为14元.【知识点】一元一次不等式组的应用17. 【答案】−6【解析】{2x−a<1, ⋯⋯①x−2b>3. ⋯⋯②由①得2x<1+a,x<1+a2,由②得,x>3+2b,综上,不等式组的解为3+2b<x<1+a2,又∵已知解集:−1<x<1,∴{3+2b=−1,1+a2=1,解得{a=1,b=−2,∴(a+1)(b−1)=(1+1)(−2−1)=−6.【知识点】含参一元一次不等式组三、解答题(共8题)18. 【答案】(1) √3+√2;√7(2)∵M {−2,x −1,2x }=13×(−2+x −1+2x )=13×(3x −3)=x −1,∵M {−2,x −1,2x }=min {−2,x −1,2x }=x −1, ∴ 可知 {x −1≤−2,x −1≤2x, 解之得 {x ≤−1,x ≥−1,∴ 可知 x =−1.(3) 在同一直角坐标系中,作出 y =12x −3,y =−12x −1,y =−2x +4 的图象如图所示: −2 【解析】(1) ∵M {1,2,3}=13(1+2+3)=2∴M{√3,√12,√18}=13×(√3+√12+√18)=13×(√3+2√3+3√2)=√3+√2,又 ∵min {1,2,3}=1,min {2,2,2}=2⋯, ∴ 可知 min 表示其中最小数字, ∵π>3,故 π2>9, ∴ 可知 π>√9, ∵9>8>7,∴√9>√8>√7,即 √9>2√2>√7, ∴ 可知 π>2√7>√7, ∴min{2√2,π,√7}=√7. 故答案为:√3+√2;√7.(3) 联立 {y =−12x −1,y =12x −3,解得 {x =2,y =−2, ∴y =−12x −1 与 y =12x −3 交点坐标为 (2,−2),联立 {y =−12x −1,y =−2x +4, 解得 {x =103,y =−83,∴y =−12x −1 与 y =−2x +4 交点坐标为 (103,−83), 由函数图象可知:当 x ≤2 时,min {12x −3,−12x −1,−2x +4}=12x −3≤−2, ∴min {12x −3,−12x −1,−2x +4} 最大值为 −2,当 2<x <103时,min {12x −3,−12x −1,−2x +4}=−12x −1,则 −53<−12x <−1,−83<−12x −1<−2,∴min {−12x −3,−12x −1,−2x +4} 最大值小于 −2, 当 x ≥103时,min {12x −3,−12x −1,−2x +4}=−2x +4, ∴−2x ≤−203,−2x +4≤−83,∴min {12x −3,−12x −1,−2x +4} 最大值为 −83,∵−2>−83,∴min {12x −3,−12x −1,−2x +4} 最大值为 −2.故答案为:−2.【知识点】常规一元一次不等式组的解法、平方根的估算、一次函数与二元一次方程(组)的关系19. 【答案】 x >2.【知识点】常规一元一次不等式的解法20. 【答案】(1) {5x +6y =7, ⋯⋯①2x +3y =4. ⋯⋯②① − ② ×2 得:x =−1.把 x =−1 代入①得:y =2.则方程组的解为{x =−1,y =2.(2) {x −4<3(x −2), ⋯⋯①1+2x 3+1>x. ⋯⋯②解不等式①得x >1.解不等式②得x <4.∴ 不等式组的解集为1<x <4.【知识点】加减消元、常规一元一次不等式组的解法21. 【答案】(1) {5x −2y =4, ⋯⋯①2x −y =1. ⋯⋯②① − ② ×2,得:x =2.将 x =2 代入②,得:4−y =1.解得y =3.∴ 方程组的解为{x =2,y =3.(2) 解不等式 3x −2≥1,得:x ≥1.解不等式 x +9>3(x +1),得:x <3.则不等式组的解集为1≤x <3.【知识点】加减消元、常规一元一次不等式组的解法22. 【答案】(1) 设A 型汽车每辆价格为 x 万元,B 型汽车每辆的价格为 y 万元,由题意,得{4x +7y =310,10x +15y =700,解得{x =25,y =30.故A 型汽车每辆的价格为 25 万元,B 型汽车每辆的价格为 30 万元.(2) 设购买A 型汽车 m 辆,则购买B 型汽车 (10−m ) 辆,由题意,得{m <10−m,25m +30(10−m )≤285.解得3≤m <5.因为 m 是整数,所以 m =3或4.当 m =3 时,该方案所需费用为 25×3+30×7=285(万元); 当 m =4 时,该方案所需费用为 25×4+30×6=280(万元).故费用最省的方案是购买 4 辆A 型汽车,6 辆B 型汽车,该方案所需费用为 280 万元. 【知识点】一元一次不等式组的应用、综合应用23. 【答案】原不等式组为{3x −5>2(x −3), ⋯⋯①x+43≥x. ⋯⋯②解不等式 ①,得x >−1.解不等式 ②,得x ≤2.∴ 原不等式组的解集为 −1<x ≤2. ∴ 原不等式组的所有非负整数解为 0,1,2.【知识点】常规一元一次不等式组的解法24. 【答案】(1) 由题意得:y =(112−80)x +(80−64)(500−x ), 化简得:y =16x +8000.(2) 由题意得:{16x +8000≥9600,500−x ≥3x.解得:100≤x ≤125.因为 x 为整数,所以x =100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125.所以共有 26 种采购方案. (3) 设利润为 w , w=(112−3a −80)x +(80+2a −64)(500−x )=(16−5a )x +8000+1000a.当 16−5a >0,即 a <165时,w 随 x 增大而增大,所以 x =125 时,利润最大,w 最大=(16−5a )×125+8000+1000a =11500, 解得 a =195.11 综上可知,a =195.【知识点】一元一次不等式组的应用、利润问题、解析式法25. 【答案】(1) −3,2.5(2) −4≤m ≤−2 或 0≤m ≤2(3) {x+12>−1, ⋯⋯①1+2(x −a )≤3, ⋯⋯② 由 ① 得,x >−3;由 ② 得,x ≤a +1,∵ 不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时, ∴ 四个连动整数解为 −2,−1,1,2, ∴2≤a +1<3,∴1≤a <2∴a 的取值范围是 1≤a <2.【解析】(2) 解关于 x 的方程 2x −m =x +1 得,x =m +1.∵ 关于 x 的方程 2x −m =x +1 的解满足是连动数,∴{−1−m −1≤2,1−m −1≥2或 {m +1−1≤2,m +1+1≥2, 解得 −4≤m ≤−2 或 0≤m ≤2.【知识点】常规一元一次不等式组的解法、含参一元一次方程的解法、数轴的概念、含参一元一次不等式组、不等式组的整数解。
26《一元一次不等式组》习题含解析北师大八年级下初二数学试题试卷.doc
《一元一次不等式组》习题一、选择题2x+6>01.等式组{ 的解集在下列数轴上表示正确的是() 5xW 兀 + 8A. -4 ^3 -2 -1 0 1 2 3 4>—1_ _I ------------- 1 ---- 1 -- 1_ _I -------------- L->B. -4 -3 ・2 0 12 3 4 1 6 I I I I 占 I I 〉C. -4-3-2-101234A.tz<-1B.a>2C.-l <d<2D.a<A ,或 ci>23. 若点A (/H -3, 1-3/n )在笫三象限,则川的取值范围是()A. in> — C.加>3 D ・一V 加 V33 3 [x + 4>34. 不等式组彳 的解集是( )[2x<4 A. i<x<2 B. - \<x<2 C. x> - I D. - l<x<45. 使不等式x- 1>2与3x-7V8同时成立的兀的整数值是()A. 3, 4B. 4, 5C. 3, 4, 5D.不存在6. 不等式组\2X>~1的所有整数解的和是( )[-3x4-9 >0 A. 2 B. 3 C ・ 5 D. 6 D.则Q 的取值范围是(2.x — 2、7.若不等式组〒" 的解集为・2<x<3,则a的取值范围是(3兀 + 2>4兀一1填空题-3-2-10123l-x<28. 关于兀的不等式组 :一;科的解集是 8 — 2 兀 <09.已知关于兀、y 的方程组< x+2y = 5k-2 7 f ”的解是一•对界号的数,则R 的取值范用是 x- y = -k^410. 不等式 x+1>0的解集是x-2<0 11. 若不等式组 X~a -0 有解,则Q 的取值范围是 1一2尢>—2 三、 解答题12. 解不等式组x —1 n 0[2(“2)>3兀并把解集在数轴上表示出热 13. 解不等式组 并将解集在数轴上表示出来.14. 求不等式组如— 1)51的解集,并求它的整数解2x + 4>015.解不等式组L_3 ,并写出该不等式组的最大整数解.丄上+3>兀+ 12参考答案一、选择题1.答案:B[k+2>0解析:【解答】不等式可化为:£[2£-2<0在数轴上表示为:—1. 6—1 1 1 1_1 L>■4・2 ・1 0 12 3 4故选B.【分析】木题应该先对不等式组进行化简,然后在数轴上分别表示岀尤的取值范围,它们的公共部分就是不等式组的解集.2.答案:B解析:【解答】不等式组无解x<2・・・G22时,不等式组#> 一1无解,x>2故选B.【分析】先求出不等式组的解集,利用不等式组的解集是无解可知dVx<2,且兀应该是大大小小找不到,所以可以判断出cQ2,不等式组是x>2, x<2时没有交集,所以也是无解不要漏掉相等这个关系.3.答案:Dm- 3<0解析:【解答】根据题意可知彳,1-3 加<0m<3解不等式组得1 1,nf> —3即-<m<3.3故选D.【分析】先根据题总:列出不等式组,再求不等式组的解集.4.答案:B山+ 4>3①解析:【解答】厂J ,[2x<4®解①得x> - 1,解②得恋2,所以不等式组的解集为・1 <疋2.故选B.【分析】分别解两个不等式得到x>・1和疋2,然后根据大小小大中间找确定不等数组的解集.5.答案:A解析:【解答】根据题意得:x-\>23x-7<8解得:3<r<5,则兀的整数值是3, 4;故选A.【分析】先分别解出两个一元一次不等式,再确定兀的取值范朗,最后根据x的取值范圉找出x的整数解即可.6.答案:D[2x>-l ①解析:【解答】;[-3x + 9>0(2)・・•解不等式①得;x>-A,解不等式②得;戏3,・・・不等式组的解集为-丄V*3,2・・・不等式组的整数解为0, 1, 2, 3, 0+1+2+3=6,故选D.【分析】先求出不等式组的解集,再求出不等式组的整数解,最后求出答案即可.7.答案:A—>«①解析:【解答】23兀+ 2>4兀一1②由①得,x>2d+2,由②得,x<3,・・・2d+2VxV3,故选A.【分析】先计算出每个不等式的解集,再求其公共部分,让2卅2与-2相等即可求出d 的值.填空题8.答案:x>4由②得,x>4,根据“同大取较大”原则,原不等式组的解集为x>4.【分析】分别求出每个不等式的解集,再求其解集的公共部分即可.9. 答案:・2<£V1 ①•②得3y=6R ・6, 解得尸*2③, 把③代入②得x-2H2=-H4, 解得x=k+29x = k+2所以方程组的解为)—2知2>0或卩+2V02K0 、2k ・2>0解第一个不等式组得-2<^<1,解第二个不等式组得无解, 所以k 的取值范围是-2<Z:<1.【分析】先由①■②得3)=6心,求出y=2k-2,再把y 的值代入②可得到x=H2,然后利用兀与y 异啟+2>0仏+2<0 号得到{ r 或{, ,再解不等式组即可得到£的取值范围.[2£・2<0 [2£・2>010・答案:-l<x<2解析:【解答】由①得:兀>・1.由②得:x<2.・•・不等式组的解集为:【分析】先求出两个不等式的解集,再求其公共解.解析: 【解答】 $—2no :由①得,q[8-2x< 0 ②解析: 【解答】严>5 — 2]11. 答案:a<\解析:【解答】 b -由①得,XM ,由②得A-<1 ,•・•不等式组有解集,/• a<x< 1,—【分析】先把兀当作已知条件得出不等式的解集,再根据不等式组冇解集得岀。
北师大版八年级数学下册 2.4.2一元一次不等式的应用 能力提升 (含答案)
2.4一元一次不等式的应用一、选择题1.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打几折?如果将该商品打x折销售,则下列不等式中能正确表示该商店的促销方式的是()A.120x≥80×5%B.120x−80≥80×5%C.120×x10≥80×5% D.120×x10−80≥80×5%2.某商品进价加价25%后出售,最后降价处理库存,要使后续销售不亏本,售价降价不能高于()A.20%B.25%C.30%D.40%3.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块4.某市居民用电的电价实行阶梯收费,收费标准如下表:七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是()A.100B.396C.397D.4005.根据如图所示的计算程序框图,若要使输入的x的值只经过一次运行就能输出结果,则x的取值范围是( )A.x >3B.x <38C.x >38D.x >836.某公园划船项目收费标准如下:某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为()元. A.370 B.380C.390D.410二、填空题7.今年,刘华的父亲年龄为50岁,刘华的年龄为x岁.若刘华的年龄的4倍再加上3岁还不超过他父亲的年龄,则可列出的不等式是________.8.商店以每辆300元的进价购入121辆自行车,并以每辆330元的价格销售.两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出________辆自行车.9.某种品牌毛巾原零售价为每条8元,凡一次性购买三条以上(含三条),可享受商家推出的两种优惠销售办法中的任意一种,第一种三条按原价,其余按七折优惠;第二种:全部按原价的八折优惠.若想在购买相同数量的情况下,使第一种办法比第二种办法得到的优惠多,最少要购买________条毛巾.10.“618购物节”前,天猫某品牌服装旗舰店采购了一大批服装,已知每套服装进价为240元,出售标价为360元,为了避免滞销库存,商店准备打折销售,但要保持利润不低于20%,那么至多可打________折. 11.去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60%,如果明年(365天)这样的比值要超过70%,那么明年空气质量良好的天数比去年至少要增加________天.12.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金________元.三、解答题13.某学校为了迎接“中招考试理化生实验”,需购进A,B两种实验标本共75个.经调查,A种标本的单价为20元,B种标本的单价为12元,若总费用不超过1180元,那么最多可以购买多少个A种标本?(列不等式解决)14.某批服装进价为每件200元,商店标价为每件300元.现商店准备将这批服装打折出售,但要保证毛利润不低于8%,商店最低可按标价的几折出售?(通过列不等式进行解答)15.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:已知某中学计划租用A、B两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.16.学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元;(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个.17.某商店欲购进A、B两种商品,已知购进A种商品3件和B种商品4件共需220元;若购进A种商品5件和B种商品2件共需250元.(1)求A、B两种商品每件的进价分别是多少元?(2)若每件A种商品售价48元,每件B种商品售价31元,且商店将购进A、B两种商品共50件全部售出后,要获得的利润不少于360元,问A种商品至少购进多少件?18.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?19.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为________,________;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)20.襄江中学组织九年级部分学生到古隆中参观,租用的客车有50座和30座两种可供选择.学校根据参加参观的学生人数计算可知:若只租用30座客车x辆,还差10人才能坐满;若只租用50座客车,比只租用30座客车少用2辆,且有一辆车没有坐满但超过30人.(1)写出九年级参观的学生人数y与x的关系式;(2)求出此次参观的九年级学生人数;(3)若租用一辆30座客车往返费用为260元,租用一辆50座客车往返费用为400元,如何选择租车方案费用最低?2.4一元一次不等式的应用参考答案一、选择题1.D2.A3.C4.B5.D6.B二、填空题7.4x+3≤508.1119.1010.八11.3712.3520三、解答题13.最多可以购买35个A种标本14.商店最低可按标价的7.2折出售15.设租用A型号客车x辆,则租用B型号客车(10−x)辆,依题意,得:600x +450(10−x)≤5600, 解得:x ≤713. 又∵x 为整数, ∴x 的最大值为7.答:最多能租用7辆A 型号客车.设租用A 型号客车x 辆,则租用B 型号客车(10−x)辆, 依题意,得:45x +30(10−x),≥380, 解得:x ≥513.又∵x 为整数,且x ≤713, ∴x =6,7.∴有两种租车方案,方案一:组A 型号客车6辆、B 型号客车4辆;方案二:组A 型号客车7辆、B 型号客车3辆. 16.解:(1)设一个篮球和一个足球的售价各是x 元、y 元, 由题意得{x +2y =1702x +y =190 , 得{x =70y =50, 答:一个篮球和一个足球的售价各是70元、50元; (2)设购进足球a 个,购进篮球(100−a)个, a ≤2(100−a), 解得,a ≤6623, ∴最多购买足球66个, 答:最多购买足球66个. 17.A 种商品每件的进价为40元,B 种商品每件的进价为25元 A 种商品至少购进30件18.设今年每套A 型一体机的价格为x 万元,每套B 型一体机的价格为y 万元, 由题意可得:{y −x =0.6500x +200y =960 , 解得:{x =1.2y =1.8, 答:今年每套A 型的价格各是1.2万元、B 型一体机的价格是1.8万元; 设该市明年购买A 型一体机m 套,则购买B 型一体机(1100−m)套, 由题意可得:1.8(1100−m)≥1.2(1+25%)m , 解得:m ≤600, 设明年需投入W 万元,W =1.2×(1+25%)m +1.8(1100−m) =−0.3m +1980, ∵−0.3<0,∴W 随m 的增大而减小, ∵m ≤600,∴当m =600时,W 有最小值−0.3×600+1980=1800, 故该市明年至少需投入1800万元才能完成采购计划. 19. 288,356小明每天读28页,小红每天读40页.(1)从第6天起,小明至少平均每天要比原来多读m 页. 由题意:84+28×5+5(28+m)−10×40≥0, 解得m ≥7.2, ∵m 是整数, ∴m =8,∴小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过 20.若只租用30座客车x 辆,还差10人才能坐满,则九年级参观的学生人数y =30x −10;依题意得:30<(30x−10)−50(x−3)<50,解之得,412<x<512.由于车辆数只能取整数,所以x=5.∴y=30×5−10=140.故此次参观的九年级学生有140人;①如果只租用30座客车,那么需要5辆,此时租车费用为260×5=1300(元);②如果只租用50座客车,那么需要3辆,此时租车费用为400×3=1200(元);③如果两种合租,那么需要30座客车3辆,50座客车1辆,此时租车费用为260×3+400=1180(元).故租用30座客车3辆,50座客车1辆时租车费用最低.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用题方案优化专项训练: 《一元一次不等式》 解题步骤:1. 列方程组2. 列不等 式求未知量范围3. 列方案所需费用 /利润的一次函数表达式4. 讨论最优的方案1.某商店计划一次购进两种型号的手机共 110部,销售一部 A 型手机比销售一部 B 型手机获得的利润多 50元,销售相同数量的 A 型手机和 B 型手机获得的利润分别为 3000元和 2000 元,其中 A 型手机的进货量不超过 B 型手机的 2 倍,且商店最多购进 B 型手机 50 台.(1)求每部 A 型手机和 B 型手机的销售利润分别为多少元?2)设购进 B 型手机 n 部,销售手机的总利润为 y 元,怎么进货才能使销售总利润最大? 3)实际进货时,厂家对 B 型手机出厂价下调 m (30<m <70)元.若商店保持两种手 机的售价不变,请设计出手机销售总利润最大的进货方案.根据题意,得: ,解得:2)设购进 B 型手机 n 部,则购进 A 型手机( 110﹣n )部,则 y = 150( 110﹣ n )+100 n =﹣ 50n+16500,其中, ∴ y 关于 n 的函数关系式为 y =﹣50n+16500∵﹣ 50< 0,∴ y 随 n 的增大而减小,解: 1)设每部 A 型手机的销售利润为 x 元,每部 B 型手机的销售利润为 y 元,答:每部 A 型手机的销售利润为 150 元,每部 B 型手机的销售利润为 100 元;110﹣ n ≤ 2n ,即 n ≥∵ n≥36 ,且n 为整数,∴当n=37 时,y 取得最大值,最大值为﹣50× 37+16500=14650(元),答:购进 A 型手机73 部、B 型手机37部时,才能使销售总利润最大;(3)设购进B型手机n部,则购进A型手机(110﹣n)部,根据题意,得:y=150(110﹣n)+(100+m)n=(m﹣50)n+16500,其中,36 ≤n≤50(n为整数),①当30<m<50时,y随n的增大而减小,∴当n=37 时,y 取得最大值,即购进 A 型手机73 部、B 型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,即商店购进B型电脑数量满足36 ≤n≤50 的整数时,均获得最大利润;③当50<m<70时,y随n的增大而增大,∴当n=50 时,y 取得最大值,即购进 A 型手机60 部、B 型手机50部时销售总利润最大.2.某班决定购买一些笔记本和文具盒做奖品.已知需要的笔记本数量是文具盒数量的 3 倍,购买的总费用不低于220 元,但不高于250 元.(1)商店内笔记本的售价 4 元/本,文具盒的售价为10元/个,设购买笔记本的数量为x,按照班级所定的费用,有几种购买方案?每种方案中笔记本和文具盒数量各为多少?( 2 )在( 1 )的方案中,哪一种方案的总费用最少?最少费用是多少元?(3)经过还价,老板同意 4 元/本的笔记本可打八折,10元/个的文具盒可打七折,用(2)中的最少费用最多还可以多买多少笔记本和文具盒?解:(1)依题意,得:,解得:30≤x≤34 .∵x 为正整数,∴x可取30,31,32,33,34.30 本,文具盒 10 个;方案二:笔记本 33 本,文具盒 11 个. ( 2)在( 1)中,方案一购买的总数量最少,∴总费用最少,最少费用为: 4×30+10× 10=220(元). 答:方案一的总费用最少,最少费用为 220 元.( 3)设用( 2)中的最少费用最多还可以多买的文具盒数量为 y ,则笔记本数量为 3y , 依题意,得: 4× 80%( 30+3y ) +10×70%(10+y )≤220,解得: y ≤ 3 ,∵y 为正整数,∴y 的最大值为 3,∴ 3y = 9.答:用( 2)中的最少费用最多还可以多买 9 本笔记本和 3 个文具盒.3.某文具店购进 A 、B 两种文具进行销售.若每个 A 种文具的进价比每个 B 种文具的进价少 2 元,且用 900 元正好可以购进 50 个 A 种文具和 50 个 B 种文具,( 1)求每个 A 种文具和 B 种文具的进价分别为多少 元?(2)若该文具店购进 A 种文具的数量比购进 B 种文具的数量的 3倍还少 5个,购进两种 文具的总数量不超过 95 个,每个 A 种文具的销售价格为 12 元,每个 B 种文具的销售价 格为 15元,则将购进的 A 、B 两种文具全部售出后,可使总利润超过 371元,通过计算 求出该文具店购进 A 、B 两种文具有哪几种方案?解:(1)设每个 A 种文具的进价为 x 元,每个 B 种文具的进价为 y 元, 依题意,得:, ,解得:.答:每个 A 种文具的进价为 8 元,每个 B 种文具的进价为 10 元.( 2)设购进 B 种文具 m 个,则购进 A 种文具( 3m ﹣5)个,依题意,得: ,解得: 23< m ≤ 25.∵m 为整数,又∵ x 也必须是整数x 可取 10 , 11.∴有两种购买方案,方案一:笔记本∴m =24或 25,3m ﹣ 5=67或 70,∴该文具店有两种进货方案: ①购进 A 种文具 67个, B 种文具 24个; ②购进 A 种文具 70个, B 种文具 25个.4.我校为响应“全民阅读”的号召,计划购入 A 、B 两种规格的书柜用于放置所购图书. 经市场调查发现,若购买 A 种书柜 3 个、B 种书柜 2 个,共需资金 1020元;若购买 A 种书 柜 5 个、 B 种书柜 3 个,共需资金 1620 元.(1)A 、B 两种规格的书柜,每个的价格分别是多少?(2)若该校计划购买这两种规格的书柜共 20个,其中 B 种书柜的个数不少于 A 种书柜 的个数,学校至多有 4320 元的资金,请设计几种购买方案供学校选择.解:( 1)设 A 种书柜的单价为 x 元, B 种书柜的单价为 y 元,依题意,得:解得:答: A 种书柜的单价为 180 元, B 种书柜的单价为 2)设学校购买 m 个A 种书柜,则购买( 20﹣m )个 B 种书柜,, ,解得: 8≤ m ≤ 10.∵m 为整数,∴ m = 8, 9,10 . ∴该学校有 3种购买方案,方案 1:购买 8个A 种书柜, 12个 B 种书柜;方案 2:购买 9 个 A 种书柜, 11 个 B 种书柜;方案 3:购买 10 个 A 种书柜, 10 个 B 种书柜. 5.为落实“绿水青山就是金山银山”的发展理念,某县政府部门决定,招标一工程队负责完成一座水库的土方施工任务. 该工程队有 A ,B 两种型号的挖掘机,已知 1 台 A 型和 2 台 B 型挖掘机同时施工 1 小时共挖土 80 立方米, 2 台 A 型和 3 台 B 型挖掘机同时施工 1 小时共挖土 140 立方米.每台 A 型挖掘机一个小时的施工费用是 350 元,每台 B 型挖掘 机一个小时的施工费用是 200 元.( 1)分别求每台 A 型,B 型挖掘机一小时各挖土多少立方米?(2)若 A 型和 B 型挖掘机共 10 台同时施工 4小时,至少完成 1360立方米的挖土量, 且 总费用不超过 14000 元.问施工时有哪几种调配方案?且指出哪种调配方案的施工费用240 元.依题意,得:最低,最低费用多少元?解:(1)设每台 A 型挖掘机一小时挖土x 立方米,每台 B 型挖掘机一小时挖土y 立方米,依题意,得:,解得:.答:每台 A 型挖掘机一小时挖土40 立方米,每台 B 型挖掘机一小时挖土20 立方米.(2)设有m 台 A 型挖掘机参与施工,施工总费用为w 元,则有(10 ﹣m)台 B 型挖掘机参与施工,∵ 4 小时至少完成1360 立方米的挖土量,且总费用不超过14000 元,∴,∴,解得:7≤m≤10.∵10﹣m>0,∴m<10.又∵ m为正整数,∴ m=7,8,9.∴共有三种调配方案,①调配7台A型、3台B型挖掘机施工;②调配8台A型、2台B 型挖掘机施工;③ 调配9 台 A 型、 1 台 B 型挖掘机施工.依题意,得:w=350×4m+200×4(10﹣m)=600m+8000,∵600>0,∴w的值随m 的增大而增大,∴当m=7 时,即选择方案① 时,w 取得最小值,最小值为12200 元.6.某商店四月份购进70 个篮球,由于供不应求,五月份又购进同种篮球60 个,两次购进篮球的单价不同,已知四月份和五月份购进篮球的单价和为65 元,并且四月份与五月份购入篮球总费用相同.(1)求该商店四、五月份购进篮球的单价分别是多少元;(2)由于运输不当,五月份购进的篮球中有10%损坏,不能卖售,该商店将两批篮球按同一价格全部销售后,获利不低于2000 元,求每个篮球的售价至少是多少元.解:(1)设该商店四月份购进篮球的单价是x 元,则五月份购进篮球的单价是(65﹣x)元,依题意,得:70x=60 (65﹣x),解得: x = 30,∴ 65﹣x = 35.答:该商店四月份购进篮球的单价是 30 元,五月份购进篮球的单价是 35 元. ( 2)设每个篮球的售价是 y 元,依题意,得: [70+60×( 1﹣10%)]y ﹣30×70﹣35×60≥2000, 解得: y ≥ 50.答:每个篮球的售价至少是 50 元.7.第一届中非经贸博览会于 2019 年 6 月 27 日至 29 日在长沙举办, 为了抓住商机, 某服装店决定购进甲、乙两种文化衫进行销售,若购进甲种文化衫 6 件,乙种文化衫 5 件,需 要 1400 元;若购进甲种文化衫 3 件,乙种文化衫 6 件,需要 1050 元.( 1)求购进甲、乙两种文化衫每件各需多少元?(2)若该服装店决定用不超过 6100 元的资金购进这两种服装共 50件,且用于购买甲种 文化衫的资金不低于购买乙种文化衫的资金,那么该商店共有哪几种进货方案?答:购进甲种文化衫每件需 150 元,购进乙种文化衫每件需 100 元. 2)设购进甲种文化衫 m 件,则购进乙种文化衫( 50﹣ m )件, 依题意,得:, ,解得: 20≤ m ≤ 22.∵m 为正整数,∴m =20,21, 22, ∴该商店共有 3种进货方案, 方案 1:购进甲种文化衫 20件,乙种文化衫 30件;方案 2: 购进甲种文化衫 21 件,乙种文化衫 29 件;方案 3:购进甲种文化衫 22 件,乙种文化衫28 件.8. 2019 年是中国建国 70 周年,作为新时期的青少年,我们应该肩负起实现粗国伟大复兴 的责任,为了培养学生的爱国主义情怀,我校学生和老师在 5 月下旬集体乘车去抗日战 争纪念馆研学,已知学生的人数是老师人数的 12 倍多 20 人,学生和老师总人数有 540人.(1)请求出去抗日战争纪念馆研学的学生和老师的人数各是多少?解:(1)设购进甲种文化衫每件需 x 元,购进乙种文化衫每件需 y 元,依题意,解得:得:(2)如果学校准备租赁 A 型车和B型车共14辆(其中 B 型车最多7辆),已知A型车每车最多可以载35 人,日租金为2000元,B型车每车最多可以载45 人,日租金为3000 元,请求出最经济的租车方案.解:(1)设去去抗日战争纪念馆研学的学生有x 人,老师有y 人,依题意,得:,解得:.答:去抗日战争纪念馆研学的学生有500 人,老师有40 人.(2)设租赁B型大巴车m辆,则租赁 A 型大巴车(14﹣m)辆,依题意,得:,,解得:5≤m≤7.∵m 为正整数,∴m=5,6或7.设租赁总租金为w 元,依题意,得:w=3000m+2000(14﹣m)=1000m+28000,∵1000>0,∴w的值随m 值的增大而增大,∴当m= 5 时,w 取得最小值,∴最经济的租赁车辆方案为:租赁 A 型大巴车9辆和租赁B型大巴车 5 辆.9.我市某中学组织部分学生去某地开展研学旅行活动,在参加此次活动的师生中,若每位老师带17 个学生,还剩12 个学生没人带;若每位老师带18 个学生,就有一位老师少带4 个学生,现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过 3100 元, 为了安全, 每辆客车上至少要 有 2 名老师.1)参加此次研学旅行活动的老师和学生各有多少人?辆客车; ② 求租车费用的最小值.依题意,得:解得:答:参加此次研学旅行活动的老师有 16 名,学生有 284 名;2)① ∵每辆客车上至少要有 2 名老师,∴汽车总数不能大于 8 辆;∵要保证 300 名师生有车坐,汽车总数不能小于 (取整为 8)辆,∴需租 8 辆客车.② 设租用 m 辆乙种客车,则租用甲种客车( 8﹣ m )辆,解得: 5≤m ≤7(m 为整数).∵乙种车辆租金高,∴租用乙种车辆越少,租车费用越低,∴租用甲种客车 3 辆,乙种客车 5 辆时,租车费用最低,最低费用为2900 元.10.我市在创建全国文明城市过程中, 决定购买 A 、B 两种树苗对某路段道路进行绿化改造, 已知购买 A 种树苗 5棵,B 种树苗 3棵,需要 840元;购买 A 种树苗 3棵, B 种树苗 5 棵,需要 760 元.(1)求购买 A 、B 两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进 A 种树苗不能少于 30棵,且用于购买这两种树 苗的资金不能超过 10000 元,现需购进这两种树苗共 100棵,怎样购买所需资金最少? 解:(1)设购买 A 种树苗每棵需要 x 元,B 种树苗每棵需要 y 元,依题意,得: ,解得: .2)① 既要保证所有师生都有车坐, 又要保证每辆客车上至少要有 2 名老师, 需租用几解:(1)设参加此次研学旅行活动的老师有 x 名,学生有 y 名,依题意,得:400× 5+300 × 3 =答:购买 A 种树苗每棵需要 120元, B 种树苗每棵需要 80元.2)设购进 A 种树苗 m 棵,则购进 B 种树苗( 100﹣m )棵, 依题意,得:解得: 30≤ m ≤ 50.设购买树苗的总费用为 w 元,则 w = 120m+80 ( 100﹣ m )= 40m+8000.∵40>0,∴w 的值随 m 值的增大而增大,∴当 m =30 时,w 取得最小值,最小值为 9200.答:当购买 A 种树苗 30棵、B 种树苗 70棵时,所需资金最少,最少资金为 9200元. 11.现有 A ,B 两种商品,买 6件 A 商品和 3件 B 商品用了 108元,买 5件 A 商品和 1件B 商品用了 84 元.1)求 A ,B 两种商品每件多少元?2)如果小静准备购买 A 、 B 两种商品共 10 件,总费用不超过 120 元,且不低于 100 元,问有几种购买方案?哪种方案费用最低?解:( 1)设 A 商品每件 x 元, B 商品每件 y 元,依题意,得:解得:答: A 商品每件 16元,B 商品每件 4元.2)设小静购买 A 商品 a 件,则购买 B 商品( 10﹣a )件,依题意,得:∵ a 取正整数,∴ a = 5 或 a = 6,∴有两种购买方案,方案一:购买 A 商品 5件,B 商品 5件,购买费用为 16×5+4×5= 100(元);方案二:购买 A 商品 6件, B 商品 4件,购买费用为 16×6+4×4=112(元).∵ 100< 112,解得: 5≤∴方案一费用低.答:有两种购买方案,方案一费用最低.12.某学校为了改善办学条件,计划采购A,B 两种型号的空调,已知采购 3 台 A 型空调和2台B型空调共需 3.9万元;采购4台A型空调比采购5台B空调的费用多0.6万元.(1)求 A 型空调和 B 型空调每台各需多少万元;(2)若学校计划采购A,B两种型号空调共30台,且采购总费用不少于20 万元不足21 万元,请求出共有那些采购方案.解:(1)设 A 型空调每台x 万元,B 型空调每台y 万元,依题意,得:解得:答:A型空调每台0.9 万元,B型空调每台0.6 万元.2)设采购A型空调m 台,则采购B型空调(30﹣m)台,依题意,得:,解得:≤m<10.∵m 为整数,∴ m=7,8,9,∴有 3 种采购方案:① 采购A型空调7 台,B 型空调23 台;②采购A型空调8 台,B 型空调22 台;③ 采购A型空调9台,B 型空调21台.13.某工艺品店购进A,B 两种工艺品,已知这两种工艺品的单价之和为200 元,购进 2 个A 种工艺品和 3 个B 种工艺品需花费520 元.(1)求A,B 两种工艺品的单价;(2)该店主欲用9600元用于进货,且最多购进A种工艺品36个,B 种工艺品的数量不超过A种工艺品的 2 倍,则共有几种进货方案?(3)已知售出一个A种工艺品可获利10元,售出一个 B 种工艺品可获利18元,该店主决定每售出一个 B 种工艺品,为希望工程捐款m元,在(2)的条件下,若A,B 两种工艺品全部售出后所有方案获利均相同,则m 的值是多少?此时店主可获利多少元?解:(1)设A种工艺品的单价为x元/个,B种工艺品的单价为y元/个,依题意,得:,..答: A 种工艺品的单价为 80元/个, B 种工艺品的单价为 120元/个.2)设购进 A 种工艺品 a 个,则购进 B 种工艺品 依题意,得:解得: 30≤ a ≤36.∵a 为正整数,∴共有 7 种进货方案.(3)设总利润为 w 元,依题意,得: w = 10a+(18﹣m )×=( m ﹣ 2) a+1440﹣ 80m ,∵w 的值与 a 值无关,∴ m ﹣ 2= 0,∴ m = 3,此时 w =1440﹣ 80m = 1200.答: m 的值是 3,此时店主可获利 1200 元.进甲种商品 2 件,乙种商品 3 件,需要 280 元.1)购进甲乙两种商品每件各需要多少元?(2)该商场决定购进甲乙商品 100 件,并且考虑市场需求和资金周转,用于购买这些商品的资金不少于 6300 元,同时又不能超过 6430 元,则该商场共有几种进货方案?( 3 )若销售每件甲种商品可获利 30 元,每件乙种商品可获利 12 元,在第( 2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?答:购进每件甲商品需要 80 元,每件乙商品需要 40元.解得: 个,14.某店计划购进甲、乙两种商品,若购进甲种商品 1件,乙种商品 2件,需要 160 元;购x 元,每件乙商品需要 y 元, 依题意,得:,解得:.解:(1)设购进每件甲商品需要依题意,得:2)设购进甲商品 a 件,则购进乙商品( 100﹣ a )件, 解得: 57 ≤a ≤ 60 . ∵ a 为整数,∴a =58或 59或 60,∴该商场共有 3 种进货方案,方案 1:购进甲商品 58 件,乙商品 42 件;方案 2:购进甲 商品 59 件,乙商品 41 件;方案 3:购进甲商品 60 件,乙商品 40 件.(3)∵ 30>12,∴购进甲商品越多,利润越大, ∴方案 3 购进甲商品 60 件,乙商品 40 件获利最大,最大利润为元.套 B 型课桌凳少用 40 元,且购买 4 套 A 型和 5 套 B 型课桌凳共需 1820 元.1)求购买一套 A 型课桌凳和一套 B 型课桌凳各需多少元?( 2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过 40880 元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的 ,求该校本次购买 A 型和 B 型课桌凳共 有几种购买方案?怎样的方案使总费用最低?并求出最低费用.解:(1)设购买 一套 A 型课桌凳需要 x 元,购买一套 B 型课桌凳需要 y 元,依题意,得:.答:购买一套 A 型课桌凳需要 180元,购买一套 B 型课桌凳需要 220 元.2)设购买 a 套 A 型课桌凳,则购买( 200﹣a )套 B 型课桌凳,依题意,得:解得: 78≤ a ≤80.∵ a 为整数,∴a =78,79,80,∴共有 3种购买方案,方案 1:购买 78套 A 型课桌凳, 122套 B 型课桌凳;方案 2:购买79套A 型课桌凳, 121套B 型课桌凳; 方案 3:购买 80套A 型课桌凳, 120套B 型课30×60+12×40=228015.某中学计划购买 A 型和 B 型课桌凳共 200 套,经招标,购买一套 A 型课桌凳比购买一解得:方案 1 所需费用 78× 180+122 × 220= 40880 (元);方案 2 所需费用 79× 180+121 × 220= 40840 (元);方案 3 所需费用 80×180+120×220=40800(元).∵40800<40840<40880,∴方案 3购买 80套 A 型课桌凳, 120套 B 型课桌凳所需总费用最低,最低费用为 40800元.16.为了丰富学生的课外活动,学校决定购进 5 副羽毛球拍和 m 只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的 15倍,用 50 元可以买一副羽毛球拍和 10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?( 2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送 n 只羽毛球,通过调查发现,如果只到一个商店购买 5 副羽毛球拍和 26 只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和 n 只羽毛球,则乙商店 更划算.求 n 的值.(3)在( 2)的条件下,当 m =30 时,学校购买这批羽毛球拍和羽毛球最少需要 166 元(直接写出结果) .解:(1)设一副羽毛球拍的价格是 x 元,一只羽毛球的价格是 y 元,则.解得 .答:一副羽毛球拍的价格是 30元,一只羽毛球的价格是 2 元;(2)依题意得:解不等式组,得 3.75< n <4.04.因为 n 是正整数,所以 n = 4; 3)当 m =30 时,甲商店消费额: 0.8×( 5× 30+2 × 30)= 166(元) 乙商店消费额: 5× 30+2×( 30﹣ 5)= 200(元)因为166< 200所以当m=30 时,学校购买这批羽毛球拍和羽毛球最少需要166 元.故答案是:166.17.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20 元;乙种商品每件进价35 元,售价45 元.(1)若该商场同时购进甲、乙两种商品共100 件恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100 件的总利润(利润=售价一进价)不少于750元,且甲商品的件数不能低于48 件,请你帮忙求出该商场有几种进货方案?(3)在(2)的基础上,商场预备用2500 元资金来进货.若商场选择能使总利润最大的进货方案,试判断商场预备的资金是否够?解:(1)设购进甲、乙两种商品分别为x件、y件,解得,答:能购进甲、乙两种商品分别为40 件,60件;2)设购进甲种商品 a 件,则购进乙种商品(100﹣a)件,(20﹣15)a+(45﹣35)(100﹣a)≥750,解得,a≤50,又∵ a≥48,a 为整数,∴a=48,49,50,∴该商场共有三种进货方案;(3)设设购进甲种商品a件,则购进乙种商品(100﹣a)件,利润为w 元,w=(20﹣15)a+(45﹣35)(100﹣a)=﹣5a+1000,由(2)知a=48,49,50,∴当a=48 时,w 取得最大值,此时100﹣a=52,∴当取得最大利润时,需要花费:48× 15+52× 35=2540(元),∵2540>2500,∴商场预备的资金不够用.18.武汉军运会前夕,市园林局进行道路绿化,准备购买A、B 两种树苗.已知购买1棵A树苗和 2棵 B 树苗共需 200元;购买 3棵A 树苗和 1棵 B 树苗共需 300元(1)求每棵 A 树苗和每棵 B 树苗售价各为多少元;(2)若园林局需要购买 A 、B 两种树苗共 10000棵,且购买的 B 树苗不少于 A 树苗的 3 倍,总的购买经费不超过 64 万元,则 A 树苗最多购买多少棵?A 树苗的售价为 x 元,每棵B 树苗的售价为 y 元, ,解得:答:每棵 A 树苗的售价为 80 元,每棵 B 树苗的售价为 60 元; 2)设购买 A 树苗 m 棵,则需购买 B 树苗( 10000﹣m )棵,, ,解得: m ≤ 2000,答: A 树苗最多购买 2000 棵. 19.学校准备租用一批客车运送艺术特长生往返于本部与分校,现有甲、乙两种客车, 甲种客车每辆载客量 48人,乙种客车每辆载客量 32人.已知 1 辆甲种客车和 2辆乙种客车 每次需租金 1000元, 3辆甲种客车和 4辆乙种客车每次需租金 2400 元.(1)求 1 辆甲种客车和 1 辆乙种客车的每次租金分别是多少元? (2)学校计划租用甲、 乙两种客车共 6辆,运送 240 名师生,最节省的租车方案是什么?每次费用最少是多少?解得,答: 1辆甲种客车每次租金为 400元, 1辆乙种客车的每次租金为 300 元;2)设租用甲种客车 a 辆,则租用乙种客车( 6﹣a )辆,租车总的费用为 w 元, w = 400a+300( 6﹣a )= 100a+1800, ∵48a+32(6﹣a )≥ 240, 解得, a ≥ 3, ∴当 a =3 时, w 取得最小值,此时 w = 2100, 6﹣ a = 3,解:(1)设每棵根据题意,得:由题意知解:(1)设 1 辆甲种客车每次租金为 x 元, 1 辆乙种客车的每次租金为 y 元,答:最节省的租车方案是租用甲种客车 3辆,租用乙种客车 3 辆,每次费用最低是 2100 元.20.某工厂计划生产 A , B 两种产品共 10 件,其生产成本和销售价如下表所示:成本(万元 /件)售价(万元 /件)(1)若工厂计划获利 14万元则应分别生产 A ,B 两种产品多少件?(2)若工厂投入资金不多于 44万元,且获利不少于 14 万元,则工厂有哪些生产方案? ( 3 )在第( 2 )的条件下,哪种方案获利最大;最大利润是多少?解:(1)设生产 A , B 两种产品分别为 x 件,y 件,,,解得, ,答:工厂计划获利 14 万元则应分别生产 A ,B 两种产品 6件,4 件;(2)设生产 A 种产品 a 件,则生产 B 种产品( 10﹣a )件,解得, 3≤a ≤ 6,∵ a 为整数,∴ a = 3, 4, 5, 6,∴该工厂共有 4 种生产方案,3)设利润为 w 元,w =(4﹣ 3)a+(7﹣5)(10﹣a )=﹣ a+20,∵a =3,4,5,6,∴当 a =3 时, w 取得最大值,此时 w = 17,10﹣a =7,答:在第( 2)的条件下,方案一:生产 A 种产品 3 件,生产 B 种产品 7 件获利最大;最 大利润是 17 万元.产品A 种产品B 种产品方案一:生产方案二:生产方案三:生A 种产品 3 件, A 种产品 4 件, A 种产品 5 生产 生产 生产 生产B 种产品 7 件; B 种产品 6 件; B 种产品 5 件; B 种产品 4 件;。