物质结构与性质汇总(精华版)
高中化学选修3-物质结构与性质-全册知识点总结
高中化学选修3知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f<(n-1)d<np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
高中化学选修3物质结构与性质全册知识点总结模板.doc
高中化学选修3知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级( 1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级 s 、p、d、f ,能量由低到高依次为 s 、p、 d、f 。
③任一能层,能级数等于能层序数。
④s、 p、 d、f ⋯⋯可容纳的电子数依次是 1、 3、5、 7⋯⋯的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
( 2)能层、能级、原子轨道之间的关系2每能层所容纳的最多电子数是:2n ( n:能层的序数)。
(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)> E(4s)、 E(4d)> E(5s)、 E(5d)>E( 6s)、E( 6d)>E( 7s)、E(4f )>E( 5p)、E( 4f )>E( 6s)等。
原子轨道的能量关系是: ns<( n-2 )f <(n-1 )d < np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2;最外层不超过8 个电子;次外层不超过18 个电子;倒数第三层不超过32 个电子。
( 5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
物质的结构与性质细小知识点归纳
物质的结构与性质细小知识点归纳一、原子结构基本知识归纳1.原子核外电子排布的轨道能量顺序图7s6s 6p 6d5s 5p 5d 5f4s 4p 4d 4f3s 3p 3d 3d2s 2p1s2.S轨道呈对称,故s轨道有条轨道p轨道呈形,在空间有个伸展方向,故p轨道包含3个轨道d轨道有个轨道,f轨道有个轨道每一个原子轨道上只有个自旋状态不同的核外电子,故d轨道最多含有个自旋不同的核外电子,如Al元素共有个自旋状态不同的核外电子。
3.比较下列各原子的原子轨道的能量高低(1)2s 2p 3s 3p (2)nf nd ns np (3)3p x3p y3p z(4) 3p x35p y4p z4.写出下列原子的核外电子的电子排布式Cl: Ca: N:Na: Sc: V:Mn: Cr: Fe:Cu: Se: Br:5.写出下列原子核外电子的轨道排布式Be: Al:Mg: S:C: P:6.s区包含族元素,其价电子排布的一般形式为p区包含族元素,其价电子排布的一般形式为d区包含族元素,其价电子排布的一般形式为ds区包含族元素,其价电子排布的一般形式为二.元素第一电离能的知识归纳1.定义:单位:符号:2.元素的第一电离能越,原子越电子,性越元素的第一电离能越,原子越电子,性越3.总体上:金属元素的第一电离能都较,原因是非金属元素的第一电离能都较,原因是同周期中第一电离能最大的是稀有气体元素,原因是同周期中第一电离能最小的是碱金属元素,原因是同周期元素的第一电离能从左到右总体上呈趋势,原因是同主族元素的第一电离能从上到下逐渐,原因是4.将下列元素按第一电离能由大到小的顺序排列(1)K、Na、Li (2) B、C、Be、N (3)He、Ne、Ar (4)Na、Al、S、P (5)Be、B (6)Mg、Al (7)N、O (8)P、S (9)Zn、Ga三、分子空间构型知识归纳1.杂化轨道类型即:价层电子对=2,电子对的空间构型为价层电子对=3,电子对的空间构型为价层电子对=4,电子对的空间构型为(1)若孤电子对数为0,则分子的空间构型与电子对的空间构型如:BeH2价层电子对为对,Be原子的电子对空间构型为,分子空间构型为BF3价层电子对为对,Be原子的电子对空间构型为,分子空间构型为CH4价层电子对为对,Be原子的电子对空间构型为,分子空间构型为CO2 价层电子对为对,Be原子的电子对空间构型为,分子空间构型为(2)若孤电子对数不为0,则分子的空间构型与电子对的空间构型如:SnCl2价层电子对为对,孤电子对为对电子对空间构型为,分子空间构型为NH3价层电子对为对,孤电子对为对电子对空间构型为,分子空间构型为H2O 价层电子对为对,孤电子对为对电子对空间构型为,分子空间构型为例1:填写下列表格:例2.(1)CH3CH3分子中存在键,C原子的杂化类型有杂化(2)CH2=CH2分子中存在键,C原子的杂化类型有杂化(3)CH3-CH=CH2分子中存在键,C原子的杂化类型有杂化(4)丙炔分子中存在键,C原子的杂化类型有杂化例3.已知下列分子或离子的空间构型,指出这些微粒中中心原子的杂化轨道类型(1)SiCl4(正四面体) (2)PO43-(正四面体)(3)HgCl2(直线形)(4)C22-(直线形) (5)CO32-(平面三角形)(6)Acl3(直线形)四.等电子体知识归纳1.等电子原理具有相同的通式——AB m,而且和等的分子或离子具有相同的结构特征,这个原理称为―等电子体原理‖。
物质的结构和性质知识点总结
物质的结构和性质知识点总结物质的结构和性质是化学学科中的重要内容,对于理解化学反应、物质的特性以及各种现象都有着关键的作用。
以下将对这方面的知识点进行详细的总结。
一、原子结构1、原子的组成原子由原子核和核外电子组成。
原子核又由质子和中子构成。
质子带正电荷,中子不带电,电子带负电荷。
原子中质子数等于电子数,因此原子整体呈电中性。
2、质子数和原子序数质子数决定了元素的种类,也称为原子序数。
不同元素的原子具有不同的质子数。
3、质量数质量数等于质子数与中子数之和。
通过质量数和质子数可以计算出中子数。
4、核外电子的排布核外电子按照一定的规律分层排布。
遵循能量最低原理、泡利不相容原理和洪特规则。
第一层最多容纳 2 个电子,第二层最多容纳 8 个电子,依次类推。
二、元素周期表1、周期周期是指具有相同电子层数的元素按照原子序数递增的顺序排列的横行。
周期数等于电子层数。
2、族族是指具有相似化学性质的元素按照纵行排列。
主族元素的族序数等于最外层电子数。
3、元素周期表的分区根据元素的电子构型和性质,周期表可以分为 s 区、p 区、d 区和 f 区。
4、元素周期律随着原子序数的递增,元素的性质呈现周期性的变化,包括原子半径、化合价、金属性和非金属性等。
三、化学键1、离子键离子键是由阴阳离子之间通过静电作用形成的化学键。
通常在活泼金属与活泼非金属之间形成。
2、共价键共价键是原子之间通过共用电子对形成的化学键。
分为极性共价键和非极性共价键。
3、金属键金属键存在于金属晶体中,是由金属阳离子和自由电子之间的强烈相互作用形成。
四、分子结构1、共价键的参数包括键长、键能和键角。
键长越短,键能越大,化学键越稳定。
键角决定了分子的空间构型。
2、分子的极性分子的极性取决于分子的空间构型和键的极性。
如果分子的正电荷中心和负电荷中心重合,则为非极性分子,否则为极性分子。
3、杂化轨道理论用于解释分子的空间构型。
常见的杂化类型有 sp、sp²、sp³等。
物质结构与性质知识总结
物质结构与性质(选修)一、能层、能级与原子轨道1、能层(n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。
通常用K、L、M、N、O、P、Q……表示相应的第一、二、三、四、五、六、七……能层,能量依次升高2、能级:同一能层里的电子的能量也可能不同,又将其分成不同的能级,通常用s、p、d、f等表示,同一能层里,各能级的能量按s、p、d、f的顺序升高,即E(s)<E(p)<E(d)<E(f)。
3、原子轨道:表示电子在原子核外的一个空间运动状态。
电子云轮廓图给出了电子在核外经常出现的区域,这种电子云轮廓图也就是原子轨道的形象化描述。
二、基态原子的核外电子排布的三原理绝大多数元素的原子核外电子的排布将遵循如下图所示的排布顺序,人们把它称为构造原理。
1、能量最低原理:原子的电子排布遵循构造原理能使整个原子的能量处于最低状态。
2、泡利原理:在一个原子轨道中,最多只能容纳2个电子,并且这两个电子的自旋方向相反。
3、洪特规则:当电子排布在同一能级的不同轨道时,基态原子中的电子总是优先单独占据1个轨道,并且自旋方向相同。
三、电离能和电负性(1)含义:第一电离能:气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量,符号I,单位kJ/mol。
(2)规律①同周期:第一种元素的第一电离能最小,最后一种元素的第一电离能最大,总体呈现从左至右逐渐增大的变化趋势。
②同族元素:从上至下第一电离能逐渐减小。
③同种原子:逐级电离能越来越大(即I1≤I2≤I3…)。
2.电负性(1)含义:不同元素的原子在化合物中吸引键合电子能力的标度。
元素的电负性越大,表示其原子在化合物中吸引键合电子能力的能力越强。
(2)标准:以最活泼的非金属氟的电负性为4.0和锂的电负性为1.0作为相对标准,计算得出其他元素的电负性(稀有气体未计)。
(3)变化规律①金属元素的电负性一般小于1.8,非金属元素的电负性一般大于1.8,而位于非金属三角区边界的“类金属”(如锗、锑等)的电负性则在1.8左右,它们既有金属性又有非金属性。
高中化学选修3物质结构与性质全册知识点总结
高中化学选修3知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。
②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。
③任一能层,能级数等于能层序数。
④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。
⑤能层不同能级相同,所容纳的最多电子数相同。
(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。
2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。
(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。
(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E (4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E (4f)>E(5p)、E(4f)>E(6s)等。
原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。
根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。
(5)基态和激发态①基态:最低能量状态。
处于最低能量状态的原子称为基态原子。
②激发态:较高能量状态(相对基态而言)。
基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。
处于激发态的原子称为激发态原子。
③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。
利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
物质结构与性质知识点总结材料
物质结构与性质知识点总结专题一了解测定物质组成和结构的常用仪器(常识性了解)。
专题二第一单元1.认识卢瑟福和玻尔的原子结构模型。
2.了解原子核外电子的运动状态,了解电子云的概念。
3.了解电子层、原子轨道的概念。
4.知道原子核外电子排布的轨道能级顺序。
知道原子核外电子在一定条件下会发生跃迁。
5.了解能量最低原理、泡利不相容原理、洪特规则,能用电子排布式、轨道表示式表示1-36号元素原子的核外电子排布。
第二单元1.理解元素周期律,了解元素周期律的应用。
2.知道根据原子外围电子排布特征,可把元素周期表分为不同的区。
3.了解元素第一电离能、电负性的概念及其周期性变化规律。
(不要求用电负性差值判断共价键还是离子键)4.了解第一电离能和电负性的简单应用。
专题三第一单元1.了解金属晶体模型和金属键的本质。
2.能用金属键理论解释金属的有关物理性质。
了解金属原子化热的概念。
3.知道影响金属键强弱的主要因素。
认识金属物理性质的共性。
4.认识合金的性质及应用。
注:金属晶体晶胞及三种堆积方式不作要求。
第二单元1.认识氯化钠、氯化铯晶体。
2.知道晶格能的概念,知道离子晶体的熔沸点高低、硬度大小与晶格能大小的关系。
3.知道影响晶格能大小的主要因素。
4.离子晶体中离子的配位数不作要求。
第三单元1.认识共价键的本质,了解共价键的方向性和饱和性。
2.能用电子式表示共价分子及其形成过程。
认识共价键形成时,原子轨道重叠程度与共价键键能的关系。
3.知道σ键和π键的形成条件,了解极性键、非极性键、配位键的概念,能对一些常见简单分子中键的类型作出判断。
注:大π键不作要求4.了解键能的概念,认识影响键能的主要因素,理解键能与化学反应热之间的关系。
5.了解原子晶体的特征,知道金刚石、二氧化硅等常见原子晶体的结构与性质的关系。
第四单元1.知道德华力和氢键是两种最常见的分子间作用力。
2.了解影响德华力的主要因素,知道德华力对物质性质的影响。
3.了解氢键的概念和成因,了解氢键对物质性质的影响。
物质结构与性质知识点总结
物质结构与性质知识点总结专题一了解测定物质组成和结构的常用仪器(常识性了解)。
专题二第一单元1.认识卢瑟福和玻尔的原子结构模型。
2.了解原子核外电子的运动状态,了解电子云的概念。
3.了解电子层、原子轨道的概念。
4.知道原子核外电子排布的轨道能级顺序。
知道原子核外电子在一定条件下会发生跃迁。
5.了解能量最低原理、泡利不相容原理、洪特规则,能用电子排布式、轨道表示式表示1-36号元素原子的核外电子排布。
第二单元1.理解元素周期律,了解元素周期律的应用。
2.知道根据原子外围电子排布特征,可把元素周期表分为不同的区。
3.了解元素第一电离能、电负性的概念及其周期性变化规律。
(不要求用电负性差值判断共价键还是离子键)4.了解第一电离能和电负性的简单应用。
专题三第一单元1.了解金属晶体模型和金属键的本质。
2.能用金属键理论解释金属的有关物理性质。
了解金属原子化热的概念。
3.知道影响金属键强弱的主要因素。
认识金属物理性质的共性。
4.认识合金的性质及应用。
注:金属晶体晶胞及三种堆积方式不作要求。
第二单元1.认识氯化钠、氯化铯晶体。
2.知道晶格能的概念,知道离子晶体的熔沸点高低、硬度大小与晶格能大小的关系。
3.知道影响晶格能大小的主要因素。
4.离子晶体中离子的配位数不作要求。
第三单元1.认识共价键的本质,了解共价键的方向性和饱和性。
2.能用电子式表示共价分子及其形成过程。
认识共价键形成时,原子轨道重叠程度与共价键键能的关系。
3.知道σ键和π键的形成条件,了解极性键、非极性键、配位键的概念,能对一些常见简单分子中键的类型作出判断。
注:大π键不作要求4.了解键能的概念,认识影响键能的主要因素,理解键能与化学反应热之间的关系。
5.了解原子晶体的特征,知道金刚石、二氧化硅等常见原子晶体的结构与性质的关系。
第四单元1.知道范德华力和氢键是两种最常见的分子间作用力。
2.了解影响范德华力的主要因素,知道范德华力对物质性质的影响。
化学-选择性必修第2册-(物质结构与性质)基础知识汇总
化学-选择性必修第2册-基础知识汇总第一章原子结构与性质第一节原子结构第1课时能层与能级基态与激发态一、能层与能级1920年,丹麦科学家玻尔在氢原子模型基础上,提出构造原理,开启了用原子结构解释元素周期律的篇章。
1925年以后,玻尔的“壳层”落实为“能层”与“能级”,厘清了核外电子的可能状态,复杂的原子光谱得以诠释。
1936年,德国科学家马德隆发表了以原子光谱事实为依据的完整的构造原理。
1.能层(1)含义:根据核外电子的能量不同,将核外电子分为不同的能层(电子层)。
(2)序号及符号能层序号一、二、三、四、五、六、七……分别用K、L、M、N、O、P、Q……表示,其中每层所容纳的电子数最多为2n2个。
(3)能量关系能层越高,电子的能量越高,能量的高低顺序为E(K)<E(L)<E(M)<E(N)<E(O)<E(P)<E(Q)。
2.能级(1)含义:根据多电子原子的同一能层的电子的能量也可能不同,将它们分为不同能级。
(2)表示方法:分别用相应能层的序数和字母s、p、d、f等表示,如n能层的能级按能量由低到高的排列顺序为n s、n p、n d、n f等。
3.能层、能级与最多容纳的电子数能层一二三四五六七……(n)符号K L M N O P Q……能级1s2s2p3s3p3d4s4p4d4f5s……………………最多22626102610142……………………电子281832………………2n2数由上表可知:(1)能层序数等于该能层所包含的能级数,如第三能层有3个能级。
(2)s、p、d、f各能级可容纳的最多电子数分别为1、3、5、7的2倍。
(3)原子核外电子的每一能层最多可容纳的电子数是2n2(n为能层的序数)。
二、基态与激发态原子光谱1.基态原子与激发态原子(1)基态原子:处于最低能量状态的原子。
(2)激发态原子:基态原子吸收能量,它的电子会跃迁到较高能级,变成激发态原子。
(3)基态、激发态相互间转化的能量变化激发态原子基态原子吸收能量释放能量,主要形式为光2.光谱(1)光谱的成因及分类(2)光谱分析:在现代化学中,常利用原子光谱上的特征谱线来鉴定元素,称为光谱分析。
2020届高中化学选修3:物质结构与性质-知识点总结(Word版)
选修三物质结构与性质总结一.原子结构与性质.1、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1.(3).掌握能级交错1-36号元素的核外电子排布式.ns<(n-2)f<(n-1)d<np3.元素电离能和元素电负性第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。
常用符号I1表示,单位为kJ/mol。
(完整版)物质结构与性质知识点总结
高中化学物质结构与性质知识点总结一.原子结构与性质.一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会太,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1〜36号元素原子核外电子的排布.(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占丕同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d i0、f i4)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s i、29Cu [Ar]3d io4s i.(3).掌握能级交错图和1-36号元素的核外电子排布式.ns (n-2)f (n-l)d. up①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。
②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。
物质结构与性质知识点总结
物质结构与性质知识点总结其次,介绍了多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布。
其中,原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述,在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子。
原子核外电子排布原理包括能量最低原理、泡利不相容原理和洪特规则,其中洪特规则的特例具有较低的能量和较大的稳定性。
最后,介绍了第一电离能和元素电负性,其中第一电离能是气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量,常用符号I1表示,单位为kJ/mol。
离子键是由阴、阳离子通过静电作用形成的化学键。
离子键的强弱取决于离子半径和电荷数。
离子半径越小,离子所带电荷越多,离子键越强。
离子晶体的熔沸点也会随之增加。
晶格能是指拆开1mol离子晶体使之形成气态阴离子和阳离子所吸收的能量。
晶格能越大,离子晶体的熔点越高、硬度越大。
离子晶体是通过离子键作用形成的晶体。
1.相似相溶原理:极性分子易溶于极性分子溶剂中,如___易溶于水中;非极性分子易溶于非极性分子溶剂中,如CO2易溶于CS2中。
2.分子极性的影响:极性分子的电荷分布不均匀、不对称,非极性分子的电荷分布均匀、对称。
极性分子易形成极性键,非极性分子易形成非极性键。
3.常见分子的类型与形状:包括直线形、V形、平面三角形、三角锥形、四面体形等,分子类型和形状的不同会影响键角大小和键的极性。
4.原子晶体的特征:所有原子间通过共价键结合成的晶体或相邻原子间以共价键相结合而形成空间立体网状结构的晶体。
金刚石、晶体硅、二氧化硅等是典型的原子晶体,其熔沸点大小与共价键的强弱有关。
5.金刚石、晶体硅、二氧化硅的结构与性质关系:金刚石是正四面体的空间网状结构,最小的碳环中有6个碳原子,每个碳原子与周围四个碳原子成键;晶体硅的结构与金刚石相似,而二氧化硅晶体是空间网状结构,最小的环中有6个硅原子和6个氧原子,每个硅原子与4个氧原子成键,每个氧原子与2个硅原子成键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物质结构与性质补充练习
1.(1)中国古代四大发明之一——黑火药,它的爆炸反应为:
2KNO3 + 3C + S == A + N2↑+ 3CO2↑ (已配平)
①除S外,上列元素的电负性从大到小依次为;
②在生成物中,A的晶体类型为,含极性共价键的分子的中心原子轨道杂化类型
为;
③已知CN-与N2结构相似,推算HCN分子中σ键与π键数目之比为;
(2)原子序数小于36的元素Q和T,在周期表中既处于同一周期又位于同一族,且原子序数T比Q 多2。
T的基态原子外围电子(价电子)排布为,Q2+的未成对电子数是(3)在CrCl3的水溶液中,一定条件下存在组成为[CrCl n(H2O)6-n]x+(n和x均为正整数)的配离子,将其通过氢离子交换树脂(R-H),可发生离子交换反应:
交换出来的H+经中和滴定,即可求出x和n,确定配离子的组成。
将含0.0015 mol [CrCl n(H2O)6-n]x+的溶液,与R-H完全交换后,中和生成的H+需浓度为0.1200 mol·L-1 NaOH溶液25.00 mL,该配离子的化学式为。
2.(2010省质检)X元素在第3周期中电负性最大,Y、Z元素同主族且位置相邻,Y原子的最外层电子排布为ns n np n+2。
请填写下列空白。
(1)第一电离能:Y Z(填“>”、“<”或“=”);
(2)XY2是一种高效安全的消毒剂,熔点-59.5℃,沸点10℃,构成该晶体的微粒之间的作用力是;
(3)ZX2常用于有机合成。
已知极性分子ZX2中Z原子采用np3杂化,则该分子的空间构型是,分子中X、Z原子之间形成键(填“σ”或“π”);
(4)胆矾晶体(CuSO4·5H2O)中4个水分子与铜离子
形成配位键,另一个水分子只以氢键与相邻微粒结合。
某兴趣小组称取2.500g胆矾晶体,逐渐升温使其失水,
并准确测定不同温度下剩余固体的质量,得到如右图所示
的实验结果示意图。
以下说法正确的是(填标号);
A.晶体从常温升至105℃的过程中只有氢键断裂
B.胆矾晶体中形成配位键的4个水分子同时失去
C.120℃时,剩余固体的化学式是CuSO4·H2O
D.按胆矾晶体失水时所克服的作用力大小不同,
晶体中的水分子可以分为3种
(5)右图中四条曲线分别表示H2、Cl2、Br2、I2分子的
形成过程中能量随原子核间距的变化关系,其中表示v的是
曲线(填“a”、“b”或“c”),理由是。
3.(2010年厦门质检卷)A、B、C、D、E、F、G七种前
四周期元素,其原子序数依次增大。
A的原子中没有成对
电子;B的基态原子中电子占据三种能量不同的原子轨道,
且每种轨道中的电子总数相同;D及其同主族元素的氢化物沸点变化趋势如图;F是地壳中含量最高的金属元素;G与F同主族。
请回答下列问题:
(1)写出F元素基态原子的核外电子排布式;
(2)B、C、D三种元素电负性由大到小的顺序是(用元素符号表示);
(3)下列有关上述元素的说法,正确的是(填序号);
①CA3沸点高于BA4,主要是因为前者相对分子质量较大
②配合物Ni(BD)4常温下为液态,易溶于CCl4、苯等有机溶剂,因此固态Ni(BD)4属于离子晶体
③C的氢化物的中心原子采取sp2杂化
④F单质的熔点高于E单质,是因为F单质的金属键较强
⑤比G的原子序数少1的元素第一电离能高于G
(4)CA3分子的空间构型为,1 mol B2A4分子中含有个σ键;
(5)ED是优良的耐高温材料,其晶体结构与NaCl晶体相似。
ED的熔点比NaCl高,其原因是。
4.(2010年厦门市适应性考试卷)第四周期过渡元素常与H2O、NH3等形成配合物。
(1)写出Fe元素基态原子的核外电子排布式;
(2)C、N、O元素的第一电离能从大到小的顺序为(用元素符号表示);
(3)已知铜离子可形成配位数为4的配合物,向盛有硫酸铜水溶液的试管里加入过量氨水,得到蓝色溶液,写出该反应的离子方程式;
(4)由C、H、O、S中任两种元素构成甲、乙、丙三种分子,所含原子的数目依次为3、4、8,都含有18个电子。
甲和乙的主要物理性质比较如下:
①1 mol乙分子含有个σ键;
②丙分子的中心原子采取杂化轨道;
③甲和乙的相对分子质量基本相同,造成上述物理性质差异的主要原因是
(结合具体物质解释)。
5.(2011年省质检)硼酸能够吸收中子,屏蔽核辐射。
硼酸晶体具有
层状结构,每一层结构如右图所示。
(1)硼酸晶体属于(填“离子晶体”、“分子晶体”或“原
子晶体”),B元素的电负性O元素(填“<”或“>”)。
(2)硼酸晶体中,B的杂化轨道类型是。
(3)硼酸晶体中,微粒间的作用力类型有。
(4)硼酸是一元弱酸,呈酸性的机理是:硼酸与水作用时,硼原子与水电离产生的OH-以配位键结
合形成Y-离子,导致溶液中c(H+)> c(OH-)。
Y-的结构简式是;硼酸与水作用时,每生成一个Y-,断裂个σ键。
(5)三氟化硼(BF3)水解生成硼酸和氟硼酸(H[BF4]),BF4-空间结构与CH4相似,BF4-与BF3硼氟键的键长如下表所示:
从表中数据可以看出,BF3中硼氟键的键长比BF4-中硼氟键
的键长短,原因可能是。
6.常用于除去高速公路冰雪的是“氯盐类”融雪剂,如NaCl、MgCl2等,请回答:
(1)“氯盐类”融雪剂主要成分的晶体类型为;
(2)冰比硫化氢熔点高的原因是,其分子中氧原子的杂化轨道类型为;
(3)已知X、Y和Z为第三周期元素,其原子的第一至第四电离能如下表所示:
X、Y、Z的电负性从大到小的顺序为(用元素符号表示),元素Y第一电离能大于X
的原因是;
(4)融雪剂对环境危害很大,如和路基上的铁等金属形成原电池,加快路面破
损。
铁元素应用广泛,Fe2+与KCN溶液反应得Fe(CN)2沉淀,KCN过量时沉
淀溶解,生成黄血盐,结构如图。
①写出铁元素基态原子价电子排布式;
②已知CN- 与N2 结构相似,1 mol CN- 中 键数目为;
③写出沉淀溶解的化学方程式。
7.Ⅰ.氯化铁溶液用于检验食用香精乙酰乙酸乙酯时,会生成紫色
配合物,其配离子结构如右图所示。
(1)此配合物中,铁离子的价电子排布式为。
(2)此配离子中含有的作用力有(填序号)。
A.离子键B.金属键C.极性键D.非极性键
E.配位键F.氢键G.σ键H.π键
(3)此配合物中碳原子的杂化轨道类型有。
Ⅱ.元素A的基态原子占据纺锤形原子轨道的电子总数为2,元素
B与A同周期,其基态原子占据s轨道的电子数与p轨道相同;C是A的同族相邻元素,电负性小于A;D是B的同族相邻元素,第一电离能小于B。
则:
(4)化合物CA和DB2的晶体熔点较高的是(填化学式)。
(5)AD2分子的空间构型为。
(6)A、B和C的成键情况如下:。