第六章613迭代法的收敛性

合集下载

第六章6.3迭代法的收敛性

第六章6.3迭代法的收敛性

4 2 1
1 5 1
1
2
3
问题:该矩阵具有怎样的特点? 结论:该矩阵是严格对角占优阵
定义:如果矩阵A的元素满足
jn
| aii | | aij | i 1,2,3,, n j 1 ji
则称A为严格对角占优矩阵。
9
特殊方程组迭代法的收敛性
定理:若线性方程组AX=b的系数矩阵A为 严格对角占优矩阵,则解该方程组的Jacobi 迭代法和G-S迭代法均收敛。
则: (k1) B (k ) B2 (k 1) Bk1 (0)
注意 (0) x(0) x * 为非零常数向量
因此迭代法收敛的充要条件
lim (k1) lim( x(k1) x*) 0
k
k
可转变为
lim Bk1 0
k

2
一阶定常迭代法的收敛性
定理:迭代格式 x(k1) Bx(k ) f 收敛 的充要条件为:lim Bk 0
k
lim Bk 0
k
即: (B) 1
B的所有特征值的绝对值小于1
B的谱半径
根据矩阵与其Jordan标准形及特征值的关系
3
一阶定常迭代法的收敛性
定理:设B为n阶实矩阵,则 lim Bk 0 k
的充要条件是 (B) 1
定理:迭代格式 x(k1) Bx(k ) f 收敛 的充要条件为:(B) 1
4
一阶定常迭代法的收敛性
例:判别下列方程组用Jacobi迭代法和G-S 法求解是否收敛。
1 2 2 x1 1 1 1 1 x2 1 2 2 1 x3 1
5
一阶定常迭代法的收敛性
解: (1) 求Jacobi法的迭代矩阵
1 0 0 0 2 2

西安交大计算方法A考点总结【1-9章】

西安交大计算方法A考点总结【1-9章】
k
x* xk 0
计算方法 A 知识点总结 仅供参考[2014 级化机]
矩阵收敛的充要条件是 lim
k
A* Ak 0
lim Bk 0 谱半径 B 1
k
2、迭代法的一般格式 3、雅克比迭代
xk 1 Bxk g (注:B 是个对角元素均为 0 的方阵)
i 1 n bi aij xjk 1 aij xjk ) j 1 j i
SOR 迭代格式(加松弛因子 w) : xi 变形为 xSOR
k 1 k 1 1 xk xG S
k 1
xik rik 1 / aii
改进平方根法:A=LU=LDLT 比平方根法多了 5、追赶法(三对角方程组) 本质是三对角矩阵的 LU 分解。 6、向量范数
x
非负性;齐性;三角不等式。
x1 x
2
元素绝对值之和; 元素平方和的平方根; 元素绝对值的最大值;
x
7、矩阵范数
A
非负性;齐性;三角不等式;相容性。
A1 A2
列范数(第 1 到第 n 列元素绝对值之和的最大值) 谱范数( AT A 的特征值的最大值的平方根) 行范数(第 1 行到第 n 行元素绝对值之和之和的最大值)
Dxk 1 1 Dxk Exk 1 Fxk b


1)迭代法收敛的充分条件:迭代矩阵 B 的范数 2)迭代法收敛的充要条件: lim B
k k
B 1
0 谱半径 B 1
3)超松弛迭代法收敛的必要条件是: 0 2
计算方法 A 知识点总结 仅供参考[2014 级化机]
第一章 1、误差的来源与分类:模型误差、观测误差、截断误差、舍入误差。 2、准确到 n 位小数:

2.2 迭代法的一般形式与收敛性定理

2.2 迭代法的一般形式与收敛性定理

设aii0 (i=1,2,,n),并将A写成三部分
0 a11 a 21 0 a 22 A a n 1 ,1 a n 1 , 2 0 a nn a n 2 a n , n 1 a n1 0 a12 a1,n1 a1n 0 a 2 , n 1 a 2 n 0 a n 1, n 0 D LU. 0

k
B ( H )
k
两边取对数得: k ln ( H ) ln k
ln ln ( H )
定义:
ln ( H )
为迭代法(2.2.3)的渐近收敛速 度。
解线性方程组的迭代法
线性方程组
a11 x1 a12 x2 a x a x 21 1 22 2 an1 x1 an 2 x2 a1n xn b1 a2 n xn b2 ann xn bn
复习:矩阵的谱半径 设λ是矩阵A相应于特征向量x的特征值,即 Ax=λx 向量-矩阵范数的相容性,得到 |λ| || x ||=||λx|| =|| Ax|| ≤ || A || ||x|| 从而,对A的任何特征值λ均成立 |λ|≤|| A || ( 3)
设n阶矩阵A的n个特征值为λ1,λ2,…λn,称 ( A) max i
x ( k 1) x* H ( x ( k ) x* )
由此递推:x ( k 1) x* H k 1 ( x ( 0) x* ), k 0,1,2,
x 是线性方程组Ax=b的解
x* Hx* g
x
k 1
*

迭代法的收敛性

迭代法的收敛性
k
x* Mx* g 由迭代公式有 M (x
k k
x ( k ) x* Mx ( k 1) g Mx* g
( k 1)
x ) M (x
* 2 * k
( k 2) (k )
x ) M (x
* k
(0)
x )
*
于是有 lim M ( x
1 1 例:Ax b, A 2 1 2
1 2 1 1 讨论用三种迭代法求解的收敛性。 2 1 1 2 解:因A为对称且其各阶主子式皆大于零,故A为对称正定矩 1 2 阵。由判别条件3,Gauss-Seidel迭代法与松弛法(0 2) 均收敛。A不是弱对角占优阵,故不能用条件1判断。 0 1 -1 Jacobi迭代法的迭代矩阵为B I - D A 2 1 2 1 2 0 1 2 1 2 1 2 0

1,
1,由推论1无法判别收敛性。
对一些特殊的系数矩阵可给出几个常用的判 别收敛条件
设有线性方程组Ax b, 下列结论成立(收敛充分条件) 1.若A为严格对角占优阵或不可约弱对角占优阵,则 Jacobi迭代法和Gauss-Seidel迭代法均收敛。 2.若A为严格对角占优阵, 0 1, 则松弛法收敛。 3.若A为对称正定阵,则松弛法收敛的充要条件为 0 2。 10 1 2 2 1 0 B 1 2 1 上两例中: A 1 10 2 1 1 5 0 1 2 A为严格对角占优阵,故Jacobi与Gauss-Seidel迭 代均收敛。B为非严格对角占优阵,但为对称正定 阵, =1.4故松弛法收敛。
推论1 对任意初始向量x 和右端项g,若 M 1,由迭代

数值分析9(迭代法收敛性证明)

数值分析9(迭代法收敛性证明)

中止准则
|x
(k )
L x | | x ( k ) x ( k 1) | 1 L
*
15:55
5/34
引理1 矩阵B R nn , 则 lim B k 0的充分必要条件
k
是 ( B ) 1, 其中 ( B )=max | k | 为矩阵B的
1 k n
谱半径, 1 , 2 ,
《数值分析》 9
迭代法收敛性条件
迭代误差估计定理
15:55
1/34
总结:
矩阵范数
算子范数
算子范数 矩阵1范数, 矩阵无穷范数, 矩阵2范数
2/34
例4 设||.||为Rn×n 上任意一种矩阵范数, 则对 任意的A ∈ Rn×n , 有 ( A) A 。 证明: 设 ( A) max | i |, x 0是模最大特
2
B ) I B
k
j 0
,
( B) 1 lim B k 0
( I B )-1 = B j。
lim X
k
(k )
( I B ) f 说明迭代法产生的序列收敛。
1
15:55
9/34
谱半径小于1是迭代收敛的充要条件,但它不 易计算,所以在实际使用中通常并不好用。
由X(0) 的任意性知
B =lim B O ( B ) 1。
* k
15:55
k
8/34
充分性
X ( k 1) BX ( k ) f B( BX ( k 1) f ) f
B k 1 X (0) B j f
k k 1
j 0
k
则( I B)( I B B

《数值分析》第六章

《数值分析》第六章
由上述 Th 1 可知, 迭代过程 xk +1 = ϕ ( xk ) 对于任 x ∈ Δ 意的初值 0 均收敛.
有局部收敛性.
证 明 . 由 连 续 函 数 的 性 质 , 存 在 x* 的 邻 域
Δ : x − x* ≤ δ
,使 ∀x ∈ Δ 成立 ϕ '( x) ≤ L < 1 ,此外,
对于任意 x ∈ Δ ,总有 ϕ ( x) ∈ R ,这是因为
15 16
迭代法不一定收敛. 对同一个问题,不同的迭代法, 可能有的收敛,有的不收敛. 如下例.
Th 1 假定函数 ϕ (x) 满足: 1 对任意 x ∈ [a, b] 有, ϕ ( x) ∈ [a, b] (即,映像入内)
∀x ∈ [a, b] , ϕ '( x ) ≤ L < 1 2 存在非负数 L < 1 使得, (压 缩映射)
k → ∞ 时成立下列渐近关系式
= xk − x * 当
求根 x * 的邻近连续,并且满足:
ϕ '( x* ) = ϕ ''( x* ) = L = ϕ ( p −1) ( x * ) = 0 , ϕ ( p ) ( x * ) ≠ 0
ek +1 → C ( C ≠ 0) e kp
则称该迭代过程是 p 阶收敛的. 特别地, p = 1 时称为线性收敛,
*
* *
* * 假设 x , y ∈ [a, b] 是任意的两个根,因为
xk = x * . 故 lim k →∞
x* − y* = ϕ ( x* ) − ϕ ( y* ) = ϕ '(ξ )( x* − y* ) ≤ L x* − y*
* * 故 x = y , 即, x = ϕ ( x ) 在[a,b]上有唯一的根.

迭代解法全章

迭代解法全章

向量-矩阵范数旳相容性,得到
|λ| || x ||=||λx|| =|| Ax|| ≤ || A || ||x||
从而,对A旳任何特征值λ均成立 |λ|≤|| A ||
(6.1)
设n阶矩阵A旳n个特征值为λ1,λ2,…λn。称
(
A)
max
1i n
i
为矩阵A旳谱半径,从(6.1)式得知,对矩阵A旳任何一
称(3)为求解(1)旳近似解旳迭代解法,称{x(k)}为(1)近
似解序列,称B为迭代矩阵。
假如 lim x (k ) x* 则有 k x*= Bx*+F
(4)
我们称迭代法(3)收敛,不然为发散。下面分析迭代格 式(3)收敛旳条件.
12/29/2023
19
x(k+1)= Bx(k)+F , k=0 ,1 , … , x*= Bx*+F
及向量
x*
( x1* ,
x2* ,,
x
* n
)T
假如
lim x(k) x* 0
k
则称向量序列 x(k) 收敛于向量 x* 。记作
lim x(k ) x* 或 x(k ) x*
k
向量序列 {x(k)} 收敛于向量 x*,当且仅当它旳每一 种分量序列收敛于x*旳相应分量,即
x(k)
x*
x(k) i
1
求解线性方程组旳数值解除了使用直接解法,迭代解 法也是经常采用旳一种措施,这种措施更有利于编程计 算,本章将简介这种措施。
§1 向量和矩阵旳范数
为了对线性方程组数值解旳精确程度,以及方程组 本身旳性态进行分析,需要对向量和矩阵旳“大小”引 进某种度量,范数就是一种度量尺度,向量和矩阵旳范 数在线性方程组数值措施旳研究中起着主要旳作用。

_第六章_线性方程组的数值解法迭代法

_第六章_线性方程组的数值解法迭代法

b 1
a 11
b2
f
a 22 bn
a nn
x(k1) B0x(k)f
--------(5)
第四节 解线性方程组的迭代法
令:
0 0 0
L
a 21
0
0 A的下三角部分矩阵
a n1 a n 2 0
0
U
0
a12 0
a1n a2n
A的上三角部分矩阵
第三节 向量范数和矩阵范数
(2)范数的另一个简单例子是二维欧氏空间的长度
0M x2 y2
欧氏范数也满足三个条件:
(勾股定理)
设x = (x1, x2) ① x 0 x >0 ② ax = a x a为常数 ③ x+ y ≤ x + y 前两个条件显然,第三个条件在几何上解释为三角形一边的长度不大于其它 两边长度之和。因此,称之三角不等式。
满足:
① A0,且A0,当且A 仅 0当
,若 A
正定
② A A,为任意实数
奇次
③ ABAB,A和 B为任意 n阶两 方个 三阵 角不等
则称 A 为矩阵A的范数。
第三节 向量范数和矩阵范数
2、矩阵范数与向量范数的相容性 对于任意的n维向量x,都有:
Ax A x
这一性质称为矩阵范数与向量范数的相容性。
n
A
max
1in
j1
aij
A的每行绝对值之和的最大值, 又称A的行范数
第三节 向量范数和矩阵范数
(3)矩阵的2范数
2范数 ||A|2 | : (AT A )
(AAT) ?
矩阵的谱半径:
矩阵B的诸特征值为: i(i1,2, ,n)

第六章 解线性方程组的迭代法.ppt

第六章 解线性方程组的迭代法.ppt

称 J 为解 Ax b的雅可比迭代法的迭代阵.
(2.5)
15
研究雅可比迭代法(2.5)的分量计算公式.
记 x(k ) ( x1(k ) ,, xi(k ) ,, xn(k ) )T ,
由雅可比迭代公式(2.5), 有
Dx(k1) (L U )x(k ) b,

i1
n
aii
9
定义1 (1) 对于给定的方程组 x Bx f,用公式(1.6) 逐步代入求近似解的方法称为迭代法(或称为一阶定常迭代 法,这里 B与 k无关).
(2) 如果 lim x(k) 存在(记为 x * ),称此迭代法收敛, k
显然 x *就是方程组的解,否则称此迭代法发散. 研究 {x(k )}的收敛性. 引进误差向量
22
例2 用高斯-塞德尔迭代法解线性方程组(1.2).

8x1 3x2 2x3 4x1 11x2 x3

20, 33,
6x1 3x2 12x3 36.
(1.2)
取 x(0) (0, 0, 0)T, 按高斯-塞德尔迭代公式

x ( k 1) 1

记为 Ax b , 其中
(1.2)
8 A4
6
3 2 11 1, 3 12
x1 x x2 ,
x3
20 b 33 .
36
方程组的精确解是 x* (3, 2, 1)T . 现将(1.2)改写为
4

12
于是,求解 Ax b转化为求解 Mx Nx b,即求解
Ax b 求解x M 1Nx M 1b.
可构造一阶定常迭代法

迭代法的误差

迭代法的误差

迭代法的误差
x
迭代法的误差
迭代法是一种数值计算方法,它将非线性的问题转化为迭代求解,可以达到比较明显的效果。

但是,由于迭代求解的非精确性和计算过程中产生的误差,迭代法的收敛性存在一定的误差。

一、迭代收敛性误差
①收敛性误差:收敛性误差是指迭代求解过程中,由于某种原因,迭代收敛时出现的误差。

通常会出现收敛性误差,这是由于迭代收敛的过程中,循环迭代的次数越多,迭代误差就越大。

②终止误差:终止误差指的是迭代收敛终止时产生的误差,即迭代收敛到某一次时出现的误差,此时误差主要由初始值造成的。

二、迭代误差的控制
①收敛条件的选择:根据问题的特性,选择适当的终止条件,使得迭代过程中不断逼近最优解。

②选择合适的迭代步长:大步长将加快迭代,但是可能会使得迭代误差增大;小步长会使得迭代进行的更加稳定,但是可能会增加迭代次数,因此,选择一个合适的步长是十分重要的。

③提高计算的精度:提高计算的精度能够有效的提高计算结果的准确性,从而减少迭代误差,但是提高精度会增加计算的复杂度和耗时,应适当取舍。

三、迭代误差的影响
①影响收敛速度:迭代误差会影响迭代收敛的速度,造成迭代收敛时间的延长,从而影响求解结果的准确性和可行性。

②影响迭代结果的准确性:由于迭代误差的存在,迭代收敛的结果会出现一定的误差,从而导致最终的迭代结果出现一定的偏差,影响结果的准确性。

数值分析第六章课后习题答案

数值分析第六章课后习题答案

第六章课后习题解答(1)()()123(1)()213(1)()()312(01.21125551154213351010(1,1,1),17( 4.0000186,2.99999k k k k k k k k k Tx x x x x x x x x x x+++ìïï=---ïïïïïï=-+íïïïïï=-++ïïïî==-(17)解:(a )因系数矩阵按行严格对角占优,故雅可比法与高斯-塞德尔均收敛。

(b )雅可比法的迭代格式为取迭代到次达到精度要求(1)()()123(1)(1)()213(1)(1)(1)312(0)(8)15,2.0000012)21125551154213351010(1,1,1),8( 4.0000186,2.9999915,2.0000012)Tk k k k k k k k k TTx x x x x x x x x x++++++-ìïï=---ïïïïïï=-+íïïïïï=-++ïïïî==-高斯塞德尔法的迭代格式为x 取迭代到次达到精度要求1212:00.40.4.0.400.80.40.80||(0.8)(0.80.32)()1.09282031,00.40.4()00.160.6400.0320.672DL U I BD L U l l l l--骣--÷ç÷ç÷ç÷ç÷=+=--ç÷ç÷÷ç÷ç÷--÷ç桫-=-+-=>-æ--çççç=-=-ççççèlJJJS解(a )雅可比法的迭代矩阵B()BB故雅可比迭代法不收敛高斯塞德尔法迭代矩阵131()||||0.81022101220||022023002SJBDL U I BD L Ul l¥--ö÷÷÷÷÷÷÷÷÷÷ç÷ø?<骣-÷ç÷ç÷ç÷ç÷=+=--ç÷ç÷÷ç÷ç÷--ç÷桫-=骣-÷ç÷ç÷ç÷ç÷=-=-ç÷ç÷÷ç÷ç÷ç桫llSJJ SB故高斯-塞德尔迭代法收敛。

数值分析智慧树知到课后章节答案2023年下湖南师范大学

数值分析智慧树知到课后章节答案2023年下湖南师范大学

数值分析智慧树知到课后章节答案2023年下湖南师范大学第一章测试1.在数值计算中因四舍五入产生的误差称为()A:观测误差 B:方法误差 C:舍入误差 D:模型误差答案:舍入误差2.当今科学活动的三大方法为()。

A:科学计算 B:实验C:数学建模 D:理论答案:科学计算;实验;理论3.计算过程中如果不注意误差分析,可能引起计算严重失真。

A:错 B:对答案:对4.算法设计时应注意算法的稳定性分析。

A:对 B:错答案:对5.在进行数值计算时,每一步计算所产生的误差都是可以准确追踪的。

A:错 B:对答案:错第二章测试1.A: B: C: D:答案:2.某函数过(0,1),(1,2)两点,则其关于这两点的一阶差商为A:3 B:0 C:2 D:1 答案:13.A: B: C: D:答案:4.下列说法不正确的是A:高次多项式插值不具有病态性质 B:分段线性插值逼近效果依赖于小区间的长度 C:分段线性插值的导数一般不连续D:分段线性插值的几何图形就是将插值点用折线段依次连接起来答案:分段线性插值的几何图形就是将插值点用折线段依次连接起来5.下列关于分段线性插值函数的说法,正确的是A:对于光滑性不好的函数优先用分段线性插值 B:对于光滑性较好的函数优先用分段线性插值 C:一次函数的分段线性插值函数是该一次函数本身 D:二次函数的分段线性插值函数是该二次函数本身答案:对于光滑性不好的函数优先用分段线性插值;一次函数的分段线性插值函数是该一次函数本身6.A: B: C:D:答案:;;7.同一个函数基于同一组插值节点的牛顿插值函数和拉格朗日插值函数等价。

A:错 B:对答案:对第三章测试1.A: B:C:D:答案:2.以下哪项是最佳平方逼近函数的平方误差A: B: C:D:答案:3.当区间为[-1,1],Legendre多项式族带权 ( ) 正交。

A: B: C: D:答案: 4.n次Chebyshev多项式在 (-1,1) 内互异实根的个数为A:n+1 B:n-1 C:nD:n+2 答案:n5.用正交函数族做最小二乘法有什么优点A:每当逼近次数增加1时,系数需要重新计算 B:得到的法方程非病态C:不用解线性方程组,系数可简单算出 D:每当逼近次数增加1时,之前得到的系数不需要重新计算答案:得到的法方程非病态;不用解线性方程组,系数可简单算出;每当逼近次数增加1时,之前得到的系数不需要重新计算6.用正交多项式作基求最佳平方逼近多项式,当n较大时,系数矩阵高度病态,舍入误差很大。

牛顿迭代法收敛定理

牛顿迭代法收敛定理

关于牛顿迭代法的课程设计实验指导非线性方程(或方程组)问题可以描述为求 x 使得f (x ) = 0。

在求解非线性方程的方法中,牛顿迭代法是求非线性方程(非线性方程组)数值解的一种重要的方法。

牛顿是微积分创立者之一,微积分理论本质上是立足于对世界的这种认识:很多物理规律在微观上是线性的。

近几百年来,这种局部线性化方法取得了辉煌成功,大到行星轨道计算,小到机械部件设计。

牛顿迭代法正是将局部线性化的方法用于求解方程。

一、牛顿迭代法及其收敛速度牛顿迭代法又称为牛顿-拉夫逊方法(Newton-Raphson method ),是一种在实数域和复数域上通过迭代计算求出非线性方程的数值解方法。

方法的基本思路是利用一个根的猜测值x 0做初始近似值,使用函数f (x )在x 0处的泰勒级数展式的前两项做为函数f (x )的近似表达x 1。

即将方程f (x ) = 0在x 0处局部线性化计算出近似解x 1,重复这一过程,将方程f (x ) = 0在x 1处局部线性化计算出x 2,求得近似解x 2,……。

详细叙述如下:假设方程的解x *在x 0附近(x 0是方程解x *的近似),函数f (x )在点x 0处的局部线化表达式为)()()()(000x f x x x f x f '-+≈由此得一次方程 0)()()(000='-+x f x x x f求解,得 )()(0001x f x f x x '-= 如图1所示,x 1比x 0更接近于x *。

该方法的几何意义是:用曲线上某点(x 0,y 0)的切线代替曲线,以该切线与x 轴的交点(x 1,0)作为曲线与x 轴的交点(x *,0)的近似(所以牛顿迭代法又称为切线法)。

设x n 是方程解x *的近似,迭代格式 )()(1n n n n x f x f x x '-=+ ( n = 0,1,2,……) 就是著名的牛顿迭代公式,通过迭代计算实现逐次逼近方程的解。

第6章 非线性方程求根(2、newton法、迭代法的收敛阶)

第6章 非线性方程求根(2、newton法、迭代法的收敛阶)

定理 考虑方程 x = g(x), g(x)∈C[a, b], 若 ∈
( I ) 当 x∈[a, b] 时, g(x)∈[a, b]; ∈ ∈ ; ( II ) 0 ≤ L < 1 使得 | g’(x) | ≤ L < 1 对 x∈[a, b] 成立。 成立。 ∈ 则任取 x0∈[a, b],由 xk+1 = g(xk) 得到的序列 { x k }∞= 0 收 , k 敛于g(x) 在[a, b]上的唯一不动点。并且有误差估计式: 敛于 上的唯一不动点。并且有误差估计式: 上的唯一不动点 k 1 L | x * xk | ≤ | x k +1 x k | | x * xk | ≤ | x1 x 0 | 1 L 1 L 且存在极限
=
m 1 m
A3: 线性收敛
下山法 /* Descent Method */ ——Newton’s Method 局部微调: 局部微调: 原理: 减小, 原理:若由 xk 得到的 xk+1 不能使 | f | 减小,则在 xk 和 xk+1 之间找一个更好的点 x k + 1 ,使得 f ( xk+1 ) < f ( xk ) 。 xk xk+1
f ( xk ) x k +1 = λ [ x k ] + (1 λ ) xk f ′( xk ) = xk λ f ( xk ) f ′( xk )
λ xk +1 + (1 λ ) xk , λ ∈ [0, 1]
注:λ = 1 时就是Newton’s Method 公式。 时就是 公式。 代入效果不好时, 减半计算。 当 λ = 1 代入效果不好时,将 λ 减半计算。
x * x k +1 lim = g ′( x * ) k →∞ x * x k

6.3迭代法的收敛定理

6.3迭代法的收敛定理
det( D L) aii 0
i 1 n
所以矩阵(D-L)为可逆下三角矩阵,其逆也是下三角矩阵, G-S迭代法的迭代矩阵是 BG =(D - L)-1U。
考虑BG的特征值λ ,其特征方程为
det(I-BG) = det(I-(D-L)-1U) = det(D-L)-1det((D-L)-U)=0
易求
BJ

max
1i n
1 j n , j i

aij aii
由严格对角占优定义(定义6.1 ),得 BJ ∞<1,所以, Jacobi 迭代法收敛。
下面证明G-S迭代法的收敛性。对于严格对角占优阵A, 其对角元素 aii ≠ 0 , i=1,2,,n(定义6.1 ),故
定理6.3的证明
证 首先证明Jacobi 迭代的收敛性。由
0 a 21 B J D 1 ( L U ) a 22 a n1 a nn a12 a11 0 a n2 a nn a1n a11 a2n a 22 , 0 b1 a 11 b2 fJ a 22 b n a nn
返回节
二、Jacobi 迭代法和Gauss-Seidel 迭代法的收敛速度


引子 对角占优矩阵 实例 相关定理 定理3.3的证明
返回节
引子
虽然利用定理6.1和定理6.2可以判定Jacobi 迭代 法和G-S迭代法的收敛性,但其中只有定理6.2对 Jacobi 迭代法使用比较方便,此外,对于大型方程 组,要求出G-S迭代矩阵BG和ρ(BG)以及Jacobi 迭代 矩阵BJ和ρ(BJ)都不是容易的事。

6-3迭代法的收敛性

6-3迭代法的收敛性

1
2 x1 2 x2 x3 3
讨论Jacobi法与Gauss-Seidel法旳收敛性。
解:由定理,迭代法是否收敛等价于迭代矩阵 旳谱半径是否<1,故应先求迭代矩阵。而
1 2 2
A 1 1
1
2 2 1
故A裂解后旳各矩阵分别为
1
D
1
1
0 0 0
L
1
0
0
2 2 0
0 2 2
| I
B |
1/a
2 / a 0
3 / a 2 / a

1 0 ,
2,3
|
4 a
|
故 (B) 4
|a|
由 (B) 1 得 | a | 4
故当 | a | 4 时,Jacobi迭代法收敛。
作业: 习题 1,2(2)
1 1 5
2 矩阵 B 1
1 2
0 1
不严格对角占优, 是弱对角占优
0 1 2
定义:假如矩阵A不能经过行旳互换和相应列 旳互换成为形式
A11 A12
0
A22
其中A11,A22为方阵,则称A为不可约.
例如:判断下列矩阵是否可约?
1 1 0
2 1 0
矩阵 A 1 1 0 是可约旳。 0 1 1
9 3
4 10
显然Aˊ是严格对角占优阵,所以对方程组
Ax b 用Jacobi法和Gauss-Seidel法均收敛。
例3*:设A=(aij)是二阶方阵,且a11a22≠0.试证 求解方程组Ax=b旳Jacobi法与Gauss-Seidel法 同步收敛或发散。
证明:Jacobi迭代矩阵为
0
BJ
a
21

迭代法的收敛性

迭代法的收敛性

谱半径分别是 ρ ( B ) =
30 15 , ρ ( M ) = 。均不收敛。 2 2
若交换方程的次序,得 Ax = b的同解方程组 Ax=b,
' '
3 − 10 9 −4 ' A= → A = 3 −10 9 −4 A '为严格对角占优阵,因而对方程组 A ' x = b '用 Jacobi与 Gauss − Seidel 迭代求解均收敛。
k →∞
x* = Mx* + g 由迭代公式有 x ( k ) − x* = Mx ( k −1) + g − Mx* − g = M ( x ( k −1) − x* ) = M 2 ( x ( k − 2) − x* ) = M k ( x (0) − x* ) 于是有 lim M k ( x (0) − x* ) = lim( x ( k ) − x* ) = 0
其特征方程
λ
1 λI − B = 2 1 2
1 2
λ
1 2 1 3 1 3 = λ − λ + 2 4 4
1 λ 2 1 2 = ( λ − ) ( λ + 1) = 0 2
1 , λ 3 = − 1, 因 而 ρ ( B ) = 1 得λ1 = λ 2 = 2 ⇒ J a c o b i迭 代 法 不 收 敛 。
移项得 代入得
(I − M ) x (k ) − x*
−1
1 ≤ 1− M
k
M ≤ 1− M
x (1 ) − x ( 0 ) 。
由误差估计式 x
(k )
−x
*

M
k
1− M
x (1) − x ( 0 )

(数值分析)第六章 解线性方程组的迭代法

(数值分析)第六章 解线性方程组的迭代法
* r * * *
华长生制作
1
定义1 设 中的向量序列,若有向 k n x 量 x R ,使 lim x x 0 ,则称 k lim x x 收敛于 x ,记为 k
x
k
是R
n
(k)

k
nn A R 定义2 设 是 中的矩阵序列,若有矩 n n lim A A 0 A A R 阵 ,使 ,则称 lim A A 收敛于A,记为
k 1 k x B x f
华长生制作
17
定理5.
设 方 程 x = B x + f 有 惟 一 解 x , 若 B 1 , 则 由
简 单 迭 代 法 产 生 的 向 量 序 列 x 满 足
x x
(k )
x x


B 1 B B
k

k
x( k ) x( k 1) x1 x 0
( 0 ) 取初始向量 x ,代入 ( 2 ), 可得
( 1 ) ( 0 ) x Bx f
依此类推
华长生制作 11
(2 ) ( 1 ) x Bx f

(k) x(k1) Bx f
--------(3)
( k 0 , 1 , 2 , )
这种方式就称为迭代法 ,以上过程称为迭代过程
k
k n l i m Ax 0 , x R 0 的 充要条件是
lim Ak 0.
k
R 定理 4 设矩阵 B ,则 k 的充分 m a x B B . 必要条件是 B 的谱半径 (B) 1 ,其中 i 1 i n
( n n )

第六章 解线性方程组的迭代法-2

第六章 解线性方程组的迭代法-2
()p←∆xi =ω∗(bi −∑ ij xj −∑ ij xj )/aii 1 a a
j= 1 j=i i− 1 n
21
(2) 如 p > p0 则 0 ← p 果 p
(3) xi ←xi + p
6. 输 p0 出 7. 如 p0 <eps 则 出k,ω,x, 停 果 输 机
8. 如 k< N0 则 3 果 转
A 11 A 21 A= M A q1 A 12 A 22 M A2 q L Aq A 1 11 L Aq 2 , D= M L A qq A 22 , O A qq
24
0 −A 21 L= M −A q1
0 M −A 2 q
0 − A 12 0 , U = O L 0
L −Aq 1 L −A q 2 . O M 0
q
n , , 且 A (i =1 2,L q) 为 ni ×ni非奇异矩阵, ∑ i =n. ii
i= 1
对 x及 b同样分块
aii ≥ ∑ aij
1 j= j ≠i n
(i =1 2,L n). , ,
弱对角占优阵. 弱对角占优阵 且上式至少有一个不等式严格成立,称 A为弱对角占优阵
1
定义4 (可约与不可约矩阵) 设 A = (aij )n×n (n ≥ 2) , 定义4 如果存在置换阵 P使
A P AP = 11 0
之根. 记
λa 11 λa21 C ≡λ(D−L)−U = M λa n1
λa22
M λan2
a 12
an 1 L a2n , M L λann L

迭代法收敛性分析

迭代法收敛性分析
(1) ||X(k)X *| | ||B|| ||X(k)X(k1)||
1||B||
(2) ||X(k)X*| | ||B|k | ||X(1)X(0)||
1||B||
博学之,审问之,慎寺之,明辩之, 笃行之。精心整理,欢迎收藏
1133 /18
证 由||B||<1,有
limX(k) X*
B注k+31: X(k) =B X(k-1) + f = B(B X(k-2) + f) + f =····
= Bk X(0) + ( I + B + ····+ Bk-1)f
≈ ( I – B )-1 f
博学之,审问之,慎寺之,明辩之, 笃行之。精心整理,欢迎收藏
99/18
例 线性方程组 A X = b, 分别取系数矩阵为
误差估计:
||X(k)X *| | ||B|| ||X(k)X(k1)|| 1||B||
||X(k)X*| | ||B|k | ||X(1)X(0)|| 1||B||
博学之,审问之,慎寺之,明辩之, 笃行之。精心整理,欢迎收藏
1155 /18
n
定义4.1 A=(aij)n×n, 如果 | a ii | | a ij |
2 2 0 B1=D\(D-A1); max(abs(eig(B1)))
(BJ)1 Ans= 1.2604e-005
博学之,审问之,慎寺之,明辩之, 笃行之。精心整理,欢迎收藏
1100 /18
0 2 2 BS 0 2 3
0 0 2
DL=tril(A1) B1=DL\(DL-A1) max(abs(eig(B1)))
迭ห้องสมุดไป่ตู้法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定义:如果矩阵A的元素满足
| aii | | a ij |
j 1 ji jn
i 1,2,3, , n
则称A为严格对角占优矩阵。
9
特殊方程组迭代法的收敛性
定理:若线性方程组AX=b的系数矩阵A为 严格对角占优矩阵,则解该方程组的Jacobi
迭代法和G-S迭代法均收敛。
10
证: 因为系数矩阵 A严格对角占优 , 所以
a12 a11 0 an 2 ann

a1 n a11 a2 n a22 0
1 |aij | 1 BJ max i |a | ii j i
Jacobi迭代法收敛
由定理:谱半 径小于任何一 种算子范数
(2)对于G—S迭代法,其迭代矩阵为 BG ( D L)1U
一阶定常迭代法的收敛性
设解线性方程组的迭代格式
x ( k 1) Bx ( k ) f
而方程组的精确解为 x*,则
x* Bx * f
将两式相减,得:
x ( k 1) x* Bx ( k ) Bx * B( x ( k ) x*)
令 ( k ) x ( k ) x *
并讨论迭代收敛的条件。
16
补充例题
例:AX=b为二元线性方程组, 证明:解该方程组的Jacobi迭代与G-S迭 代同时收敛或同时发散。
17
6
2 0 2
2 1 0
0 1 2
一阶定常迭代法的收敛性
de t( I BJ ) de t 1 2 2

2
2 1 3 0
所以
0
( BJ ) max(| |) 0 1
1
2 0 0
2 1 0
0
2
( BG ) max(| |) 2 1
所以Gauss-Seidel迭代法发散。
8
特殊方程组迭代法的收敛性
4 1 1 问题:该矩阵具有怎样的特点? 2 5 2 结论:该矩阵是严格对角占优阵 1 1 3
|aii | |aij | i 1,2,3,, n
j i
1 |aij | 1 i 1,2 ,3, , n |aii | j i
(1)对于Jacobi迭代法,其迭代矩阵为 BJ D1 ( L U )
11
0 a21 BJ a22 a n1 a nn
j i
i 1 n
可得
|||aii | |||aij | || |aij |
j 1 j i 1
|||aij |
j 1
i 1
j i 1
|a | (||1) |a |
ij j i 1 ij
13
n
n
如果|| 1, 则有
|||aii | |||aij |
即Jaobi迭代法收敛。
7
一阶定常迭代法的收敛性
(2) 求Gauss-Seidel法的迭代矩阵
1 1 BG ( D L) U 1 2
0 BG 0 0 2 2 0 2 3 2
0 1 2
0 0 0 0 0 1
k 0,1,2,
1
一阶定常迭代法的收敛性
则: ( k 1) B ( k ) B 2 ( k 1) B k 1 ( 0 )
注意 ( 0) x ( 0) x * 为非零常数向量
因此迭代法收敛的充要条件
lim ( k 1) lim( x ( k 1) x*) 0
雅克比迭代解一定收敛。 解:当线性方程组的系数矩阵为对角占优阵 时,Jacobi迭代法收敛,所以|a x2 b1 x1 2 x2 b2
(1)写出解该方程组的Jacobi迭代的迭代
阵,并讨论迭代收敛的条件;
(2)写出解该方程组的G-S迭代的迭代阵,
3
一阶定常迭代法的收敛性
定理:设B为n阶实矩阵,则 lim B k 0
k
的充要条件是 ( B ) 1 定理:迭代格式 x( k 1) Bx ( k ) f 收敛 的充要条件为: ( B) 1
4
一阶定常迭代法的收敛性
例:判别下列方程组用Jacobi迭代法和G-S 法求解是否收敛。
k k
可转变为
lim B k 1 0
k
2
一阶定常迭代法的收敛性
定理:迭代格式 x( k 1) Bx ( k ) f 收敛
的充要条件为:lim B k 0
k
lim B k 0
k
B的所有特征值的绝对值 小于 1
即:
( B) 1
B的谱半径
根据矩阵与其Jordan标准形及特征值的关系
j 1
i 1
j i 1
|a |
ij
n
则[( D L) U ]为严格对角占优矩阵 从而det[( D L) U ] 0
所以|| 1, 即( BG ) 1,
矛盾
G—S迭代法收敛
14
特殊方程组迭代法的收敛性
例:当a满足条件 时,线性方程组
10x1 x 2 3 x 3 7.2 x1 7 x 2 3 x 3 8.3 2 x 4 x ax 9.2 2 3 1
1 1 2 2 1 2 2 x1 1 1 x 2 1 x 1 1 3
5
一阶定常迭代法的收敛性
解: (1) 求Jacobi法的迭代矩阵
1 BJ D1 ( L U ) 0 0 0 1 0 0 0 0 1 2 1 2 0 2 2 1 0
由于BG的形式不易确定 ,
12
BG的特征值满足 det(I BG ) 0

det[I ( D L)1U ] 0
从而 det(D L)1 det[( D L) U ] 0
因此 由于
det[( D L) U ] 0
|aii | |aij |
相关文档
最新文档