数学建模:交巡警平台的设置与调度
交巡警服务平台的设置与调度-2011年全国大学生数学建模赛题
交巡警服务平台的设置与调度摘要本文是在一个原有区域交警平台的基础上,分析讨论在该市警务资源有限的情况下,如何实现城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源的实际问题。
实现最优化管理的方案。
以图论最优路径理论为基础,建立图的最优化模型。
针对问题(1),将A区路口和道路抽象成图,分别以交巡警服务平台对应的点为起点求小于等于3min的路径,再将同一起点的路径的终点相连,围成一个区域,便是交巡警服务平台的管辖范围。
在此基础上综合考虑各个路口发案率的大小、区域人口密集程度,从而建立一个图中路径最优化模型。
再根据各个区域之间的所产生的空白区,即交巡警的管辖盲区。
为其添加交巡警服务平台。
实现其管理最优化的目的。
针对问题(2),结合交巡警服务平台的设置原则,充分考虑全市各区不同的状况,如:人口密度、区域面积等,并以A区的分区标准为基础,实现对全市各区的交巡警服务平台的设置。
对于P点的逃犯,建立一个以P点为中心的最优逃跑路径所组成的图,然后在算出罪犯的最佳逃跑路线,再调度相应的交巡警,实现对他的围堵。
从而实现交巡警服务平台设置和调度的最优化的方案。
关键词:图论;最优化路径; 交巡警服务平台;MATLAB;数据结构1、问题重述“有困难找警察”,是家喻户晓的一句流行语。
警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。
为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。
每个交巡警服务平台的职能和警力配备基本相同。
由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。
试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。
请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。
交巡警服务平台的设置与调度(数学建模)
交巡警服务平台的设置与调度
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:
(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?。
2011全国数学建模B题 交巡警服务平台的设置与调度
2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题交巡警服务平台的设置与调度“有困难找警察”,是家喻户晓的一句流行语。
警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。
为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。
每个交巡警服务平台的职能和警力配备基本相同。
由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。
试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。
请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。
对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。
实际中一个平台的警力最多封锁一个路口,请给出该区交巡警服务平台警力合理的调度方案。
根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加2至5个平台,请确定需要增加平台的具体个数和位置。
(2)针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附件)的合理性。
如果有明显不合理,请给出解决方案。
如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。
为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源的最佳围堵方案。
附件1:A区和全市六区交通网络与平台设置的示意图。
附件2:全市六区交通网络与平台设置的相关数据表(共5个工作表)。
交巡警的服务平台的设置与调度摘要正在整理……一、问题重述……二、问题分析……三、模型的假设^四、符号说明^五、模型的建立与求解问题一:(1)各交巡警服务平台的管辖范围,尽量在分钟内到达事发地,实质上是求最短路径问题。
数学建模B优秀论文
交巡警服务平台的设置与调度摘要本文针对交巡警平台的设置与调度进行建模。
首先,对问题给定的数据进行预处理,分别到六个区路口的距离加权邻接矩阵,A BF G G G 以及整个市的邻接矩阵G ,对邻接矩阵应用FLOYD 算法得到路口间的最短距离矩阵,,A B F D D D 以及D 。
对问题一,在考虑A 区20个交巡警平台的工作量尽量均衡的前提下,选取3分钟内不可达的路口个数最小作为目标函数建立01-规划模型,并用lingo 软件得到20个交巡警平台的管辖范围和3分钟内不可达的6个路口编号。
对问题二,首先假设交巡警平台警力要到达指定路口时选择最短路径,提取A D 中20个交巡警平台到13个交通要道的最短路径矩阵。
在保证每个交通要道都要封锁的前提下,以最长封锁时间最小为目标函数,建立01-规划模型,最终得到最优围堵方案,时间约为8分钟。
对问题三,以每个交巡警平台管辖路口发案率之和作为该平台工作量的衡量指标,在最长出警时间小于3分钟的约束下,以平台工作量的方差最小作为目标函数建立模型,分别增加平台个数为2,3,4,5进行试探求解,最终得到增加4个交巡警平台时达到最优,并得到增加4个交巡警平台的位置和此时24个交巡警平台的管辖范围。
对问题四,以3分钟内不可达路口的百分比和各区交巡警平台的平均工作量作为合理性的衡量指标,并赋以相应的权重,依次考察每一个城区的合理性,得到城区C 、D 、E 、F 交巡警平台设置不合理。
对于这四个城区中的每一个城区,以平台工作量方差最小作为目标函数,将3分钟内不可达路口的百分比约束在均值(10%)附近,建立模型,对增加的平台数目从小到大进行试探求解,最终得到这四个城区增加平台数目分别为12、8、11、8,并给出增加平台后工作量尽量均衡的设置方案。
对问题五,明确尽量缩小罪犯的逃窜范围,首先定义时刻t 可以围堵的路口中最小的路口集合t Q ,对t Q 进行求解,然后以交巡警平台到达需要围堵路口的时间不大于罪犯到达该路口的时间减去3分钟为约束,以最慢的交巡警到达路口的时间最小为目标函数,建立01-规划模型,并对模型进行求解,最终得到需要围堵的路口为24个并制定出这些路口的围堵方案,从得到报警到全部封锁路口所需要的时间为13.41分钟。
推荐-数学建模交巡警服务平台的设置与调度 精品 精品
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 20XX年9月 12 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):交巡警服务平台的设置与调度一摘要本文主要讨论某市的交巡警服务平台的合理设置与调度问题。
首先,参照主城区A的交巡警服务平台设置情况,利用图论中的Dijkstra算法计算交巡警服务平台到各路口节点的最短路程,再以尽量多的路口节点能有交巡警在3分钟内赶到为首要目标,各交巡警平台每天的处理案件次数相差尽量小为次要目标,建立一个规划模型,利用遗传算法,解出了具体的辖区划分方案。
并且考虑到某路口所在辖区的服务平台由于其他突发事件不能立即处理该路口的情况时,给出了备用方案。
其次,对于重大突发事件发生时全区交巡警服务平台封锁道路的警力资源调度问题,我们建立一个以交巡警服务平台是否封锁进出该城区交通要道为决策变量,负责封锁的交巡警服务平台到达指定地点所需时间中的最长时间最小为第一目标,所有负责封锁道路的交巡警到达各指定地点的时间总和最小为第二目标的多层规划模型,运用lingo编程求解,发现调用第2,4,5,7,8,9,10,11,12,13, 14,15,16个交巡警平台进行封锁工作,在经过8.0155分钟后,完全封锁A城区。
交巡警服务平台的设置与调度_数学建模论文 精品
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):02030所属学校(请填写完整的全名):东北农业大学参赛队员(打印并签名) :1. 曹飞扬2. 张雅昕3. 唐汉指导教师或指导教师组负责人(打印并签名):日期: 2010 年 9 月 12 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):交巡警服务平台的设置与调度摘要交巡警服务平台的合理设置是城市治安良好的重要条件之一,为了更有效地贯彻实施刑事执法、治安管理、交通管理、服务群众这四大职能,本文在此前提下建立规划模型,解决了合理地设置交巡警服务平台、分配各平台的管辖范围、警务资源配置等问题。
对于问题1.1,本文运用MATLAB编程求出各可连通节点之间的距离,建立了三分钟区域圆模型,又采用穷举法对其进行优化,解决了为交巡警服务平台分配管辖范围的问题。
对于问题1.2,为了实现快速封锁交通要道的目标,先建立了动态规划模型,用最短路径法求出各交巡警服务平台到各交通要道的最短距离,再建立0-1规划模型,用LINGO求解得出调用2、4、5、7、8、9、10、11、12、13、14、15、16号的警力资源分别对38、62、48、29、30、16、22、24、12、23、16、28、21号交通要道进行封锁的最佳方案。
数学建模,交巡警调度
交巡警服务平台的设置与调度摘要在社会安全系统中合理设置交巡警服务平台,调度警务资源关系到社会稳定和人民的安全。
本文根据城市的实际情况,综合运用最优化理论及matlab ,floyd 等算法解决了最小路径的覆盖疑难,针对封锁问题我们运用lingo 软件进行处理,得到了较为基础解决方法,选择最优路径,建立模型,最后统筹规划得到最优的设置调度方案。
在选择和分配范围问题上利用excel 筛选区间,从而筛选出路口节点与交巡警平台的合理距离得到所需分配的方案.,并进一步利用matlab 作出交巡警平台的圆域面积覆盖图,在改变变量情况下缩小圆的半径得到所选的分配方案.。
在确定增加平台的具体个数和位置时,根据实际情况运用了二分图理论解决匹配和覆盖问题的基本方法建立单向目标源,寻找最优设置方案。
在回答问题一时,多处使用图论解释与表格数据结合的方式。
运用不同方法计算求出相对准确结果。
简单模型规划如下:()()∑∑==-+-=801i 848122j j i j iij y y x xd ,()()∑∑==-+-=801i 848122j j i j iijij y y x xc p 848,...2,1;80,...2,1==j i 对于问题二采用C 语言编程实现所有路口节点与所有交巡警服务台之间距离最短,利用lingo 软件处理上一步的结果,求出全局最优解,进而分析其合理性。
理论联系实际,用科学的方法分析研究平台设置的合理性。
最后一个问题是一个综合问题,是对警力资源的合理调度,围堵的基本思想是围追堵截,缩小包围圈。
关键词: 最优路径 matlab lingo excel C 语言 匹配与覆盖附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。
请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。
全国大学生数学建模大赛 交巡警服务平台的设置和调度
交巡警服务平台的设置和调度摘要本文针对交巡警服务平台的设置和调度问题,通过题目给出的全市交通信息,采用弗洛伊德算法思想、借助矩阵、MATBLE和LINGO软件,求出最短距离矩阵和最短路径矩阵,再过数据的分析、筛选和计算,将目标函数进行优化。
针对A区问题一:根据最短路径原则,利用弗洛伊德算法计算A区92个路口任意两个之间的最短路径距离。
首先,根据距离最短原则建立数学模型,即根据最短路径进行分配;其次,对模型进行优化,对模型增加各平台的工作量,即为平台到节点的距离和该节点的案发频率的乘积。
为使达到相对工作量均衡(大于10的即为不公平),将其大于10的进行调整。
针对A区问题二:将问题转化为求所有方案中到达指定A区出入口路径最长的交巡警平台的最小值问题,建立目标规划模型,即对13个出入A区的节点实现最短时间封锁,同时一个交巡警服务平台只能封锁一个出入路口。
运用LINGO 程序,进行求解,最优解为Km。
MIN0155.8针对A区问题三:对于该问题主要总结上面两小问,在满足各交巡警服务平台到达各管辖节点最长时间小于三分钟且工作量相对均衡下,求交巡警服务平台增加数的最小值。
建立在符合相应约束条件求最小值的线性规划问题,求得最优解为新增四个交巡警服务平台。
关键词Floyd算法整体规划优化决策问题重述为了有效地贯彻实施警察刑事执法、治安管理、交通管理、服务群众的职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台,且各职能和警力配备基本相同。
警务资源是有限的,问题在于根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源。
1.中心城区A要解决的问题(1)根据题目给出的各附表,为各交巡警服务平台分配管辖范围,使其在所管辖的有突发事件尽量能在三分钟内到达。
(2)调度全区20个交巡警服务平台的警力资源,对进出该区的13条范围内出现突发事件时,要道实现快速全封锁。
设计该区交巡警服务平台警力合理的调度方案。
2011B题交巡警服务平台的设置与调度.
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):华南师范大学增城学院参赛队员(打印并签名) :1. 何高志2. 曾庆东3. 曾利指导教师或指导教师组负责人(打印并签名):日期: 2013 年 8 月 28 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):注意:摘要太长,只需要写出要解决什么问题,使用了什么方法得出了什么结果基本上要每一个模型都要有数学式子,不要简单的由图可得;符号说明:要详细再详细;交巡警服务平台的设置与调度摘要本文对交巡警服务平台设置与调度进行优化,交巡警服务平台需要在市区的一些交通要道和重要部位设置,并需要警察进行值班。
警察专门执行维护国家安全和社会治安秩序职能,因为警务资源是有限的,我们要根据城市的实际情况与需求,合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源。
针对此问题,我们做了深入详细的分析,建立了相应的数学模型,较好地解决了交巡警服务平台设置与调度。
对于问题1的第1小问,针对该市的城区A,对EXCEL中的大量数据筛选出所需的信息。
我们通过Matlab软件、两点间距离公式进行编程,得出每条线路的距离。
交巡警服务平台的设置与调度参考资料
全国第六届研究生数学建模竞赛题 目 警车配置及巡逻问题的研究摘 要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。
由警车的数目m ,将全区划分成m 个均匀的分区,从每个分区的中心点出发,找到最近的道路节点,作为警车的初始位置,由Floyd 算法算出每辆警车3分钟或2分钟行驶路程范围内的节点。
考虑区域调整的概率大小和方向不同会影响调整结果,本文利用模拟退火算法构造出迁移几率函数,用迁移方向函数决定分区的调整方向。
计算能满足D1的最小车辆数,即为该区应该配置的最小警车数目,用MATLAB 计算,得到局部最优解为13辆。
在选取巡逻显著性指标时,本文考虑了两个方面的指标:一是全面性,即所有警车走过的街道节点数占总街道节点数的比例,用两者之比来评价;二是均匀性,即所有警车经过每个节点数的次数偏离平均经过次数的程度,用方差值来大小评价。
问题三:为简化问题,假设所有警车在同一时刻,大致向同一方向巡逻,运动状态分为四种:向左,向右,向上,向下,记录每个时刻,警车经过的节点和能够赶去处理事故的点,最后汇总计算得相应的评价指标。
在考虑巡逻规律隐蔽性要求时,文本将巡逻路线进行随机处理,方向是不确定的,采用算法2进行计算,得出相应巡逻显著指标,当车辆数减少到10辆或巡逻速度变大时,用算法2计算巡逻方案和对应的参数,结果见附录所示。
本文最后还考虑到4个额外因素,给出每个影响因素的解决方案。
关键词:模拟退火算法;Floyd 算法;离散化参赛队号 11***02 队员姓名 *佳 **梅 *巍 参赛密码(由组委会填写)一问题的重述110警车在街道上巡逻,既能够对违法犯罪分子起到震慑作用,降低犯罪率,又能够增加市民的安全感,同时也加快了接处警时间,提高了反应时效,为社会和谐提供了有力的保障。
数学建模交巡警服务平台地设置与调度
交巡警服务平台的设置与调度摘要本文主要讨论了有关某地区交巡警服务平台的设置与调度的问题,这是一个网络优化模型,利用Flody算法,构建0-1矩阵,变异系数加权法等方法建立模型,并借助Matlab和lingo软件进展分析与求解。
问题一主要讨论了该市中心城区A市交巡警平台设置的有关情况,下设三小问。
问题〔1〕是一个网络优化模型,要求出现突发事件警车达到目的地的时间最短,把时间最短转化为路程最短,构建了0-1矩阵,用Flody算法求出任意两节点之间的最小值,建立二次整数规划模型,通过lingo求解出总路程最小值,并合理的分配了各平台的管辖围。
具体结果见表一。
问题〔2〕要求对于突发事件,如何有效地安排20个平台的警力资源快速的去封锁A市13个交通要道,建立非线性整数规划模型,以最长封堵距离为目标函数,并用lingo软件编程求解给出了平台最优的调度方案。
具体结果见表二。
问题〔3〕要求根据A区现在的实际情况,对于交巡警工作平台的工作量不均衡以与有些地方出警时间过长的不合理问题,适当的增加一些平台,经建模分析,建立纯整数线性规划模型,用lingo软件编程计算分析,得到应增加5个平台,并给出了各平台相应的位置以与管辖围。
具体结果见表三。
问题二讨论了该市〔包括A,B,C,D,E,F区〕的交巡警平台的设立情况,下设二小问。
问题〔1〕查阅有关资料明确了设置交巡警服务平台的原如此和任务,通过对附录二中数据的处理以与附录一附图2示意图的研究,发现该市现有的交巡警服务平台的设置方案存在不合理处。
各地交巡警服务平台的设立与当地的平均发案率和人口密度这两个指标密切相关,因此通过变异系数法确定这两个指标的权重,建立纯整数规划模型,利用lingo编程求解计算分析并给出各地区增加的平台数与管辖围。
结果见表六到表十。
问题〔2〕根据已算出的A区平台优化方案,可找到小偷跑3分钟和警察追3分钟即6分钟是到达地周围的点,用这些点对应的管辖平台区抓捕即可。
数学建模:交巡警平台的设置与调度
交巡警服务平台得设置与调度一、问题重述“有困难找警察”,就是家喻户晓得一句流行语.警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。
为了更有效地贯彻实施这些职能,需要在市区得一些交通要道与重要部位设置交巡警服务平台.每个交巡警服务平台得职能与警力配备基本相同。
由于警务资源就是有限得,如何根据城市得实际情况与需求合理地设置交巡警服务平台、分配各平台得管辖范围、调度警务资源就是警务部门面临得一个实际课题。
试就某市设置交巡警服务平台得相关情况,建立数学模型分析研究下面得问题:(1)附件1中得附图1给出了该市中心城区A得交通网络与现有得20个交巡警服务平台得设置情况示意图,相关得数据信息见附件2。
请为各交巡警服务平台分配管辖范围,使其在所管辖得范围内出现突发事件时,尽量能在3分钟内有交巡警(警车得时速为60km/h)到达事发地。
对于重大突发事件,需要调度全区20个交巡警服务平台得警力资源,对进出该区得13条交通要道实现快速全封锁。
实际中一个平台得警力最多封锁一个路口,请给出该区交巡警服务平台警力合理得调度方案。
根据现有交巡警服务平台得工作量不均衡与有些地方出警时间过长得实际情况,拟在该区内再增加2至5个平台,请确定需要增加平台得具体个数与位置.(2)针对全市(主城六区A,B,C,D,E,F)得具体情况,按照设置交巡警服务平台得原则与任务,分析研究该市现有交巡警服务平台设置方案(参见附件)得合理性。
如果有明显不合理,请给出解决方案。
如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。
为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源得最佳围堵方案.二、问题分析2、1问题一(1)问要求为A区得20个交巡警服务平台划分管辖范围,使每个路口尽量在3分钟内能够由交巡警赶到。
根据实际情况,每个交巡警服务平台得资源就是基本均衡且有限得。
我们规定,则此问题可瞧作就是一个多目标0—1规划问题。
数学建模解决交巡警服务平台的设置与调度问题资料
渤海大学本科毕业论文(设计)数学建模解决交巡警服务平台的设置与调度问题Mathematical modeling to solve JiaoXunJing service platform setand scheduling problems学院(系):数理学院专业:信息与计算科学学号:09020153学生姓名:王希伟入学年度:2009、9指导教师:朱凤娟完成日期:2013年05月14日渤海大学Bohai University摘要警察在当今社会扮演着不可或缺的角色,尽管如此由于警务资源有限。
现实生活中还是存在这诸多问题,如何合理设置交巡警服务平台、分配各平台的管辖范围,以及调度警务资源仍是重中之重亟待解决的问题。
首先,我们通过长度覆盖原则、概率平均原则等的方法有效的解决管辖范围,其前提是在规定时间t及时速v的情况下达到的方法,通过两点间的距离公式或分类讨论其覆盖问题,也达到了令人满意的答案。
其次,我们通过邻接矩阵模型将合理调度问题转化成为最优路径问题,并通过矩阵求其值。
再次,通过人为设定条件,运用模糊数学方法,在所加平台尽可能少的前提下,使其有效覆盖面积达到最大值,又因为A区域的面积一定,这样两者之比的比例越大,才是我们想要的最优方案。
接下来,此题的分布合理性主要是以覆盖率最大化和到达事故现场的最短时间为主。
建立优化模型,以“至少需要警务员平台13个”作为一个约束条件,以所有警务人员赶赴险情现场所经过路程的总和最短为目标函数,以实现警员赶赴险情现场所需时间的总和最少,从而做到更合理地安排警务人员的执勤平台位置。
最后,主要是缩小搜索罪犯所在范围的方法来找到这些犯罪地点发生的“重采用这种插值方法道路离散后,将直线上的无穷多个点转化有限个点,便于分析问题和实现相应的算法,所取得的整体离散效果还是比较理想的。
关键词:长度覆盖原则;概率平均原则;邻接矩阵;最优路径;模糊数学式Mathematical modeling to solve JiaoXunJing service platform setand scheduling problemsAbstractPolice plays an indispensable role in today's society, however because of police resources co., LTD. Or in real life, there exist many problems, how to reasonably set up JiaoXunJing service platform, the distribution of the jurisdiction of the platform, and the scheduling of police resources is still the top priority problem to be solved. First of all, we through the length of coverage of methods, such as principle, the principle of probability and average effective solve the jurisdiction, the premise is that within the prescribed time t and the speed of v method, under the condition of the distance between two points by formula or classification to discuss its coverage, also reached a satisfactory answer. Second, we will through the adjacency matrix model reasonable scheduling problem into an optimal path problem, and its value by using matrix. Again, by using fuzzy mathematics method, set conditions is platform under the premise of as little as possible, make the effective coverage area reaches the maximum, and since the area of A region must have, so that both the ratio of the percentage, the greater the optimal solution is what we want. Next, distribution in the rationality of this topic is based on maximum coverage and arrived at the scene of the accident in the shortest time. Optimization model is set up to 13 "police officer" at least need platform as a constraint condition, after all police officers to danger the scene as the sum of the shortest distance as objective function, the sum of time needed for dangerous situations for police officers rushed to the scene at least, to be more reasonable to arrange place of police officers on duty platform. Finally, mainly to reduce the search area to find these crimes of place "after heavy use this road discrete interpolation method, linear transformation of an infinite number of points on a finite number of points, facilitate analysis problems and the corresponding algorithm, obtained the integral discrete effect is ideal.Key Words:Length of coverage principle;Average probability principle;Adjacency matrix ;The optimal path ;Fuzzy mathematics目录摘要 (I)Abstract (II)引言 (1)1 问题的提出和假设 (2)1.1 问题的重述与分析 (2)1.1.1 问题的重述 (2)1.1.2 问题的分析 (2)1.2 问题的假设 (3)2 模型的建立与求解 (5)2.1 问题一的求解: (5)2.2 问题二的求解: (6)2.3 问题三得求解: (8)2.4 问题四的求解: (9)2.5 问题五的求解: (12)3 模型的评价与改进 (15)3.1 模型的评价 (15)3.2 模型的优点: (15)3.3 模型的不足: (16)参考文献: (16)附件一 (17)附件二 (18)引言“有困难找警察”,是家喻户晓的一句流行语。
数学建模2011B题 交巡警服务平台的设置与调度 程序
问题一(1):管辖区域的分配:求解最大结合覆盖模型function dyt1.1disp(sprintf('正在载入相关数据...'));Node_data=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',1,'b2:c93'); %载入A区路口节点的左边数据Routine_data=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',2,'a2:b144'); %载入路线节点标号数据Record_data = cell(92,1); %创建包体,用来保存92个节点,每点的最大覆盖区域count = 0;%更急路线节点标号数据创建邻接矩阵for i = 1 :92Node_index = Routine_data(find(Routine_data(:,1)==i),2);Node_index = [Routine_data(find(Routine_data(:,2)==i),1);Node_index];Node_index = Node_index(find(Node_index <=92));n = length( Node_index);count = count + n;Record_data{i} = zeros(n,2);for j = 1 : nRecord_data{i}(j,1) = Node_index(j);Record_data{i}(j,2) = 100*sqrt((Node_data(i,1) - Node_data(Node_index(j),1))^2+(Node_data(i,2) - Node_data(Node_index(j),2))^2);endendAdjoin_matrix = zeros(count,3); % 邻接矩阵index_adj = 1;for i = 1 :92[n1,n2] = size(Record_data{i});n = n1;for j = 1 : nAdjoin_matrix(index_adj,:) = [i,Record_data{i}(j,1),Record_data{i}(j,2)];index_adj = index_adj + 1;endend%根据邻接矩阵数据创建图论的稀疏矩阵a1=Adjoin_matrix(:,1)';a2=Adjoin_matrix(:,2)';a3=Adjoin_matrix(:,3)';DG=sparse(a1,a2,a3);%建立稀疏矩阵,图论求解for i=1:92for j=1:92if DG(i,j)==0DG(i,j)=inf;if i==jDG(i,j)=0;endendendendfor k=1:92for i=1:92for j=1:92if DG(i,k)+DG(k,j)<DG(i,j)DG(i,j)=DG(i,k)+DG(k,j);endendendendPatrol_range=cell(20,1);for i=1:20for j=1:92if(DG(i,j)<=3000)Patrol_range{i}=[Patrol_range{i},j];endendendPatrol_distribution=Patrol_range; %复制原始数据Patrol_cover=cell(92,1); %定义交集Cover=[];Isolated=[]; %定义孤立点for i=1:92c=[];for j=1:20m=length(Patrol_range{j});for l=1:mif(Patrol_range{j}(l)==i)c=[c,j]; %保存i节点所对应的所有可能的交通巡警点 endendendm=length(c);if(m>1) %如果大于1,说明有交集,先去除,不分配Cover=[Cover,i];Patrol_cover{i}=c; %保存交集for k=1:mfind(Patrol_distribution{c(k)}~=i);Patrol_distribution{c(k)}=Patrol_distribution{c(k)}(find(Patrol_distr ibution{c(k)}~=i));%预分配只属于自己的交通节点endendif(m==0)Isolated=[Isolated,i];endendPatrol_xin=Patrol_distribution; %进行B类节点的的分配for i=1:92m=length(Patrol_cover{i});Distance_linshi=[];if(m>=1)for j=1:mDistance_linshi(j)=DG(i,Patrol_cover{i}(j));endm0=min(Distance_linshi);for k=1:20if DG(i,k)==m0f=k;endendPatrol_xin{f}=[Patrol_xin{f},i];endendm=length(Isolated); %对孤立点进行分配for i=1:mfor j=1:20dist(j)=DG(Isolated(i),j);end[m0,m1]=min(dist);Patrol_xin{m1}=[Patrol_xin{m1},Isolated(i)];endsave Patrol_xin.mat;问题一(2):求解围堵13条要道的方案程序1:!求围堵的方案与最快时间sets:AA/1..20/;cross/1..13/;links(AA,cross): dis, x;Endsets!数据的定义部分;data:dis=22236.1516028.479286.81219293.4421096.2122501.7522893.219001.1619515.8112083.445880.93511850.114885.217 20463.9214129.727388.06317394.6919197.472060321120.9717228.9317743.5810311.213982.18610309.546035.068 18352.2712767.236025.56616032.1917834.9719240.5119009.3215117.2815631.928199.566093.848197.8844393.385 21997.3815008.518266.85318273.4820076.2621481.7922654.4316226.9115535.348102.9764860.9767395.869350 17628.1912969.636227.96716234.5917749.5219155.0618285.2411306.8710615.293182.9339421.1192475.8265255.075 17658.7813000.216258.55216265.1817780.1119185.6518315.8311337.4510645.883213.5189451.7042506.4115337.332 14914.9410901.224159.55914166.1915036.2716441.8115571.998570.2188015.457583.09527352.7111290.2027991.722 14092.519433.9432692.28212698.9114213.8415619.3814749.5610228.0310493.183060.825885.4343099.4678677.283 13010.718274.2021532.5411539.1713132.0514537.5913667.769775.72210724.413492.3044725.6924199.419336.668 7586.58512775.666956.679510.6937707.9189113.4568243.63514194.8615143.557911.44610149.828618.55314760.8 3791.3538337.29811395.035072.3323269.5574675.0953805.27418633.2319581.9112349.8114588.1813056.9119199.16 011950.2814543.268685.3166882.5416477.0023591.6321781.4522730.1315498.0317736.4116205.1422347.38 5977.0025973.2812714.942708.314905.53855002385.37222808.322375716524.916120.8217232.0121331.79 11950.2806741.6623264.9665067.7416473.288358.65218049.9218916.6811484.3210147.5412191.4215358.51 17029.6113298.086556.42116563.0517150.9418556.4817686.664751.8425700.5254401.4729749.5735108.57911810.1 14543.266741.662010006.6311809.413214.9415100.3111308.2612175.024742.6553405.8775449.7618616.853 21892.1114903.248161.5818168.2119970.9821376.5222549.1618657.1219523.8712091.514755.70312798.627820.525 24247.1818514.4811772.8221779.4523582.2324987.7624904.2321012.1921526.8314094.478366.94613699.266734.362 22546.5316961.4810219.8220226.4522029.2323434.7623203.5819311.5319826.1812393.827639.28111998.615033.709 26945.8 21213.11 14471.45 24478.08 26280.85 27686.39 27602.86 23010.82 22319.25 14886.89 11065.57 14179.78 6448.88;enddata!目标函数;min=@max(links(i,j):x(i,j) * dis(i,j));!需求约束;@for(cross(j):@sum(AA(i): x(i,j))=1);@for(AA(i):@sum(cross(j): x(i,j))<=1);!整数约束;@for(links(i,j):@bin(x(i,j)));程序2:fuction zudj1.2A=zeros(20,13);for i=1:20A(i,1)=DG(i,12);A(i,2)=DG(i,14);A(i,3)=DG(i,16);A(i,4)=DG(i,21);A(i,5)=DG(i,22);A(i,6)=DG(i,23);A(i,7)=DG(i,24);A(i,8)=DG(i,28);A(i,9)=DG(i,29);A(i,10)=DG(i,30);A(i,11)=DG(i,38);A(i,12)=DG(i,48);A(i,13)=DG(i,62);end问题一(3):管辖区域的确定:求解集合覆盖模型并使工作量最均衡程序1:function junheng1.2c=[];for x=1:72c(x)= fenpei(x);endc程序2:function c=fenpei(x)disp(sprintf('正在载入相关数据...'));Node_data=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',1,'b2:c93'); %载入A区路口节点的左边数据Routine_data=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',2,'a2:b144'); %载入路线节点标号数据load B.mat;Record_data = cell(92,1); %创建包体,用来保存92个节点,每点的最大覆盖区域count = 0;%更急路线节点标号数据创建邻接矩阵for i = 1 :92Node_index = Routine_data(find(Routine_data(:,1)==i),2);Node_index = [Routine_data(find(Routine_data(:,2)==i),1);Node_index];Node_index = Node_index(find(Node_index <=92));n = length( Node_index);count = count + n;Record_data{i} = zeros(n,2);for j = 1 : nRecord_data{i}(j,1) = Node_index(j);Record_data{i}(j,2) = 100*sqrt((Node_data(i,1) - Node_data(Node_index(j),1))^2+(Node_data(i,2) - Node_data(Node_index(j),2))^2);endendAdjoin_matrix = zeros(count,3); % 邻接矩阵index_adj = 1;for i = 1 :92[n1,n2] = size(Record_data{i});n = n1;for j = 1 : nAdjoin_matrix(index_adj,:) = [i,Record_data{i}(j,1),Record_data{i}(j,2)];index_adj = index_adj + 1;endend%根据邻接矩阵数据创建图论的稀疏矩阵a1=Adjoin_matrix(:,1)';a2=Adjoin_matrix(:,2)';a3=Adjoin_matrix(:,3)';DG=sparse(a1,a2,a3);%建立稀疏矩阵,图论求解for i=1:92for j=1:92if DG(i,j)==0DG(i,j)=inf;if i==jDG(i,j)=0;endendendendPatrol_range=cell(24,1);D_24=B(x,:); %B为可能的分配情况,共有48中,每次从中选取1中可能,本次选取的事第13中可能for k=1:92for i=1:92for j=1:92if DG(i,k)+DG(k,j)<DG(i,j)DG(i,j)=DG(i,k)+DG(k,j);endendendendfor i=1:24for j=1:92dist(j)=DG(D_24(i),j);endfor j=1:92if(dist(j)<=3000)Patrol_range{i}=[Patrol_range{i},j];endendendsave Patrol_range;%求解交集和预分配问题load Patrol_range.mat; %载入数据Patrol_distribution=Patrol_range; %复制原始数据Patrol_cover=cell(92,1); %定义交集Cover=[];Isolated=[]; %定义孤立点for i=1:92c=[];c2=[];for j=1:24m=length(Patrol_range{j});for l=1:mif(Patrol_range{j}(l)==i)c=[c,j]; %保存i节点所对应的所有可能的交通巡警点 c2=[c2,D_24(j)];endendendm=length(c);if(m>1) %如果大于1,说明有交集,先去除,不分配Cover=[Cover,i];Patrol_cover{i}=c2; %保存交集for k=1:mfind(Patrol_distribution{c(k)}~=i);Patrol_distribution{c(k)}=Patrol_distribution{c(k)}(find(Patrol_distr ibution{c(k)}~=i));%预分配只属于自己的交通节点endendif(m==0)Isolated=[Isolated,i];endendsave Patrol_distribution.mat; %完成预分配,对于交集和孤立交点另外考虑save Patrol_cover.mat; %保存交集所对应的可能交通巡警点load Patrol_cover.mat;load Patrol_distribution.mat;load Patrol_range.mat;%初始化预分配中每个交通巡警点的发案次数Occurrence=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',1,'e2:e93'); %A区每个交通节点的发案次数Standard_occurrence=sum(Occurrence)/24Patrol_occurrence=zeros(24,1);for i=1:24m=length(Patrol_distribution{i});a=0;if(m>=1)for j=1:ma=a+Occurrence(Patrol_distribution{i}(j));endPatrol_occurrence(i)=a;endendPatrol_xin=Patrol_distribution; %进行交集分配for i=1:92m=length(Patrol_cover{i});Distance_linshi=[];if(m>=1)for j=1:mDistance_linshi(j)=DG(i,Patrol_cover{i}(j));endA=Sort_vector(Distance_linshi); %记录最小值的相对位置h=length(Distance_linshi);for j=1:hlinshi_canshu=find(D_24==Patrol_cover{i}(A(j,2)));Patrol_occurrence(linshi_canshu);Patrol_cover{i}(A(j,2));if(Patrol_occurrence(linshi_canshu)<=(Standard_occurrence+0.62)) Patrol_xin{linshi_canshu}=[Patrol_xin{linshi_canshu},i];Patrol_occurrence(linshi_canshu)=Patrol_occurrence(linshi_canshu)+Occ urrence(i);break;endif(j==h)iendendendendPatrol_occurrencec=var(Patrol_occurrence);save Patrol_xin.mat;程序3:function chulia=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20];I=[28 29];J=[38 39,40];K=[48,61];L=[87 88 89 90 91 92];m=0;for i=1:2for j=1:3for k=1:2for l=1:6m=m+1;B(m,:)=[a,[I(i) J(j) K(k) L(l)]];DD(m,:)=[I(i) J(j) K(k) L(l)];endendendendsave B;程序4:function A=Sort_vector(X) %创建子函数供调用a=length(X);for i=1:a[m0,weizhi]=min(X);A(i,1)=m0;A(i,2)=weizhi;X(weizhi)=inf;End问题二(1)计算现有节点工作量,不均衡度和C类节点个数,以判断合理性:程序1:function Mcm2.1Node_data=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',1,'b2:c583'); Routine_data=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',2,'a2:b929');Record_data = cell(582,1);count = 0;for i = 1 :582Node_index = Routine_data(find(Routine_data(:,1)==i),2);Node_index = [Routine_data(find(Routine_data(:,2)==i),1);Node_index];n = length( Node_index);count = count + n;Record_data{i} = zeros(n,2);for j = 1 : nRecord_data{i}(j,1) = Node_index(j);Record_data{i}(j,2) = 100*sqrt((Node_data(i,1) - Node_data(Node_index(j),1))^2+(Node_data(i,2) - Node_data(Node_index(j),2))^2);endendAdjoin_matrix = zeros(count,3); % 邻接矩阵index_adj = 1;for i = 1 :582[n1,n2] = size(Record_data{i});n = n1;for j = 1 : nAdjoin_matrix(index_adj,:) = [i,Record_data{i}(j,1),Record_data{i}(j,2)];index_adj = index_adj + 1;endend%创建图论的稀疏矩阵及其图论的求解a1=Adjoin_matrix(:,1)';a2=Adjoin_matrix(:,2)';a3=Adjoin_matrix(:,3)';DG=sparse(a1,a2,a3);%建立稀疏矩阵,图论求解for i=1:582for j=1:582if DG(i,j)==0DG(i,j)=inf;if i==jDG(i,j)=0;endendendendfor k=1:582for i=1:582for j=1:582if DG(i,k)+DG(k,j)<DG(i,j)DG(i,j)=DG(i,k)+DG(k,j);endendendendWeizhi_all=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',3,'b2:b81'); a=length(Weizhi_all);Patrol_range=cell(a,1);for i=1:afor j=1:582dist(j)=DG(Weizhi_all(i),j);%求图中任意两个节点之间的最短距离endfor j=1:582if(dist(j)<=3000)Patrol_range{i}=[Patrol_range{i},j];endendendsave Patrol_range;load Patrol_range.mat; %载入数据Patrol_distribution=Patrol_range; %复制原始数据Patrol_cover=cell(582,1); %定义交集Cover=[];Isolated=[]; %定义孤立点a=length(Weizhi_all);for i=1:582c=[];c2=[];for j=1:am=length(Patrol_range{j});for l=1:mif(Patrol_range{j}(l)==i)c=[c,j]; %保存i节点所对应的所有可能的交通巡警点c2=[c2,Weizhi_all(j)];endendendm=length(c);if(m>1) %如果大于1,说明有交集,先去除,不分配Cover=[Cover,i];Patrol_cover{i}=c2; %保存交集for k=1:mfind(Patrol_distribution{c(k)}~=i);Patrol_distribution{c(k)}=Patrol_distribution{c(k)}(find(Patrol_distr ibution{c(k)}~=i));%预分配只属于自己的交通节点endendif(m==0)Isolated=[Isolated,i];endendsave Patrol_distribution.mat;%完成预分配,对于交集和孤立交点另外考虑save Patrol_cover.mat;%保存交集所对应的可能交通巡警点load Patrol_cover.mat;load Patrol_distribution.mat;load Patrol_range.mat;%初始化预分配中每个交通巡警点的发案次数Occurrence=xlsread('F:\数学建模第二期培训\第一题\B\2.xls',1,'e2:e583'); %A区每个交通节点的发案次数a=length(Weizhi_all);Standard_occurrence=sum(Occurrence)/asum(Occurrence);Patrol_occurrence=zeros(a,1);for i=1:am=length(Patrol_distribution{i});a=0;if(m>=1)for j=1:ma=a+Occurrence(Patrol_distribution{i}(j));endPatrol_occurrence(i)=a;endendPatrol_xin=Patrol_distribution; %进行交集的分配for i=1:582m=length(Patrol_cover{i});Distance_linshi=[];if(m>=1)for j=1:582dist(j)=DG(i,j);endfor j=1:mDistance_linshi(j)=dist(Patrol_cover{i}(j));endA=Sort_vector(Distance_linshi); %记录最小值的相对位置h=length(Distance_linshi);for j=1:hlinshi_canshu=find(Weizhi_all==Patrol_cover{i}(A(j,2)));Patrol_occurrence(linshi_canshu);Patrol_cover{i}(A(j,2));if(Patrol_occurrence(linshi_canshu)<=(Standard_occurrence+8.5)) Patrol_xin{linshi_canshu}=[Patrol_xin{linshi_canshu},i];Patrol_occurrence(linshi_canshu)=Patrol_occurrence(linshi_canshu)+Occ urrence(i);break;endif(j==h)i;endendendend%对孤立点进行分配m=length(Isolated);for i=1:mfor j=1:20D(j)=DG(Isolated(i),j);endIsolated(i);[m0,m1]=min(D);m1;Patrol_xin{m1}=[Patrol_xin{m1},Isolated(i)];Patrol_occurrence(m1)=Patrol_occurrence(m1)+Occurrence(Isolated(i)); endPatrol_occurrence; %每个警力点的工作量length(Patrol_occurrence);var(Patrol_occurrence)[a,b]=max(Patrol_occurrence);zuidazhi=a;b;Weizhi_all(b);save Patrol_xin.mat;程序2:!建立0—1矩阵function jljz2.1AG=zeros(138,502);for i=1:138for j=1:502dist(j)=DG(lsolated(i),j);if(dist(j)<=3000)AG(i,j)=1;endendend程序3:function chulia=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20];I=[28 29];J=[38 39,40];K=[48,61];L=[87 88 89 90 91 92];m=0;for i=1:2for j=1:3for k=1:2for l=1:6m=m+1;B(m,:)=[a,[I(i) J(j) K(k) L(l)]];DD(m,:)=[I(i) J(j) K(k) L(l)];endendendendsave B;程序4:function A=Sort_vector(X) %创建子函数,共调用使用a=length(X);for i=1:a[m0,weizhi]=min(X);A(i,1)=m0;A(i,2)=weizhi;X(weizhi)=inf;endlingo程序:程序5:!静态增加服务台的方案求解:sets:AA/1..138/;cross/1..502/:x;links(AA,cross): a;Endsetsdata:a = @FILE(F:\数学建模第二期培训\第一题\新建文件夹\第二问\选择表.xls); @TEXT('result1.txt') = x;enddata 27程序6:!动态的求解方案:sets:AA/1..582/;cross/1..582/:x;links(AA,cross): a;Endsetsdata:a = @FILE(F:\数学建模第二期培训\第一题\新建文件夹\第二问\data3.txt); @TEXT('result7.txt') = x;enddatamin =@sum(AA(i):@if(@sum(cross(j):a(i,j)*x(j))#eq#0,1,0));@sum(cross(j): x(j))=80;@for(cross(i):@bin(x(i)));问题二(2):求解最佳围堵方案程序1:% function weidu%找出最佳的围堵方案clear;load DG.mat;load Xunjinwz1.mat;xun_gs = length(Xunjinwz);dist=graphshortestpath(DG,32);%求图中任意个节点到案发点的最短距离for t = 6:30Anfadian=[];for j = 1 :582if(dist(j) <= t*1000 & (t - 1)*1000 <=dist(j) )Anfadian=[Anfadian,j];endendn = length(Anfadian); %罪犯可能到达点的集合A1 = zeros(n,582);for k = 1:ndist2 = graphshortestpath(DG,Anfadian(k));count = 0;for kk = 1 :xun_gs %搜素罪犯到达点集合旁边的巡逻点if(dist2(Xunjinwz(kk)) < (t-3)*1000 )A1(k,Xunjinwz(kk)) = 1;count = count + 1;endendif(count == 0)break;endend[m,n] = size(A1);if(m < n)pp = Pipei(A1);[m,n] = size(pp);if(rank(pp) == m)pipei =zeros(m,2);for i =1:m[row,coloum] = find(pp(i,:)==1);pipei(i,1) = Anfadian(i);pipei(i,2) = coloum;endbreak;endendend程序2:function pip =Pipei(A)%求最大匹配问题[m,n] = size(A);M(m,n)=0;for(i=1:m)for(j=1:n)if(A(i,j))M(i,j)=1;break;endend %求初始匹配 Mif(M(i,j))break;endend %获得仅含一条边的初始匹配 Mwhile(1)for(i=1:m)x(i)=0;end %将记录X 中点的标号和标记*for(i=1:n)y(i)=0;end %将记录Y 中点的标号和标记*for(i=1:m)pd=1; %寻找X 中 M 的所有非饱和点for(j=1:n)if(M(i,j))pd=0;end;endif(pd)x(i)=-n-1;endend %将X 中 M 的所有非饱和点都给以标号0 和标记*, 程序中用 n+1 表示0 标号, 标号为负数时表示标记*pd=0;while(1)xi=0;for(i=1:m)if(x(i)<0)xi=i;break;endend %假如 X 中存在一个既有标号又有标记*的点, 则任取X 中一个既有标号又有标记*的点xiif(xi==0)pd=1;break;end %假如X 中所有有标号的点都已去掉了标记*, 算法终止x(xi)=x(xi)*(-1); %去掉xi 的标记*k=1;for(j=1:n )if(A(xi,j)&y(j)==0)y(j)=xi;yy(k)=j;k=k+1;endend %对与 xi 邻接且尚未给标号的 yj 都给以标号iif(k>1)k=k-1;for(j=1:k)pdd=1;for(i=1:m)if(M(i,yy(j)))x(i)=-yy(j);pdd=0;break;endend %将yj 在 M 中与之邻接的点xk (即xkyj ∈M), 给以标号j 和标记*if(pdd)break;endendif(pdd)k=1;j=yy(j); %yj 不是 M 的饱和点while(1)P(k,2)=j;P(k,1)=y(j);j=abs(x(y(j))); %任取 M 的一个非饱和点 yj, 逆向返回if(j==n+1)break;end %找到X 中标号为0 的点时结束, 获得 M-增广路 P k=k+1;endfor(i=1:k)if(M(P(i,1),P(i,2)))M(P(i,1),P(i,2))=0; %将匹配 M 在增广路 P 中出现的边去掉else M(P(i,1),P(i,2))=1;endend %将增广路 P 中没有在匹配 M 中出现的边加入到匹配M 中break;endendendif(pd)break;endend %假如X 中所有有标号的点都已去掉了标记*, 算法终止pip = M ; %显示最大匹配 M, 程序结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交巡警服务平台的设置与调度一、问题重述“有困难找警察”,是家喻户晓的一句流行语。
警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。
为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。
每个交巡警服务平台的职能和警力配备基本相同。
由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。
试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:(1)附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。
请为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。
对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。
实际中一个平台的警力最多封锁一个路口,请给出该区交巡警服务平台警力合理的调度方案。
根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加2至5个平台,请确定需要增加平台的具体个数和位置。
(2)针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附件)的合理性。
如果有明显不合理,请给出解决方案。
如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。
为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源的最佳围堵方案。
二、问题分析2.1问题一(1)问要求为A区的20个交巡警服务平台划分管辖范围,使每个路口尽量在3分钟内能够由交巡警赶到。
根据实际情况,每个交巡警服务平台的资源是基本均衡且有限的。
我们规定x ij={1, 路口i被平台j管辖0,路口i不被平台j管辖,则此问题可看作是一个多目标0—1规划问题。
目标函数为:一:尽量多的路口能由交巡警在3分钟内赶到;二:若某路口不能由交巡警在3分钟内到达,则交巡警到达此路口的时间应尽量短;三:各交巡警平台的工作量尽量均衡。
求解此模型时,首先用matlab对数据进行初步整理,然后将目标一、二作为约束条件把多目标规划转化为单目标0—1规划问题,利用lingo软件求解。
(2)问中要求对进出A区的交通要道实现快速全封锁。
可以将时间最小化问题转化为距离最短问题。
建立以平台到封锁的交通要道中的最长距离最短为目标函数,以一个平台的警力最多封锁一条要道、每条要道必须被一个平台封锁为约束条件的规划模型。
将此模型用lingo软件解出后,有多种调度方案,我们可以继续建立以封锁交通要道的总距离最短为目标函数,以解出的最长距离的最小值为约束条件的规划模型进行进一步优化,用lingo解出最终的封锁调度方案。
(3)问要求增加平台,解决平台工作量不均衡和某些地方出警时间过长的问题。
在(1)问中得到28,29,38,39,61,92这6个路口不能由交巡警在3分钟内到达。
只要在离这6个路口距离不大于3km的路口处增加平台,就可以使得所有路口都能由交巡警在3分钟内到达,可以认为解决了出警时间过长的问题,并且可以求解出应增加的最少平台数。
进而解决工作量不均衡的问题,可建立0—1变量f j={1, 在路口j处增加平台0,不在路口j处增加平台,将平台工作量均衡度最大为目标函数,将解出的增加平台的可行数量作为约束条件建立规划模型,用lingo可求解出增加平台的具体位置。
最后综合分析出应增加的平台数量和具体位置。
三、基本假设与符号说明3.1基本假设1.假设每个巡警服务台的职能和警力配备基本相同;2.假设每个路口只由一个巡警服务平台进行管辖;3.假设每个巡警服务平台至少管辖一个路口;4.假设巡警都按最短路径到达各案发路口;5.假设每个路段道路畅通,可以双向行驶,没有堵车现象;6.假设犯罪案件都在路口上发生;7.假设在重大案件发生时,每个平台只有封锁一个路口的能力;8.工作量:每个巡警服务台所管辖范围内的所有路口案发率之和;9.出警时间:巡警到达案发路口所需时间;10.每个区的交巡警平台只可管辖本区内的路口,不可跨区管辖。
11.假设巡警车和犯罪嫌疑人的车行驶中速度保持匀速且车速均为60km/h;12.假设巡警在接到报案后并不知道逃犯的逃跑方向;3.2符号说明1. x ij={1, 路口i被平台j管辖0,路口i不被平台j管辖;2. d ij:路口i到j的最短距离;3. U0:交巡警能够在3分钟内到达的路口集合;4. V i:能够在3分钟内到达路口i的交巡警平台的集合;5. U1:交巡警不可在3分钟内到达的路口集合;6. r i:第i个路口的发案率;7. r:交巡警服务平台的平均工作量;8. rr j:平台j的工作量;9. y ij={1, 第i条交通要道由交巡警服务平台j封锁0,第i条交通要道不由交巡警服务平台j封锁;10. s ij:第i条交通要道到平台j的最短距离;11. f j={1, 在路口j处增加平台0,不在路口j处增加平台;12.n:增加的交巡警服务平台的个数;四、模型的建立与求解4.1 问题一(1):管辖区域的确定4.1.1 模型建立此问要求在A区20个交巡警服务平台位置确定的情况下,分配管辖范围,使交巡警尽量能够在3分钟内到达事发地。
本文考虑了三个分配原则即为三个目标。
一:交巡警尽量能在3分钟内到达事发地。
二:在不能满足3分钟内到达事发地的情况下,交巡警到达事发地的时间应尽量短。
三:由于各交巡警平台的职能和警力配备基本相同,因此各交巡警平台的工作量应尽量均衡。
由以上分析可知,此问为一个多目标规划问题。
对于第一个目标,可以转化为交巡警能在3分钟内到达管辖路口的路口数应尽量多。
建立0—1变量:x ij={1, 路口i被平台j管辖0,路口i不被平台j管辖。
假设d ij为路口i到交巡警平台j的最短距离。
U0为交巡警可在3分钟内到达的路口集合,即若∃j∈{1,2…20},使得d ij≤3km,则i∈U0。
V i为能够在3分钟内到达路口i的交巡警平台的集合。
此目标可表示为:max f1=∑∑x ijj∈V iiϵU0;对于第二个目标,假设U1为交巡警不可再3分钟内到达的路口集合,此目标可表示为:min f2=∑x ij∗d ij, i∈U120j=1;对于第三个目标,本文用每个平台所管辖路口发案率的和表示平台的工作量,用工作量的变异系数来度量各平台工作量的均衡度,各平台工作量越均衡,变异系数越小。
假设r i为第i个路口的发案率,r为所有平台的平均工作量,rr j为第j个平台的工作量,此目标可表示为:min f3=√119∑(rr j−r)220j=1r⁄;r=∑r i92i=120;⁄满足条件为:1.每个路口由一个交巡警服务平台管辖:∑x ij=1, i=1,2…92;20j=12.每个交巡警服务平台至少管辖一个路口:∑x ij≥1, j=1,2…20;92i=13.每个交巡警服务平台必须管辖本路口:x ij=1, i=j;i,j=1…20;4.1.2 模型求解对于模型中的多目标规划问题,本文将之转化为单目标规划问题。
首先将目标一和目标二解出,然后将这两个目标作为约束条件,以目标三作为最终的单目标用lingo软件求出最终解。
1.各路口间最短距离的确定。
首先用22[]()() ijsqrti j i jx x y yw=+--公式算出两两之间的距离(如果有路),得出582*582的邻接矩阵,其中矩阵中的元素表示两两之间的距离,若不存在路,则用一个较大的数代替,在matlab环境下利用floyd算法求出最短路程矩阵D,矩阵D中两两之间的距离即为d ij。
程序见附录一。
Floyd算法的基本步骤如下:令d ij是顶点v i到顶点v j的最短距离, w ij是顶点v i到v j的权。
STEP1:输入临界矩阵W。
对所有i, j, 有d ij=w ij, k=1。
STEP2: 更新d ij。
对所有i, j, 若d ik+d kj<d ij, 则令d ij=d ik+d kj。
STEP3: 若d ii<0, 则存在一条含有顶点v j的负回路, 停止; 或者k=n停止, 否则转到STEP2。
2.目标一和目标二的求解用MATLAB编程从上述得到的各路口的最短距离中抽出92个路口分别到20个服务平台的最短距离。
筛选出d ij≤3km的点,求出交巡警可在3分钟内到达的所有路口(集合U0),剩下的路口则为交巡警不可能在3分钟内到达的路口(集合U1)。
程序见附录二。
为满足目标一,只需要满足:∑x ij∗d ij≤3,20j=1i∈U0;为满足目标二,将集合U1={28,29,38,39,61,92}中的路口直接分配给距离此路口最近将目标一、二作为约束条件,目标三作为最终单目标,可得如下最终模型:min f3=√119∑(rr j−r)220j=1r̅⁄s.t.{r̅=∑r i92i=120;⁄∑x ij∗d ij≤3,20j=1i∈U0; x ij=1, i∈U1,j=v i;∑x ij=1, i=1,2…92; 20j=1∑x ij≥1, j=1,2…20;92i=1x ij=1, i=j;i,j=1…20;x ij∈{0,1}其中v i表示交巡警不能在3分钟内赶到的路口i被平台v i管辖。
:4.2 问题一(2):封锁方案的确定4.2.1模型建立本问要求调度20个交巡警服务平台对A 区的13条交通要道实现快速封锁,且每个平台最多封锁一个路口。
实现完全封锁的时间取决于13条交通要道中被封锁最长的时间。
本文将时间问题转化为距离问题。
对13条要道实现最快封锁,即是将平台到13条被封锁要道中的最长距离最小化。
可建立0—1规划模型。
建立0—1变量:y ij ={1, 第i 条交通要道由第j 个交巡警服务平台封锁0,第i 条交通要道不由第j 个交巡警服务平台封锁。
假设s ij 为第i 条交通要道到第j 个平台的距离。
其中i=1,2…13;j=1,2…20。
目标函数:平台到13条被封锁要道中的最长距离最小 :min s =max(y ij ∗s ij ) i =1,2...13;j =1,2 (20)约束条件为:1.每条交通要道必须有一个交巡警服务平台进行封锁。
∑y ij 20j=1=1, i =1,2…13。
2.每个交巡警平台最多封锁一条交通要道。
∑y ij 13i=1≤1, j =1,2…20。
综上所述,此优化模型为:min s =max 1≤i≤201≤j≤13(y ij ∗s ij ) s.t.{ ∑y ij 20j=1=1, i =1,2…13;∑y ij 13i=1≤1, j =1,2…20;y ij ∈{0,1}用s min 表示上述模型解出的最小值。