一元一次方程

合集下载

一元一次方程求解

一元一次方程求解

一元一次方程求解在代数学中,一元一次方程是形如ax + b = 0的方程,其中a和b是已知的实数,而x是未知数。

解方程的过程就是要找到满足方程的x的值。

解一元一次方程的方法有很多种,下面将介绍一些常见的方法。

1. 平移消去法平移消去法是解一元一次方程的基本方法之一。

通过移项化简方程,将x的系数化为1,然后得到方程的解。

举个例子来说明这种方法。

假设有方程5x + 3 = 2x + 9,首先将方程中的常数项移到等号的另一侧,得到5x - 2x = 9 - 3,化简得到3x = 6。

然后将等号两边的系数化为1,即x = 2,得到方程的解。

2. 加减消元法加减消元法也是解一元一次方程的常用方法。

通过加减操作,将含有x的项相互抵消,得到最终的解。

例如,考虑方程3x - 5 = 2x + 7,我们可以将方程两边同时加上5,得到3x = 2x + 12。

然后再将方程两边同时减去2x,得到x = 12。

这样,我们就求得了方程的解。

3. 系数代换法系数代换法是通过将方程中的系数进行替换,将求解的问题转化为一次代数方程的问题。

举个例子来说明这种方法。

考虑方程2(x - 3) = 4(x + 1),我们可以将方程中的括号展开,得到2x - 6 = 4x + 4。

然后将方程两边同时减去2x,得到-6 = 2x + 4。

接着将方程两边同时减去4,得到-10 = 2x,最后将等号两边的系数化为1,即x = -5,得到方程的解。

4. 图解法图解法是通过绘制方程表示的直线和坐标轴相交的点,来求解方程。

例如,考虑方程2x - 3 = -x + 4,我们可以将方程表示成y = 2x - 3和y = -x + 4的直线。

然后在坐标轴上绘制这两条直线,并找到两条直线的交点。

这个交点的横坐标就是方程的解。

总结:解一元一次方程的方法有很多种,其中包括平移消去法、加减消元法、系数代换法和图解法等。

在应用这些方法时,我们需要根据具体的方程形式来选择适当的方法。

一元一次方程的概念及解法

一元一次方程的概念及解法

一元一次方程的概念及解法【知识点】:1、一元一次方程的定义:只含有一个未知数,并且未知数的次数都是1,这样的整式方程叫一元一次方程。

(如果方程的两边都是整式,我们就把这样的方程叫整式方程。

)2、方程的解:使方程左右两边相等的未知数的值叫方程的解。

3、解方程:求方程解的过程叫做解方程。

4、等式的基本性质:(1)、等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

(2)、等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

5、解一元一次方程的基本步骤:(1):去分母;(2):去括号;(3):移项;(4):合并同类项;(5):系数化成1。

【例题解析】1、判断下列各式是不是一元一次方程,是的打“√”,不是的打“x”。

(1) x+3y=4 ( ) (2) x2-2x=6 ( )(3) -6x=0 ( ) (4) 2m +n =0 ( )1+8=5y(5) 2x-y=8 ( ) (6)y ( )2、下列变形中,正确的是()A 、若ac=bc ,那么a=b 。

B 、若cb c a =,那么a=b C 、a =b ,那么a=b 。

D 、若a 2=b 2那么a=b3、给出下面四个方程及其变形:①48020x x +=+=变形为;②x x x +=-=-75342变形为;③253215x x ==变形为;④422x x =-=-变形为; 其中变形正确的是( )A .①③④B .①②④C .②③④D .①②③4、解方程:(1)x +2x +4x=140 (2)3x +20=4x-25 解: x+2x+4x=140[来源:学科网] ↓合并 7x=140 ↓系数化为1 x=20练习:解方程:(1)12y-3-5y=14; (2)2x -3x =5; (3)0.6x-13x-3=0.5、解方程:(1)42112+=+x x ; (2)2(x -2)-(4x -1)=3(1-x ) 6、解方程:452168x x +=+ 解 :去分母,得 依据去括号,得 依据 移项,得 依据 合并同类项,得 依据 系数化为1,得6x =- 依据 6、数学小诊所:小马虎的解法对吗?如果不对,应怎么改正?解方程312-x =1-614-x解:去分母 2(2x-1)=1-4x-1 去括号 4x-1=1-4x-1 移项 4x+4x=1-1+1 合并 8x=1 系数化为1 x=8练习:解方程:(1) 2x -13 =x+22 +1 (2)3142125x x -+=- (3) 4-3(2-x)=5x7、已知关于x 的方程132233x m m x x x -+=+=-与 的解互为倒数,求m 的值.归纳:解一元一次方程的步骤:步骤方法注意依据去分母在方程两边都乘以________________不要漏乘不含分母的项,分子是一个整体,去分母后应加括号去括号先去_______,再去______,最后______。

一元一次方程大全

一元一次方程大全

一元一次方程大全一元一次方程是数学中的一种最基本的方程,也是学习数学的第一步。

它应用广泛,可用于分析简单的数学问题,也可以解决复杂的实际应用问题。

本文旨在介绍一元一次方程,阐述它的基本概念、解法、应用以及习题等内容。

一、一元一次方程的定义一元一次方程是一种最基本的数学方程,它的定义如下:一元一次方程是指由一元一次未知数和常数构成的数学方程,通常表示为:ax + b = 0,其中a和b分别为常数和未知数,a≠0。

二、一元一次方程的解法一元一次方程的解法大多有三种:因式分解法、移项法和简单求根法。

(1)因式分解法如果一元一次方程是 ax + b = 0,则可以分解为a(x + b/a)= 0,x = -b/a。

也就是说,一元一次方程的解为x = -b/a。

(2)移项法移项法是指将一元一次方程的右端的常数项移到左端,即将ax + b = 0写成ax=-b的形式,然后除以a,即x=-b/a。

(3)简单求根法简单求根法是指将一元一次方程的右端的常数项对左端的未知数求根,即 ax+b=0变成x=-b/a的形式,然后计算x的值。

三、一元一次方程的应用一元一次方程不仅在学校教育中应用广泛,而且在现实生活中也有重要的应用。

比如,平面几何中的几何计算,可以使用一元一次方程求解平行直线和垂直直线的交点;统计学中的数据拟合,也可以通过一元一次方程拟合数据,以获得更准确的数据分析结果;复杂的工程问题,如两垂直的射线的仿射变换,也可以用一元一次方程来求解。

四、一元一次方程的习题以下为常见的一元一次方程习题:(1)2x + 3 = 0解:x = -3/2。

(2)3x - 5 = 0解:x = 5/3。

(3)-4x + 8 = 0解:x = -8/4。

(4)4x - 7 = -9解:x = 2。

总结从上面的内容可以看出,一元一次方程是学习数学的一个基本概念,不仅在学校数学教育中应用广泛,而且在实际生活中也有广泛的应用。

它的解法有三种,分别是因式分解法、移项法、简单求根法。

一元一次方程 概念

一元一次方程 概念

一元一次方程概念
一元一次方程是指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。

这种方程只有一个根。

一元一次方程可以解决绝大多数的工程问题、行程问题、分配问题、盈亏问题、积分表问题、电话计费问题、数字问题。

一元一次方程的概念最早见于约公元前1600年的古埃及时期。

公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。

16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。

1859年,数学家李善兰正式将这类等式译为一元一次方程。

以上内容仅供参考,建议查阅一元一次方程的相关书籍或咨询数学领域专业人士获取更准确的信息。

一元一次方程的计算公式

一元一次方程的计算公式

一元一次方程的计算公式一元一次方程,这可是初中数学里的重要角色呀!先来说说一元一次方程的基本形式,它通常长这样:ax + b = 0 (其中 a 不为 0 )。

那怎么求解呢?其实就是把 x 单独“拎”出来,算出它的值。

比如说有个方程 3x + 5 = 14 ,咱们来解解看。

第一步,先把 5 移到等号右边去,变成 3x = 14 - 5 ,也就是 3x = 9 。

接下来,两边同时除以 3 ,得出 x = 3 。

是不是还挺简单的?还记得我之前教过的一个学生小李,他刚开始接触一元一次方程的时候,总是被那些数字和符号绕得晕头转向。

有一次做作业,遇到一个方程 2x - 7 = 11 ,他抓耳挠腮半天也没解出来。

我就走过去问他:“小李,哪里不会啦?”他苦着脸说:“老师,我一看到这些式子就头疼,不知道从哪里下手。

”我笑着跟他说:“别着急,咱们一步步来。

先把 -7 移到等号右边,变成 2x = 11 + 7 ,你算算右边等于多少?”他想了想,回答道:“18 。

”“那接下来呢?”我继续引导他。

他恍然大悟:“两边同时除以 2 ,x 就等于 9 !”从那以后,小李逐渐掌握了解一元一次方程的窍门,做题也越来越顺手了。

再说说一元一次方程在实际生活中的应用。

比如说,你去商店买东西,一个笔记本 5 元,你买了 x 个,一共花了 20 元,那这就可以列出方程 5x = 20 ,从而算出 x = 4 ,也就是说你买了 4 个笔记本。

又比如,从 A 地到 B 地,汽车以每小时 60 千米的速度行驶,x 小时后到达,两地相距 300 千米,那可以列出 60x = 300 ,算出 x = 5 ,也就是 5 小时能到达。

咱们继续深入讲讲。

解一元一次方程还有一些需要注意的地方。

比如移项的时候要变号,乘除的时候要小心别算错。

还有,有时候方程看起来很复杂,但只要按照步骤来,都能迎刃而解。

我还碰到过一个有趣的情况。

有一次课堂小测验,有道题是 4(x - 2) + 3 = 11 ,不少同学都做错了。

100道一元一次方程

100道一元一次方程

1. 3x + 2 = 19解答:将方程中的常数项移至等号右边,得3x = 17,然后将方程两边同时除以3,得到x = 17/3。

2. 4x - 5 = 3解答:将方程中的常数项移至等号右边,得4x = 8,然后将方程两边同时除以4,得到x = 2。

3. 2(x + 3) = 10解答:将括号内的表达式乘以2,得2x + 6 = 10,然后将方程中的常数项移至等号右边,得2x = 4,最后将方程两边同时除以2,得到x = 2。

4. 5x - 8 = 3x + 2解答:将方程中的含x项移至等号左边,得5x - 3x = 2 + 8,化简得2x = 10,最后将方程两边同时除以2,得到x = 5。

5. 3(x - 2) = 2(x + 1)解答:将括号内的表达式乘以对应的系数,得3x - 6 = 2x + 2,将含x项移至等号左边,得3x - 2x = 2 + 6,化简得x = 8。

6. 2(x - 3) + 5 = 3x解答:将括号内的表达式乘以2,得2x - 6 + 5 = 3x,化简得2x - 1 = 3x,将含x项移至等号左边,得2x - 3x = 1,最后将方程两边同时除以-1,得到x = -1。

7. 4(x + 2) - 3 = 2x + 1解答:将括号内的表达式乘以4,得4x + 8 - 3 = 2x + 1,化简得4x + 5 = 2x+ 1,将含x项移至等号左边,得4x - 2x = 1 - 5,化简得2x = -4,最后将方程两边同时除以2,得到x = -2。

8. 5x - 3(2x + 1) = 4解答:将括号内的表达式乘以-3,得5x - 6x - 3 = 4,化简得-x - 3 = 4,将含x项移至等号右边,得-x = 4 + 3,化简得-x = 7,最后将方程两边同时乘以-1,得到x = -7。

9. 2(x - 4) + 3 = 5x - 1解答:将括号内的表达式乘以2,得2x - 8 + 3 = 5x - 1,化简得2x - 5 = 5x - 1,将含x项移至等号左边,得2x - 5x = -1 + 5,化简得-3x = 4,最后将方程两边同时除以-3,得到x = -4/3。

一元一次方程的概念

一元一次方程的概念

一元一次方程的概念一元一次方程,也称为一次方程或一次线性方程,是数学中最基本的代数方程之一。

它的定义和性质对于学习代数学和解决实际问题都具有重要意义。

本文将介绍一元一次方程的概念、基本形式、解法以及实际应用。

一、概念一元一次方程是指只含有一个未知数的一次方程。

一元表示方程中只有一个未知数,一次表示该未知数的最高次数为1。

一元一次方程的一般形式可以表示为ax + b = 0,其中a和b是已知实数,x为未知数。

在这个方程中,未知数x只出现一次,并且没有任何其它项与x相乘或相除。

二、基本形式一元一次方程的基本形式是ax + b = 0,其中a和b为已知实数,x为未知数。

方程中的系数a表示未知数x的系数,常数b表示方程的常数项。

在解一元一次方程时,我们的目标是找到未知数x的值,使方程两边相等。

这个值被称为方程的解。

三、解法1. 移项法解一元一次方程的最基本方法是移项法。

我们的目标是将方程中的未知数项系数系数项归集到等号的一侧,将常数项归集到等号的另一侧,使方程化简为 x = 解的形式。

以方程ax + b = 0为例,首先,我们可以将常数项b移到等号的右侧,得到ax = -b。

然后,我们除以系数a,得到x = -b/a。

这个解即为一元一次方程的解。

2. 消元法另一种解一元一次方程的方法是消元法。

当我们有多个一元一次方程时,我们可以通过消去一个未知数,将多个方程转化为一个方程的形式,再用移项法解决。

例如,考虑以下两个一元一次方程系统:方程1:a1x + b1 = 0方程2:a2x + b2 = 0首先,我们可以通过方程1的系数与方程2的系数相乘,得到新的方程:a1(a2x + b2) = a1 * 0a1a2x + a1b2 = 0接下来,我们可以通过将方程2的系数与方程1的系数相乘,得到另一个新的方程:a2(a1x + b1) = a2 * 0a1a2x + a2b1 = 0将这两个新方程相减,得到消去了未知数x的新方程:(a1b2 - a2b1) = 0解这个新方程,可以得到方程1和方程2的解。

一元一次方程的概念

一元一次方程的概念

一元一次方程的概念一元一次方程是数学中最基本也是最常见的方程类型之一。

它是用来描述一个未知数和已知系数之间的关系的数学等式。

本文将介绍一元一次方程的定义、特征,以及解一元一次方程的常见方法。

一、一元一次方程的定义一元一次方程是指只含有一个未知数和一次项的方程。

其一般形式可以表示为:ax + b = 0,其中a和b为已知常数,x为未知数。

在一元一次方程中,a不等于0,否则方程将退化为一个常数等式。

在一元一次方程中,未知数x的一次项系数a代表了未知数x的系数,常数b代表了方程中的常数项。

通过对方程中的未知数和已知数进行运算,我们可以求解这个方程并找到未知数的值。

二、一元一次方程的特征一元一次方程具有一些特征,我们可以通过这些特征来判断一个方程是否为一元一次方程。

首先,一元一次方程只涉及一个未知数。

方程中只含有一个变量,其他字母和数字都是已知的常数。

其次,一元一次方程中的未知数只出现在一次项中,并且该项的次数为1。

这意味着未知数只进行一次乘法运算,不存在平方、立方或更高次的情况。

此外,一元一次方程中的系数是已知的常数,不随未知数的变化而变化。

系数通常用字母表示,但它们的值是确定的,不会随求解过程的进行而改变。

三、解一元一次方程的常见方法解一元一次方程的目标是找到未知数x的值,使得方程等式成立。

根据方程的特征,我们可以采用以下常见的方法来解一元一次方程。

1. 合并同类项和移项法通过合并同类项和移项法,将方程转化为ax = -b的形式,然后通过两边同除以a,得到x = -b/a的解。

2. 两边相等原则根据方程两边相等的原则,可以通过运算操作将方程转化为x = -b/a的形式,从而找到未知数的解。

3. 代数运算法通过代数运算法,可以通过一系列等式的变换,将方程简化为形如x = -b/a的解。

4. 图解法对于一元一次方程,可以将方程转化为一条直线的图像。

通过画出这条直线,并与横轴的交点来确定方程的解。

以上是解一元一次方程的常见方法,通过这些方法,我们可以求解一元一次方程并得到其解。

初中数学一元一次方程知识点

初中数学一元一次方程知识点

初中数学一元一次方程知识点初中数学一元一次方程知识点引导语:一元一次方程是初中数学学习的一个重点、难点,需要同学们好好掌握。

以下是初中数学一元一次方程相关知识点,希望能帮助到同学们!一元一次方程定义通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。

通常形式是ax+b=0(a,b为常数,且a≠0)。

一元一次方程属于整式方程,即方程两边都是整式。

一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。

我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。

这里a是未知数的系数,b是常数,x的次数必须是1。

即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1; ⑷含未知数的项的系数不为0。

一元一次方程的五个核心问题一、什么是等式?1+1=1是等式吗?表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母, 等式的两边总是相等, 由数字组成的等式也是恒等式, 如2+4=6, a+b=b+a等都是恒等式;第二类是条件等式, 也就是方程, 这类等式只能取某些数值代替等式中的字母时, 等式才成立, 如x+y=-5, x+4=7等都是条件等式;第三类是矛盾等式, 就是无论用任何值代替等式中的字母, 等式总不成立, 如x2=-2, |a|+5=0等。

一个等式中, 如果等号多于一个, 叫做连等式,连等式可以化为一组只含有一个等号的等式。

等式与代数式不同, 等式中含有等号, 代数式中不含等号。

等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式, 所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零, 所得结果仍然是一个等式。

二、什么是方程, 什么是一元一次方程?含有未知数的等式叫做方程,如2x-3=8,x+y=7 等。

判断一个式子是否是方程, 只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。

一元一次方程解法步骤

一元一次方程解法步骤

⼀元⼀次⽅程解法步骤 ⼀元⼀次⽅程是初中数学教学中的重点和难点,在教学过程中教师和学⽣都有有⼼⽆⼒的感觉,如何将⼀元⼀次⽅程与实际应⽤更好地结合起来是教学⼀元⼀次⽅程中的核⼼问题,什么是⼀元⼀次⽅程呢?怎么解呢?下⾯是店铺⼩编整理的什么是⼀元⼀次⽅程,欢迎阅读。

什么是⼀元⼀次⽅程 只含有⼀个未知数、未知数的最⾼次数为1的等式叫做⼀元⼀次⽅程(linear equation in one unknown);使⽅程左右两边的值相等的未知数的值,叫做⽅程的解(solution) ⼀元⼀次⽅程基本信息 标准形式 ⼀元⼀次⽅程的标准形式(即所有⼀元⼀次⽅程经整理都能得到的形式)是ax=b( )。

其中是未知数的系数,是常数,是未知数。

未知数⼀般常设为 , , 。

⽅程特点 (1)该⽅程为整式⽅程。

(2)该⽅程有且只含有⼀个未知数。

(3)该⽅程中未知数的最⾼次数是1。

满⾜以上三点的⽅程,就是⼀元⼀次⽅程。

判断⽅法 要判断⼀个⽅程是否为⼀元⼀次⽅程,先看它是否为整式⽅程。

若是,再对它进⾏整理。

如果能整理为的形式,则这个⽅程就为⼀元⼀次⽅程。

⾥⾯要有等号,且分母⾥不含未知数。

变形公式 ( ,为常数,为未知数,且 ) 求根公式 ⼀元⼀次⽅程的标准形式:ax+b=0 (a≠0) 其求根公式为:x=-b/a ⼀元⼀次⽅程只有⼀个根 通常解法 去分母→去括号→移项→合并同类项→未知项系数化为1(即化为x=a的形式) 两种类型 (1)总量等于各分量之和。

将未知数放在等号左边,常数放在右边。

如:。

(2)等式两边都含未知数。

如:,。

⽅程举例 3y=-1 5z+2=5 2x=1 5a+4=13×32 都是⼀元⼀次⽅程。

⼀元⼀次⽅程起源 “⽅程”⼀词来源于中国古算术书《九章算术》。

在这本著作中,已经列出了⼀元⼀次⽅程。

法国数学家笛卡尔把未知数和常数通过代数运算所组成的⽅程称为代数⽅程。

在19世纪以前,⽅程⼀直是代数的核⼼内容。

一元一次方程50道过程

一元一次方程50道过程

一元一次方程50道过程
1.解一元一次方程3x-5=2:
解:将所有项移至一边,将变量一边,将常数一边。

即3x-2=5 2.解一元一次方程5x+1=3:
解:将所有项移至一边,将变量一边,将常数一边。

即5x=3-1 3.解一元一次方程3x+2=6:
解:将所有项移至一边,将变量一边,将常数一边。

即3x=6-2 4.解一元一次方程4x-3=5:
解:将所有项移至一边,将变量一边,将常数一边。

即4x=5+3 5.解一元一次方程7x+4=10:
解:将所有项移至一边,将变量一边,将常数一边。

即7x=10-4 6.解一元一次方程6x+3=9:
解:将所有项移至一边,将变量一边,将常数一边。

即6x=9-3 7.解一元一次方程8x-7=3:
解:将所有项移至一边,将变量一边,将常数一边。

即8x=3+7 8.解一元一次方程5x+4=2:
解:将所有项移至一边,将变量一边,将常数一边。

即5x=2-4。

一元一次方程的解法

一元一次方程的解法

一元一次方程的解法一元一次方程是指只有一个未知数且未知数的最高次数为1的方程。

求解一元一次方程是初中数学中的基础内容,而且在实际问题中也经常用到。

本文将介绍两种常见的解法:等式法和代入法。

一、等式法等式法是求解一元一次方程的最常用的方法。

其基本思路是通过等式两边的操作将未知数的系数和常数项转移到方程的一边,最终得到未知数的值。

下面以一个具体的例子来说明等式法的步骤:例题:求解方程3x + 2 = 7。

步骤一:将方程转化为3x = 7 - 2。

步骤二:计算等式右边的数值,得到3x = 5。

步骤三:根据等式两边的操作,将未知数的系数3移到方程的另一边,得到x = 5 ÷ 3。

步骤四:计算等式右边的数值,最终得到x = 5/3。

通过以上步骤,我们求解出了方程的解x = 5/3。

在实际应用中,我们可以继续验证求得的解是否符合原方程。

二、代入法代入法是另一种常用的求解一元一次方程的方法。

其基本思路是通过将已知的解代入原方程,验证是否满足相等关系,从而求解出未知数的值。

下面以一个例题来说明代入法的步骤:例题:求解方程5x - 3 = 12。

步骤一:假设x = 3为方程的解。

步骤二:将假设的解代入方程,得到5 × 3 - 3 = 12。

步骤三:计算等式左边的数值,得到15 - 3 = 12。

步骤四:判断等式左右两边是否相等,根据结果可以得出结论。

在本例中,等式左右两边不相等,因此假设的解不是方程的解。

步骤五:重新尝试其他数值,直到找到使得等式成立的解。

通过以上步骤,我们可以不断尝试不同的数值,直到找到满足方程的解为止。

代入法在一些特殊的情况下,例如求解含有分数的方程时,往往比等式法更加方便和直观。

综上所述,等式法和代入法是求解一元一次方程的常见方法。

在实际应用中,我们可以根据具体情况选择合适的方法进行求解。

通过掌握这两种方法,我们可以解决一元一次方程相关的问题,提高数学解题能力。

一元一次方程

一元一次方程

一元一次方程一、一元一次方程一、双基回顾1、方程、方程的解和解方程含有的叫做方程;使方程相等的的值叫做方程的解。

的过程叫做解方程。

例:x=-3是不是方程2x=5x+9的解,你是怎么知道的.2、一元一次方程只含有未知数,并且未知项的次数的方程叫做一元一次方程。

例:指出下列各式中哪些是一元一次方程?并说明理由。

(1)2x-y=3; (2)x=0; (3)x2-2x+1=0; (4)x+3=2x-1.3、等式的性质性质1 等式两边同一个数(或),结果仍相等。

若a=b,则.性质2 等式两边同一个数,或的数,结果仍相等。

若a=b,则; 若a=b,则.例:用适当的数字或式子填空,使所得的结果仍是等式,并说明理由。

(1)如果3x+8=6,那么3x=6[ ]; (2)如果-5x=25,那么x=[ ];(3)如果2x-3=5,那么2x=[ ]; (4)如果x/4=-7,那么x=[ ]4、合并同类项解一元一次方程如果方程中有同类项,可以先合并同类项变成ax=b(a≠0)的形式,再求解。

例:解方程:-3x+2x=5-1二、例题导引例1 下列说法中正确的是〔〕①若x=y,则x/m2=y/m2;②若x=y,则mx=my; ③若x/m=y/m,则x=y; ④若x2=y2,则x3=y3例2 已知方程(m-2)x︱m︱-1+3=m-5是关于x的一元一次方程,求m的值。

例3 已知x=1/2是关于x的方程4+x=3-2ax的解,求a2+a+1的值。

例4 小明去商店买练习本,回来后和同学说,店主告诉我,如果多买一些就给我8折优惠,我就买了20本,结果便宜了1.6元,你猜原来每本价格是多少?(请你列出方程,并用等式的性质求解。

)三、练习提高夯实基础1、下列各式中,是方程的有〔〕①2x+1; ②x=0; ③2x+3>0;④x-2y=3; ⑤1/x-3x=5;⑥x2+x-3=0.A、3个B、4个C、5个D、6个2、下列方程中,解为1/2的是〔〕A、5(t-1)+2=t-2B、1/2x-1=0C、3y-2=4(y-1)D、3 (z-1) =z-23、下列变形不正确的是〔〕A、若2x-1=3,则2x = 4B、若3x =-6,则x =2C、若x+3=2,则x =-1D、若-1/2x=3,则x=-64、已x=y,下列变形中不一定正确的是〔〕A、x-2=y-2B、-2x=-2yC、ax=ayD、x/c2=y/c25、下列各式的合并不正确的是〔〕A、-x-x = -2xB、-3x+2x = -xC、1/10x-0.1x = 0D、0.1x-0.9x = 0.8x6、若x2a-1+2=0是一元一次方程,则a=.7、某班学生为希望工程捐款131元,比每人平均2元还多35元。

一元一次方程知识点汇总

一元一次方程知识点汇总

一元一次方程知识点汇总【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次)的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等. 用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则 〔依据分配律:a (b+c )=ab+ac 〕1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a (或乘未知数的倒数),得到方程的解x=b a). 六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,找:明确各数量之间的关系;2. 设:设未知数(可分直接设法,间接设法), 表示出有关的含字母的式子;3. 列:根据题意列方程;4. 解:解出所列方程, 求出未知数的值;5. 检:检验所求的解是否是方程的解,是否符合题意;6. 答:写出答案(有单位要注明答案).七、有关常用应用题类型及各量之间的关系1. 和、差、倍、分问题(增长率问题): 增长量=原有量³增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,几分之几,增长率,减少,缩小……”来体现.(2)多少关系:通过关键词语“多、少、大、小、和、差、不足、剩余……”来体现. 审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变(等积)为前提,是等量关系的所在.常用等量关系为: ①形状面积变了,周长没变; ②原料体积=成品体积.(2)常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积³高=S ²h =πr 2h②长方体的体积 V =长³宽³高=abc3. 劳力调配问题:从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量.这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题: 要正确区分“数”与“数字”两个概念, 同一个数字在不同数位上,表示的数值不同,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系列方程.列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和.(1)要搞清楚数的表示方法:一般可设个位数字为a ,十位数字为b ,百位数字为c ,十位数可表示为10b+a ,百位数可表示为100c+10b+a (其中a 、b 、c 均为整数,且0≤a ≤9, 0≤b ≤9, 1≤c ≤9).(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示.5. 工程问题(生产、做工等类问题):工作量=工作效率³工作时间 工作时间工作量工作效率= 工作效率工作量工作时间=合做的效率=各单独做的效率的和. 一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=1.分析时可采用列表或画图来帮助理解题意。

初中数学一元一次方程3篇

初中数学一元一次方程3篇

初中数学一元一次方程3篇学习是一架保持平衡的天平,一边是付出,一边是收获,少付出少收获,多付出多收获,不劳必定无获!要想取得理想的成绩,勤奋至关重要!下面是小编给大家带来的初中数学一元一次方程,欢迎大家阅读参考,我们一起来看看吧!初中数学一元一次方程1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。

6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。

7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。

一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。

(完整版)一元一次方程及其解法

(完整版)一元一次方程及其解法

3.1 一元一次方程及其解法1.一元一次方程(1)一元一次方程的概念只含有一个未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程.如:7-5x =3,3(x +2)=4-x 等都是一元一次方程.解技巧 正确判断一元一次方程判断一元一次方程的四个条件是:①只含有一个未知数(元);②未知数的次数都是一次;③未知数的系数不能为0;④分母中不含未知数,这四个条件缺一不可.(2)方程的解①概念:使方程两边相等的未知数的值叫做方程的解.一元方程的解,也叫做方程的根. ②方法:要检验某个数值是不是方程的解,只需看两点:一看,它是不是方程中未知数的值;二看,将它分别代入方程的左边和右边,若方程左、右两边的值相等,则它是方程的解.如x =3是方程2x -4=2的解,而y =3就不是方程2x -4=2的解. (3)解方程求方程的解的过程叫做解方程.方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.【例1-1】 下列各式哪些是一元一次方程( ).A .S =12ab ;B.x -y =0;C.x =0;D.12x +3=1;E.3-1=2;F.4y -5=1;G .2x 2+2x +1=0;H.x +2.解析:E 中不含未知数,所以不是一元一次方程;G 中未知数的次数是2,所以不是一元一次方程;A 与B 中含有的未知数不是一个,也不是一元一次方程;H 虽然形式上字母的个数是一个,但它不是等式,所以也不是一元一次方程;D 中分母中含有未知数,不是一元一次方程;只有C ,F 符合一元一次方程的概念,所以它们是一元一次方程.答案:CF【例1-2】 x =-3是下列方程( )的解. A .-5(x -1)=-4(x -2) B .4x +2=1C .13x +5=5 D .-3x -1=0解析:对于选项A ,把x =-3代入所给方程的左右两边,左边=-5×(-3-1)=20,右边=-4×(-3-2)=20,因为左边=右边,所以x =-3是方程-5(x -1)=-4(x -2)的解;对于选项B ,把x =-3代入所给方程的左右两边,左边=4×(-3)+2=-10,右边=1,因为左边≠右边,所以x =-3不是方程4x +2=1的解,选项C ,D 按以上方法加以判断,都不能使方程左右两边相等,只有A 的左右两边相等,故应选A.答案:A2.等式的基本性质(1)等式的基本性质①性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式. 用式子形式表示为:如果a =b ,那么a +c =b +c ,a -c =b -c .②性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式. 用式子形式表示为:如果a =b ,那么ac =bc ,a c =bc(c ≠0).③性质3:如果a =b ,那么b =a .(对称性) 如由-8=y ,得y =-8.④性质4:如果a =b ,b =c ,那么a =c .(传递性) 如:若∠1=60°,∠2=∠1,则∠2=60°. (2)等量代换在解题过程中,根据等式的传递性,一个量用与它相等的量代替,简称等量代换. 谈重点 应用不等式的性质的注意事项(1)应用等式的基本性质1时,一定要注意等式两边同时加上(或减去)同一个数或同一个整式,才能保证所得结果仍是等式.这里特别要注意:“同时”和“同一个”,否则就会破坏相等关系.(2)等式的基本性质2中乘以(或除以)的仅仅是同一个数而不包括整式,要注意与性质1的区别.(3)等式两边不能都除以0,因为0不能作除数或分母.【例2-1】 下列运用等式的性质对等式进行的变形中,正确的是( ).A .若4y +2=3y -1,则y =1B .若7a =5,则a =57C .若x 2=0,则x =2D .若x 6-1=1,则x -6=1解析:首先观察等式的左边是如何由上一步变形得到的,确定变形的依据,再对等式的右边进行相应的变形,得出结论.A 根据等式的基本性质1,等式的两边都减去3y +2,左边是y ,右边是-3,不是1;C 根据等式的基本性质2,两边都乘以2,右边应为0,不是2;D 根据等式的基本性质2,左边乘以6,而右边漏乘6,故不正确;只有B 根据等式的基本性质2,两边都除以7,得到a =57.答案:B【例2-2】 利用等式的基本性质解方程:(1)5x -8=12;(2)4x -2=2x ;(3)x +1=6;(4)3-x =7.分析:利用等式的基本性质求解.先利用等式的基本性质1将方程变形为左边只含有未知数的项,右边含有常数项,再利用等式的基本性质2将未知数的系数化为1.解:(1)方程的两边同时加上8,得5x =20. 方程的两边同时除以5,得x =4. (2)方程的两边同时减去2x ,得2x -2=0. 方程的两边同时加上2,得2x =2. 方程的两边同时除以2,得x =1. (3)方程两边都同时减去1, 得x +1-1=6-1,∴x=6-1.∴x=5.(4)方程两边都加上x,得3-x+x=7+x,3=7+x,方程两边都减去7,得3-7=7+x-7,∴-4=x,即x=-4.3.解一元一次方程(1)移项①移项的概念及依据:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.因为方程是特殊的等式,所以移项的依据是等式的基本性质1.②移项的目的:把所有含有未知数的项移到方程的一边,常数项移到方程的另一边.③移项的过程:移项的过程是项的位置改变和符号变化的过程.即对移动的项进行变号的过程,如,-2-3x=7,把-2从方程的左边移到右边,-2在原方程中前面带有性质符号“-”,移到右边后需变成“+”,在移动的过程中同时变号,没有移动的项则不变号.所以由移项,得-3x=7+2.④要注意移项和加法交换律的区别:移项是把某一项从等式的一边移到另一边,移项要变号;而加法交换律中交换加数位置只是改变排列的顺序,符号随着移动而不改变.如,3+5x=1,把3从方程的左边移到右边要变号,得5x=1-3,是属于移项;而把5x-15x+11x=11变成5x+11x -15x=11,是利用加法交换律,不是移项而是位置的移动,所以不变号.辨误区移项时应注意的问题在移项时注意“两变”:一变性质符号,即“+”号变为“-”号,而“-”号变为“+”号;二变位置,把某项由等号的一边移到另一边.(2)解一元一次方程的步骤解一元一次方程的一般步骤有:去分母、去括号、移项、合并同类项、系数化为1.具体变形名称具体做法变形依据注意事项去分母方程左右两边的每一项都乘以各分母的最小公倍数等式的基本性质2不能有漏乘不含分母的项;分子是多项式的去掉分母后,要加小括号去括号可由小到大,或由大到小去括号分配律;去括号的法则不要漏乘括号内的项;括号前是“-”号的,去括号时括号内的所有项都要变号移项移项就是将方程中的某些项改变符号后,从方程的一边移到另一边等式的基本性质1 移项要变号合并同类项将方程化为ax=b的最简形式合并同类项的法则只将系数相加,字母及其指数不变化系数为1 方程的左右两边同时除以未知数系数或乘以未知数系数的倒数等式的基本性质2 分子、分母不能颠倒值得注意的是:(1)这些步骤在解方程时不一定全部都用到,也不一定按照顺序进行,可根据方程的形式,灵活安排步骤;(2)为了避免错误,可将解出的结果代入原方程进行检验.【例3-1】 下列各选项中的变形属于移项的是( ). A .由2x =4,得x =2B .由7x +3=x +5,得7x +3=5+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +9解析:选项A 是把x 的系数化成1的变形;选项B 中x +5变成5+x 是应用加法交换律,只是把位置变换了一下;选项C 是作的移项变形;选项D 是应用等式的对称性“a =b ,则b =a ”所作的变形.所以变形属于移项的是选项C.答案:C【例3-2】 解方程2-x 3-5=x -14.分析:方程有分母,将方程两边每一项都要乘以各分母的最小公倍数12,去掉分母得4(2-x )-60=3(x -1),再按照步骤求解,特别注意-5不能漏乘分母的最小公倍数12.解:去分母,方程两边都乘以12, 得4(2-x )-60=3(x -1). 去括号,得8-4x -60=3x -3. 移项,得-4x -3x =-3-8+60. 合并同类项,得-7x =49. 两边同除以-7,得x =-7.4.解复杂的一元一次方程解方程是代数中的主要内容之一,一元一次方程化成标准方程后,就成为未知数系数不是0的最简方程.一元一次方程不仅有很多直接应用,而且解一元一次方程是学习解其他方程和方程组的基础.解方程的过程,实际上就是把方程式不断化简的过程,一直把方程化为x =a (a 是一个已知数).(1)复杂的一元一次方程的解法与简单方程的解法其思路是一样的.方程中若含有相同的代数式,可以把此代数式看作一个整体来运算;方程中若含有小数或百分数,就要根据分数的基本性质,把小数或百分数化为整数再去分母运算.(2)要注意把分母整数化和去分母的区别:分母整数化是在某一项的分子、分母上同乘以一个不等于零的数,而去分母是在方程两边同乘以分母的最小公倍数.【例4】 解方程0.4x -90.5-x -52=0.03+0.02x0.03.分析:由于0.4x -90.5和0.03+0.02x 0.03的分子、分母中含有小数,可利用分数的基本性质把小数化为整数,在式子0.4x -90.5的分子、分母中都乘以10,变为4x -905,在式子0.03+0.02x0.03的分子、分母中都乘以100,变为3+2x3,然后去分母,再按解一元一次方程的步骤求解.解:分母整数化,得 4x -905-x -52=3+2x3.去分母,得6(4x -90)-15(x -5)=10(3+2x ). 去括号,得24x -540-15x +75=30+20x . 移项,得24x -15x -20x =540-75+30. 合并同类项,得 -11x =495. 两边同除以-11,得x =-45.5.与一元一次方程的解相关的问题 方程的解不仅是方程的重要概念,也是考查方程知识时的主要命题点.解题的关键是理解方程的解的概念.(1)已知方程的解求字母系数:若已知方程的解,将方程的解代入方程,一定使其成立,则得到一个关于另一个未知数的方程,解这个方程,即可求出这个字母系数的值.(2)同解方程:因为两方程的解相同,可直接解第一个方程,求出未知数的值,再把未知数的值代入第二个方程,求出相关字母的值.【例5-1】 关于x 的方程3x +5=0与3x +3k =1的解相同,则k =( ).A .-2B .43C .2D .-43解析:解方程3x +5=0,得x =-53.将x =-53代入方程3x +3k =1,得-5+3k =1,解得k =2,故应选C. 答案:C【例5-2】 若关于x 的方程(m -6)x =m -4的解为x =2,则m =__________. 解析:把x =2代入方程(m -6)x =m -4,得(m -6)×2=m -4,解得m =8. 答案:86.一元一次方程的常用解题策略 我们已经知道,解一元一次方程一般有五个步骤,去分母,去括号,移项,合并同类项,化未知数的系数为1,可有些一元一次方程,若能根据其结构特征,灵活运用运算性质与解题技巧,则不但可以提高解题速度与准确性,而且还可以使解题过程简捷明快,下面介绍解一元一次方程常用的几种技巧.(1)有括号的一元一次方程一般是先去括号,去括号的顺序一般是由小到大去,但有些题目是从外向里去括号,计算反而简单,这就要求仔细观察方程的特点,灵活运用使计算简便的方法.(2)对于一些含有分母的一元一次方程,若硬套解题的一般步骤,先去分母则复杂繁琐,若根据方程的结构特点,先移项、合并同类项,则使运算显得简捷明快.有些特殊的方程却要打破常规,灵活运用一些解题技巧,使运算快捷、简便.巧解可激活思维,使我们克服思维定式,培养创新能力,从而增强学习数学的兴趣.【例6-1】 解方程34⎣⎡⎦⎤43⎝⎛⎭⎫12x -14-4=32x +1. 分析:注意到34×43=1,把34乘以中括号的每一项,则可先去中括号,34×43⎝⎛⎭⎫12x -14-34×4=32x +1,再去小括号为12x -14-3=32x +1,再按步骤解方程就非常简捷了. 解:去括号,得12x -14-3=32x +1.移项,合并同类项,得-x =174.两边同除以-1,得x =-174.【例6-2】 解方程x +37-x +25=x +16-x +44.分析:此题可按照解方程的一般步骤求解,但本题若直接去分母,则两边乘以最小公倍数420,运算量大容易出错,我们可两边分别通分,5(x +3)-7(x +2)35=2(x +1)-3(x +4)12,把分子整理后再按照解一元一次方程的步骤求解.解:方程两边分别通分,得5(x +3)-7(x +2)35=2(x +1)-3(x +4)12.化简,得-2x +135=-x -1012. 去分母,得12(-2x +1)=35(-x -10). 去括号,得-24x +12=-35x -350. 移项、合并同类项,得11x =-362.两边同除以11,得x =-36211.7.列一元一次方程解题(1)利用方程的解求未知系数的值当已知方程的解求方程中字母系数或有关的代数式时,常常采用代入法,即将方程的解代入原方程,得到关于字母系数的等式(或者可以看作关于字母系数的方程),再求解即可.(2)利用概念列方程求字母的值 利用某些概念的定义,可以列方程求出相关的字母的取值,如根据同类项的定义或一元一次方程的定义求字母的值.列方程求值的关键是根据所学的知识找出相等关系.再列出方程,解方程从而求出字母的取值.谈重点 列一元一次方程注意挖掘隐含条件许多数学概念、性质的运用范围、限制条件或使用前提有的是以隐含条件的形式出现在题目中,由此可发掘隐含的条件,列一元一次方程解题,发掘隐含条件时需要全面、深刻地理解掌握数学基础知识.【例7-1】 (1)当a =__________时,式子2a +1与2-a 互为相反数. (2)若6的倒数等于x +2,则x 的值为__________.解析:(1)根据互为相反数的两数和为0,可得一元一次方程2a +1+(2-a )=0,解得a =-3;(2)由倒数的概念:乘积为1的两个数互为倒数,可得一元一次方程6(x +2)=1,解得x =-116.答案:(1)-3 (2)-116【例7-2】 已知x =-2是方程x -k 3+3k +26-x =x +k2的解,求k 的值.分析:把x =-2代入原方程,原方程就变成了以k 为未知数的新方程,解含有未知数k 的方程,可以求出k 的值.解:把x =-2代入原方程,得 -2-k 3+3k +26-(-2)=-2+k2. 去分母,得2(-2-k )+3k +2-(-2)×6=3(-2+k ). 去括号,得-4-2k +3k +2+12=-6+3k . 移项、合并同类项,得 -2k =-16.方程两边同除以-2,得k =8.【题01】下列变形中,不正确的是( ) A .若25x x =,则5x =.B .若77,x -=则1x =-.C .若10.2x x -=,则1012x x -=. D .若x ya a=,则ax ay =. 【题02】下列各式不是方程的是( ) A .24y y -=B .2m n =C .222p pq q -+D .0x =【题03】解为2x =-的方程是( ) A .240x -=B .5362x +=C .3(2)(3)5x x x ---=D .275462x x --=- 【题04】若关于x 的方程223(4)0n x n -+-=是一元一次方程,求n 的值.课后作业【题05】已知2(23)(23)1m x m x ---=是关于x 的一元一次方程,则m = .【题06】若关于x 的方程2(2||)(2)(52)0m x m x m -+---=是一元一次方程,求m 的解.【题07】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .【题08】若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .若关于x 的方程2(2)450k x kx k ++-=是一元一次方程,则方程的解x = .【题09】2(38)570a b x bx a ++-=是关于x 的一元一次方程,且该方程有惟一解,则x =( ) A .2140- B .2140C .5615-D .5615【题10】解方程:135(3)3(2)36524x x ---=【题11】解方程:11 (4)(3) 34y y-=+【题12】解方程:122233x xx-+ -=-【题13】解方程:21511 36x x+--=【题14】解方程:11(0.170.2)1 0.70.03x x--=【题15】解方程:1(4)33519 0.50.125xxx+++=+【题16】解方程:0.20.450.0150.010.5 2.50.250.015x xx++-=-【题17】解方程:0.10.90.21 0.030.7x x--=【题18】解方程:4213 2[()] 3324x x x--=【题19】解方程:111[(1)6]20343x --+=。

一元一次方程 二元一次方程

一元一次方程 二元一次方程

一元一次方程二元一次方程
一元一次方程是指只含有一个未知数的一次方程。

一般形式为:
ax + b = 0
其中,a和b是已知数,x是未知数。

解一元一次方程的方法是:将所有未知数项移到等式的一边,将所有已知数项移到另一边,然后将未知数项的系数化为1。

例如,要解方程2x - 5 = 7,可以将所有项移到一边,得到2x = 12,然后将两边除以2,得到x = 6。

二元一次方程是指含有两个未知数的一次方程。

一般形式为:
ax + by + c = 0
其中,a、b和c是已知数,x和y是未知数。

解二元一次方程需要使用两个方程,从而可以消去一个未知数,求出另一个未知数的值。

常用的方法有加减消元法和代入消元法。

例如,要解方程组:
2x + 3y = 8
4x - y = 2
可以用加减消元法,将第一个方程乘以2,第二个方程乘以3,并相减,从
而消去y,得到:
4x + 6y = 16
12x - 3y = 6
---------------
-6y = 10
y = -5/3
将y的值代回任一方程,可以求出x的值。

一元一次方程和二元一次方程是最基本的代数方程,是研究更高阶方程和其他数学分支的基础。

一元一次方程的解法

一元一次方程的解法

一元一次方程的解法一、方程的概念与组成1.方程的定义:含有未知数的等式称为方程。

2.方程的组成:a.未知数:用字母表示的数,如x、y等。

b.常数:已知的数,如2、3、4等。

c.运算符号:加、减、乘、除等。

二、一元一次方程的定义与特点1.定义:含有一个未知数,并且未知数的最高次数为1的方程称为一元一次方程。

a.方程中只有一个未知数。

b.未知数的最高次数为1。

c.方程的两边都是整式。

2.移项:将方程中的未知数移到等式的一边,常数移到等式的另一边。

3.合并同类项:将方程中同类项合并,化简等式。

4.系数化为1:将方程中的未知数系数化为1,得到未知数的值。

四、解题步骤1.识别方程:判断方程是否为一元一次方程。

2.移项:将未知数移到等式的一边,常数移到等式的另一边。

3.合并同类项:化简等式,使未知数系数化为1。

4.求解:根据合并同类项后的等式,求得未知数的值。

5.检验:将求得的未知数值代入原方程,验证等式是否成立。

五、常见解题方法1.加减法解法:适用于方程两边都有未知数的情况。

2.乘除法解法:适用于方程中有未知数的乘除运算。

3.换元法:适用于方程中未知数的系数较大或较复杂时,通过设定新未知数简化方程。

六、解题注意事项1.保持等号对齐:在移项、合并同类项过程中,要注意保持等号对齐,避免出错。

2.符号变化:移项时,要注意符号的变化,负数移到等式另一边要变正,正数移到等式另一边要变负。

3.检验:求得未知数值后,要进行检验,确保解是正确的。

七、方程的应用1.实际问题:将实际问题转化为方程,通过求解方程得到问题的答案。

2.数学运算:在一元一次方程的基础上,进行加减乘除等运算,解决更复杂的数学问题。

通过以上知识点的学习,学生可以掌握一元一次方程的基本概念、解法步骤和应用方法,为后续数学学习打下基础。

习题及方法:1.习题:2x - 5 = 3a.移项:将常数移到等式右边,未知数移到等式左边。

2x = 3 + 5b.合并同类项:将等式右边的常数相加。

一元一次方程知识点

一元一次方程知识点

初一数学上册知识点:一元一次方程一元一次方程1.等式与等量:用"="号连接而成的式子叫等式.注意:"等量就能代入"!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:"方程的解就能代入"!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:…………多用于"和,差,倍,分问题"仔细读题,找出表示相等关系的关键字,例如:"大,小,多,少,是,共,合,为,完成,增加,减少,配套-----",利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: …………多用于"行程问题"利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度·时间;(2)工程问题:工作量=工效·工时;(3)比率问题:部分=全体·比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V 圆锥= πR2h。

一元一次方程

一元一次方程

一元一次方程一元一次方程是初中数学中的重要概念之一,它是由一个未知数和系数构成的代数方程,其中未知数的最高幂为1,例如:2x + 3 = 7。

解一元一次方程可以帮助我们找到未知数的值,从而解决实际问题。

一、一元一次方程的定义和性质一元一次方程是指只有一个未知数的代数方程,其一般形式为:ax + b = c,其中a、b、c为已知数,a≠0。

方程中的未知数一般用x表示。

一元一次方程的求解可以通过以下步骤进行:1. 将方程中未知数的系数和常数项移到同一侧,以得到ax = c - b的形式;2. 如果方程中未知数系数a为1,则可直接得到x的值,即x = c - b;3. 如果方程中未知数系数a不为1,则需要通过除以a的方式,将x 的系数化为1,从而得到x的值。

二、解一元一次方程的实例展示以下是几个解一元一次方程的实例:例1:解方程2x + 3 = 7。

解:首先将方程中未知数系数与常数项移到同一侧,得到2x = 7 - 3。

然后,将等式两边除以2,得到x = (7 - 3) / 2,即x = 4 / 2,所以x = 2是方程的解。

例2:解方程3(x - 2) = 5(x + 1) - 4。

解:首先将方程中的分布式展开,得到3x - 6 = 5x + 5 - 4。

然后,将未知数系数移到一侧,得到3x - 5x = 5 - 4 + 6。

化简得到-2x = 7,再将等式两边除以-2,得到x = -7 / 2,所以x = -3.5是方程的解。

例3:解方程4(x - 1) + 2 = 5(x + 3) - 1。

解:首先将方程中的分布式展开,得到4x - 4 + 2 = 5x + 15 - 1。

然后,将未知数系数移到一侧,得到4x - 5x = 15 - 1 + 4 - 2。

化简得到-x = 16,再将等式两边乘以-1,得到x = -16,所以x = -16是方程的解。

三、一元一次方程的应用举例一元一次方程的求解在实际问题中有着广泛的应用,以下是几个相关应用的示例:例1:小明拥有某笔钱财,他将其中2/5捐给了慈善机构,然后将剩下的400元全部存入银行,求小明原先有多少钱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(8)p q 0
(9)x2 2x 3 0
2、方程(a+6)x2 +3x-8=7是关于x的一元 一次方程,则a= __-_6__。
3.填空
(1)如果关于x的方程3x5-2k-3=0是
一元一次方程,则k= 2

(2)已知方程 -(m-1)y|m|+3=0是一
元一次方程,则m= -1 。
当x=__6___时,4x=24 当x=__5___时,1700+150x=2450
C.x=2x-1 D.2x=x+1 3.已知5是关于x的方程a=3x-7的解, 则a的值为____8_______. 4.检验未知数是不是方程的解:
4(x-3)=32 (x=8,x=11)
小结
含有未知数的等式叫做方程.
满足二 1、它们含有未知数; 个条件: 2、等式。
像这样只含有一个未知数,并且未知数
问题2:对于上面的问题,你还能列出其
他方程吗?
x x 1 60 70
2. 比较方法 明确意义
问题3:比较算术方法和用方程解决 这个问题各有什么特点?
用算术方法解题时,列出的算式只 能用已知数. 而列方程时,方程中既含有 已知数,又含有用字母表示的未知数. 这 就是说,在方程中未知数(字母)可 以和已知数一起表示问题中的数量关系.
3.1 从算式到方程(第1课时) 3.1.1 一元一次方程
1. 创设情境 提出问题
问题1:一辆客车和一辆卡车同时从A地出发 沿同一公路同方向行驶,客车的行驶速度是 70 km/h,卡车的行驶速度是60 km/h,客车比 卡车早1 h经过B地. A,B两地间的路程是多少?
你会用算术方法解决这个问题吗?
(3)某校女生占全体学生数的 52%,比男生多80人,这个学校有多 少学生?
4. 巩固方法 定义新知 例1 根据下列问题,设未知数并列出方程:
(1)用一根长24 cm的铁丝围成一个 正方形,正方形的边长是多少?
解:设正方形的边长为x cm.
列方程 4x=24 .
(2)一台计算机已使用1700小时,预 计每月再使用150小时,经过多少月这 台计算机的使用时间达到规定的检 修时间2450小时?
3. 定义方程 感受过程
问题4:你能归纳出方程定义吗?
列方程时,要先设字母表示未知数,然后根据问 题中的相等关系,写出含有未知数的等式——方程.
含有未知数的等式叫做方程。
你能举出方程的一个例子吗?
练习:
1.判断下列式子是不是方程,正确
打”√”,错误打”X”:
(1) 1+2=3
(X)
(2) x21
(1)客车每小时比卡车每小时多行多少km?
2小时呢? 20km
70-60=10km
如果客车比卡车多行60km,那么走了几小时呢?
60 6小时 70- 60
(2)当客车到达B地时客车比卡车多走多少km?
走了多少时间呢?
卡车1h的路程 1 60 60km
1 60 6h 70- 60
(3)你能用算术的方法算出AB之间的路程了吗?
h
x
卡列车方从程A的地依到据B是地什的么行?驶时间可以表示为:60
h
因为客车比卡车早1 即 x x 1 .
h经过B地,所以
x 70

x 60
小1,
60 70
1. 创设情境 提出问题
问题1:一辆客车和一辆卡车同时从A地出发 沿同一公路同方向行驶,客车的行驶速度是 70 km/h,卡车的行驶速度是60 km/h,客车比 卡车早1 h经过B地. A,B两地间的路程是多少?
你认为引进什么样的未知量用方程表示这个 问题?
问题1:一辆客车和一辆卡车同时从A地出发沿同一公 路同方向行驶,客车的行驶速度是70 km/h,卡车的行 驶速度是60 km/h,客车比卡车早1 h经过B地. A,B两 地间的路程是多少?
客车
A
x 千米
B
卡车
解:设A,B两地间的路程是 x km,
x
客车从A地到B地的行驶时间可以表示为:70
(X)
(3) 1+2x=4
(√ )
(4) x+y=2
(√ )
(5) x+1-3
(X )
(6) x2-1=0
(√ )
4. 巩固方法 定义新知
例1 根据下列问题,设未知数并列出方程: (1)用一根长24 cm的铁丝围成一个
正方形,正方形的边长是多少?
(2)一台计算机已使用1700小时,预 计每月再使用150小时,经过多少月 这台计算机的使用时间达到规定的 检修时间2450小时?
的方程叫做一元一次方程。
注意: 1、它们只含有一个未知数; 2、未知数的次数是1; 3、等式两边都是整式。
新知检测 方程 一元一次方程
(1) 2x 1
(2)3x5 15
(3)m 1 0
(4)2m 1 4
(5) 4x 3 ( 2 x 1)
(6)x 1 x 0.5
(7) 1 3 2 x
1.设:恰当的未知数,用字母X表示
问题中的未知量
关键
2.找:寻找实际问题中的相等关系
Hale Waihona Puke 3.列:利用实际问题中的相等关系列 出方程
1700+150x=2450 4x=24
0.52x-(1-0.52) x=80
一元一次方程定义:
有什么共 同点吗?
像这样只含有一个未知数,未知数的
次数都是1,并且等号两边都是整式,这样
1 60 70 420km 70- 60
1. 创设情境 提出问题
问题1:一辆客车和一辆卡车同时从A地出发 沿同一公路同方向行驶,客车的行驶速度是 70 km/h,卡车的行驶速度是60 km/h,客车比 卡车早1 h经过B地. A,B两地间的路程是多少?
此题中涉及哪些量,这些量可以用什么关系 表示?
使方程左右两边相等 的未知数的值---方程的解
求方程解的过程----解方程 思考:x=1000和x=2000中那个是 方程0.52x-(1-0.52)x=80的解?
新知检测
1.方程x-1=1的解是( D )
A.x=-1 B.x=0 C.x=1 D.X=2 2.下列方程中,以x=-1为解的是( A ) A.x=2x+1 B.2x-1=0
解:设x月后这台计算机的使用时间
达到2450小时,可列方程
1700+150x=2450
• (3)某校女生占全体学生数的 52%,比男生多80人,这个学校有多 少学生?
解:设这个学校学生人数为x,那么女生
数为0.52x,男生数为(1-0.52)x, 列方程
0.52x-(1-0.52)x=80
列出方程的一般步骤:
相关文档
最新文档