数学分析课件 二重积分的变量变换

合集下载

二重积分的变量代换

二重积分的变量代换

二重积分的变量代换§4 二重积分的变量代换引言有一种情形,函数f 在D 上可积,但无论采用哪种积分次序都“算不出来”。

例如 22()xy DI e dxdy -+=??,D={}222(,)|x y x y a +≤分析:∵函数f(x,y)=22()xy e -+ 在有界区域D={}222(,)|x y x y a +≤处处连续,∴f ∈R (D )222222()aa x x y aa xI dx e dy --+---=??=222222aa x x y a a xedx e dy ------??或者 222222()aa x x y aa xI dy e dx --+---=??=222222aa x y x aa xedy e dx ------??计算不出来!f ∈R (D ),但化为二次积分后算不出来,因此,我们有必要寻找更有效的计算二重积分的方法. 联想到定积分的计算方法,换元法、分部积分法、N-L 公式等,特别是换元法,是一种化难为易的有效方法. 在二重积分中能否利用这种化难为易的思想呢?二重积分的变量代换,就是这种方法,。

在定积分中,换元积分法对简化定积分计算起着重要的作用. 对于二重积分也有相应的换元公式,用于简化积分区域或被积函数.1 定积分换元积分法公式的改写2 一元函数)(x f y =在0x 的导数的绝对值)(0x f '的几何意义3 函数行列式的几何意义设变换),( , ),(v u y y v u x x ==的Jacobi0),(),(≠??v u y x D '是在该变换的逆变换),( , ),(y x v v y x u u ==下XY 平面上的区域D 在UV 平面上的象. 由条件0),(),(≠??v u y x , 这里的逆变换是存在的.一般先引出变换),( , ),(y x v v y x u u ==,设函数),( , ),(y x v v y x u u ==在XOY 平面上的区域D 内有连续的偏导数 . 在此变换之下,XOY 平面上的区域D 变为UV 平面上的区域D ', 且设0),(),(≠??=v u y x J .由此求出变换),( , ),(v u y y v u x x ==,并且 1),(),(),(),(-=??y x v u v u y x .引理1( 补充) 设变换T :),( , ),(y x v v y x u u ==如上所述, 又设在XOY 平面上有一块包含点),(y x 的区域σ, 点),(y x 和σ都在D 内 . 通过变换),( , ),(y x v v y x u u ==将点),(y x 变换为UV 平面上一点),(v u , 将σ变换为UV 平面上包含点),(v u 的一块区域*σ.那么当σ无限地向点),(y x 收缩时 , 它们的面积之比||||*σσ的极限为||J , 即),(),(|||*|lim),(y x v u y x ??=→σσσ. 证明思路(参见刘玉琏教材下册9225定理3):(1) 在D 内取出一点),(y x A , 作一个矩形ABCD ( 边与坐标轴平行, 字母ABCD 依逆时针标记 ) . 设四个顶点的坐标为),(y x A , ) , ( , ) , ( , ) , (dy y x D dy y dx x C y dx x B ++++. 则其面积分为dxdy .(2) 变换 ),( , ),(y x v v y x u u ==把该矩形变为UV 平面上的一个曲边四边形D C B A '''',设四个顶点的坐标为),(11v u A ', ),(22v u B ', ),(33v u C ', ),(44v u D '.(3) 用Taylor 公式把曲边四边形D C B A ''''的四个顶点坐标用x 和y 表示出来: ),( , ),( :11y x v v y x u u A ==';, )(),(),() , ( :2dx dx y x u y x u y dx x u u B x ++=+=' ; )(),(),() , (2dx dx y x v y x v y dx x v v x ++=+=)()(),(),(),() , ( :3dy dx dy y x u dx y x u y x u dy y dx x u u C y x ++++=++=',.)()(),(),(),() , ( 3dy dx dy y x v dx y x v y x v dy y dx x v v y x ++++=++=;)(),(),() , ( :4dy dy y x u y x u dy y x u u D y ++=+=',)(),(),() , ( 4dy dy y x v y x v dy y x v vy ++=+=. (4) 略去)(dx 和)(dy , 得仿射变换. 在该仿射变换之下, 矩形ABCD 变为平行四边形. 用该平行四边形的面积近似代替曲边四边形D C B A ''''的面积. 平行四边形的顶点坐标是上述D C B A '''',,,的顶点坐标表达式中略去)(dx 和)(dy 所剩的式子.该平行四边形的面积==±111332211v u v u v u ==++++++±1),(),(),(),(),(),(1),(),(),(),(1),(),(y x v dx y x v y x v y x u dx y x u y x u dxy x v y x v dxy x u y x u y x v y x u y x y x x xd x d y y x v u dy v dy u dx v dx u v u y y x x ),(),(001=±=. 注1 引理1即证明了换算公式 d u d v v u y x d x d y),(),(??=. 一、二重积分的一般变量变换公式引理2变换T :(,)x x u v =,(,)y y u v =(*). 通过(*)把?变为D ,在?上有关于x,y 的连续偏导数,并且变换(*)是一对一的,又设(,)0(,)x y J u v ?=≠?(在?内不为0),则区域D 的面积 dudv v u J dxdy D D==),()(μ (5)证明 P233定理21.13 设D 2R ?有界闭区域,()f R D ∈,变换T :(,)x x u v =,(,)y y u v =(*). 通过(*)把?变为D ,在?上有关于x,y 的连续偏导数,并且变换(*)是一对一的,又设(,)0(,)x y J u v ?=≠?(在?内不为0),则 d u d v v u J v u y v u x f d x d y v u J y x f D=),()),(),,((),(),(证明 P235例1+-Dyx yx dxdy e, 1 , 0 , 0 :=+==y x y x D .解 P235-236注2 当被积函数形如) ( ) , (1221222111b a b a c y b x a c y b x a f ≠++++, 积分区域为直线型时,可试用线性变换 222111 , c y b x a v c y b x a u ++=++=. 补例1Ddxdy y x 22, xy x y x y x y D 3 , 1 , 2 , 21 :====. 解设xy v x y u ==,. 则] 3 , 1 ; 2 , 21[) , (∈v u .x y xyxx yy x v u 21),(),(2=-=?? , ? u y x v u y x 212),(),(==??. 因此 ,'==?==D D u v u du dv v dudv u v 31221221313222ln 326ln 3212121. 注3 若区域D 是由两组“相似”曲线 ( 即每组中的两条曲线仅以一个参数不同的取值相区别 ) 围成的四线型区域 , 可引进适当的变换使其变成矩形区域 . 设区域D 由以下两组曲线围成 : 第一组: ) ( , 0),,( , 0),,(q p q y x F p y x F <==; 第二组: ) ( , 0),,( , 0),,(b a b y x G a y x G <==.可试用变换0),,( , 0),,(==v y x G u y x F . ] , ; , [) , (b a q p v u ∈. 从中解出),( , ),(v u y y v u x x ==. 在此变换之下, 区域D 变成UV 平面上的矩形区域] , [ ] , [b a q p ?.例 2 求由抛物线 ) 0 ( , 22n m nx y mx y <<== 和直线 x y x y βα== , ) 0 (βα<<所围平面区域D 的面积 .解 P236注4 在具体问题中,选择变换公式的依据有两条:(1)使变换的函数容易积分;(2)使得积分限容易安排.二、用极坐标变换计算二重积分1 极坐标变换下的二重积分变换公式极坐标变换是一种特殊的变量替换.极坐标变换T :cos ,sin x r y r θθ== (8)此时(,)(,)x y r θ??=cos sin sin cos ||r r r θθθθ-= 注5 在定理21.13中,假设J ≠0,但有时会遇到这种情形. 变换行列式在区域内个别点上等于0.或只在区域个别线段上等于0,而在其它点上非0,此时定理21.13结论能成立.定理21.14 设),(y x f 满足定理21.13的条件,在极坐标变换(8)下,有(,)Df x y dxdy ??='(cos ,sin )D f r r rdxdy θθ?? (9)证明 P2382 在什么情况下使用极坐标变换当积分区域是圆域或是圆域的部分或被积函数的形式为22()f x y +时,采用极坐标变换来计算往往简便得多.3二重积分在极坐标变换下如何化为二次积分来计算下面分情况讨论之情形1 若'D ={}1212(,)|()(),r r r r θθθθθθ≤≤≤≤,1()r θ,2()r θ为[1θ,2θ]上的连续函数,则称之为θ型区域(如P239图21-24).这时,类似于上节的x-y-型区域的取法,可将之化为下面形式:'(cos ,sin )D f r r rdrd θθθ??=2211()()(cos ,sin )r r d f r r rd r θθθθθθθ??(10)两种特例(1)若极点O 是积分区域的内点,则变换T 后的区域为'D ={}(,)|0(),02r r r θθθπ≤≤≤≤ 此处r =()r θ是'D 的边界曲线(如P239图21-26),此时有'(cos ,sin )D f r r rdrd θθθ??=2()(cos ,sin )r d f r r rdr πθθθθ??(12)(2)若积分区域的边界曲线r =()r θ通过极点O 时(如P239图21-27),应先求出极径,即使()r θ=0的两个角度1θ,2θ,此时有'(cos ,sin )D f r r rdrd θθθ??=21()(cos ,sin )r d f r r rdr θθθθθθ??(13)情形2 若'D ={}1212(,)|()(),r r r r r r θθθθ≤≤≤≤,其中1()r θ,2()r θ∈C[1r ,2r ] (r-型区域,如P239图21-25),此时有'(cos ,sin )D f r r rdrd θθθ??=2211()()(cos ,sin )r r r r dr f r r rd θθθθθ??(11)例3221DdxdyI x y =--??,D 为圆域122≤+y x解 P240例4 求球体2222R z y x ≤++被圆柱面Rx y x =+22所割下立体的体积(称为维维安尼(Viviani )体).解 P240例5 22()xy DI e dxdy -+=??,D={}222(,)|x y x y a +≤广义极坐标变换: θθsin , cos br y ar x ==,abr r y x =??),(),(θ.补例6 求椭球体2222221x y z a b c++≤的体积补例2应用二重积分求广义积分?+∞-02dx e x .补例3有一个形状为旋转抛物面22z x y =+的容器内,已经盛38cm π,的溶液,现又倒进3120cm π的溶液,问液面比原来的液面升高多少cm ?作业P242:1(1)、(2),2(2)、(4),3(1)、(2),4,5(2),6(1)、(2).附录:极坐标系下的二重积分的公式1 用定积分定义推导极坐标系下的二重积分的公式极坐标变换:cos ,sin x r y r θθ== (0,02)r θπ≤<+∞≤≤。

高中数学(人教版)二重积分的变量变换课件

高中数学(人教版)二重积分的变量变换课件
所以 则根据格
t 从 变到 时, 对应于 LD 的正向, 林公式, 取 P ( x , y ) 0, Q ( x , y ) x , 有
若规定
( D) L x dy x(t ) y(t )dt
D




y y x( u( t ), v ( t )) u( t ) v ( t ) dt . (6) v u
y
变换
u u x 2, y . v v
yx
D
y x
y 2 nx y 2 mx
它把 xy 平面上的区域 D 对应到 uv 平面上的矩形
[m , n] [ , ].
O
图 21 25
x
§4 二重积分的变量变换
变量变换公式
极坐标变换
广义极坐标变换
由于
y
1 v2 J (u , v ) 1 v
变量变换公式
极坐标变换
广义极坐标变换


X
f ( x )dx
(X)
1
f ( ( t )) ( t )dt .
(2))时, (1)式可写成
f ( x )dx
(X)
1

故当
X
f ( ( t )) ( t )dt .
(3)
( t ) 为严格单调且连续可微时, (2)式和(3)式可
所以 把
下的一般证明, 将在本章§9 中给出. ) 由于 T 是一对一变换, 且
内点变为 D 的内点,
的按段光滑边界曲线 也变换为 D 的按段光滑边界曲线 . LD
L 的参数方程为 u u( t ), v v ( t ) ( t ).

第三节二重积分的变量变换.

第三节二重积分的变量变换.
T(D)是可求面积的,并存在
(u0, v0)∈D使得
( x, y)
(x, y)
x
x
mT (D)
mD,
u
v.
(u, v)( u
这里
,v )
(u, v)
y
y
0
0
u
v
定义
定理12.10和12.11中的映射称为本原映射或本原变换.
定理
12.12
设D
是uv平面R2中的有界可求面积的闭区域,
T是[a,b]×[c,d]
( x, y)
* *
f xi, yimT(Di)
mDi
f
xi
, yi
mT(Di)
i 1
i
(u, v)( u*,v*
)
i
i
i
*f
x(u*i
, vi*), y(ui*, vi*
)
( x, y)
mDi
* *f x(u*i
, v*i), y(u*i, v*i
)
( x, y)
mDi
i
(u, v)( u*
,v*)
n
0.
上面的分划,将D分成若干个小的区域,记为D1, D2,D3,, DN.显然有
Di
Bn(i
1,2,
,N).
如果Di
An,那么D
i
是个小矩形,.由定理12.10
和12.11知,存在(ui*
,vi*
)
Di,使得
mT( Di)
( x, y)
mDi,
设xi*
x(ui*
,vi*), yi*
y(ui*, vi*),
V1
4a2
x2

21_4二重积分的变量变换

21_4二重积分的变量变换
2 0

1 0
r 1 r dr
2
4 3
abc .
4 3
特别当 a
b c R
时, 得到球的体积为
R .
3
二、小结
二重积分在极坐标下的计算公式

D
f ( r cos , r sin ) rdrd





d

2 ( )
1 ( )
f ( r cos , r sin ) rdr .
§4 二重积分的变量变换
本节将介绍二重积分的变量变换公式, 并 用格林公式加以证明. 特别对常用的极坐标 变换方法作了详细的讨论.
一、二重积分的变量变换公式 二、二重积分的极坐标变换 三、二重积分的广义极坐标变换
返回
一、二重积分的变量变换公式
在定积分的计算中, 我们得到了如下结论: 设 f ( x ) 在区间 [ a , b ] 上连续,
例8 求椭球体
x a
2 2

y b
2 2

z c
2 2
1
的体积.
解 由对称性, 椭球体的体积 V 是第一卦限部分体
积的 8 倍, 而这部分是以
z c 1
x a
2 2

y b
2 2
为曲顶,
b D ( x , y ) 0 y a
a x , 0 x a
,
其中 D 为圆域:
x
2
y
1.
解 由于原点为 D 的内点, 故由 (12) 式, 有

D
d 1 x
2
y
2
0

二重积分的变量变换

二重积分的变量变换

则有
f ( x , y )dxdy f ( x(u, v ), y(u, v )) | J ( u, v ) |dudv .
D
前页 后页 返回
例1 求
e
D
x y x y
dxdy , 其中
y
1
D是由 x 0, y 0, x y 1 所围的区域(图21-23). 解 为了简化被积函数, 令
0
4 3 2 R r r dr R . 3 2 3
2 2
前页 后页 返回
o
2 cos
D
2
x

D
x y d
2 2
d
2 2

0
r rdr
32 16 8 3 3 2 2 cos d 0 cos d . 9 3 3 2

前页 后页 返回
例5 计算
I
D
d 1 x y
2 2
,
其中 D 为圆域: x y 1.
二、二重积分的极坐标变换
当积分区域是圆域或圆域的一部分, 或者被积函数
的形式为 f ( x 2 y 2 ) 时, 采用极坐标变换
x r cos , T : 0 r , 0 2π , y r sin ,
变换 T 的函数行列式为
(8)
往往能达到简化积分区域或被积函数的目的. 此时,
T : x x ( u , v ), y y( u , v ) 将 uv 平面由按段光滑封
闭曲线所围成的闭区域 一对一地映成 xy 平面上 的闭区域 D, 函数 x( u , v ), y( u , v ) 在 内分别具有 一阶连续偏导数且它们的函数行列式

数学分析(下)21-4二重积分的变量变换

数学分析(下)21-4二重积分的变量变换

§4二重积分的变量变换本节将介绍二重积分的变量变换公式, 并用格林公式加以证明. 特别对常用的极坐标变换方法作了详细的讨论.一、二重积分的变量变换公式二、二重积分的极坐标变换三、二重积分的广义极坐标变换返回一、二重积分的变量变换公式在定积分的计算中, 我们得到了如下结论: 设()f x [,]a b ()x t j =t a b 在区间上连续, 当从变到时严格单调地从a 变到b , 且()t j 连续可导, 则()d (())()d .(1)b a f x x f t t t b a j j ¢=òòa b <()0t j ¢>[,],[,],X a b Y a b ==当(即)时, 记则1(),().X Y Y X j j -==利用这些记号, 公式(1)又可写成1()()d (())()d .(2)X X f x x f t t t j j j -¢=òòa b >()0t j ¢<当(即)时, (1)式可写成1()()d (())()d .(3)X X f x x f t t t j j j -¢=-òò故当()t j 为严格单调且连续可微时, (2)式和(3)式可统一写成如下的形式:1()()d (())|()|d .(4)X X f x x f t t t j j j -¢=òò下面要把公式(4)推广到二重积分的场合. 为此先给出下面的引理.引理设变换:(,),(,)==将uv平面T x x u v y y u v(,)y u v D 证下面给出当在内具有二阶连续偏导数时的证明. ( 注: 对(,)y u v 具有一阶连续偏导数条件下的一般下的一般证明证明,将在本章将在本章§§9 中给出. ) (,)0,J u v ¹D 由于T 是一对一变换, 且因而T 把的D L D 内点变为D 的内点, 所以的按段光滑边界曲线D L 也变换为D 的按段光滑按段光滑边界曲线边界曲线. 设曲线L D 的参数方程为(),()().u u t v v t t a b ==££L D (),()u t v t ¢¢[,]a b 由于按段光滑, 因此在上至多除去有限个第一类间断点外, 在其他的点上都连续. 又另一方面, 在uv平面上y y ¶¶()(,)d d .D J u v u v m D=±òò()D m (,)J u v D 又因为总是非负的, 而在上不为零且连续, 故其函数值在D 上不变号, 所以()|(,)|d d .D J u v u v m D=òò定理21.13设(,)f x y 在有界闭区域D 上可积, 变换:(,),(,)T x x u v y y u v ==将uv 平面由按段光滑平面由按段光滑封封闭曲线所围成的闭区域D 一对一地映成xy 平面上(,),(,)x u v y u v D 的闭区域D , 函数在内分别具有一阶连续偏导数且它们的函数行列式加强条件下,由引理及二重积分中值定理, 有n åx y -2123-图1D11O 2124-图1Du =v=-111e e u--D2y=图2125-u()12121212,,.y t xy u x t u y t u -====即证令则二、二重积分的极坐标变换容易知道, 极坐标变换T 把r q 平面上的矩形[0,]R ´此对应不是一对一的,例如,xy 平面上原点(0,0)O 于r q 平面上两条直线段CD 和EF (图21-26). 又当0r =(,)0,J r q =时, 因此不满足因此不满足定理定理21.13 的条件.但是仍然有下面的结论.222:.D x y R +£变换成xy 平面上的圆域[0,2]p 但r q 0r =与平面上直线相对相对应应,x 轴上线段对应AA ¢21.平面上的有界闭域OyB ¢A BeD e(a)OqeFE(,)d d (cos ,sin )d d .(9)Df x y x y f r r r r q q q D =òòòò222,[0,][0,2].D x y R R p 为一圆:则+£D =´证若BB A A ¢¢e 为的扇形后所得的区域(图21-26(a )),则( 图21-26 (b ) ). 又因在D e e D 与之间是一一对应的设{}2222(,)|D x y x y Re e £+£为圆环除去中心角在变换(8)下, D e 对应于[,][0,2],R e e p e D =´-且上(,)0,J r q >于是由定理21.13, 有Dòòòòòòf r r r r(cos,sin)d dq q q(,),(,),(,)0,(,)\.R f x y x y D F x y x y D D Îì=íÎîR D 在中函数F 至多在有限条按段光滑曲线上至多在有限条按段光滑曲线上间断间断,因此因此由前述得到由前述得到(,)d d (cos ,sin )d d ,RRD F x y x y F r r r r q q q D =òòòòR D r q [0,][0,2].R p ´其中为平面上矩形区域由函数(,)F x y 的定义, (9)式对一般的D 也成立.R D 上定义函数并且在由定理21.14 看到, 用极坐标变换计算二重积分时, 除变量作相应的替换外, 还须把“面积微元”d d x y 换成d d .r r q 下面介绍二重积分在极坐标系下如何化为累次积分来计算.12()(),,r r r q q a q b ££££D r q q 1.常用的是将分解为平面中的型区域. ,O D Ï(i) 若原点则型区域型区域必可表示成必可表示成(图21-27) q 于是有r D0(),02.r r q q p ££££Dab()r r q =ODq r r =(iii)若原点在D 的边界上(图21-28(b)), 则为:DD() r rq12G 1x y +=1G 0x y +=y(a)13D 4D 1D 2D (b)π1ìüìüπ1例5计算2222x y z R ++£22x y Rx +=例6求球体被圆柱面2131-R2132-图cos r R =D积. 在第一卦限内的立体是一个曲顶柱体, 其底为例7计算22()ed ,x y DI s -+=òò其中D 为圆域:22x y +£2.R 解利用极坐标变换, 由公式(12),容易求得2220d ed (1e).Rr R I r r pq p --==-òò若不用极坐标变换, 而直接在直角坐标系下化为累次积分计算, 则会遇到无法算出2ed y y -ò的难的难题题.三、二重积分的广义极坐标变换里就不再赘述了.为底的曲顶柱体, 所以作业P254:2(1)(3);3(3);4(2);6(2)。

二重积分的变量变换课件

二重积分的变量变换课件

柱坐标变换案例
总结词
柱坐标变换适用于处理二重积分中与圆有关的积分问题,通过柱坐标系可以将二重积分转化为更易于计算的形式 。
详细描述
柱坐标变换是指将直角坐标系中的点$(x, y)$转换为柱坐标系中的点$(r, varphi, z)$,其中$r$表示点到原点的距 离,$varphi$表示点与x轴的夹角,$z$表示点在垂直方向上的高度。通过柱坐标变换,可以将二重积分中的$x$ 和$y$变量转换为$r$、$varphi$和$z$变量,从而简化计算过程。
$int_{D_1}f(x,y)dxdy+int_{D_2}f(x,y)dxdy=int_{D _1cup D_2}f(x,y)dxdy$。
积分的上、下限的变换
$int_{a}^{b}f(x)dx=int_{a}^{c}f(x)dx+int_{ c}^{b}f(x)dx$。
二重积分的几何意义
表示体积
球坐标变换
01
球坐标变换公式
$x = rhosinthetacosphi, quad y = rhosinthetasinphi, quad z =
rhocostheta$
02
应用场景
当积分区域为球体或球壳时,使用球坐标变换可以简化积分计算。
03实例Βιβλιοθήκη 析计算$intint_{D} (x^2 + y^2 + z^2)^2 dxdydz$,其中D为球心在原
变量变换的精度问题
确定变换的近似程度
在进行变量变换时,需要考虑变换的 近似程度,以确保计算结果的精度。
考虑数值稳定性
在计算过程中,需要考虑数值稳定性 ,以避免计算误差的累积导致结果偏 离真实值。
变量变换的误差分析

二重积分的变量变换

二重积分的变量变换

映成 xy 平面上的闭区域 D. 函数 x(u, v), y(u, v)在
内分别具有一阶连续偏导数且它们的函数行列式
J(u, v) (x , y) 0, (u, v) , (u, v)
则区域 D 的面积
(D) | J (u, v) |dudv .
(5)

前页 后页 返回
)
dt
,
(7)
其中正号及负号分别由 t 从 变到 时, 是对应于L
的正方向或负方向所决定. 由(6)及(7)式得到

(
D)

Ñ L
x(u
,
v
)

y u
du

y v
dv

前页 后页 返回


Ñ L
x(u
,
v
)
y u
du

x(u
,
v
)
y v
dv
.
令 P(u, v) x(u, v) y , Q(u, v) x(u, v) y , 在uv平
x(u(t
),
v(t
))

y u
u(t )

y v
v(t ) dt
.
(6)
前页 后页 返回
另一方面, 在 uv 平面上Ñ Lຫໍສະໝຸດ x(u,v
)

y u
du

y v
dv




x(u(t ) ,
v(t ))

y u
u(t
)

y v
v(t
D

证 用曲线网把 分成 n 个小区域 i , 在变换 T 作用

21.4_二重积分的变量替换

21.4_二重积分的变量替换

f ( x, y ) d x d y
D
D
f (r cos , r sin ) r d r d
yx
例5. 计算
e
y x
所围成的闭域.
x
J
d x d y , 其中D 是 x 轴 y 轴和直线 y
x y 2
解: 令 u y x , v y x , 则
D
示为极坐标形式的二次积分为______________. 3、 将 dx
0 2 3x
f(
x
2
x
2
y ) dy
2
化为极坐标形式的二
次积分为______________________. 4、 将 dx
0 1 x 0
f ( x , y ) dy
化为极坐标形式的二次积分
为______________________.

D
f ( x(u , v), y (u , v)) J (u , v) d u d v
例如, 直角坐标转化为极坐标时, x r cos , y r sin
J ( x, y )
cos ( r , ) sin
r sin r r cos

vu 2
( x, y ) (u , v )

D
,y
vu 2
1 2 1 2
( D D )

u
o
u v
D
x
v v2 uv o u
1 2
1 2
1 2

D
e v 1 d u d v
2
ee
1
例6. 计算由 所围成的闭区域 D 的面积 S . 解: 令 u

4-3二重积分的变量替换市公开课获奖课件省名师示范课获奖课件

4-3二重积分的变量替换市公开课获奖课件省名师示范课获奖课件

uiv j .
注意上式左边是(x, y)的二元函数函数f (x, y)在 区域D上的Riemann和,而右端是(u, v)的二元函数
f (x(u, v), y(u, v)) det (x, y) (u, v)
在区域E上的Riemann和.
•Step4.取极限
当max{ui , v j} 0时, D的分划T Dij 的半径

det
(u, v) (x, y)
det
y2 y
x2
2y x
x
3y2 x 3u 0.
于是,区域D的面积为
S
D dxdy
det
(x, y) (u, v)
dudv
1 3u
dudv
b
a
q
dvp
1 3u
du
1 3
(b
a)
ln
q p
.
例: I x24 y21(x2 y2 )dxdy
解: 令x r cos , y 1 r sin ,则
0 25
25u2
25 0
3
例:I
2
d
cos
r
r cos r2 cos2 dr.
0
0
分析:被积函数复杂,不论是先对r还是先对 积分
都不容易.应作变量替换. y
解:令x r cos , y r sin ,
则 I D x x2 dxdy,
o
其中区域D如图所示.
x2 y2 x
r cos
§3.二重积分旳变量替代
当被积区域D的形状不好,或者被积函数f 的表达 式比较复杂时,将二重积分化为直角坐标下的累次 积分来计算可能会很复杂,甚至计算不出来.如果在 极坐标下计算,积分可能会变得简单.但在极坐标下 计算二重积分的方法也不是万能的,很多时候积分 也不能被简化.因此,我们需要更一般的方法.这就 是变量替换方法.

二重积分的变量变换

二重积分的变量变换

(1)
当 (即(t) 0 )时, 记 X [a , b], Y [ , ], 则
X (Y ), Y 1( X ). 利用这些记号, 公式(1)又可
写成
数学分析 第二十一章 重积分
高等教育出版社
§4 二重积分的变量变换 变量变换公式 极坐标变换
广义极坐标变换
f (x)dx
f ((t))(t)dt . (2)
图 21 24
所以
x y
e x ydxdy
u
ev
1
dudv
D
2
1
1
dv
v
u
ev du
1
1v(e e1 )dv
e e1 .
20
v
20
4
数学分析 第二十一章 重积分
高等教育出版社
§4 二重积分的变量变换 变量变换公式 极坐标变换
广义极坐标变换
例2 求抛物线 y2 mx , y2 nx 和直线 y x , y
高等教育出版社
§4 二重积分的变量变换 变量变换公式 极坐标变换
x y
例1 求 e x y dxdy , 其中
D
D是由 x 0, y 0, x y 1
广义极坐标变换
y
1
所围的区域(图21-23). 解 为了简化被积函数, 令
D O
1x
u x y,v x y. 即作变换
图 21 23
2
f ( xy )d ln 21 f ( t )dt.


D
t xy, u
y
即 x t1 2u1 2 , y t1 2u1 2 . 则
x
(t, u) [1,2][1,4], 有

二重积分的变量变换

二重积分的变量变换
r2 0 0
2
R
R2
).
若不用极坐标变换, 而直接在直角坐标系下化为累 次积分计算, 则会遇到无法算出 e
y2
dy 的难题.
前页 后页 返回
前页 后页 返回
y
2 2

E
F

O
A B
A

D
x
B
O

C
D R r
(a)
(b)
图 21 26
定理21.14 设 f ( x , y ) 满足定理21.13 的条件, 且在 极坐标变换 (8)下, xy 平面上的有界闭域 D 与 r 平
面上区域 对应, 则成立
前页 后页 返回
此对应不是一对一的, 例如,xy 平面上原点 O (0 , 0) 与 r 平面上直线 r 0 相对应,x 轴上线段 AA 对应 于 r 平面上两条直线段 CD 和 EF (图21-26). 又当
r 0 时, J ( r , ) 0 , 因此不满足定理21.13 的条件.
但是仍然有下面的结论.
所割下部分的体积 ( 称为维维安尼 (Viviani) 体 ). 解 由所求立体的对称性(图21-31),只要求出在第 一卦限内的部分体积,再乘以4,即得所求立体的体
z
y
O
y
r R cos
D
x
图 21 32
R
图 21 31
x
前页 后页 返回
积. 在第一卦限内的立体是一个曲顶柱体, 其底为 xy 平面内由 y 0 和 x 2 y 2 Rx 所确定的区域 D
f ( x , y)dxdy f (r cos , r sin ) r drd .

二重积分的变量替换公式课件

二重积分的变量替换公式课件
二重积分的变量替换 公式课件
目 录
• 二重积分的基本概念 • 变量替换在二重积分中的应用 • 二重积分的变量替换公式 • 二重积分变量替换公式的注意事项 • 习题与解答
contents
01
二重积分的基本概念
二重积分的定义
定义
符号表示
二重积分的几何意义
几何解 释
计算方法
通过将曲面分割成若干小片,再求各 小片的近似体积,最后求和得到总体积。
积分区域的可加性
如果D1和D2是两个不重叠的 区域,则∫∫D1∪D2 f(x,y) dA
= ∫∫D1 f(x,y) dA + ∫∫D2 f(x,y) dA。
02
变量替换在二重积分中的应用
变量替换的引入
简化积分计算 解决特定问题 扩展积分范围
变量替换的步骤
01
选择替换变量
根据问题的具体情况,选择适当的 变量进行替换。
二重积分的性质
可加性
对于不同的区域D1和D2,如 果它们的并集等于D,则有 ∫∫D f(x,y) dA = ∫∫D1 f(x,y)
dA + ∫∫D2 f(x,y) dA。
线性性质
对于常数a和b,有∫∫D (a+b)f(x,y) dA = a∫∫D f(x,y)
dA + b∫∫D f(x,y) dA。
习题 三
总结词
应用二重积分的变量替换公式解决问题 是解题的核心。
VS
详细描述
二重积分的变量替换公式是解决二重积分 问题的关键工具。通过应用这些公式,可 以快速计算出积分的值。常见的二重积分 变量替换公式包括极坐标替换、球面坐标 替换等。在解题过程中,需要根据具体问 题选择合适的替换公式,并正确应用它们 来解决问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( x , y ) J (u , v ) 0, ( u , v ) , ( u , v ) 则区域 D 的面积
( D ) | J ( u , v ) |dudv .

(5)
前页 后页 返回
证 下面给出当 y( u , v ) 在 内具有二阶连续偏导数 时的证明. ( 注: 对 y( u , v ) 具有一阶连续偏导数条件
r 0 时, J ( r , ) 0 , 因此不满足定理21.13 的条件.
但是仍然有下面的结论.
前页 后页 返回
y
2 2
E
F

f ( x , y )dxdy f ( x(u, v ), y(u, v )) | J ( u, v ) |dudv .
D
前页 后页 返回
例1 求
e
D
x y x y
dxdy , 其中
y
1
D是由 x 0, y 0, x y 1 所围的区域(图21-23). 解 为了简化被积函数, 令
T : x x ( u , v ), y y( u , v ) 将 uv 平面由按段光滑封
闭曲线所围成的闭区域 一对一地映成 xy 平面上 的闭区域 D, 函数 x( u , v ), y( u , v ) 在 内分别具有
前页 后页 返回
一阶连续偏导数且它们的函数行列式
( x , y) J (u , v ) 0, ( u , v ) , (u , v )
§4 二重积分的变量变换
本节将介绍二重积分的变量变换公式, 并 用格林公式加以证明. 特别对常用的极坐标 变换方法作了详细的讨论.
一、二重积分的变量变换公式
二、二重积分的极坐标变换
三、二重积分的广义极坐标变换
前页 后页 返回
一、二பைடு நூலகம்积分的变量变换公式
在定积分的计算中, 我们得到了如下结论: 设 f ( x ) 在区间 [a , b]上连续, x ( t ) 当 t 从 变到 时严格 单调地从a 变到 b, 且 ( t ) 连续可导, 则
D
xy )d ln 2 f ( t )dt .
1
2
前页 后页 返回
y 即 x t 1 2 u1 2 , y t 1 2 u1 2 . 则 证 令 t xy , u x ( t , u) [1,2] [1,4], 有


1 1 2 1 2 t u 2 J ( t , u) 1 1 2 1 2 t u 2


dv n ( n2 m 2 )( 3 3 ) u du . 4 m 3 3 v 6
例3 设 f ( t ) 在 [1, 2] 上可积, D 是由曲线
xy 1, xy 2, y x , y 4 x
所围成的区域在第一象限中的部分. 证明:
f (
( D ) J ( u , v )dudv .

又因为 ( D ) 总是非负的, 而 J ( u , v ) 在 上不为零且
连续, 故其函数值在 上不变号, 所以
( D ) | J ( u , v ) |dudv .

定理21.13 设 f ( x , y )在有界闭区域 D 上可积, 变换
J (r , )
cos sin
r sin r cos
r.
前页 后页 返回
容易知道, 极坐标变换 T 把 r 平面上的矩形 [0, R]
[0, 2 ] 变换成 xy 平面上的圆域 D : x 2 y 2 R2 . 但
此对应不是一对一的, 例如,xy 平面上原点 O (0 , 0) 与 r 平面上直线 r 0 相对应,x 轴上线段 AA 对应 于 r 平面上两条直线段 CD 和 EF (图21-26). 又当
当积分区域是圆域或圆域的一部分, 或者被积函数
的形式为 f ( x 2 y 2 ) 时, 采用极坐标变换
x r cos , T : 0 r , 0 2π , y r sin ,
变换 T 的函数行列式为
(8)
往往能达到简化积分区域或被积函数的目的. 此时,
统一写成如下的形式:

X
f ( x )dx
(X)
1
f ( ( t )) | ( t ) |dt .
(4)
下面要把公式(4)推广到二重积分的场合. 为此先给
出下面的引理.
前页 后页 返回
引理 设变换 T : x x( u , v ), y y( u , v ) 将 uv 平面 上由按段光滑封闭曲线所围的闭区域 , 一对一地 映成 xy 平面上的闭区域 D. 函数 x( u , v ), y( u , v ) 在 内分别具有一阶连续偏导数且它们的函数行列式
前页 后页 返回
加强条件下,由引理及二重积分中值定理, 有
( Di ) | J ( u , v ) |dudv | J ( ui , v i ) | ( i ),
i
其中 ( ui , v i ) i ( i 1, 2, , n). 令
i x( ui , v i ), i y( ui , v i ),
x 所围区域 D 的面积 ( D ) (0 m n , 0 ).
解 D 的面积 ( D) dxdy .为了化简积分区域, 作
D
u u 变换 x 2 , y . 它把 xy 平面上的区域 D (见图 v v
21-25 )对应到 uv 平面上的矩形 [m , n] [ , ].
前页 后页 返回
另一方面, 在 uv 平面上
y y du dv L x(u , v ) v u y y x( u( t ), v ( t )) u( t ) v ( t ) dt , (7) v u 其中正号及负号分别由 t 从 变到 时, 是对应于 L
i 1
n
这个和式是可积函数 f ( x( u , v ), y( u , v )) | J ( u , v ) | 在 上的积分和. 又由变换 T 的连续性可知, 当 的分割 T :{1 , 2 , n } 的细度 || T || 0 时, D 的 相应分割 TD :{ D1 , D2 , Dn } 的细度 || TD || 也趋于零. 因此得到

( i , i ) Di ( i 1, 2, , n).
D
作二重积分 f ( x , y )dxdy 的积分和
f ( i , i ) ( Di )
i 1
n
前页 后页 返回
f ( x( ui , v i ), y( ui , v i )) | J ( ui , v i ) | ( i ).
则有
f ( x , y )dxdy f ( x(u, v ), y(u, v )) | J ( u, v ) |dudv .
D
证 用曲线网把 分成 n 个小区域 i , 在变换 T 作用
下, 区域 D 也相应地被分成 n 个小区域 Di . 记 i 及
Di 的面积为 ( i )及 ( Di )( i 1, 2, , n). 在对 y 的

X
X
f ( x )dx
(X)
1
f ( ( t )) ( t )dt .
(2)
当 (即 ( t ) 0 )时, (1)式可写成
f ( x )dx
(X)
1
f ( ( t )) ( t )dt .
(3)
故当 ( t ) 为严格单调且连续可微时, (2)式和(3)式可
前页 后页 返回
去有限个第一类间断点外, 在其他的点上都连续. 又 因 LD T ( L ), 所以 LD 的参数方程为
x x ( t ) x ( u( t ), v ( t )) y y( t ) y( u( t ), v ( t )) ( t ).
若规定 t 从 变到 时, 对应于 LD 的正向, 则根据格
下的一般证明,将在本章§9 中给出. )
由于 T 是一对一变换, 且 J ( u , v ) 0 , 因而 T 把 的 内点变为 D 的内点, 所以 的按段光滑边界曲线 L
也变换为 D 的按段光滑边界曲线 LD .
设曲线 L 的参数方程为 u u( t ), v v ( t ) ( t ). 由于 L 按段光滑, 因此 u( t ), v( t ) 在 [ , ] 上至多除
面上对上式应用格林公式, 得到
2 y 由于函数 y( u , v ) 具有二阶连续偏导数, 即有 uv Q P 2 y J ( u , v ), 于是 , 因此 u v vu
前页 后页 返回
Q P ( D) dudv . u v
u v

O
图 21 24
uv
e
D
x y x y
1 dxdy e dudv 2
u v
u
前页 后页 返回
1 1 1 1 e e dv e du v(e e1 )dv . v 2 0 2 0 4 1 v u v
例2 求抛物线 y 2 mx , y 2 nx 和直线 y x , y
林公式, 取 P ( x , y ) 0, Q( x , y ) x , 有
( D) x dy x(t ) y(t )dt
LD





y y x( u( t ), v ( t )) u( t ) v ( t ) dt . (6) v u
相关文档
最新文档