2010物理高考专题 磁场和复合场

合集下载

高考物理一轮复习第九章磁场第3讲带电粒子在复合场中

高考物理一轮复习第九章磁场第3讲带电粒子在复合场中

3.回旋加速器 (1)组成: 如图所示, 两个 D 形盒(静电屏蔽作用), 大型电磁铁,高频振荡交变电压,两缝 间可形成电场.
电场 用来对粒子(质子、α (2)作用:_______ 磁场 用来使粒子回 粒子等 )加速, ________
旋从而能反复加速.
(3)加速原理 ①回旋加速器中所加交变电压的频率 f 与带电粒子做匀速圆 qB 1 2πm 周运动的频率相等,f= =________ ; T 1 ②回旋加速器最后使粒子得到的能量,可由公式 Ek= mv2 2 q2B2R2 2m 来计算, =________ 在粒子电荷量、 质量 m 和磁感应强度 B 一定的情况下, 回旋加速器的半径 R 越大, 粒子的能量就越 大.
装置
原理图
规律 电流方向与匀强磁场方向垂直的 载流导体,在与电流、磁场方向均
A.质子被加速后的最大速度不可能超过 2πfR B.质子被加速后的最大速度与加速电场的电压大小有关 C.高频电源只能使用矩形交变电流,不能使用正弦式交变 电流 D.不改变 B 和 f,该回旋加速器也能用于加速 α 粒子
2πR 1 提示:选 A.由 T= v ,T= ,可得质子被加速后的最大速 f 度为 2πfR,其不可能超过 2πfR,质子被加速后的最大速度 与加速电场的电压大小无关,选项 A 正确、B 错误;高频电 源可以使用正弦式交变电流, 选项 C 错误; 要加速 α 粒子, 高频交流电周期必须变为 α 粒子在其中做圆周运动的周期, 即 T= 2πmα ,故 D 错误. qα B
洛伦兹力在科技中的应用 【知识提炼】 常见科学仪器的原理 装置 速度选 择器 原理图 规律 E 若 qv0B=Eq,即 v0=B,粒子做匀 速直线运动
装置
原理图
规律 等离子体射入,受洛伦兹力偏转,

高考专题:磁场复合场

高考专题:磁场复合场

一、磁感应强度电流的磁效应和此现象的电本质,说明介绍。

和电场一样,磁场是一种以特殊形态——场的形态——存在着的物质;和电场不一样,电场是存在于电荷或带电体周围的物质,而磁场的场源则可以是如下三种特殊物体之一:① 磁体,②电流,③运动电荷磁场的方向:规定磁场中某点小磁针N 极的受力方向为磁场的方向,也就是小磁针静止时N 极的指向。

作为一种特殊形态的物质,磁场应具备各种特性,物理学最为关心的是所谓的力的特性,即:磁场能对处在磁场中的磁极、电流及运动电荷施加力的作用。

为了量化磁场的力特性,我们引入磁感强度的概念,其定义方式为:取检验电流,又叫电流元,长为l ,电流强度为I ,并将其垂直于磁场放置,若所受到的磁场力大小为F ,则电流所在处的磁感强度为B=F IL(前提:电流方向与磁场方向垂直) 规定:磁感应强度B 的方向就是磁场的方向,故,B 是一个矢量。

B 就是磁场的代名词。

而对B 的形象描绘是用磁感线:疏密反映B 的大小,切线方向描绘了B 的方向。

磁体和电流周围的磁场分部条形磁铁 直线电流(平面立体图) 直线电流(纸面上的磁场)环形电流立体图 环形电流在纸面内的磁场 通电螺线圈奥斯特发现电流磁效应,导线应怎样放置最好? 安培分子电流假说解释此现象的点本质。

例1.把电流强度均为I ,长度均为l 的两小段通电直导线分别置于磁场中的1、2两点处时,两小段通电直导线所受磁场力的大小分别为F 1和F 2,若已知1、2两点处磁感应强度的大小关系为B 1<B 2,则必有( )A .B 1=Il F 1 B .B 2=IlF 2 C .F 1<F 2 D .以上都不对 2.如图所示,两根长直通电导线互相平行,电流方向相同,它们的截面处于一个等边三角形abc 的顶点a 、b 处。

两通电导线在c 处的磁场的磁感应强度的值都是B ,则 c 处磁场的总磁感应强度是( )A 、2B B 、BC 、0 D3.三根平行的长直通电导线,分别通过一个等腰直角三角形的三个顶点且与三角形所在平面垂直,如图所示.现在使每根通电导线在斜边中点O 处所产生的磁感应强度大小均为B ,则下列说法中正确的有( )A .O 点处实际磁感应强度的大小为BB .O 点处实际磁感应强度的大小为5BC .O 点处实际磁感应强度的方向与斜边夹角为90°D .O 点处实际磁感应强度的方向与斜边夹角θ的正切值tan θ=24.用两个一样的弹簧吊着一根铜棒,铜棒所在虚线范围内有垂直于纸面的匀强磁场,棒中通以自左向右的电流(如图—7所示),当棒静止时,弹簧秤的读数为F1;若将棒中的电流方向,当棒静止时,弹簧秤的示数为F2,且F2>F1,根据这两个数据,可以确定()A.磁场的方向B.磁感强度的大小C.安培力的大小D.铜棒的重力5.如图所示,三条长直导线都通以垂直于纸面向外的电流,且I1=I2=I3,则距三导线等距的A点的磁场方向为( )A.向上B.向右C.向左D.向下6.如图所示,平行于纸面水平向右的匀强磁场,磁感应强度B1=1 T.位于纸面内的细直导线,长L=1 m,通有I=1 A的恒定电流.当导线与B1成60°夹角时,发现其受到的安培力为零.则该区域同时存在的另一匀强磁场的磁感应强度B2的可能值( )7.如图所示,两根非常靠近且互相垂直的长直导线,当通以如图所示方向的电流时,电流所产生的磁场在导线所在平面内的哪个区域内方向是一致且向里的( )A.区域Ⅰ B.区域ⅡC.区域Ⅲ D.区域Ⅳ8.如图所示是云层之间闪电的模拟图,图中A、B是位于南、北方向带有电荷的两块阴雨云,在放电的过程中在两云的尖端之间形成了一个放电通道,发现位于通道正上方的小磁针N极转向纸里,S极转向纸外,则关于A、B的带电情况说法中正确的是( )A.带同种电荷 B.带异种电荷C.B带正电 D.A带正电9.如图所示,一个用毛皮摩擦过的硬橡胶环,当环绕其轴OO′匀速转动时,放置在环的右侧轴线上的小磁针的最后指向是( )A.N极竖直向上 B.N极竖直向下C.N极水平向左 D.N极水平向右二、安培力:(1)磁场对电流的作用——安培力电流强度为I、长度为l的电流处在磁感强度为B的匀强磁场中时,所受到的作用称为安培力,其大小F B的取值范围为:0≤F B≤BILF=BIL只是一个特殊形式,仅适用于什么情况?当电流与磁场方向平行时,安培力取值最小,为零;当电流与磁场方向垂直时,安培力取值最大,为BIL。

专题一。磁场+复合场

专题一。磁场+复合场

专题讲座(1)磁场+复合场(一)磁场一、磁场1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.二、磁感线为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线.1.疏密表示磁场的强弱.2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向.也是小磁针北极受力的方向。

3.是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。

4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.5.安培定则(右手定则):姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向·*熟记常用的几种磁场的磁感线:三、磁感应强度1.磁场的最基本的性质是对放入其中的电流或磁极有力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场力为零。

2.在磁场中垂直于磁场方向的通电导线受到的磁场力F跟电流强度I和导线长度l的乘积Il的比值,叫做通电导线所在处的磁感应强度.①表示磁场强弱的物理量.是矢量.②大小:B=F/Il(电流方向与磁感线垂直时的公式).③方向:左手定则:是磁感线的切线方向;是小磁针N极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.(根据实验得出的)④单位:牛/安米,也叫特斯拉,国际单位制单位符号T.⑤点定B定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值.⑥匀强磁场的磁感应强度处处相等.⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.四、磁通量与磁通密度1.磁通量Φ:穿过某一面积磁力线条数,是标量.2.磁通密度B:垂直磁场方向穿过单位面积磁力线条数,即磁感应强度,是矢量.3.二者关系:B=Φ/S(当B与面垂直时),Φ=BScosθ,Scosθ为面积垂直于B方向上的投影,θ是B 与S 法线的夹角.磁场对电流的作用一、安培力1.安培力:通电导线在磁场中受到的作用力叫做安培力.说明:磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力. 2.安培力的计算公式:F =BILsin θ(θ是I 与B 的夹角);①通电导线与磁场方向垂直时,即θ=900,此时安培力有最大值;②通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F =0N;00<B <900时,安培力F 介于0和最大值之间. 3.安培力公式的适用条件:①公式F =BIL 一般适用于匀强磁场中I ⊥B 的情况,对于非匀强磁场只是近似适用(如对电流元),但对某些特殊情况仍适用. 如图所示,电流I 1//I 2,如I 1在I 2处磁场的磁感应强度为B ,则I 1对I 2的安培力F =BI 2L ,方向向左,同理I 2对I 1,安培力向右,即同向电流相吸,异向电流相斥.②根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力.两根通电导线间的磁场力也遵循牛顿第三定律.二、左手定则1.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向.2.安培力F 的方向既与磁场方向垂直,又与通电导线垂直,即F 跟BI 所在的面垂直.但B 与I 的方向。

高考专题磁场和复合场

高考专题磁场和复合场

高考专题:磁场和复合场【考纲要求】1.掌握直线电流、环形电流、通电螺线管、条形磁铁、蹄形磁铁等所产生的磁场分布情况,能灵活应用安培定则解答有关问题。

2.深刻理解磁感应强度、磁感线、磁通量的物理含义。

3.灵活应用左手定则和安培力计算公式定量解决有关磁场对电流作用力的问题(限B 和I平行和垂直两类)。

4.熟练掌握洛仑兹力及其变化规律,灵活解决各类带电粒子在磁场及其它复合场中的运动类问题(即与平行和垂直两类)。

【知识结构】【热点导析】1.磁场的主要内容磁场的主要内容可概括成一个工具(磁感线)、两个物理量(磁感强度和磁通量)、两个定则(安培定则和左手定则),两个力(安培力、洛仑兹力)。

其中带电粒子在有边界和无边界磁场区域中的运动及其规律、带电粒子在复合场中的运动及其规律是本单元内容的重点和难点。

2.磁场和电场都是客观存在的一种特殊物质,它们之间更多地存在着比较和区别磁场存在于运动电荷周围,电场存在于电荷周围;磁场只对运动电荷(含电流和磁铁)有作用,电场对电荷有作用;用磁极受力定义方向、电流无受力定义大小,用检验电荷+q受力来定义大小和方向;磁感线闭合,电场线不闭合。

电磁场可共存于同一空间。

3.有关方向定则通电直导线、圆形电流和螺线管用周围磁场分布情况均用安培定则来判定,通电直导线、圆形电流和螺线管等受力方向用左手定则来判定。

不能简单理解为B和安培定则,求力用F、V各量间因果关系辩清晰,I为原因,为产生的结果的左手定则,而应把、、B用安培定则;、为原因,F B(或受力后运动)为结果的,用左手定则,运动为原因、感应电流为结果的用右手定则。

判定由和I(或运动电荷)而导致的F B(f B)方向时,可用左手定则,且B(f B)的方向在空间立体上一定垂直和I两线(与两线)决定的平面,在此基础上再用左手定则判定确切方向更易正确解答。

4.磁通量和磁力矩单匝线圈和n匝线圈放在垂直线圈平面的匀强磁场中,磁通量场为B·S(B为磁感强度、S为线圈所围面积)。

《高考物理之复合场》课件

《高考物理之复合场》课件

复合场的应用
电荷运动情况
复合场可以帮助我们理解电荷 在电场中的运动情况,从而更 好地研究电荷的行为。
磁通量计原理
复合场的应用之一是磁通量计, 其原理依赖于对磁场中磁偶极 子的测量。
分子极矩测定
复合场可以用于测定分子的极 矩,帮助我们了解分子的结构 和性质。
复合场的数学描述
1
Maxwell方程组
Maxwell方程组是描述电磁场的基本方程,提供了复合场数学描述的基础。
电偶极子
1 定义和性质
电偶极子是由两个等大、异号电荷组成,具有一定的电荷数和距离,其性质会影响其在电场中的受力 和势能。
磁偶极子
1 定义和性质
,其性质会影响其在 磁场中的受力和势能。
电四极子和磁四极子
1 电四极矩和磁四极矩
电四极矩和磁四极矩是由四个电荷或磁极构成,其性质在复合场研究中起到重要作用。
《高考物理之复合场》 PPT课件
欢迎大家来到《高考物理之复合场》的课件!今天我们将探索复合场的概念、 意义以及应用领域,希望通过本课件能够帮助大家更好地理解和应用复合场。
复合场的概念及意义
电荷分布的影响
复合场反映电荷分布对空间中电场或磁场的影响,揭示了电荷在空间中的作用。
叠加原理
复合场的叠加原理使我们能够分解和组合不同电场或磁场,更好地研究复杂场的行为。
2
数学描述
通过数学方程,我们可以准确地描述复合场的强度、分布以及相互作用规律。
小结与展望
基本概念和性质
复合场的基本概念和性质为 我们理解电磁场提供了重要 的理论基础。
应用领域和数学描述
复合场的应用涉及电荷运动、 磁通量计等领域,数学描述 为我们深入研究复合场提供 了工具。

高三物理专题(六)电场与磁场、复合场.doc

高三物理专题(六)电场与磁场、复合场.doc

专题六《电场、磁场和复合场》一、大纲解读电场和磁场共22个考点,其中,I级考点有15个,II级考点有7个。

对I级考点,要知道其内容及含义,并能在有关问题中识别和直接使用;对II级考点,要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用。

高考主要针对II级考点命题。

对库仑定律,要掌握其内容、适用条件、表达式及其应用,能用之处理平衡、非平衡等问题;对电场强度、点电荷的场强,要掌握定义、公式、适用条件,并用之处理叠加、对称、平衡、非平衡等问题;对电势差,要掌握定义式,能用之计算电势差及做功问题;对带电粒子在匀强电场中的运动,要能用牛顿定律、功能关系、运动合成与分解知识处理电荷平行进入或垂直进入电场的相关问题;对匀强磁场中的安培力、洛伦兹力,要能用左手定则判断方向,能在立体图转化成的平面图上正确标出方向,对电流与磁场垂直、带电粒子速度与磁场垂直情况定量计算,能用安培力做功、洛伦兹力不做功分析计算相关问题;对带电粒子在匀强磁场中的运动,不仅要会分析计算仅有磁场的圆周问题,对复合场问题也要能够处理,对磁场中的直线运动,平衡问题同样要求掌握。

二、高考预测电场和磁场是电学的基础知识,是历年考查的重点和热点。

对电场,高考命题主要集中在三个方面:其一是电场的描述,涉及电场强度、库仑力、带电粒子的平衡、点电荷周围的电场等(如08上海第14题、08山东理综第21题);其二是电场线、静电平衡、电势差、电势、等势面电场力、电场力做功、电势能的变化(08海南物理第4、5题、08海南物理第6题、08江苏理综第6题、08上海第2题、08广东卷第8题),其三是平行板电容器及平行板电容器所形成的匀强电场、还有带电粒子在电场中的加速和偏转(如08宁夏理综第21题、08重庆理综第21题、08全国理综Ⅱ第19题).对磁场,高考考查的知识点主要有磁场的叠加、安培定则和左手定则(如08宁夏理综第14题)、带电粒子在匀强磁场中的圆周运动(如08广东卷第9题08重庆理综第25题)。

(2010-2020)高考全国1卷物理试题分类解析——专题10 磁场(解析版)

(2010-2020)高考全国1卷物理试题分类解析——专题10 磁场(解析版)

10年高考(2010-2019)全国1卷物理试题分类解析(解析版)专题10 磁场江苏省特级教师学科网金牌名师戴儒京解析一、选择题1.(2011年)14.为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的环形电流I引起的。

在下列四个图中,正确表示安培假设中环形电流方向的是【解析】本题主要考查地磁场及安培定则。

地磁的N极在地理南极附近,地磁的S极在地理北极附近。

地球自转形成的环形电流在垂直于地轴的平面,此电流形成的地磁N极在地理南极附近,因此用右手握住环形电流时,拇指应指向地理南极。

因此,选项B正确。

【答案】B。

2.(2013年)18.如图,是半径为R的圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外,一电荷量为q(q>0)。

质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为,已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)A.B.C .D .【解析】本题考查洛伦兹力、牛顿第二定律和几何关系。

较容易。

画出粒子在磁场中的运动轨迹,由几何关系可知,粒子在磁场中偏转运动的圆弧轨迹的圆心角为60o,则圆弧半径为。

对粒子在磁场中的运动有。

解得:。

选项ACD 错误B 正确。

【答案】B【点评】注意粒子速度偏向角与轨迹圆弧所对圆心角的关系。

3(2014年)15.关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是 ( ) A .安培力的方向可以不垂直于直导线B .安培力的方向总是垂直于磁场的方向C .安培力的大小与通电直导线和磁场方向的夹角无关D .将直导线从中点折成直角,安培力的大小一定变为原来的一半【解析】根据左手定则,A 错误,B 正确;根据安培力的大小公式αsin BIL F =,C 错误;将直导线从中点折成直角,安培力的大小一定变为原来的22(如下图)【答案】15. ( B )4.(2014年)16.如图,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出)。

2010年各地高考题集锦——磁场

2010年各地高考题集锦——磁场

磁 场磁场对运动电荷的作用1.(10江苏)如图所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴OO ′与SS ′垂直。

a 、b 、c 三个质子先后从S 点沿垂直于磁场的方向射入磁场,它们的速度大小相等,b 的速度方向与SS ′垂直,a 、c 的速度方向与b 的速度方向间的夹角分别为α、β,且α>β。

三个质子经过附加磁场区域后能到达同一点S ′,则下列说法中正确的有( ) A .三个质子从S 运动到S ′的时间相等B .三个质子在附加磁场以外区域运动时,运动轨迹的圆心均在OO ′轴上C .若撤去附加磁场,a 到达SS ′连线上的位置距S 点最近D .附加磁场方向与原磁场方向相同 2.(10重庆)如图所示,矩形MNPQ 区域内有方向垂直于纸面的匀强磁场,有5个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧.这些粒子的质量、电荷量以及速度大小如下表所示。

由以上信息可知,从图中a 、b 、c 处进入的粒子对应表中的编号分别为( ) A .3、5、4 B .4、2、5 C .5、3、2 D .2、4、5 3.( 10全国卷)如图所示,在0≤x ≤a 、0≤y ≤2a范围内垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B 。

坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xOy 平面内,与y 轴正方向的夹角分布在0~90°范围内。

已知粒子在磁场中做圆周运动的半径介于2a到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。

求最后离开磁场的粒子从粒子源射出时的(1)速度的大小;(2)速度方向与y 轴正方向夹角的正弦。

4.( 10浙江)如图所示,一矩形轻质柔软反射膜可绕过O 点垂直纸面的水平轴转动,其在纸面上的长度为L 1,垂直纸面的宽度为L 2,在膜的下端(图中A 处)挂有一平行于转轴、质量为m 、长为L 2的导体棒使膜展成平面。

2010年高考物理真题电场、磁场汇编资料

2010年高考物理真题电场、磁场汇编资料

2010年高考真题电场、磁场汇编(全国卷1)16.关于静电场,下列结论普遍成立的是 A .电场中任意两点之间的电势差只与这两点的场强有关 B .电场强度大的地方电势高,电场强度小的地方电势低C .将正点电荷从场强为零的一点移动到场强为零的另一点,电场力做功为零D .在正电荷或负电荷产生的静电场中,场强方向都指向电势降低最快的方向 【答案】C【解析】在正电荷的电场中,离正电荷近,电场强度大,电势高,离正电荷远,电场强度小,电势低;而在负电荷的电场中,离正电荷近,电场强度大,电势低,离负电荷远,电场强度小,电势高,A 错误。

电势差的大小决定于两点间距和电场强度,B 错误;沿电场方向电势降低,而且速度最快,C 正确;场强为零,电势不一定为零,如从带正电荷的导体球上将正电荷移动到另一带负电荷的导体球上,电场力做正功。

【命题意图与考点定位】考查静电场中电场强度和电势的特点,应该根据所学知识举例逐个排除。

(全国卷2)17. 在雷雨云下沿竖直方向的电场强度为410V/m.已知一半径为1mm 的雨滴在此电场中不会下落,取重力加速度大小为10m/2s ,水的密度为310kg/3m 。

这雨滴携带的电荷量的最小值约为A .2⨯910-C B. 4⨯910-C C. 6⨯910-C D. 8⨯910-C【答案】B 【解析】带电雨滴在电场力和重力最用下保持静止,根据平衡条件电场力和重力必然等大反向mg=Eq ,则339944410 3.14103341010r mgq C EEρπ--⨯⨯⨯====⨯。

【命题意图与考点定位】电场力与平衡条件的结合。

(新课标卷)17.静电除尘器是目前普遍采用的一种高效除尘器.某除尘器模型的收尘板是很长的条形金属板,图中直线ab 为该收尘板的横截面.工作时收尘板带正电,其左侧的电场线分布如图所示;粉尘带负电,在电场力作用下向收尘板运动,最后落在收尘板上.若用粗黑曲线表示原来静止于P 点的带电粉尘颗粒的运动轨迹,下列4幅图中可能正确的是(忽略重力和空气阻力)答案:A解析:粉尘受力方向应该是电场线的切线方向,从静止开始运动时,只能是A 图那样,不可能出现BCD 图的情况。

高中物理磁场复合场讲义DOC

高中物理磁场复合场讲义DOC

高二物理磁场专题知识网络:单元切块:按照考纲的要求,本章内容可以分成三部分,即:基本概念安培力;洛伦兹力带电粒子在磁场中的运动;带电粒子在复合场中的运动。

其中重点是对安培力、洛伦兹力的理解、熟练解决通电直导线在复合场中的平衡和运动问题、带电粒子在复合场中的运动问题。

难点是带电粒子在复合场中的运动问题。

一.磁场和磁感线1.磁场的产生:磁场是磁极、电流周围存在的一种物质,对放在磁场中的磁极、电流具有力的作用.注意:地球产生的磁场,如图1-1所示,地球的北极是地磁场的_____(南、北)极。

2.磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或小磁针静止时N极的指向).3.磁感线:用来形象描述磁场的大小和方向的一系列________(闭合、不闭合)的________(相交、不相交)曲线.用_________表示大小,用____________表示方向。

4.电流产生的磁场方向判断:安培定则(又叫____________定则)5.常见磁场的磁感线:例1:下列说法中正确的是 ( )A 磁场和电场一样,是客观存在的特殊物质B 磁感线总是从磁体的N 极出发,终止于磁体的S 极C .磁感线的方向就是磁场方向D 磁感线和电场线一样都是闭合不相交的曲线例2:两根非常接近且互相垂直的长直导线,当通以如图1-2所示的电流时,图中磁场方向 向外且最大的是第______区域. 例3:如图1-3所示,带负电的橡胶环绕轴OO ′以角速度ω匀速旋转,在环左侧轴线上的小磁针最后平衡的位置是 ( )A .N 极竖直向下B .N 极竖直向上C .N 极沿轴线向左D .N 极沿轴线向右 二. 安培力和磁感应强度1.安培力:F=________, F 的方向:F___B;F___I 。

具体判断方法:左手定则:伸开左手,让磁感线穿过掌心,四指沿着_____方向,大姆指指向_________方向.常见结论:同向电流相互______,反向电流相互_______。

高考物理总复习 第九单元 磁场 微专题8 带电粒子在组合场和复合场中的运动(含解析)

高考物理总复习 第九单元 磁场 微专题8 带电粒子在组合场和复合场中的运动(含解析)

微专题8 带电粒子在组合场和复合场中的运动一带电粒子在组合场中的运动组合场是指电场与磁场同时存在或者磁场与磁场同时存在,但各位于一定的区域内,并不重叠的情况。

所以弄清带电粒子在电场及磁场中的运动形式、规律和研究方法是解决此类问题的基础。

1.基本类型运动类型带电粒子在匀强电场中加速(v0与电场线平行或为零)带电粒子在匀强电场中偏转(v0⊥E)带电粒子在匀强磁场中匀速运动(v0与磁感线平行)带电粒子在匀强磁场中偏转(v0与磁感线垂直)受力特点受到恒定的电场力;电场力做功不受磁场力作用受磁场力作用;但磁场力不做功运动特征匀变速直线运动类平抛运动匀速直线运动匀速圆周运动研究方法牛顿运动定律匀变速运动学规律牛顿运动定律匀变速运动学公式正交分解法匀速直线运动公式牛顿运动定律向心力公式圆的几何知识表达方式如何求运动时间、速度和位移如何求飞行时间、偏移量和偏转角-如何求时间和偏转角用匀变速直线运动的基本公式、导出公式和推论求解飞出电场时间:t=打在极板上t=偏移量:y=偏转角:tan-时间t=T(θ是圆心角,T是周期)偏转角sin θ=(l是磁场宽度,R是粒子轨道半径)α=运动情境2.解题思路题型1电场与磁场的组合例1如图所示,在xOy直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第Ⅱ象限内分布着沿y轴负方向的匀强电场。

初速度为零、带电荷量为q、质量为m的粒子经过电压为U的电场加速后,从x轴上的A点垂直x轴进入磁场区域,重力不计,经磁场偏转后过y轴上的P点且垂直于y轴进入电场区域,在电场中偏转并击中x轴上的C点。

已知OA=OC=d。

则磁感应强度B和电场强度E分别为多少?解析设带电粒子经电压为U的电场加速后速度为v,则qU=mv2带电粒子进入磁场后,由洛伦兹力提供向心力qBv=依题意可知r=d,联立解得B=带电粒子在电场中偏转,做类平抛运动,设经时间t从P点到达C点,由d=vt,d=t2联立解得E=。

高考母题解读(九)磁场母题13带电粒子在复合场中的运动.docx

高考母题解读(九)磁场母题13带电粒子在复合场中的运动.docx

高中物理学习材料桑水制作高考题千变万化,但万变不离其宗。

千变万化的新颖高考题都可以看作是由母题衍生而来。

研究高考母题,掌握母题解法规律,使学生触类旁通,举一反三,可使学生从题海中跳出来,轻松备考,事半功倍。

母题13、带电粒子在复合场中的运动典例.(2010福建理综)如图1所示的装置,左半部为速度选择器,右半部为匀强的偏转电场。

一束同位素离子流从狭缝S射入速度选择器,1射出的离子,又沿着与电场垂直的方向,能够沿直线通过速度选择器并从狭缝S2立即进入场强大小为E的偏转电场,最后打在照相底片D上。

已知同位素离子的电荷量为q (q>0),速度选择器内部存在着相互垂直的场强大小为E0的匀强电场和磁感应强度大小为B0的匀强磁场,照相底片D与狭缝S1、S2的连线平行且距离为L,忽略重力的影响。

射出的离子速度v0的大小;(1)求从狭缝S2(2)若打在照相底片上的离子在偏转电场中沿速度v0方向飞行的距离为x,求出x与离子质量m之间的关系式(用E、B0、E、q、m、L表示)。

【点评】此题可看作由教材上两个题通过适当变化组合而成,因此熟练掌握基础知识,掌握教材上典型试题的解法,是高考取胜的法宝。

【针对训练题精选解析】1.(2010海南物理)图2中左边有一对平行金属板,两板相距为d.电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里。

图中右边有一半径为R、圆心为O的圆形区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。

一电荷量为q的正离子沿平行于全属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区城图2边界上的G点射出.已知弧»PG所对应的圆心角为 ,不计重力.求(1)离子速度的大小;(2)离子的质量.联立③④⑤⑥式得,离子的质量为 m=0qBB Rd V cot 2⑦ 【点评】此题重点考查滤速器和带电粒子在有界匀强磁场中的运动,解答时要画出轨迹示意图,注意利用题述条件和几何关系。

2010年全国各省高考物理试题分类汇编《磁场》

2010年全国各省高考物理试题分类汇编《磁场》

2010年高考物理试题分类汇编——磁场(全国卷1)26.(21分)如下图,在0x ≤≤区域内存在与xy 平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy 平面内发射出 大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向的夹角分布在0~180°范围内。

已知沿y 轴正方向发射的粒子在0t t =时刻刚好从磁场边界上,)P a解得a R 332=23sin ==R a θ,则粒子做圆周运动的的圆心角为120°,周期为03t T =粒子做圆周运动的向心力由洛仑兹力提供,根据牛顿第二定律得R T m Bqv 2)2(π=,T R v π2=,化简得032Bt m q π= ⑫仍在磁场中的粒子其圆心角一定大于120°,这样粒子角度最小时从磁场右边界穿出; 角度最大时从磁场左边界穿出。

角度最小时从磁场右边界穿出圆心角120°,所经过圆弧的弦与⑪中相等穿出点如图,(1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的 质量。

(2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为34a ,求离子乙的质量。

(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大 的,问磁场边界上什么区域内可能有离子到达。

解析:(1)在粒子进入正交的电磁场做匀速直线运动,设粒子的速度为v ,电场的场强为E 0, 根据平衡条件得00E q B qv = ①0VE d=②)2a联立③⑦化简得03)2qadBB m V =⑧ (2)由于1点将EG 边按1比3等分,根据三角形的性质说明此轨迹的弦与EG 垂直,在如图的三角形中,有解析:设粒子的发射速度为v ,粒子做圆周运动的轨道半径为R ,由牛顿第二定律和洛伦磁力公式,得2mv qvB R=,解得:mvR qB =当2a<R <a 时,在磁场中运动时间最长的粒子,其轨迹是圆心为C 的圆弧,圆弧与磁 场的边界相切,如图所示,设该粒子在磁场中运动的时间为t ,依题意,4Tt =时,(A )0 (B )0.5BIl (C )BIl (D )2BIl 答案:C解析:导线有效长度为2l sin30°=l ,所以该V 形通电导线收到的安培力大小为BIl 。

高考物理专题 磁场、复合场练习及参考答案

高考物理专题   磁场、复合场练习及参考答案

高三物理磁场、带电粒子在磁场、复合场中的运动专题练习一、选择题。

本题共8小题。

(第1—5题在每小题给出的四个选项中,只有一项符合题目要求,第6—8题有的有多项符合题目要求。

)1、为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的。

在下列四个图中,正确表示安培假设中环形电流方向的是( )2、如图所示为水平放置的两根等高固定长直细导线的截面图,O 点是两导线间距离的中点,a 、b 是过O 点的竖直线上与O 点距离相等的两点,两导线中通有大小相等、方向相反的恒定电流 下列说法正确的是( ) A.O 点的磁感应强度为零B.O 点的磁感应强度方向竖直向下C.两导线之间存在相互吸引的安培力D.a 、b 两点的磁感应强度大小相等、方向相反3、如图所示,21q q 和为两带电粒子,其中q 1带正电,q 2带负电 某时刻,它们以相同的速度垂直进入同一磁场,此时所受洛伦兹力分别为F 1、F 2则( )A. F 1、F 2的方向均向右B.F 1、F 2的方向均向左C.F 1的方向向左,F 2的方向向右D.F 1的方向向右,F 2的方向向左4、如图所示,质量m =0.1kg 的AB 杆放在倾角030=θ的光滑轨道上,轨道间距L =0.2m ,电流I =0.5A 当加上垂直于杆AB 的某一方向的匀强磁场后,杆AB 处于静止状态,则所加磁场的磁感应强度不可能为(取2/10s m g =)( )A. 4TB. 5TC. 7TD. 10T5、平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。

一带电粒子的质量为m ,电荷量为q (q >0)。

粒子沿纸面以大小为v 的速度从PM 的某点向左上方射入磁场,速度与OM 成30°角。

已知粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。

专题07磁场(包括复合场)-高考物理试题分项版解析(原卷版)

专题07磁场(包括复合场)-高考物理试题分项版解析(原卷版)

1.【2014·海南卷】下列说法中,符合物理学史实的是A .亚里士多德认为,必须有力作用在物体上,物体才能运动;没有力的作用,物体就静止B .牛顿认为,力是物体运动状态改变的原因,而不是物体运动的原因C .麦克斯韦发现了电流的磁效应,即电流可以在其周围产生磁场D .奥斯特发现导线通电时,导线附近的小磁针发生偏转2.【2014·新课标全国卷Ⅰ】关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()A.安培力的方向可以不垂直于直导线B.安培力的方向总是垂直于磁场的方向C.安培力的大小与通电直导线和磁场方向的夹角无关D.将直导线从中点折成直角,安培力的大小一定变为原来的一半3.【2014·海南卷】如图,两根平行长直导线相距2l ,通有大小相等、方向相同的恒定电流:a 、b 、c 是导线所在平面内的三点,左侧导线与它们的距离分别为2l 、l 和3l 。

关于这三点处的磁感应强度,下列判断正确的是A .a 处的磁感应强度大小比c 处的大B .b 、c 两处的磁感应强度大小相等C .a 、c 两处的磁感应强度方向相同D .b 处的磁感应强度为零4.【2014·新课标全国卷Ⅰ】如图,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出)。

一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿过铝板后到达PQ 的中点O ,已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力。

铝板上方和下方的磁感应强度大小之比为()A.2B.2C.1D.22 5.【2014·北京卷】带电离子a 、b 在同一匀强磁场中做匀速圆周运动,它们的动量大小相等,a 运动的半径大于b 运动的半径。

若a 、b 的电荷量分别为q a 、q b ,质量分别为m a 、m b ,周期分别为T a 、T b 。

则一定有A.q a <q bB.m a <m bC.T a <T bD.a ba b q q m m <[学科-网6.【2014·新课标全国卷Ⅱ】如图为某磁谱仪部分构件的示意图。

2010届高考物理磁场带电粒子在复合场中的运动

2010届高考物理磁场带电粒子在复合场中的运动

2010届高考物理复习学案——磁场带电粒子在复合场中的运动【命题趋向】带电粒子在磁场中的运动是高中物理的一个难点,也是高考的热点。

在历年的高考试题中几乎年年都有这方面的考题。

带电粒子在磁场中的运动问题,综合性较强,解这类问题既要用到物理中的洛仑兹力、圆周运动的知识,又要用到数学中的平面几何中的圆及解析几何知识。

带电粒子在复合场中的运动包括带电粒子在匀强电场、交变电场、匀强磁砀及包含重力场在内的复合场中的运动问题,是高考必考的重点和热点。

纵观近几年各种形式的高考试题,题目一般是运动情景复杂、综合性强,多把场的性质、运动学规律、牛顿运动定律、功能关系以及交变电场等知识有机地结合,题目难度中等偏上,对考生的空间想像能力、物理过程和运动规律的综合分析能力,及用数学方法解决物理问题的能力要求较高,题型有选择题,填空题、作图及计算题,涉及本部分知识的命题也有构思新颖、过程复杂、高难度的压轴题。

【考点透视】一、洛伦兹力1、产生洛伦兹力的条件:(1)电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用。

(2)电荷的运动速度方向与磁场方向不平行。

2、洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力为零;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,等于q υB ;3、洛伦兹力的方向:洛伦兹力方向用左手定则判断4、洛伦兹力不做功。

二、带电粒子在匀强磁场的运动1、带电粒子在匀强磁场中运动规律初速度的特点与运动规律(1)00=v 0=洛f 为静止状态(2)B v // 0=洛f 则粒子做匀速直线运动(3)B v ⊥ Bqv f =洛,则粒子做匀速圆周运动,其基本公式为: 向心力公式:Rv m Bqv 2= 运动轨道半径公式:Bqm v R =; 运动周期公式:Bqm T π2=动能公式:mBqR mv E k 2)(2122== T 或f 、ω的两个特点:T 、f 和ω的大小与轨道半径(R )和运行速率(v )无关,只与磁场的磁感应强度(B )和粒子的荷质比(m q )有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场和复合场【考纲要求】1.掌握直线电流、环形电流、通电螺线管、条形磁铁、蹄形磁铁等所产生的磁场分布情况,能灵活应用安培定则解答有关问题。

2.深刻理解磁感应强度、磁感线、磁通量的物理含义。

3.灵活应用左手定则和安培力计算公式定量解决有关磁场对电流作用力的问题(限和I平行和垂直两类)。

4.熟练掌握洛仑兹力及其变化规律,灵活解决各类带电粒子在磁场及其它复合场中的运动类问题(即与平行和垂直两类)。

【知识结构】【热点导析】1.磁场的主要内容磁场的主要内容可概括成一个工具(磁感线)、两个物理量(磁感强度和磁通量)、两个定则(安培定则和左手定则),两个力(安培力、洛仑兹力)。

其中带电粒子在有边界和无边界磁场区域中的运动及其规律、带电粒子在复合场中的运动及其规律是本单元内容的重点和难点。

2.磁场和电场都是客观存在的一种特殊物质,它们之间更多地存在着比较和区别磁场存在于运动电荷周围,电场存在于电荷周围;磁场只对运动电荷(含电流和磁铁)有作用,电场对电荷有作用;用磁极受力定义方向、电流无受力定义大小,用检验电荷+q受力来定义大小和方向;磁感线闭合,电场线不闭合。

电磁场可共存于同一空间。

3.有关方向定则通电直导线、圆形电流和螺线管用周围磁场分布情况均用安培定则来判定,通电直导线、圆形电流和螺线管等受力方向用左手定则来判定。

不能简单理解为和安培定则,求力用F、V各量间因果关系辩清晰,I为原因,为产生的结果的左手定则,而应把、、B用安培定则;、为原因,F B(或受力后运动)为结果的,用左手定则,运动为原因、感应电流为结果的用右手定则。

判定由和I(或运动电荷)而导致的F B(f B)方向时,可用左手定则,且B(f B)的方向在空间立体上一定垂直和I两线(与两线)决定的平面,在此基础上再用左手定则判定确切方向更易正确解答。

4.磁通量和磁力矩单匝线圈和n匝线圈放在垂直线圈平面的匀强磁场中,磁通量场为B·S(B为磁感强度、S为线圈所围面积)。

若在线圈中通有电流I,则在磁场中转过90°后所受磁力矩分别为BIS 和nBIS。

5.带电粒子在复合场中受力及运动首先带电粒子在复合场中运动规律广泛应用于近代物理的许多实验装置中,如回旋加速器、质谱仪、磁流体发电机、电磁流量计、速度选择器等。

其次,应明确:研究复合场中带电粒子的运动规律首先要分析初速度和运动过程中加速度(受力)情况。

在受力分析的过程中应将重力(是否考虑)、电场力、洛仑兹力等作为力学中按性质来命名的力首先进行讨论。

再次,应明确:不管带电粒子做的是圆周运动还是一般曲线运动,洛仑兹力永远不做功,但洛仑兹力的变化与否可间接影响到重力、电场力等力的做功情况。

最后,因为电磁学物理量及单位比较复杂,而且数值往往相差悬殊,因此计算有关结果时,应先进行字母运算,简化后最后再代入数据。

也可这样讲,力学问题的基本思路和求解方法在本单元中广泛适用。

【典型例析】例1 如图5-10-1所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使MN垂直于纸面向外运动,可以()A.将a、c端接在电源正极,b、d端接在电源负极B.将b、d端接在电源正极,a、c端接在电源负极C.将a、d端接在电源正极,b、c端在电源负极D.将a、c端接在交流电源的一端,b、d接在交流电源的另一端解析 本题为1997年上海高考试题将a 接正极b 接负极,电流方向为M →N ,c 接正极d 接负极,由右手螺旋定则可知,线圈上端为N 极。

由左手定则判定MN 向外运动,A 正确。

b 接在正极时电流方向为N →M ,d 接正极由右手螺旋定则可知线圈下端为N 极,因此由左手定则可判断MN 向外运动,B 正确。

a 接正极电流方向为M →N ,d 接正极可知线圈下端为N 极,由左手定则可判定MN 向里运动,C 错误。

MN 中与线圈中虽然通的都是交流电,但由于ab 与cd 是并联接在电源上,当电流为M →N 时,线圈中电流为c →d ,而当电流为N →M 时,线圈中电流为d →c ,由以上判定A 、B 的方法可判定D 正确。

说明 该题属于右手螺旋定则与左手定则结合应用的题,这在一些题中经常出现,先由右手螺旋定则判定磁场方向,再由左手定则判定受力方向。

例2 一劲度系数为k 的轻质弹簧,下端挂有一匝数为n 的矩形线框abcd 。

bc 边长为l 。

线框的下半部处在匀强磁场中,磁感强度大小为B ,方向与线框平面垂直,在图5-10-2中,垂直于纸面向里,线框中通以电流I ,方向如图所示。

开始时线框处于平衡状态,令磁场反向,磁感强度的大小仍为B ,线框达到新的平衡。

在此过程中线框位移的大小Δx ,方向 。

解析 本题为1999年广东高考试题设线圈的质量为m ,当通以图示电流时,弹簧的伸长量为x 1,线框处于平衡状态,所以kx 1=mg-nBIl 。

当电流反向时,线框达到新的平衡,弹簧的伸长量为x 2,由平衡条件可知kx 2=mg+nBIl 。

∴k(x 2-x 1)=k Δx=2nBIl ∴Δx=knBIl 2 电流反向后,弹簧的伸长是x 2>x 1,位移的方向应向下。

说明 本题为静力学与安培力综合,把安培力看成静力学中按性质来命名的一个力进行受力分析,是本题解答的基本思路。

例3 如图5-10-3所示,一平行板电容器间的水平匀强电场中,用丝线在固定O 点悬挂一个质量为1g 的带电小球,静止在竖直偏左30°角的OA 位置,现把小球提到B 点使线水平伸直,然后放开,让小球绕O 点摆动,求(1)小球摆到最低点时线上的拉力。

(2)小球摆过最低点时,还能向右摆动的角度(g=10ms -2)?解析 由题可知小球带负电,由小球静止于A 点可知小球受向下mg ,向左Eq ,沿丝线拉力T由平衡条件可知:Eq=mgtan30°=33mg 对小球由B →A →C 过程中应用动能定理 mgL-EqL=21mv 2C -0 对小球在C 处在竖直方向应用向心力公式 T-mg=m Lv c 2 由①②③得:T=(3-332)mg=1.8×10-2N 设小球还能向右摆α角至D 点对小球由B →A →C →D 应用动能定理mglcos α-Eq(1+1sin α)=0由①④得cos α=33(1+sin α) ∴α=30°说明 本题为典型的重力场和匀强电场组成的复合场问题。

对该非匀速圆周运动过程,机械能守恒不再适用,动能定理为首选解法。

对其中某一位置的法线方向,可使用动力学向心力公式解答。

如本题所示的复合场仍为匀强场,也可直接采用合场的办法来求解第(2)问。

OA 即为合场方向,B 与D 对OA 左右对称。

所以∠AOD=60°,∠COD=30°。

若本题修改后∠AOB >90°,则丝线还会有松驰过程,还需考虑丝线张紧瞬间法向速度的损失问题。

例4 如图5-10-4所示,在xOy 平面上,a 点坐标为(0,l ),平面内一边界通过a 点和坐标原点O 的圆形匀强磁场区域,磁场方向垂直纸面向里,有一电子(质量为m ,电量为e )从a 点以初速度v 0平行x 轴正方向射入磁场区域,在磁场中运动,恰好在x 轴上的b 点(未标出)射出磁场区域,此时速度方向与x 轴正方向夹角为60°,求(1)磁场的磁感应强度。

(2)磁场区域圆心O 1的坐标。

(3)电子在磁场中运动的时间。

解析 带电粒子在磁场中做匀速圆周运动,从a 点射入从b 点射出O 、a 、b 均在圆形磁场区域的边界,粒子运动轨道圆心为O 2,令b O a O 22==R由题意可知,∠aO 2b=60°,且ΔaO 2b 为正三角形在ΔOO 2b 中,R 2=(R-l )2+(Rsin60°)2① 而R=Be mv 0② 由①②得R=2l ∴B=elmv 20 而粒子在磁场中飞行时间 t=00322326136060v l v l Be m T πππ=⨯== 由于∠aOb=90°又∠aOb 为磁场图形区域的圆周角∴ab 即为磁场区域直径211=aO R=l O 1的x 坐标:x=aO 1sin60°=23l y=l-aO 1cos60°=2l ∴O 1坐标为(23l ,2l ) 说明 本题为带电粒子在有边界磁场区域中的圆周运动,解题的关键一步是找圆心,根据运动电荷在有界磁场的出入点速度方向垂线的交点,确定圆心的位置,然后作出轨迹和半径,根据几何关系找出等量关系。

求解飞行时间从找轨迹所对应的圆心角的方面着手。

当然带电粒子在有界磁场中做部分圆周运动,除了要运用圆周运动的规律外,还要注意各种因素的制约而形成不是惟一的解,这就要求必须深刻理解题意,挖掘隐含条件,分析不确定因素,力求解答准确、完整。

例5 如图5-10-5(a )为一种获得高能粒子的装置,环形区域内存在垂直纸面向外,大小可调节的均匀磁场,质量为m ,电量为+q 的粒子在环中做半径为R 的圆周运动。

A 、B 为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A 板时,A 板电势升高为+U ,B 板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B 板时,A 板电势又降为零,粒子在电场一次次加速下动能不断增大,而绕行半径不变。

(1)设t=0时粒子静止在A 板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n 圈回到A 板时获得的总动能E n 。

(2)为使粒子始终保持在半径为R 的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n 圈时的磁感应强度B n 。

(3)求粒子绕行n 圈所需的总时间t n (设极板间距远小于R )。

(4)在5-10-5(b )图中,画出A 板电势u 与时间t 的关系(从t=0起画到粒子第四次离开B 板时即可)。

(5)在粒子绕行的整个过程中,A 板电势是否可始终保持为+U ?为什么?解析 (1)E m =nqU(2)∵nqU=21mv 2n ,∴v n =mnqU 2 Rm v n 2=qu n B n ,B n =qR m v n 以U n 结果代入,B n =qnmU R m nqU qR m 212= (3)绕行第n 圈需时n qU m R V R n 1222∙=ππ ∴t n =2πR qU m 2(1+++3121…+n1) (4)如图5-10-6所示(对图的要求:间隔越来越近的等幅脉冲)(5)不可以。

因为这样粒子在A 、B 之间飞行时电场对其做功+qU 使之加速,在A 、B 之外飞行时电场又对其做功-qU 使之减速,粒子绕行一周,电场对其做的总功为零,能量不会增大。

说明 在(4)中由于绕第n 圈的周期T n =nqB m 2,由B n 越来越大,因而T n 也越来越小,这样在图中t 1,t 2,t 3的相互间距要越来越小。

相关文档
最新文档