专题复习:等腰三角形存在性问题
(完整word版)等腰三角形存在性问题(带答案).doc
等腰三角形存在性问题(两圆一线)类型一、格点中的等腰三角形1、在如图所示的 5×5方格中,每个小方格都是边长为 1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是()2、 .如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB 为其中一腰.这样的 C 点有 ()个.3 、如图, A、B 是网格中的两个格点,点 C 也是网格中的一个格点,连接AB、 BC、AC,当△ ABC为等腰三角形时,格点 C 的不同位置有处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于.4、如图,在图中能画出与△ABC全等的格点三角形有几个?类型二、定边几何法讨论:两圆一线5、以线段AB 为一边的等腰直角三角形有个,请在下列图中画出来6、( 1)如图所示,线段OD 的一个端点O 在直线 AB 上,以 OD 为一边的等腰三角形ODP,并且使点P 也在 AB 上,这样的等腰三角形能画个(在图中作出点P)( 2)若∠ DOB=60°,其它条件不变,则这样的等腰三角形能画个,(只写出结果)( 3)若改变( 2)中∠ DOB的度数,其他条件不变,则等腰三角形ODP的个数和( 2)中的结果相同,则改变后∠DOB=.7、如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△ PAB 是等腰三角形,则这样的点P 最多能确定()个.8、线段 AB 和直线 l 在同一平面上.则下列判断可能成立的有个直线 l 上恰好只有个 1 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 2 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 3 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 4 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 5 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 6 点 P,使△ ABP为等腰三角形.9、如图AOB ,当AOB为 30 , 60 , 120 时,请在射线OA 上找点 P,使POB 为等腰三角形,并分析出当AOB 发生变化时,点P 个数的情况;类型三、三角形、长方形和正方形中的等腰三角形10、如图,在长方形ABCD中, AB=4, AD=10,点 Q 是 BC的中点,点P 在 AD 边上运动,若△ BPQ 是腰长为 5 的等腰三角形,则满足题意的点P有()个11、如图所示,在长方形ABCD 的对称轴上找一点P,使得△ PAB,△ PBC均为等腰三角形,则满足条件的点P 有()个12、如图,边长为 6 的正方形 ABCD内部有一点P,BP=4,∠ PBC=60°,点 Q 为正方形边上一动点,且△ PBQ是等腰三角形,则符合条件的Q 点有 ____个.13、在等边△ ABC所在的平面内求一点P,使△ PAB,△ PBC,△ PAC都是等腰三角形,请画出所有满足条件的点;等腰三角形存在性问题(两圆一线)答案类型一、格点中的等腰三角形1、在如图所示的 5×5方格中,每个小方格都是边长为 1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是(4)2、 .如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB 为其中一腰.这样的 C 点有 ( B)个.A.8B.9C.10D.113 、如图, A、B 是网格中的两个格点,点 C 也是网格中的一个格点,连接AB、 BC、AC,当△ ABC为等腰三角形时,格点 C 的不同位置有3处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC 的面积之和等于15.【解答】解:格点 C 的不同位置分别是:C、C′、 C″,∵网格中的每个小正方形的边长为1,∴S△ABC= × 4× 3=6,S△ABC′=20﹣2× 3﹣=6.5,S△ABC″=2.5,∴S△ABC+S△ABC′+S△ABC″=6+6.5+2.5=15.故答案分别为: 3; 15.4、如图,在图中能画出与△ABC全等的格点三角形有几个?类型二、定边几何法讨论:两圆一线5、以线段AB 为一边的等腰直角三角形有个,请在下列图中画出来6、( 1)如图所示,线段OD 的一个端点O 在直线 AB 上,以 OD 为一边的等腰三角形ODP,并且使点P 也在 AB 上,这样的等腰三角形能画4个(在图中作出点P)( 2)若∠ DOB=60°,其它条件不变,则这样的等腰三角形能画2个,(只写出结果)( 3)若改变( 2)中∠ DOB的度数,其他条件不变,则等腰三角形ODP的个数和( 2)中的结果相同,则改变后∠DOB= 90 °.7、如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△ PAB 是等腰三角形,则这样的点P 最多能确定()个.8、线段 AB 和直线 l 在同一平面上.则下列判断可能成立的有 5 个直线 l 上恰好只有个 1 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 2 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 3 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 4 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 5 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 6 点 P,使△ ABP为等腰三角形.9、如图AOB ,当AOB为 30 , 60 , 120 时,请在射线OA 上找点 P,使POB 为等腰三角形,并分析出当AOB 发生变化时,点P 个数的情况;【结论】当AOB 为锐角,AOB60 ,有三个点,当AOB =60,只有一个点;当 AOB 为钝角或直角,只有一个点;类型三、三角形、长方形和正方形中的等腰三角形10、如图,在长方形ABCD中, AB=4, AD=10,点Q 是BC的中点,点P 在AD 边上运动,若△ BPQ 是腰长为 5 的等腰三角形,则满足题意的点P 有 ( B )A.2 个B.3 个C.4 个D.5 个11、如图所示,在长方形ABCD 的对称轴上找一点P,使得△ PAB,△ PBC均为等腰三角形,则满足条件的点P 有(C )A.1 个B.3 个C.5 个D.无数多个12、如图,边长为 6 的正方形 ABCD内部有一点P,BP=4,∠ PBC=60°,点 Q 为正方形边上一动点,且△ PBQ是等腰三角形,则符合条件的Q 点有 ____个.13、在等边△ ABC所在的平面内求一点P,使△ PAB,△ PBC,△ PAC都是等腰三角形,请画出所有满足条件的点;。
初中数学专题02等腰三角形的存在性问题(原卷版)
专题二等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。
【解题攻略】在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.【解题类型及其思路】解题类型:动态类型:1.一动点类型问题;2.双动点或多动点类型问题背景类型:1.几何图形背景;2.平面直角坐标系和几何图形背景解题思路:几何法一般分三步:分类、画图、计算;代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.【典例指引】类型一【二次函数综合题中根据条件判定三角形的形状】典例指引1.抛物线2y x bx c =++与x 轴交于点A ,点B (1,0),与y 轴交于点C (0,﹣3),点M 是其顶点. (1)求抛物线解析式;(2)第一象限抛物线上有一点D ,满足∠DAB =45°,求点D 的坐标;(3)直线x t = (﹣3<t <﹣1)与x 轴相交于点H .与线段AC ,AM 和抛物线分别相交于点E ,F ,P .证明线段HE ,EF ,FP 总能组成等腰三角形.【举一反三】(2020·江西初三期中)如图①,已知抛物线y =ax 2+bx +3(a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由;(3)如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.类型二【利用二次函数的性质与等腰三角形的性质确定点的坐标】典例指引2.(2019·山东初三期末)如图1,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(l )求抛物线的表达式;(2)如图l ,若点E 为第二象限抛物线上一动点,连接,BE CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标;(3)如图2,在x 轴上是否存在一点D 使得ACD ∆为等腰三角形?若存在,请求出所有符合条件的点D 的坐标;若不存在,请说明理由.【举一反三】(2019·广东省中山市中山纪念中学三鑫双语学校初三期中)如图,已知抛物线y =ax 2+bx +c 的图象与x 轴交于A (2,0),B (﹣8,0)两点,与y 轴交于点C (0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.类型三【确定满足等腰三角形的动点的运动时间】典例指引3.(2018济南中考)如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:①为何值时为等腰三角形;②为何值时线段PN的长度最小,最小长度是多少.【举一反三】如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点D从C出发,沿线段CO以1个单位/秒的速度向终点O运动,过点D作OC的垂线交BC于点E,作EF∥OC,交抛物线于点F.(1)求此抛物线的解析式;(2)小明在探究点D运动时发现,①当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.【新题训练】1.(2020·江西初三)如图,在平面直角坐标系中,已知点A(﹣2,﹣4),直线x=﹣2与x轴相交于点B,连接OA,抛物线y=﹣x2从点O沿OA方向平移,与直线x=﹣2交于点P,顶点M到点A时停止移动.(1)线段OA 所在直线的函数解析式是 ;(2)设平移后抛物线的顶点M 的横坐标为m ,问:当m 为何值时,线段P A 最长?并求出此时P A 的长. (3)若平移后抛物线交y 轴于点Q ,是否存在点Q 使得△OMQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.2.(2018·山东中考真题)如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.3.(2016·广西中考真题)在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D . (1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.4.(2019·广东广州市第二中学初三)如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=12-x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=12-x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE 13个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值,如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,求出此时t的值.5.(2019·湖南中考模拟)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y 轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.6.(2018·山东中考模拟)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.7.(2019·山东中考模拟)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C (﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△P AB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.8.(2018·广东中考模拟)如图,在平面直角坐标系xOy 中,二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.9.(2019·四川中考模拟)如图,已知二次函数y =﹣x 2+bx +c (c >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OB =OC =3,顶点为M .(1)求二次函数的解析式;(2)点P 为线段BM 上的一个动点,过点P 作x 轴的垂线PQ ,垂足为Q ,若OQ =m ,四边形ACPQ 的面积为S ,求S 关于m 的函数解析式,并写出m 的取值范围;(3)探索:线段BM 上是否存在点N ,使△NMC 为等腰三角形?如果存在,求出点N 的坐标;如果不存在,请说明理由.10.(2019·甘肃中考模拟)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.11.(2019·安徽中考模拟)如图,已知直线1y x =+与抛物线2y ax 2x c =++相交于点()1,0A -和点()2,B m 两点.(1)求抛物线的函数表达式;(2)若点P 是位于直线AB 上方抛物线上的一动点,当PAB ∆的面积S 最大时,求此时PAB ∆的面积S 及点P 的坐标;(3)在x 轴上是否存在点Q ,使QAB ∆是等腰三角形?若存在,直接写出Q 点的坐标(不用说理);若不存在,请说明理由.12.(2018·江苏中考模拟)(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,11AM AN均为定值,并求出该定值.13.(2019·重庆中考模拟)如图,在平面直角坐标系中,一抛物线的对称轴为直线,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的解析式;(2)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.14.(2019·辽宁中考模拟)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.15.(2020·浙江初三期末)如图,抛物线y=﹣12x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.16.(2020·湖北初三期末)如图,已知二次函数的图象经过点A(4,4),B(5,0)和原点O,P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA相较于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,是否存在一点P,使射线OP平分∠AOy,若存在,请求出P点坐标;若不存在.请说明理由;(4)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,若存在,求出P点的坐标;若不存在,请说明理由.17.(2019·吉林初三)如图1,抛物线与y =﹣211433x x ++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点D 是线段AB 上一点,且AD =CA ,连接CD .(1)如图2,点P 是直线BC 上方抛物线上的一动点,在线段BC 上有一动点Q ,连接PC 、PD 、PQ ,当△PCD 面积最大时,求PQ +10CQ 的最小值; (2)将过点D 的直线绕点D 旋转,设旋转中的直线l 分别与直线AC 、直线CO 交于点M 、N ,当△CMN 为等腰三角形时,直接写出CM 的长.18.(2020·江苏初三期末)在平面直角坐标系xOy 中,抛物线2y x mx n =-++与x 轴交于点A ,B ( A 在B的左侧)(1)如图1,若抛物线的对称轴为直线3,4x AB =-= .①点A 的坐标为( , ),点B 的坐标为( , ); ②求抛物线的函数表达式;(2)如图2,将(1)中的抛物线向右平移若干个单位,再向下平移若干个单位,使平移后的抛物线经过点O ,且与x 正半轴交于点C ,记平移后的抛物线顶点为P ,若OCP ∆是等腰直角三角形,求点P 的坐标.。
2024年九年级中考数学专题复习训练等腰三角形存在性问题(8)
1、如图,在平面直角坐标系中,已知点D的坐标为(3,4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标.
2、如图,在矩形ABCD中,AB=6,BC=8,动点P以2个单位/秒的速度从点A出发,沿AC向点C 移动,同时动点Q以1个单位/秒的速度从点C出发,沿CB向点B移动当P点或Q点到达终点时停止运动,在P、Q两点移动过程中,当△PQC为等腰三角形时,求时间t的值.
3、如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P是x轴正半轴上的一动点,直线PQ 与直线AB垂直,交y轴于点Q,如果△APQ是等腰三角形,求点P的坐标。
5、如图,已知四边形ABCD是矩形,AB=16,BC=12,点E在射线BC上,点F在线段 BD上,且∠DEF=∠ADB.设BE=x,当△DEF为等腰三角形时,求x的值.
x的图象上运动(不与O重合), 7、如图所示,在平面直角坐标系中,已知A(0,2),动点P在y=√3
3
连接AP.过点P作PQ⊥AP,交x轴于点Q,连接AQ.
(1)求线段AP长度的取值范围.
(2)试问:点P运动的过程中,∠QAP是否为定值?如果是,求出该值;如果不是,请说明理由。
(3)当△OPQ为等腰三角形时,求点Q的坐标.。
专题复习探索等腰三角形存在性问题
1.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是( ) A .6 B .7 C .8 D .92.已知正方形ABCD ,试在该平面内找一点P ,使得△PAB 、△PBC 、△PCD 、△PDA 都是等腰三角形......这样的点P 共有几个位置?请画出图形. 3.已知正三角形AB C,试在该平面内找一点P ,使得△PAB 、△PBC 、△PCA 都是等腰三角形.这样的点P 共有几个位置?请画出图形.4.如图,点A 的坐标为(1,1)在坐标轴上....使△AOP 为等腰三角形,若存在,请分别写出它们的坐标.若不存在,请说明理由.5.已知如图,二次函数4523412-+-=x x y ,与x A 、B 两点(A 在B 的左侧),抛物线上是否存在点P 使以A 、B 、P 为顶点的三角形是等腰三角形?若存在,请写出P 点坐标,若不存在,请说明理由专题复习——探索等腰三角形存在性问题 ADCB ACB6.如图,在梯形ABCD 中,AD ∥BC ,AD =3,DC =5,AB =24,∠B =45°.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN ∥AB 时,求t 的值.(3)试探究:t 为何值时,△MNC 为等腰三角形.7.已知一次函数b x y +=21和二次函数2552++-=b ax ax y 交与A 、B 两点,A(-3,0),C (0,4).(1)求一次函数和二次函数的表达式,和点B 的坐标;(2)若点P 是直线x=1上一点,是否存在△PAB 是要三角形?若存在,求出P 点坐标;若不存在,请说明理由.CM8.阅读理解:我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点()()1122P x y Q x y ,、,的对称中心的坐标为1212.22x x y y ++⎛⎫⎪⎝⎭,观察应用:(1)如图,在平面直角坐标系中,若点()()120123P P -、,的对称中心是点A ,则点A 的坐标为_________;(2)另取两点()()1.62.110.B C --,、,有一电子青蛙从点1P 处开始依次关于点A B C 、、作循环对称跳动,即第一次跳到点1P 关于点A 的对称点2P 处,接着跳到点2P 关于点B 的对称点3P 处,第三次再跳到点3P 关于点C 的对称点4P 处,第四次再跳到点4P 关于点A 的对称点5P 处,…则点38P P 、的坐标分别为_________、_________.拓展延伸:(3)求出点2012P 的坐标,并直接写出在x 轴上与点2012P 、点C 构成等腰三角形的点的坐标.9.如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC,交CD于点F.AB=4,BC=6,∠B=60°.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB 交折线ADC于点N,连结PN,设EP=x.①当点N在线段AD上时(如图2),△P MN的形状是否发生改变?若不变,求出△P MN的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使△P MN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.A DE BFC图4(备用)A DEBFC图5(备用)A DE BFC图1 图2A DEBFCPNM图3A DEBFCPNM(第25题)。
2024年九年级数学中考专题:二次函数等腰三角形存在性问题+两圆一线课件+
做题技巧
1、做题工具: 圆规,直尺
2、做题方法: 两圆一线
3、做题思想: 数形结合,分 类讨论
谢谢
C
二、两圆一线画法
尺规作图
二、两圆一线画法(尺规作图)
1、探究实验:以线段AB为边做一个等腰三角形? 2、作图:如图,在平面直角坐标系找一点P,使得ΔABP为
等腰三角形,则满足要求的点P 有几个?
三、例题解析
二次函数等腰三角形存在性问题 -----两圆一线
三、例题解析
如图,抛物线与x轴交于A. B两点,与y轴交C点,点A的坐标 为(2,0),点C的坐标为(0,3)它的对称轴是直线x=−0.5 (1)求抛物线的解析式; (2)M是坐标轴上任意一点,当△MBC为等腰三角形时, 求M点的坐标。
中考专题: 二次函数等腰三角形存在性问题
-----两圆一线Leabharlann 目录CONTENTS
一、等腰三角形 二、两圆一线画法 三、例题解析 四、方法归纳
一、等腰三角形
一、等腰三角形
等腰三角形 定义:
有两条边相等的三角形为等腰三角 形,相等的两条边叫做腰
如图:ΔABC,AB=AC, 则ΔABC为等腰三角形
A
B
轴上找出点P,使△CDP为等腰三角形,请直接写出满足条件 的所有点P的坐标
2.如图所示,二次函数y=k(x-1)2+2的图像与一次函数y=kx-k+2 的图像交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交 于C、D两点,其中k<0.
(1)求A、B两点的横坐标;
(2)若△OAB是以OA为腰的等腰三角形,求k的值;
四、方法归纳
四、方法归纳
2、分类讨论
4、写结果
1、先作图
专题3 等腰三角形的存在性问题
专题3 等腰三角形的存在性问题(一)考点分析“两圆一线”模型已知线段AB ,在平面内找一点C ,使△ABC 为等腰三角形.(1) AB =AC 时,以A 为圆心,AB 为半径作圆,此圆上所有的点均满足条件; (2) BA =BC 时,以B 为圆心,AB 为半径作圆,此圆上所有的点均满足条件; (3) CA =CB 时,作AB 的垂直平分线,此直线上所有的点均满足条件.“两圆一中垂”上所有的点C 均满足△ABC 为等腰三角形,即满足“等腰”条件的点C 有无数个.因此,题目会对点C 再加上另外一个限定条件——例如还限定点C 在坐标轴上或抛物线上,这样,点C 的个数就只有几个.(二)典型例题例:已知点A (2,1),B (6,4),若在x 轴上取点C ,使△ABC 为等腰三角形,求满足条件的点C 的坐标. 解法1:“两圆一线”模型 由题可知:AB =5(1)如图,AB =AC 时,由勾股定理可得:DC 1=DC 2=2√6,则C 1(2−2√6,0),C 2(2+2√6,0) (2)如图, BA =BC 时,由勾股定理可得:EC 3=EC 4=3,则C 3(3,0),C 4(9,0)(3)如图,CA =CB 时,设FC 5=x ,则HC 5=4−x ,由AC 5=BC 5得:x 2+1=(4−x)2+42图(3)图(2)图(1)图(3)图(2)图(1)解得:x =318,则C 5(478,0) 综上所述:C 1(2−2√6,0),C 2(2+2√6,0),C 3(3,0),C 4(9,0),C 5(478,0)如果学生掌握了中点公式和两条垂直直线k 的关系,第(3)种情况CA =CB 也可以通过代数方法解决,具体过程如下:由A (2,1),B (6,4)可知:M (4,52),k AB =34,则k MC 5=−43 ∴直线MC 5的解析式为y =−43x +476,则C 5(478,0)解法2:两点间距离公式——暴力解法设点C (x ,0),则AB 2=(2−6)2+(1−4)2=25,AC 2=(2−x)2+(1−0)2=x 2−4x +5,BC 2=(6−x)2+(4−0)2=x 2−12x +52(1) AB =AC 时,25=x 2−4x +5解得:x 1=2−2√6,x 2=2+2√6,则C 1(2−2√6,0),C 2(2+2√6,0) (2) BA =BC 时,25=x 2−12x +52 解得:x 1=3,x 2=9,则C 3(3,0),C 4(9,0) (3) CA =CB 时,x 2−4x +5=x 2−12x +52 解得:x =478,则C 5(478,0) 综上所述:C 1(2−2√6,0),C 2(2+2√6,0),C 3(3,0),C 4(9,0),C 5(478,0)小结:利用两点间距离公式解题的基本思路是:列点、列线、列式.① 列点:列出构建所求等腰三角形的三个点,定点找到后,动点用参数表示其坐标; ② 列线:列出构建所求等腰三角形的三条边,并用两点间距离公式表示其长度; ③ 列式:采用分类讨论思想,列出三组方程并求解.(三)巩固强化1. 如图,抛物线y =ax 2+bx +c 的图象与x 轴交于A(−1,0),B(3,0)两点,与y 轴交于点C(0,−3),顶点为D .(1)求此抛物线的解析式;(2)求此抛物线顶点D 的坐标和对称轴;(3)探究对称轴上是否存在一点P ,使得以点P 、D 、A 为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P 点的坐标,若不存在,请说明理由.2. 如图,抛物线y =ax 2+bx +c(a ≠0)与直线y =x +1相交于A(−1,0),B(4,m)两点,且抛物线经过点C(5,0). (1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A 、B 重合),过点P 作直线PD ⊥x 轴,交直线AB 于点E .是否存在点P 使△BEC 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.。
中考数学专题复习 专题02 等腰三角形的存在性问题(解析版)
玩转压轴题,争取满分之备战2020年中考数学解答题高端精品专题二等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。
【解题攻略】在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.【解题类型及其思路】解题类型:动态类型:1.一动点类型问题;2.双动点或多动点类型问题背景类型:1.几何图形背景;2.平面直角坐标系和几何图形背景解题思路:几何法一般分三步:分类、画图、计算;代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.【典例指引】类型一 【二次函数综合题中根据条件判定三角形的形状】典例指引1.抛物线2y x bx c =++与x 轴交于点A ,点B (1,0),与y 轴交于点C (0,﹣3),点M 是其顶点. (1)求抛物线解析式;(2)第一象限抛物线上有一点D,满足∠DAB=45°,求点D 的坐标;(3)直线x t = (﹣3<t <﹣1)与x 轴相交于点H .与线段AC ,AM 和抛物线分别相交于点E ,F ,P .证明线段HE ,EF ,FP 总能组成等腰三角形.【解析】试题分析:(1)把B 、C 的坐标代入,解方程组即可得到结论;(2)令y =0,求出A 、B 的坐标,设直线AD 交y 轴于点N ,求出求直线AN 的解析式, 与抛物线联立成方程组,解方程组,即可得到D 的坐标;(3)求出直线AM 、AC 的解析式,当x =t 时,表示出HE ,HF ,HP ,得到HE =EF =HF ﹣HE =t +3,FP =243t t ---,由HE +EF ﹣FP =23t +()>0, 得到HE +EF >FP ,再由HE +FP >EF ,EF +FP >HE ,得到当﹣3<t <﹣1时,线段HE ,EF ,FP 总能组成等腰三角形.试题解析:解:(1)∵抛物线经过点B 、C ,∴ 10{3b c c ++==-,解得: 2{ 3b c ==-,∴抛物线的解析式为:223y x x =+-;(2)令y =0,得: 2230x x +-=,解得: 11x =, 23x =- ,∴A (﹣3,0),B (1,0), 设直线AD 交y 轴于点N ,∵∠DAB =45°,∴△NAO 是等腰直角三角形,N (0,3), 可求直线AN 的解析式为y =x +3,联立223{ 3y x x y x =+-=+,解得: 3{ 0x y =-=或2{ 5x y ==,∴D 的坐标为(2,5); (3)M (﹣1,﹣4),可求直线AM 的解析式为:y =﹣2x ﹣6,直线AC 的解析式为y =﹣x ﹣3,∵当x =t 时,HE =﹣(﹣t ﹣3)=t +3,HF =﹣(﹣2t ﹣6)=2t +6,HP =﹣(223t t +-)∴HE =EF =HF ﹣HE =t +3,FP =243t t ---, ∵HE +EF ﹣FP =2223433t t t t ++++=+()()>0,∴HE +EF >FP ,又HE +FP >EF ,EF +FP >HE ,∴当﹣3<t <﹣1时,线段HE ,EF ,FP 总能组成等腰三角形.【名师点睛】本题是二次函数的综合题,难度较大.解答第(2)问的关键是:利用∠DAB=45°,找出直线AN与y轴交点的坐标;解答第(3)问的关键是:用含t的代数式表示出HE,HF,HP,EF的长.【举一反三】(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.【答案】(1)y=-x2-2x+3;(2)存在,P(-110)或P(-1,10)或P(-1,6)或P(-1,53);(3)当a=-32时,S四边形BOCE最大,且最大值为638,此时,点E坐标为(-32,154).【解析】【分析】(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M的坐标得出,CQ=3-x,因此可根据勾股定理求出x 的值,P 点的横坐标与M 的横坐标相同,纵坐标为x ,由此可得出P 的坐标. ②当CM=MP 时,根据CM 的长即可求出P 的纵坐标,也就得出了P 的坐标(要注意分上下两点). ③当CM=CP 时,因为C 的坐标为(0,3),那么直线y=3必垂直平分PM ,因此P 的纵坐标是6,由此可得出P 的坐标;(3)由于四边形BOCE 不是规则的四边形,因此可将四边形BOCE 分割成规则的图形进行计算,过E 作EF ⊥x 轴于F ,S 四边形BOCE =S △BFE +S 梯形FOCE .直角梯形FOCE 中,FO 为E 的横坐标的绝对值,EF 为E 的纵坐标,已知C 的纵坐标,就知道了OC 的长.在△BFE 中,BF=BO-OF ,因此可用E 的横坐标表示出BF 的长.如果根据抛物线设出E 的坐标,然后代入上面的线段中,即可得出关于四边形BOCE 的面积与E 的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE 的最大值及对应的E 的横坐标的值.即可求出此时E 的坐标. 【详解】(1)∵抛物线y=ax 2+bx+3(a≠0)与x 轴交于点A(1,0)和点B(−3,0),∴309330a b a b ++=⎧⎨-+=⎩解得:12a b =-⎧⎨=-⎩. ∴所求抛物线解析式为:y=−x 2−2x+3; (2)∵抛物线解析式为:y=−x 2−2x+3, ∴其对称轴为212x -==-, ∴设P 点坐标为(−1,a ),当x=0时,y=3, ∴C(0,3),M(−1,0)∴当CP=PM 时,(−1)2+(3−a)2=a 2,解得a=53, ∴P 点坐标为:151,3P ⎛⎫- ⎪⎝⎭;∴当CM=PM 时,(−1)2+32=a 2,解得a =,∴P 点坐标为:2(P -或3(1,P -; ∴当CM=CP 时,由勾股定理得:(−1)2+32=(−1)2+(3−a)2,解得a=6, ∴P 点坐标为:P 4 (−1,6).综上所述存在符合条件的点P,其坐标为(1,10)P -或 (1,10)P -- 或P(−1,6)或51,3P ⎛⎫- ⎪⎝⎭; (3)过点E 作EF ⊥x 轴于点F,设E(a,−a 2−2a+3)(−3<a<0)∴EF=−a 2−2a+3,BF=a+3,OF=−a ∴11()22BOCE S BF EF OC EF OF 四边形=⋅++g ()()2211(3)2326()22a a a a a a =+⋅--++--+⋅- 2399222a a =--+23363228a ⎛⎫=-++ ⎪⎝⎭∴当a=32-时,S 四边形BOCE 最大,且最大值为638. 此时,点E 坐标为315,24⎛⎫-⎪⎝⎭. 类型二 【利用二次函数的性质与等腰三角形的性质确定点的坐标】典例指引2.(2019·山东初三期末)如图1,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(l )求抛物线的表达式;(2)如图l ,若点E 为第二象限抛物线上一动点,连接,BE CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标;(3)如图2,在x 轴上是否存在一点D 使得ACD ∆为等腰三角形?若存在,请求出所有符合条件的点D 的坐标;若不存在,请说明理由.【答案】(1)223y x x =--+;(2)BOCE S 四边形最大值为638,点E 坐标为315(,)24-;(3)存在符合条件的点D ,其坐标为1(1,0)D -或2(101,0)D -,或3(101,0)D 或4(4,0)D - 【解析】 【分析】(1)将点A 、B 的坐标代入解析式即可得到答案;(2)设2(,23)(30)E a a a a --+-<<,过点E 作EF x ⊥轴于点F ,利用11()22BOCE S BF EF OC EF OF =•++•四边形求出解析式即得到面积的最大值及点E 的坐标; (3)存在,分以点C 、A 为顶点及线段AC 为底边三种情况,分别求出点D 的坐标即可. 【详解】 解:(1)由题知:309330a b a b ++=⎧⎨-+=⎩,解得:12a b =-⎧⎨=-⎩∴所求抛物线表达式为223y x x =--+ (2)过点E 作EF x ⊥轴于点F 设2(,23)(30)E a a a a --+-<<∴223EF a a =--+,3BF a =+,OF a =-,∴11()22BOCE S BF EF OC EF OF =•++•四边形 2211(3)(23)(233)()22a a a a a a =+--++--++•- 2399222a a =--+23363()228a =-++∴当32a =-时,BOCE S 四边形最大,且最大值为638.当32a =-时,2915233344a a --+=-++=此时,点E 坐标为315(,)24-(3)连接AC①当点C 为顶点,CA CB =时,此时CO 为底边的垂直平分线, 满足条件的点1D ,与点A 关于y 轴对称, ∴点1D 坐标为(1,0)-②当点A 为顶点,AB AC =时,在Rt ACO ∆中, ∵1OA =,3OC =,由勾股定理得:10AC =以点A 为圆心,AC 的长为半径作弧,交x 轴于两点23D D ,,即为满足条件的点, 此时它们的坐标分别为2(101,0)D -,3(101,0)D +③当AC 为底边时,线段AC 的垂直平分线与x 轴的交点4D ,即为满足条件的点, 设垂直AC 的垂直平分线交y 轴于点P ,过AC 中点Q , ∵=90AOC BOC PQC ∠∠=∠=o ,BPO CPQ ∠=∠ ∴4ACO OD P ∠=∠ ∴4CPQ CAO D PO ∆∆∆::∴4OD CQ CP OA CO AC ==,106PQ =,5=3CP 4OD OP CQ PQ =,45331010-=,44OD =, 点4D 的坐标为(4,0)-综上所述存在符合条件的点D ,其坐标为1(1,0)D -或2(101,0)D -+,或3(101,0)D +或4(4,0)D - 【名师点睛】此题是二次函数的综合题,考查待定系数法,最值问题的确定需将所求问题列出解析式并配方为顶点式,即可得到答案;(3)是图形中存在等腰三角形问题,此类问题需分三种情况进行讨论,依次求出点的坐标. 【举一反三】(2019·广东省中山市中山纪念中学三鑫双语学校初三期中)如图,已知抛物线y =ax 2+bx +c 的图象与x 轴交于A (2,0),B (﹣8,0)两点,与y 轴交于点C (0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.【答案】(1)y=12x2+3x﹣8;(2)点F的坐标是F(﹣4,﹣12);(3)点Q有坐标为(0,)或(0,﹣)或(0,﹣4)或(0,0).【解析】【分析】(1)将A,B,C的坐标代入函数y=ax2+bx+c即可;(2)如图1中,作FN∥y轴交BC于N,求出直线BC的解析式,设F(m,12m2+3m﹣8),则N(m,﹣m﹣8),再用含m的代数式表示出△BCF的面积,用函数的思想即可推出结论;(3)此问要分BQ=BF,QB=QF,FB=FQ三种情况进行讨论,分别用勾股定理可求出m的值,进一步写出点Q的坐标.【详解】(1)将A(2,0),B(﹣8,0)C(0,﹣8)代入函数y=ax2+bx+c,得,4a+2b+c=0 64a-8b+c=0 0a+0b+c=-8⎧⎪⎨⎪⎩解得,1a=2b=3c=8⎧⎪⎪⎨⎪⎪⎩﹣,∴抛物线解析式为y=12x2+3x﹣8;(2)如图1中,作FN∥y轴交BC于N,将B(﹣8,0)代入y=kx﹣8,得,k=﹣1,∴y BC=﹣x﹣8,设F(m,12m2+3m﹣8),则N(m,﹣m﹣8),∴S△FBC=S△FNB+S△FNC=12FN×8=4FN=4[(﹣m﹣8)﹣(12m2+3m﹣8)]=﹣2m2﹣16m=﹣2(m+4)2+32,∴当m=﹣4时,△FBC的面积有最大值,此时F(﹣4,﹣12),∴点F的坐标是F(﹣4,﹣12);(3)存在点Q(0,m),使得△BFQ为等腰三角形,理由如下:①如图2﹣1,当BQ=BF时,由题意可列,82+m2=(8﹣4)2+122,﹣解得,m1=46,m2=46∴Q1(0,46),Q2(0,46﹣);②如图2﹣2,当QB=QF时,由题意可列,82+m2=(m+12)2+42,解题,m=﹣4,∴Q3(0,﹣4);③如图2﹣3,当FB=FQ时,由题意可列,(8﹣4)2+122=(m+12)2+42,解得,m1=0,m2=﹣24,∴Q4(0,0),Q5(0,﹣24);设直线BF的解析式为y=kx+b,将B(﹣8,0),F(﹣4,﹣12)代入,得8k b=04k b=12⎧⎨⎩﹣+﹣+﹣,解得,k=﹣3,b=﹣24,∴y BF=﹣3x﹣24,当x=0时,y=﹣24,∴点B,F,Q重合,故Q5舍去,∴点Q有坐标为(0,46)或(0,﹣46)或(0,﹣4)或(0,0).类型三【确定满足等腰三角形的动点的运动时间】典例指引3.(2018济南中考)如图1,抛物线平移后过点A (8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:①为何值时为等腰三角形;②为何值时线段PN的长度最小,最小长度是多少.【答案】(1)平移后抛物线的解析式,= 12;(2)①,②当=3时,PN取最小值为.【解析】【分析】(1)设平移后抛物线的解析式y=x2+bx,将点A(8,0)代入,根据待定系数法即可求得平移后抛物线的解析式,再根据割补法由三角形面积公式即可求解;(2)作NQ垂直于x轴于点Q,①分当MN=AN时,当AM=AN时,当MN=MA时,三种情况讨论可得△MAN为等腰三角形时t的值;②由MN所在直线方程为y=,与直线AB的解析式y=﹣x+6联立,得x N的最小值为6,此时t=3,PN 取最小值为.【详解】(1)设平移后抛物线的解析式,将点A(8,,0)代入,得=,所以顶点B(4,3),所以S阴影=OC•CB=12;(2)设直线AB解析式为y=mx+n,将A(8,0)、B(4,3)分别代入得,解得:,所以直线AB的解析式为,作NQ垂直于x轴于点Q,①当MN=AN时, N点的横坐标为,纵坐标为,由三角形NQM和三角形MOP相似可知,得,解得(舍去).当AM=AN时,AN=,由三角形ANQ和三角形APO相似可知,,MQ=,由三角形NQM和三角形MOP相似可知得:,解得:t=12(舍去);当MN=MA时,故是钝角,显然不成立,故;②由MN所在直线方程为y=,与直线AB的解析式y=﹣x+6联立,得点N的横坐标为X N=,即t2﹣x N t+36﹣x N=0,由判别式△=x2N﹣4(36﹣)≥0,得x N≥6或x N≤﹣14,又因为0<x N<8,所以x N的最小值为6,此时t=3,当t=3时,N的坐标为(6,),此时PN取最小值为.【名师点睛】本题着重考查了二次函数的性质、图形平移变换、等腰三角形的判定等知识点,综合性强,考查学生分类讨论,数学结合的数学思想方法.【举一反三】如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点D从C出发,沿线段CO以1个单位/秒的速度向终点O运动,过点D作OC的垂线交BC于点E,作EF∥OC,交抛物线于点F.(1)求此抛物线的解析式;(2)小明在探究点D运动时发现,①当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.【答案】(1)y=﹣x2+2x+3(2)点D为OC的中点时,线段EF最长(3)当t=2或或3时,△CDF为等腰三角形【解析】【分析】(1)由于已知抛物线与x轴交点坐标,则设交点式y=a(x+1)(x-3),然后把C点坐标代入求出a即可得到抛物线解析式;(2)先利用待定系数法求出直线BC的解析式,再设E(t,-t+3),接着表示出D(0,-t+3),F(t,-t2+2t+3),然后用t表示出EF的长,再利用二次函数的性质确定EF最大时的t的值,从而判断点D是否为OC的中点;(3)先由C(0,3),D(0,-t+3),F(t,-t2+2t+3)和利用两点间的距离公式表示出CD2,CF2,DF2,然后分类讨论:当CD=CF或FC=FD或DC=DF时得到关于t的方程,接着分别解关于t的方程即可.【详解】(1)设抛物线的解析式为y=a(x+1)(x﹣3),把C(0,3)代入得a•1•(﹣3)=3,解得a=﹣1,所以抛物线解析式为y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3;(2)他猜想正确.理由如下:设直线BC的解析式为y=mx+n,把C(0,3),B(3,0)代入得,解得,则直线BC的解析式为y=﹣x+3,设E(t,﹣t+3),则D(0,﹣t+3),F(t,﹣t2+2t+3),所以EF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣)2+,当t=时,EF最大,最大值为,此时D点坐标为(0,),所以点D为OC的中点时,线段EF最长;(3)∵C(0,3),D(0,﹣t+3),F(t,﹣t2+2t+3),∴CD2=(﹣t+3﹣3)2=t2, CF2=t2+(﹣t2+2t+3﹣3)2=t2+(﹣t2+2t)2, DF2=t2+(﹣t2+2t+3+t﹣3)2=t2+(﹣t2+3t)2,当CD=CF时,即t2=t2+(﹣t2+2t)2,解得t1=0,t2=2;当FC=FD,即t2+(﹣t2+2t)2=t2+(﹣t2+3t)2,解得t1=0,t2=;当DC=DF时,即t2=t2+(﹣t2+3t)2,解得t1=0,t2=3;综上所述,当t=2或或3时,△CDF为等腰三角形.【新题训练】1.(2020·江西初三)如图,在平面直角坐标系中,已知点A(﹣2,﹣4),直线x=﹣2与x轴相交于点B,连接OA,抛物线y=﹣x2从点O沿OA方向平移,与直线x=﹣2交于点P,顶点M到点A时停止移动.(1)线段OA所在直线的函数解析式是;(2)设平移后抛物线的顶点M的横坐标为m,问:当m为何值时,线段PA最长?并求出此时PA的长.(3)若平移后抛物线交y轴于点Q,是否存在点Q使得△OMQ为等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【答案】(1)y=2x;(2)当m=1时,PA的值最大,PA的最大值为1;(3)存在,(0,5﹣5或(0,﹣8)【详解】解:(1)设直线OA的解析式为y=kx,把(﹣2,﹣4)代入得﹣2k=﹣4,解得k=2,所以直线OA的解析式为y=2x;故答案为y=2x;(2)设M点的坐标为(m,2m),(﹣2≤m<0),∴平移后抛物线解析式为y=﹣(x﹣m)2+2m,当x=﹣2时,y=﹣(2﹣m)2+2m=﹣m2﹣2m﹣4,∴P点的坐标为(﹣2,﹣m2﹣2m﹣4),∴PA=﹣m2﹣2m﹣4﹣(﹣4)=﹣m2﹣2m=﹣(m﹣1)2+1∴当m=1时,PA的值最大,PA的最大值为1;(3)存在,理由如下:当x=0时,y=﹣(0﹣m)2+2m=﹣m2+2m,则Q(0,﹣m2+2m),∵OQ=m2﹣2m,OM=,当OM=OQ2﹣2m,即m2﹣(2m=0,解得m1=0(舍去),m2=2Q点坐标为(0,5﹣;当OM=MQ,作MH⊥OQ于H,如图1,则OH=QH,﹣2m=m2﹣2m﹣(﹣2m),即m2+2m=0,解得m1=0(舍去),m2=﹣2,此时Q点坐标为(0,﹣8);当QM=QO,作QF⊥OM于F,如图2,则OF=MF=,∵OQ∥AB,∴∠QOF=∠BAO,∴Rt△OFQ∽Rt△ABO,∴OF OQAB OA=,即224=4m2﹣3m=0,解得m1=0(舍去),m2=34(舍去),综上所述,满足条件的Q点坐标为(0,5﹣0,﹣8).2.(2018·山东中考真题)如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,()1,11-±,()1,219--±.【详解】(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6),∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+,∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH=12×4×DF=2×(2384m m --+) =23250233m -++(),∴当m =23-时,△ADE 的面积取得最大值为503.(3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求P A =29n +,PE =212n ++(),AE =16425+=,分三种情况讨论: 当P A =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当P A =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±). 综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±).3.(2016·广西中考真题)在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B的左侧),与y 轴交于点C ,顶点为D . (1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.【答案】(1)A (﹣3,0),C (0,3),D (﹣1,4);(2)E (37-,0);(3)P (2,﹣5)或(1,0). 【详解】(1)当223y x x =--+中y=0时,有2230x x --+=,解得:1x =﹣3,2x =1,∵A 在B 的左侧,∴A(﹣3,0),B (1,0).当223y x x =--+中x=0时,则y=3,∴C (0,3). ∵223y x x =--+=2(1)4x -++,∴顶点D (﹣1,4).(2)作点C 关于x 轴对称的点C′,连接C′D 交x 轴于点E ,此时△CDE 的周长最小,如图1所示. ∵C (0,3),∴C′(0,﹣3).设直线C′D 的解析式为y=kx+b ,则有:3{4b k b =--+=,解得:7{3k b =-=-,∴直线C′D 的解析式为y=﹣7x ﹣3,当y=﹣7x ﹣3中y=0时,x=37-,∴当△CDE 的周长最小,点E 的坐标为(37-,0). (3)设直线AC 的解析式为y=ax+c ,则有:3{30c a c =-+=,解得:1{3a c ==,∴直线AC 的解析式为y=x+3.假设存在,设点F (m ,m+3),△AFP 为等腰直角三角形分三种情况(如图2所示):①当∠PAF=90°时,P (m ,﹣m ﹣3),∵点P 在抛物线223y x x =--+上,∴2323m m m --=--+,解得:m 1=﹣3(舍去),m 2=2,此时点P 的坐标为(2,﹣5); ②当∠AFP=90°时,P (2m+3,0)∵点P 在抛物线223y x x =--+上,∴20(23)2(23)3m m =-+-++,解得:m 3=﹣3(舍去),m 4=﹣1,此时点P 的坐标为(1,0);③当∠APF=90°时,P (m ,0),∵点P 在抛物线223y x x =--+上,∴2023m m =--+,解得:m 5=﹣3(舍去),m 6=1,此时点P 的坐标为(1,0).综上可知:在抛物线上存在点P ,使得△AFP 为等腰直角三角形,点P 的坐标为(2,﹣5)或(1,0).4.(2019·广东广州市第二中学初三)如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=12-x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=12-x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE 13个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值,如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,求出此时t的值.【答案】(1)y=1 2 -x2+2x+3,F(6,-3) (2)①有,t=3;②1425t=,45,1,165【详解】(1)∵矩形ABCO,B点坐标为(4,3)∴C点坐标为(0,3)∵抛物线y=12-x2+bx+c经过矩形ABCO的顶点B、C∴3{843cb c=-++=∴3{2cb==∴y=12-x2+2x+3设直线AD的解析式为11y k x b=+∵A(4,0)、D(2,3) ∴111140{23k bk b+=+=∴113{26kb=-=∴362y x=-+2362{1232y xy x x=-+=-++∵F点在第四象限,∴F(6,-3)(2)∵E(0,6) ∴CE=CO连接CF交x轴于H′,过H′作x轴的垂线交BC于P′,当P运动到P′,当H运动到H′时,EP+PH+HF的值最小.设直线CF的解析式为22y k x b=+∵C(0,3)、F(6,-3) ∴2223{63bk b=+=-∴221{3kb=-=∴3y x=-+当y=0时,x=3,∴H′(3,0) ∴CP=3 ∴t=3 如图1,过M作MN⊥OA交OA于N∵△AMN∽△AEO,∴AM AN MN AE AO EO==13246213t AN MN==∴AN=t,MN=32tI.如图1,当PM=H M时,M在PH的垂直平分线上,∴MN=12PH ∴MN=3322t=∴t=1II.如图2,当PH=HM时,MH=3,MN=32t,HN=OA-AN-OH=4-2t 在Rt△HMN中,222MN HN MH+=,2223()(42)32t t+-=,22564280t t-+=12t=(舍去),21425t=III.如图3.如图4,当PH=PM时,PM=3,MT=21425t=,PT=BC-CP-BT=42t-在Rt△PMT中,222MT PT PM+=,2223(3)(42)32t t-+-=,25t2-100t+64=01165t=,245t=∴1165t=,45,1,1655.(2019·湖南中考模拟)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y 轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标;(3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2)或(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3; (2)令y=0,则x 2﹣4x+3=0, 解得:x=1或x=3, ∴B (3,0), ∴2点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1, ①当CP=CB 时,2,∴2或OP=PC ﹣2﹣3 ∴P 1(0,2),P 2(0,3﹣2); ②当PB=PC 时,OP=OB=3, ∴P 3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=12×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.6.(2018·山东中考模拟)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【答案】(1)抛物线的解析式为:y=﹣x2+x+2;(2)存在,P1(,4),P2(,),P3(,﹣);(3)当点E运动到(2,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【详解】(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP2=CP3=CD.作CH⊥x轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣a+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤x≤4).=﹣(a﹣2)2+∴a=2时,S四边形CDBF的面积最大=,∴E(2,1).7.(2019·山东中考模拟)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C (﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b , 将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩,则直线AB 解析式为y=﹣x+6, 设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t=﹣32(t ﹣3)2+272,∴当t=3时,△PAB 的面积有最大值;(3)△PDE 为等腰直角三角形, 则PE=PD , 点P (m ,-12m 2+2m+6), 函数的对称轴为:x=2,则点E 的横坐标为:4-m , 则PE=|2m-4|, 即-12m 2+2m+6+m-6=|2m-4|, 解得:m=4或-2或5+17或5-17(舍去-2和5+17) 故点P 的坐标为:(4,6)或(5-17,317-5).8.(2018·广东中考模拟)如图,在平面直角坐标系xOy 中,二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标. 【答案】(1)213442y x x =--;(2)E 的坐标为(825-5-、(0,﹣4)、(112,54-);(3)28924,(173,16136-). 【详解】(1)∵二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、C (8,0)两点,∴4240{64840a b a b --=+-=,解得:14{32a b ==-,∴该二次函数的解析式为213442y x x =--;(2)由二次函数213442y x x =--可知对称轴x=3,∴D (3,0),∵C (8,0),∴CD=5,由二次函数213442y x x =--可知B (0,﹣4),设直线BC 的解析式为y kx b =+,∴80{4k b b +==-,解得:1{24k b ==-,∴直线BC 的解析式为142y x =-,设E (m ,142m -), 当DC=CE 时,22221(8)(4)2ED m m CD =-+-=,即2221(8)(4)52m m -+-=,解得1825m =-,2825m =+(舍去),∴E (825-,5-); 当DC=DE 时,22221(3)(4)2ED m m CD =-+-=,即2221(3)(4)52m m -+-=,解得30m =,48m =(舍去),∴E (0,﹣4);当EC=DE 时,222211(8)(4)(3)(4)22m m m m -+-=-+-,解得5m =112,∴E (112,54-). 综上,存在点E ,使得△CDE 为等腰三角形,所有符合条件的点E 的坐标为(825-,5-)、(0,﹣4)、(112,54-); (3)过点P 作y 轴的平行线交x 轴于点F ,∵P 点的横坐标为m ,∴P 点的纵坐标为:,∵△PBD 的面积BOD PFD S S S S ∆∆=--梯形=221131131[4(4)](3)[(4)]342422422m m m m m m ---------⨯⨯=231784m m -+ =2317289()8324m --+,∴当m=173时,△PBD 的最大面积为28924,∴点P 的坐标为(173,16136-).9.(2019·四川中考模拟)如图,已知二次函数y =﹣x 2+bx+c (c >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OB =OC =3,顶点为M .(1)求二次函数的解析式;(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.【答案】(1)二次函数的解析式为y=﹣x2+2x+3;(2)S=﹣m2+92m+32(1≤m<3);(3)线段BM上存在点N(75,165),(2,2),(1+105,4﹣2105)使△NMC为等腰三角形.【详解】解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴0933b cc=-++⎧⎨=⎩,解得23 bc=⎧⎨=⎩,∴二次函数的解析式为y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,M(1,4)设直线MB的解析式为y=kx+n,则有403k nk n=+⎧⎨=+⎩,解得26 kn=-⎧⎨=⎩,∴直线MB的解析式为y=﹣2x+6,∵PQ ⊥x 轴,OQ=m ,∴点P 的坐标为(m ,﹣2m +6)S 四边形ACPQ =S △AOC +S 梯形PQOC =12AO•CO +12(PQ+CO )•OQ (1≤m <3) =12×1×3+12(﹣2m +6+3)•m =﹣m 2+92m +32;(3)线段BM 上存在点N (75,165),(2,2),(,4)使△NMC 为等腰三角形,CM ,CN MN①当CM=NC =解得x 1=75,x 2=1(舍去)此时N (75,165),②当CM=MN =,解得x 1x 2舍去),此时N (1+5,4﹣5).③当CN=MN 时,=解得x =2,此时N (2,2).10.(2019·甘肃中考模拟)如图,已知二次函数y=ax 2+bx+c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.【答案】(1)二次函数的表达式y=x 2﹣2x ﹣3;(2)①PM 最大=94;②P (2,﹣3)或(2,2﹣2).【详解】(1)将A ,B ,C 代入函数解析式,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x 2﹣2x ﹣3; (2)设BC 的解析式为y=kx+b , 将B ,C 的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, BC 的解析式为y=x ﹣3,设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3),PM=(n ﹣3)﹣(n 2﹣2n ﹣3)=﹣n 2+3n=﹣(n ﹣32)2+94,当n=32时,PM 最大=94;②当PM=PC 时,(﹣n 2+3n )2=n 2+(n 2﹣2n ﹣3+3)2, 解得n 1=0(不符合题意,舍),n 2=2, n 2﹣2n ﹣3=-3, P (2,-3);当PM=MC 时,(﹣n 2+3n )2=n 2+(n ﹣3+3)2,解得n 1=0(不符合题意,舍),n 22(不符合题意,舍),n 32, n 2﹣2n ﹣3=2-42,P (3-2,2-42);综上所述:P (2,﹣3)或(3-2,2﹣42).11.(2019·安徽中考模拟)如图,已知直线1y x =+与抛物线2y ax 2x c =++相交于点()1,0A -和点()2,B m 两点.(1)求抛物线的函数表达式;(2)若点P 是位于直线AB 上方抛物线上的一动点,当PAB ∆的面积S 最大时,求此时PAB ∆的面积S 及点P 的坐标;(3)在x 轴上是否存在点Q ,使QAB ∆是等腰三角形?若存在,直接写出Q 点的坐标(不用说理);若不存在,请说明理由.【答案】(1)所求抛物线的函数表达式为2y x 2x 3=-++;(2)PAB ∆的面积S 有最大值是278,此时点P 坐标为115(,)24;(3)存在点Q 坐标为(321,0)--或(321,0)或(5,0)或(2,0). 【详解】解(1)Q 点()2,B m 在直线1y x =+上,213m ∴=+=,∴点B 坐标为()2,3,Q 点()1,0A -和点()2,3B 在抛物线22y ax x c =++上,20443a c a c -+=⎧∴⎨++=⎩,解得13a c =-⎧⎨=⎩,∴所求抛物线的函数表达式为223y x x =-++;(2)过点P 作PM x ⊥轴于点M ,交AB 于点N , 设点P 的横坐标为m ,则点P 的坐标为()2,23m m m -++,点N 的坐标为(,1m m +), Q 点P 是位于直线AB 上方,PN PM MN ∴=-= 223(1m m m -++-+)2=2m m -++. PAB ∴∆的面积PAN PBN S S S ∆=+∆()()21212m m m =⨯-+++ ()()()()()222113222122222m m m m m m m m m +⨯-++-=-++++-=-++ 23127228m ⎛⎫=--+⎪⎝⎭,302-Q < ∴抛物线开口向下,又12m <<-, ∴当12m =时, PAB ∆的面积S 有最大值,最大值是278. 此时点P 坐标为115,24⎛⎫⎪⎝⎭;(3)存在点Q 坐标为()321,0-或()321,0或()5,0或()2,0.12.(2018·江苏中考模拟)(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 3,0),抛物线的对称轴为x 3;(2)点P 303,﹣4);(3)32. 【详解】(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:22390ax ax a --=,∵a ≠0,∴22390x x --=,解得:x =3或x =33A 的坐30),B (330),∴抛物线的对称轴为x 3. (2)∵OA 3OC =3,∴tan ∠CAO 3,∴∠CAO =60°.∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO 3=1,∴点D 的坐标为(0,1). 设点P 3a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2. 当AD =P A 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 30). 当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P 34). 综上所述,点P 3034).。
专题20 等腰三角形存在性问题巩固练习(基础)-冲刺2021年中考几何专项复习(解析版)
等腰三角形存在性问题巩固练习1.如图,在矩形ABCD中,AB=12cm,BC=21cm,点P从点B出发沿BC以2cm/s的速度移动到点C;同时,点Q从点A出发沿AD以1cm/s的速度移动到点D;当点P运动到点C时点Q也随之停止运动,设点P的运动时间为ts是否存在点P,使△DPQ是等腰三角形?如果存在,求出所有符合条件的t的值;如果不存在,请说明理由.【分析】先表示出PQ,PD,DQ,再分三种情况讨论计算即可.【解答】解:如图,过点Q作QE⊥⊥BC,由题意得,AQ=t,PE=BP﹣BE=BP﹣AQ=2t﹣t=t,)∴DQ=21﹣t,PC=21﹣2t,QE=12,(0<t≤212在R t△PQE中,PQ2=122+t2,在R t△PCD中,PD2=(21﹣2t)2+122,∵△DPQ是等腰三角形,①当PQ=PD时,即:122+t2=(21﹣2t)2+122,∴t=7或t=21(舍);②当PQ=DQ时,即:122+t2=21﹣t,此方程无解,③当PD=DQ时,(21﹣2t)2+122=21﹣t,∴此方程无解.即:t=7时,△DPQ是等腰三角形.【点评】此题是矩形的性质,主要考查了勾股定理,矩形的性质,等腰三角形的性质,解本题的关键是表示出PD,DQ,PQ.2.如图,已知抛物线y=ax2+bx+c与x轴交于A(m,0),B(n,0),点A位于点B的右侧,且m,n是一元二次方程x2+2x﹣3=0的两个根,与y轴交于C(0,3).在抛物线上的对称轴上是否存在点P,使得△PAC 为等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】解方程求得A 和B 的坐标,求得对称轴,当A 是直角顶点时,求得过A 于AC 垂直的直线与抛物线的对称轴的交点,然后判断是否是等腰三角形;同理当C 是直角顶点时利用相同的方法判断;当AC 是等腰三角形的底边时,求得AC 的中垂线与对称轴的交点,然后判断是否是直角三角形即可.【解答】解:解方程x 2+2x ﹣3=0得x 1=﹣3,x 2=1,则A 的坐标是(1,0),B 的坐标是(﹣3,0).抛物线的对称轴是x =﹣1.设AC 的解析式是y =kx +b ,则{k +b =0b =3, 解得:{k =−3b =3, 则直线AC 的解析式是y =﹣3x +3.当A 是直角顶点时,过A 且垂直于AC 的直线解析式设是y =13x +c , 把A 代入得:13+c =0,解得:c =−13,则解析式是y =13x −13. 令x =﹣1,则y =−13−13=−23,则交点是(﹣1,−23).到A 的距离是√(−1−1)2+(−23)2=2√103,AC =√32+12=√10, 则三角形不是等腰三角形;同理,当C 时直角时,过C 于AC 垂直的直线的解析式是y =13x +3,与对称轴x =﹣1的交点是(﹣1,83).到C 的距离是√(−1−1)2+(83)2=103≠AC ,则不是等腰直角三角形;当P 是直角,即AC 是斜边时,AC 的中点是(12,32),过这点且与AC 垂直的直线的解析式是y =13x +86.当x =﹣1时,y =−13+86=1.则与对称轴的交点是(﹣1,1).则到A 的距离是√(−1−1)2+12=√5.∵(√5)2+(√5)2=(√10)2,∴P 的坐标是(﹣1,1).【点评】本题考查了二次函数与x 轴的交点以及等腰直角三角形的判定,正确进行讨论是关键.3.如图,直线l 1与直线l 2:y =34x 相交于点A (2a +1,3),且与y 轴交于点B (0,6). (1)求a 的值;(2)求直线l 1的函数关系式;(3)直线l 平行于y 轴,分别交直线l 1,l 2、x 轴于点M 、N 、P ,设点P 的横坐标为t (t >0,t ≠4),在y 轴上是否存在点F ,使得△FMN 为等腰直角三角形?若存在,请求出t 的值;若不存在,请说明理由.【分析】(1)把点A (2a +1,3)代入y =34x ,即可求得a 的值;(2)利用待定系数法即可求得直线l 1的函数关系式;(3)分别利用t 表示出M 、N 的坐标,可表示出MN ,分∠FMN 、∠FNM 和∠MFN 为直角三种情况,分别求得F 点的坐标,表示出FM 、FN ,分别得到关于m 的方程可求得m .【解答】解:(1)∵直线l 2:y =34x 经过点A (2a +1,3),∴3=34(2a +1),解得a =32;(2)设直线l 1的函数关系式y =kx +b ,∵点A (4,3),点B (0,6).∴{4k +b =3b =6, 解得{k =−34b =6.∴直线l 1的函数关系式y =−34x +6;(3)∵P (t ,0)(t >0,t ≠4),则M (t ,−34t +6),N (t ,34t ), ∴MN =|−32t +6|, Ⅰ)当∠FMN =90°且△FMN 为等腰三角形时,F (0,−34t +6),∴FM =MN ,即:t =|−32t +6|, 解得:t =125或t =12,Ⅱ)同理当∠FNM =90°且△FMN 为等腰三角形时,F (0,34t ),∴FN =MN ,即:t =|−32t +6|,解得:t =125或t =12,Ⅲ)当∠MFN =90°且△FMN 为等腰三角形时,F (0,3),∴FM 2=t 2+(34t ﹣3)2, FN 2=t 2+(34t ﹣3)2,MN 2=(−32t +6)2,∴MN 2=FM 2+FN 2,∴t 2+(34t ﹣3)2+t 2+(34t ﹣3)2=(−32t +6)2,整理可得78t 2+18t ﹣18=0,解得t =127或t =﹣12(舍去); 综上可知存在使得△FMN 为等腰直角三角形的点F ,此时t 的值为125或127或12.【点评】本题主要考查待定系数法求函数解析式和等腰三角形的判定、勾股定理等知识点的综合应用.掌握等腰三角形的判定和性质是解题的关键,在(3)中利用t 表示出FN 、FM 和MN 得到关于t 的方程是解题的关键,注意分类讨论思想和方程思想的应用.4.如图,在平面直角坐标系x O y 中,已知点A (−94,0),点C (0,3),点B 是x 轴上一点(位于点A 的右侧,以AB 为直径的圆恰好经过点C )(1)求证△AOC ∽△COB ;(2)已知抛物线y =ax 2+bx +3经过A 、B 两点,求抛物线的解析式;(3)线段BC 上是否存在D ,使△BOD 为等腰三角形?若存在,则求出所有符合条件的点D 的坐标;若不存在,请说明理由.【分析】(1)根据直径所对的圆周角是直角可以得到∠ACB 是直角,再根据相似三角形的判定方法证明即可.(2)利用三角形相似求出点B 的坐标,然后根据A ,B 两点的坐标,重新假设抛物线的解析式,代入点C 坐标求出a 即可.(3)分别以OB 为底边和腰求出等腰三角形中点D 的坐标.【解答】(1)证明:∵以AB 为直径的圆恰好经过 点C ,∴∠ACB =90°,∵∠AOC =∠BOC =90°,∴∠ACO +∠BCO =90°,∠BCO +∠CBO =90°,∴∠ACO =∠CBO ,∴△△AOC ∽△COB .(2)∵△AOC ∽△COB ,∴OC 2=AO •OB ,∵A (−94,0),点C (0,3),∴AO =94,OC =3,又∵CO 2=AO •OB ,∴32=94OB ,∴OB =4,∴B (4,0),∵抛物线经过B (4,0),A (−94,0),可以假设抛物线为y =a (x ﹣4)(x +94),把(0,3)代入得a =−13 ∴y =−13x 2+712x +3.(3)①OD =DB ,如图:D 在OB 的中垂线上,过D 作DH ⊥OB ,垂足是H ,则H 是OB 中点.ⅤDH =12OC ,OH =12OB ,∴D (2,32),②BD =BO ,如图:过D 作DG ⊥OB ,垂足是G ,∴BG OB =BD CB =DG OC , ∵OB =4,CB =5,∴BD =OB =4,∴CD CB =15,∴BG 4=45=DG 3, ∴BG =165,DG =125, ∴OG =BO ﹣BG =45,∴D ( 45,125).【点评】本题考查的是二次函数的综合题、圆的有关性质、相似三角形的判定和性质、等腰三角形的判定和性质,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.如图,在平面直角坐标系中,点C的坐标为(3,1),动点A以每秒1个单位的速度从点O出发沿x轴正半轴运动,同时动点B以每秒2个单位的速度从点O出发沿y轴正半轴运动,作直线AB.设运动的时间为t秒,是否存在t,使△ABC是等腰三角形?若存在,求t的值;若不存在,请说明理由.【分析】运动的时间是t,则OA=t,OB=2t,利用勾股定理把AB2,BC2和AC2用t表示出来,然后利用勾股定理列方程求得t的值,然后判断t是否满足条件,以及是否是等腰三角形即可.【解答】解:运动的时间是t,则OA=t,OB=2t.在直角△OAB中,AB2=OA2+OB2=t2+(2t)2=5t2,过C作CD⊥x轴于点D,则D的坐标是(3,0).在直角△ACD中,AC2=CD2+AD2=1+(3﹣t)2=t2﹣6t+10,BC2=32+(2t﹣1)2=4t2﹣4t+10,当AB是斜边时,AB2=AC2+BC2,则5t2=t2﹣6t+10+4t2﹣4t+10,解得:t=2.此时AB2=20,AC2=2,BC2=18,此时不是等腰三角形,故不符合条件;当AC是斜边时,AC2=AB2+BC2,则t2﹣6t+10=5t2+(4t2﹣4t+10),解得:t=0或﹣4(不符合题意,舍去);当BC是斜边时,AB2+AC2=BC2,则5t2+(t2﹣6t+10)=4t2﹣4t+10,解得:t=0(舍去),或1.当t=1时,AB2=5,AC2=1﹣6+10=5,此时AB=AC.总之,当t=1时,△ABC是等腰直角三角形.【点评】本题考查了一次函数与勾股定理的综合应用,正确进行讨论,利用m表示出AB2,BC2和AC2是关键.6.如图,直线y=7x+7交x轴于点A,交y轴于点B.(1)S△AOB;(2)第一象限内是否存在点C,使△ABC为等腰直角三角形且∠ACB=90°?若存在,求出C点坐标;若不存在,请说明理由.【分析】(1)由直线解析式,分别令x 与y 为0求出y 与x 的值,确定出A 与B 坐标,进而求出OA 与OB 的长,即可求出三角形AOB 面积;(2)第一象限内存在点C ,使△ABC 为等腰直角三角形且∠ACB =90°,理由为:设C (x ,y )(x >0,y >0),根据题意得BC 2=AC 2,BC 2+AC 2=AB 2,列出关于x 与y 的方程组,求出方程组的解得到x 与y 的值,即可确定出C 坐标.【解答】解:(1)对于直线y =7x +7,令x =0,得到y =7;令y =0,得到x =﹣1,∴A (﹣1,0),B (0,7),即OA =1,OB =7,则S △AOB =12OA •OB =72;(2)第一象限内存在点C ,使△ABC 为等腰直角三角形且∠ACB =90°,理由为:设C (x ,y )(x >0,y >0),根据题意得:BC 2=AC 2,BC 2+AC 2=AB 2,即{(−1−x)2+y 2=x 2+(y −7)2(−1−x)2+y 2+x 2+(y −7)2=12+72, 解得:{x =3y =3. 此时C (3,3).【点评】此题考查了一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性质,两点间的距离公式,以及等腰直角三角形的判定与性质,熟练掌握一次函数的性质是解本题的关键.7.在平面直角坐标系中,点O 为坐标原点,直线l 1过点A (1,0)且与y 轴平行,直线l 2过点B (0,2)且与x 轴平行,直线l 1与l 2相交于P .点E 为直线l 2上一点,反比例函数y =k x (k >0)的图象过点E 且与直线l 1相交于点F .(1)若点E 与点P 重合,求k 的值;(2)连接OE 、OF 、EF ,若△OEF 的面积为△PEF 面积的2倍,求点E 的坐标;(3)当k >2时,在y 轴上是否存在一点G ,使△FEG 是等腰直角三角形?如果存在,求出G 点坐标;若不存在,说明理由.【分析】(1)利用待定系数法即可解决.(2)分两种情形列方程解决问题:①如图2中,当E 在P 右边时,作EM ⊥x 轴于M .设E (m ,2)则F (1,2m ),②如图3中,当E 在P 左边时,作EM ⊥x 轴于M .设E (m ,2)则F (1,2m ),(3)分四种情形①如图4中,当E 在P 右边时,∠FEG =90°,EF =EG ,设E (m ,2),则F (1,2m ),②如图5中,当E 在P 右边时,∠GFE =90°,FG =FE ,作FM ⊥y 轴于M .设E (m ,2),则F (1,2m ),③如图6中,当E在P左边时,∠FEG=90°,EG=EF.设E(m,2),则F(1,2m),④如图7中,当E在P 左边时,∠EFG=90°,EF=FG,作GM⊥PA于M.设E(m,2),则F(1,2m),利用全等三角形的性质,列出方程即可解决问题.【解答】解:(1)如图1中,由题意P(1,2),把P(1,2)代入y=kx得到,k=2,∴k的值为2.(2)①如图2中,当E在P右边时,作EM⊥x轴于M.设E(m,2)则F(1,2m),∵S△OEF=S△AOF+S梯形AMEF﹣S△OEM,S△AOF=S△EOM,∴S△OEF=S梯形AMEF,∵S△EOF=2S△PEF,∴2+2m2•(m﹣1)=2×12×(m﹣1)(2m﹣2),∴m=3,此时E(3,2)②如图3中,当E在P左边时,作EM⊥x轴于M.设E(m,2)则F(1,2m),同理可得,2+2m2×(1﹣m)=2×12(1﹣m)×(2﹣2m),∴m=13,此时E(13,2)综上所述,当E(3,2)或(13,2)时,△OEF的面积为△PEF面积的2倍.(3)如图4中,①当E在P右边时,∠FEG=90°,EF=EG,设E(m,2),则F(1,2m),∵∠EPF=∠EBG,EF=EG,∠FEP=∠BEG,∴△FEP≌△EGB,∴PF=BE,BG=PE,∴m=2m﹣2,∴m=2,∴BG=PE=1,∴G(0,1).②如图5中,当E在P右边时,∠GFE=90°,FG=FE,作FM⊥y轴于M.设E(m,2),则F(1,2m),由△FPE ≌△FMG ,得到FM =PF ,MG =PE ,∴2m ﹣2=1,∴m =32,∴PE =MG =12,BG =12,∴G (0,52).③如图6中,当E 在P 左边时,∠FEG =90°,EG =EF .设E (m ,2),则F (1,2m ),由△EFP ≌△GEB ,得到,EB ﹣PF ,BG =PE ,∴m =2﹣2m ,∴m =13, ∴BG =PE =23,OG =43, ∴G (0,43).∵k >2,此时E (13,2),不符合题意.④如图7中,当E 在P 左边时,∠EFG =90°,EF =FG ,作GM ⊥PA 于M .设E (m ,2),则F (1,2m ),由△EFP≌△FGM得到PE=FM,PF=GM,∴2﹣2m=1,,∴m=12,∴BG=PF+FM=32∴OG=1,2),∴G(0,12,2),不符合题意;∵k>2,此时E(12综上所述,满足条件的点G左边为(0,1)或(0,5).2【点评】本题考查反比例函数综合题、待定系数法、全等三角形的判定和性质、三角形的面积等知识,解题的关键是学会利用分割法求三角形的面积,学会用分类讨论的思想思考问题,学会用方程的思想思考问题,属于中考压轴题.8.如图,将抛物线y=x2向右平移a个单位长度,顶点为A,与y轴交于点B,且△AOB为等腰直角三角形.(1)求a的值;(2)在图中的抛物线上是否存在点C,使△ABC为等腰直角三角形?若存在,直接写出点C的坐标,并求S;若不存在,请说明理由.△ABC【分析】(1)根据平移的性质找出平移后的抛物线的解析式y=x2﹣2ax+a2,令其x=0找出点B的坐标,根据△AOB 为等腰直角三角形即可得出关于a 的一元二次方程,解方程即可求出a 值;(2)作点B 关于抛物线对称轴对称的点C ,连接BC ,交抛物线的对称轴于点D ,根据等腰直角三角形的判定定理找出△ABC 为等腰直角三角形,由抛物线的对称性结合点B 的坐标即可得出点C 的坐标,再利用三角形的面积公式即可求出S △ABC 的值.【解答】解:(1)平移后的抛物线的解析式为y =(x ﹣a )2=x 2﹣2ax +a 2,令y =x 2﹣2ax +a 2中x =0,则y =a 2,∴B (0,a 2).∵△AOB 为等腰直角三角形,∴a =a 2,解得:a =1或a =0(舍去).故a 的值为1.(2)作点B 关于抛物线对称轴对称的点C ,连接BC ,交抛物线的对称轴于点D ,如图所示.∵△AOB 为等腰直角三角形,∴△ABD 为等腰直角三角形,∴∠BAD =45°.∵AD 为抛物线的对称轴,∴AB =AC ,∠CAD =∠BAD =45°,∴△ABC 为等腰直角三角形.∵点B (0,1),抛物线对称轴为x =1,∴点C 的坐标为(2,1). S △ABC =12AB •AC =12×√2×√2=1.故在图中的抛物线上存在点C ,使△ABC 为等腰直角三角形,点C 的坐标为(2,1)且S △ABC =1.【点评】本题考查了平移的性质、解一元二次方程、等腰直角三角形的判定以及二次函数的性质,解题的关键是:(1)找出关于a 的一元二次方程;(2)找出点C 的位置.本题属于中档题,难度不大,解决该题时,巧妙的利用了抛物线的对称性来寻找点C 的位置.9.如图,OA 、OB 的长分别是关于x 的方程x 2﹣12x +32=0的两根,且OA >OB ,点P 在AB 上,且PB =3PA .请解答下列问题:(1)求点P 的坐标.(2)求直线AB 的解析式;(3)在坐标平面内是否存在点Q ,使得以A 、P 、O 、Q 为顶点的四边形是等腰梯形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【分析】(1)首先解x 2﹣12x +32=0,即可求得点A 与B 的坐标,然后利用待定系数法即可求得直线AB 的解析式;首先过点P 作PH ⊥x 轴于点H ,由PB =3PA ,利用平行线分线段成比例定理,即可求得AH 的长,则可求得点P 的横坐标,代入一次函数解析式,即可求得点P 的坐标;(2)利用(1)的解题结果即可;(3)分别从PQ ∥AO ,AQ ∥PO ,AP ∥OQ 去分析,利用函数解析式与两点间的距离公式即可求得答案.【解答】解:(1)∵x 2﹣12x +32=0,∴(x ﹣4)(x ﹣8)=0,解得:x 1=4,x 2=8.∵OA 、OB 的长分别是关于x 的方程x 2﹣12x +32=0的两根,且OA >OB ,∴OA =8,OB =4.∴A (﹣8,0),B (0,4).设直线AB 的解析式为y =kx +b ,则{−8k +b =0b =4, 解得:{k =12b =4, ∴直线AB 的解析式为:y =12x +4.过点P 作PH ⊥x 轴于点H .设P(x,y),∴AH=|﹣8﹣x|=x+8.∵PH∥y轴,∴APPB =13,∴AHHO =13,即x+8−x =13.解得x=﹣6.∵点P在y=12x+4上,∴y=12×(﹣6)+4=1.∴P(﹣6,1).(2)由(1)知,直线AB的解析式为:y=12x+4;(3)存在.如图①,若PQ∥AO,过点Q作QG⊥AO于G,过点P作PH⊥AO于H,∵梯形OAPQ是等腰梯形,∴AH=OG=8﹣6=2,QG=PH=1,∴点Q的坐标为(﹣2,1);如图②,若AQ ∥PO ,∵OP 的解析式为:y =−16x ,设直线AQ 的解析式为:y =−16x +m , ∵A (﹣8,0),∴−16×(﹣8)+m =0,解得:m =−43,∴直线AQ 的解析式为:y =−16x −43, 设点Q 的坐标为:(x ,−16x −43), ∵梯形APOQ 是等腰梯形,∴PA =OQ ,∴x 2+(−16x −43)2=[﹣8﹣(﹣6)]2+12, 整理得:37x 2+16x ﹣116=0,即(37x ﹣58)(x +2)=0,解得:x =5837或x =﹣2(舍去),∴y =−16×5837−43=−5937,∴点Q 的坐标为:(5837,−5937); 如图③,若AP ∥OQ ,∵直线AP 的解析式为:y =12x +4,∴直线OQ 的解析式为:y =12x ,设点Q 的坐标为(x ,12x ),∵AQ =OP ,∴(x +8)2+(12x )2=12+(﹣6)2, 整理得:5x 2+64x +108=0,即:(5x +54)(x +2)=0,解得:x =−545或x =﹣2(舍去),∴y =12×(−545)=−275,∴点Q 的坐标为(−545,−275).综上,点Q 的坐标为(﹣2,1)或(5837,−5937)或(−545,−275).【点评】此题属于一次函数的综合题,考查了待定系数求函数解析式、平行线分线段成比例定理、因式分解法解一元二次方程以及等腰梯形的性质.此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.10.如图,过点C (0,﹣2)的抛物线y =ax 2+bx +c 的顶点M 坐标为(2,﹣3),过点C 作CB ∥x 轴交抛物线于点B ,点P 在线段BC 上,CP =m .(1)求B 点坐标,并用含m 的代数式表示PB 的长;(2)点A ,Q 分别为x 轴和抛物线上的动点,若恰好存在以CP 为边,点A ,C ,P ,Q 为顶点的平行四边形,求出所有符合条件的点Q 坐标;(3)是否存在m 值,使△MBP 为等腰三角形?若存在,求出所有符合条件的m 值;若不存在,请说明理由.【分析】(1)由C 与B 关于抛物线的对称轴x =2对称,C (0,﹣2),可得B 点坐标为(4,﹣2),那么BC =4,再根据PB =BC ﹣CP 可用含m 的代数式表示PB 的长;(2)分两种情况进行讨论:①当CP 为一边时,CP ∥AQ ,则点Q 为抛物线与x 轴的交点坐标;②当CP 为对角线时,根据平行四边形相对的两个顶点到另一条对角线的距离相等求解;(3)先由M 、B 、P 三点的坐标,利用两点间的距离公式求出MB 2=5,MP 2=(m ﹣2)2+1,BP =4﹣m .再分三种情况进行讨论:①由MP =MB 列出方程(m ﹣2)2+1=5,解方程求出m 的值;②由MP =BP 列出方程(m ﹣2)2+1=(4﹣m )2,解方程求出m 的值;③由BP =MB 列出方程(4﹣m )2=5,解方程求出m 的值.【解答】解:(1)∵C 与B 关于抛物线的对称轴x =2对称,C (0,﹣2),∴B 点坐标为(4,﹣2),∵CP =m ,∴PB =BC ﹣CP =4﹣m ;(2)∵抛物线y =ax 2+bx +c 的顶点M 坐标为(2,﹣3),∴y =a (x ﹣2)2﹣3,将C (0,﹣2)代入,得a (0﹣2)2﹣3=﹣2,解得a =14, ∴y =14(x ﹣2)2﹣3,即y =14x 2﹣x ﹣2. ∴当y =0时,14(x ﹣2)2﹣3=0,解得x =2±2√3,∴抛物线与x 轴的交点坐标为(2﹣2√3,0)或(2+2√3,0).点P 在线段BC 上,CB ∥x 轴,当CP 为一边时,CP ∥AQ ,则点Q 坐标为(2﹣2√3,0)或(2+2√3,0);所以符合条件的点Q 坐标坐标为(2﹣2√3,0)或(2+2√3,0);(3)∵M(2,﹣3),B(4,﹣2),P(m,﹣2),∴MB2=(4﹣2)2+(﹣2+3)2=5,MP2=(m﹣2)2+(﹣2+3)2=(m﹣2)2+1,BP=4﹣m.当△MBP为等腰三角形时,分三种情况:①如果MP=MB,那么(m﹣2)2+1=5,解得m1=0,m2=4(不合题意舍去),所以m=0;,②如果MP=BP,那么(m﹣2)2+1=(4﹣m)2,解得m=114;所以m=114③如果BP=MB,那么(4﹣m)2=5,解得m1=4−√5,m2=4+√5(不合题意舍去),所以m=4−√5;综上所述,所有符合条件的m值为0或11或4−√5.4【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,抛物线的性质,平行四边形、等腰三角形的性质,综合性较强,难度适中.在求有关动点问题时要注意分析题意分情况讨论结果.x+5与坐标轴交于A、B两点,直线L2:y=﹣2x+10与坐标轴交于C、D两点,两直线11.已知直线L1:y=12交于点P.(1)求P点坐标;(2)判别△PAC的形状,并说明理由;(3)在x轴上是否存在点Q,使△PAQ是等腰三角形?若存在,请直接写出Q点的坐标.x+5和y=﹣2x+10组成方程组,方程组的解就是交点坐标;【分析】(1)将y=12(2)根据系数的积的比为﹣1,判断出两直线垂直,得到△PAC为直角三角形.(3)过P作PE⊥x轴于E,E点坐标为(2,0),根据勾股定理求出PA的长,直接求出Q1,Q2,Q4,作GQ3⊥AP,求出GQ3解析式,得到Q3的坐标.【解答】解:如图:(1)将y =12x +5和y =﹣2x +10组成方程组得{y =12x +5y =−2x +10, 解得{x =2y =6, 可得P (2,6).(2)∵L 1:y =12x +5的比例系数为k ,L 2:y =﹣2x +10的比例系数为﹣2, 可得12×(﹣2)=﹣1,∴∠APC =90°,△PAC 为直角三角形.(3)过P 作PE ⊥x 轴于E , E 点坐标为(2,0).∵P (2,6),A (﹣10,0),∴PA =√62+122=6√5,∴可见,OQ 1=6√5−10,Q 1(6√5−10,0),Q 2(﹣6√5−10,0),作GQ 3⊥AP ,设GQ 3解析式为y =﹣2x +b ,H 坐标为(﹣4,3),将H (﹣4,3)代入y =﹣2x +b 得,3=﹣2×(﹣4)+b ,解得b =﹣5,∴y =﹣2x ﹣5,当y =0时,x =−52,Q 3(−52,0),Q 4(14,0).【点评】本题考查了一次函数综合题,熟悉函数和方程的关系,充分利用图形,根据一次函数的特点,分别求出各点的坐标再计算.12.如图,在矩形ABCD中,BC=4,CD=3,直线MN过点A,∠BAN=∠DBC,点P是直线MN上的一个动点(不与点A重合),点E在射线AD上,满足∠PBE=∠BDC,设PA=x,(1)如图①,若点P在射线AN上.求线段DE的长(用含x的代数式表示)并直接写出x的取值范围;(2)如图②.若点P在射线AM上,求BPEP的值;(3)设直线PE交直线AB于点F,是否存在x的值,使△PAF为等腰三角形?若存在,直接写出x的值:若不存在,请说明理由.【分析】(1)如图①中,作BF⊥AN于F.只要证明△ABP∽△DBE,可得PAED =ABDB,即xDE=35,由此即可解决问题.(2)只要证明△ABD∽△PBE,可得ABPB =ADEP,推出PBEP=ABAD=34.(3)①如图①中,当FA=FP时,由△ABE∽△ADB,可得BA2=AE•AD,求出DE即可解决问题.②如图③当AP=AF时,只要证明EB=EF即可解决问题.【解答】解:(1)如图①中,作BF⊥AN于F.∵四边形ABCD是矩形,∴∠BAD=∠AFB=90°,∵∠ABF+∠BAF=90°,∠ADB+∠ABD=90°,∠BAF=∠ADB,∴∠ABF=∠ABD=∠PBE,∴∠PBF=∠ABE,∴△PBF∽△EBA,∴PBBE =BFBA,∴∠BPF=∠AEB,∠APB=∠BED,∴PBBF =BEAB,∵∠ABF=∠PBE,∴△ABF∽△EBP,∴∠EPB=∠AFB=90°=∠BAE,∵∠ABP=∠EBD,∠APB=∠BED,∴△ABP∽△DBE,∴PAED =ABDB,∴xDE =35,∴DE=53x,∵点E在射线AD上,点P不与A重合,∴0<53x≤4,∴0<x≤125.(2)如图②中,由(1)可知∠BPE =90°,∵∠BAD =∠BPE ,∠ABD =∠PBE ,∴△ABD ∽△PBE ,∴AB PB =AD EP , ∴PB EP =AB AD =34.(3)①如图①中,当FA =FP 时,∠FAP =∠FPA ,∵△PBE ∽ABD ,∴∠PAB =∠FEB ,∵∠AFP =∠BFE ,∴∠APF =∠FBE ,∴∠ABE =∠ADB ,∵∠BAE =∠BAD ,∴△ABE ∽△ADB ,∴BA 2=AE •AD ,∴AE =94,DE =4−94=74,∵DE =53x ,∴53x =74,∴x=2120,∴PA=2120.②如图③中,当AP=AF时,∵∠F=∠F,∠FPB=∠FAC,∴△FPB∽△FAC,∴FPAF =FBEF,∴FPFB =AFEF,∵∠F=∠F,∴△FAP∽△FEB,∴∠FPA=∠FBE,∵∠F=∠APF,∴∠F=∠ABE,∴EF=EB,∵AE⊥BF,∴AF=AB=AP=3,综上所述,当AP的值为2120或3时,△PAF是等腰三角形.【点评】本题考查四边形综合题、矩形的性质、相似三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.。
八下专题:一次函数中等腰三角形的存在性问题(方法+例题)学生版
专题:平面直角坐标系+等腰三角形平面直角坐标系内,在一条直线上找一动点与一条线段构成等腰三角形的方法:1.作已知线段的垂直平分线,即垂直平分线与已知直线的交点为所找点2.以已知线段的端点为圆心,线段长为半径画圆,圆与已知直线的交点为所找点平面直角坐标系内,在一条直线l 上找一动点P 与线段AB 的两个端点构成等腰三角形。
如图1:作线段AB 的垂直平分线与直线l 相交,即交点为所找P 点。
如图2:以点A 为圆心,线段AB 长为半径画圆,圆与已知直线l 相交,即交点为所找点P 点如图3:以点B 为圆心,线段AB 长为半径画圆,圆与已知直线l 相交,即交点为所找点P 点解题方法:模型一:等腰直角三角形方法:利用全等三角形求坐标(一线三垂直“K”模型)模型二:一般等腰三角形1.利用勾股定理建立方程。
(关键:构建直角三角形)2.利用两点之间的距离公式建立方程。
(关键:两点之间的距离公式)已知:A(x 1,y 1),B(x 2,y 2),()()2212212AB 则y y x x -+-=:专题:一次函数中等腰三角形的存在性问题例.如图,在平面直角坐标系中,一次函数y=x+2的图象与x轴交于点A,与y轴交于点B。
(1)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,请求出点D的坐标.(2)在y轴上是否存在一点P使△P AB为等腰三角形,若存在,求出所有符合条件的点P的坐标.对应练习:1.如图,在平面直角坐标系中,直线AB:y=﹣x+2交x轴于点A(4,0),交y轴于点B(0,2);作等腰直角三角形PBC,使PC=BC,求出点P的坐标.2.如图,已知点D(﹣1,0),直线l1的解析式为y=﹣x+6,经过点C(2,n),与x轴交于点A,与y轴交于点B.(1)如图1,若直线l2经过点D,与直线l1交于点C,求直线l2的解析式;(2)点M是x轴上一动点,若△CDM为等腰三角形,求点M的坐标;3.如图1,在平面直角坐标系中,▱OABC的顶点A在x轴上,顶点C在正比例函数y=x上,顶点B的坐标为(m,n),且m、n满足=﹣(n﹣)2.(1)求点B、C的坐标;(2)在y轴上存在一点D,使得以O、C、D为顶点的三角形是等腰三角形,求D点的坐标;4.如图,把矩形OABC放入平面直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,对角线AC所在直线解析式为y=﹣x+15,将矩形OABC沿着BE折叠,使点A落在边OC上的点D处.(1)求点E的坐标;(2)在y轴上是否存在点P,使△PBE为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
初中数学等腰三角形存在性问题(含答案)
等腰三角形存在性问题几何图形存在性问题是中考二次函数压轴题一大常见类型,等腰三角形、直角三角形、平行四边形、矩形、菱形、正方形等均有涉及,本系列从等腰三角形开始,逐一介绍各种问题及常规解法.等腰三角形存在性问题【问题描述】如图,点 A坐标为( 1,1),点 B坐标为( 4,3),在 x轴上取点 C使得△ ABC是等腰三角形.几何法】“两圆一线”得坐标1)以点 A 为圆心, AB 为半径作圆,与 x 轴的交点即为满足条件的点 C,有AB=AC;2)以点 B 为圆心, AB 为半径作圆,与 x 轴的交点即为满足条件的点 C,有BA=BC;3)作 AB 的垂直平分线,与 x 轴的交点即为满足条件的点 C,有 CA=CB .y【注意】若有三点共线的情况,则需排除.作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.AC1=AB= (4-1)2+(3-1)2= 13 作AH x轴于 H点, AH=1 C1H=C2H= 13-1=2 3C1(1-2 3,0) C2(1+2 3,0)C3、C4 同理可求,下求 C5.显然垂直平分线这个条件并不太适合这个题目,如果 A、B 均往下移一个单位,当点为( 1,0),点 B坐标为( 4,2)时,可构造直角三角形勾股解:AH =3, BH=2设AC5= x,则 BC5=x,C5H=3-x13解得: x=619故 C5坐标为( ,0)而对于本题的 C5 ,或许代数法更好用一些.A 坐标222(3-代数法】表示线段构相等1)表示点:设点 C 5坐标为( m , 0),又 A 点坐标( 1,1 )、 B 点坐标( 4,3),2)表示线段: AC 5 (m 1) (0 1) , BC 5 (m 4) (0 3) 3)分类讨论:根据 AC 5 BC 5 ,可得: (m 1)2 12(m 4)2 32 ,【小结】 几何法:( 1)“两圆一线 ”作出点;(2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标.代数法:(1)表示出三个点坐标 A 、 B 、C ;(2)由点坐标表示出三条线段: AB 、AC 、BC ; (3)根据题意要求取① AB=AC 、②AB=BC 、③ AC=BC ; (4)列出方程求解.问题总结:1)两定一动:动点可在直线上、抛物线上;2)一定两动:两动点必有关联,可表示线段长度列方程求解; 3)三动点:分析可能存在的特殊边、角,以此为突破口. 2018 泰安 中考】4)求解得答案:解得: 23 6故 C 5 坐标为23,0如图,在平面直角坐标系中,二次函数 y ax2 bx c交x轴于点 A( 4,0) 、 B(2,0) ,交y轴于点 C(0,6) ,在y轴上有一点 E(0, 2) ,连接AE .1)求二次函数的表达式;2)若点D为抛物线在x 轴负半轴上方的一个动点,求ADE 面积的最大值;3)抛物线对称轴上是否存在点P,使AEP为等腰三角形?若存在,请直接写出所有P 点的坐标,若不存在请说明理由.分析】 1) y3x 2 3x 6; 422) 可用铅垂法,当点 D 坐标为 ( 2,6 )时,△ ADE 面积最大,最大值为 14; 3) 这个问题只涉及到 A 、 E 两点及直线 x=-1(对称轴)① 当 AE=AP 时,以 A 为圆心, AE 为半径画圆,与对称轴交点即为所求 P 点.∵AE=2 5 ,∴ AP 1=2 5,又 AH=3,∴ P 1H故P 1( 1, 11)、 P 2 ( 1, 11).② 当 EA=EP 时,以 E 点为圆心, EA 为半径画圆,故 P 5 ( 1,1) . P 5 ( 1,1).补充】“代数法”用点坐标表示出线段,列方程求解亦可以解决.P 1HP 4Bx11,与对称轴交点即为所求 P 点.过点 E 作EM 垂直对称轴于 M 点,则 EM=1, 1, 2 19)故P 3( 1, 2 19)、 P 4( 作 AE 的垂直平分线,与对称轴交点即为所求 ③当 PA=PE 时,P 点.设 P 5 ( 1,m ),P 5A 2 2 2 2 ( 1 4)2 (m 0)2, P 5E 2=( 1 0)2(m 2)2 ∴ m 2 9 (m2)2 1,解得: m=1 .综上所述, P 点坐标为 P 1( 1, 11)、P 2( 1, 11 )、P 3( 1,19 )、P 4 ( 1, 2 19)、19 ,P 3M P4 M【 2019 白银中考(删减)】如图,抛物线 y ax2 bx 4交x轴于 A( 3,0), B(4,0)两点,与y轴交于点 C ,连接AC ,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m.(1)求此抛物线的表达式;(2)过点P作 PM x轴,垂足为点M ,PM 交 BC 于点 Q .试探究点P在运动过程中,是否存在这样的点 Q,使得以A, C , Q为顶点的三角形是等腰三角形.若存在,请求出此时点 Q 的坐标,若不存在,请说明理由;yCP分析】1) y1x2 1x 4 ;332)①当 CA=CQ 时,∵ CA=5,∴ CQ=5,考虑到 CB 与 y 轴夹角为 45°,故过点 Q作 y 轴的垂线,垂足记为 H ,则 CH QH 5 2,故 Q 点坐标为5 2,4 5 2.2 2 2②当 AC=AQ 时,考虑直线 BC 解析式为 y=-x+4,可设 Q 点坐标为( m, -m+4),AQ (m 3)2( m 4 0)2,即(m 3) ( m 4 0) 5 ,解得: m=1 或 0(舍),故 Q 点坐标为( 1, 3).③当 QA=QC 时,作 AC 的垂直平分线,显然与线段 BC 无交点,故不存在.综上所述, Q点坐标为5 2 ,4 5 2或( 1, 3).22记直线 x=2 与 x 轴交点为 H 点, ∵ OH =2,∴ BH=1,故 B 点坐标为( 2,1)或( 2,-1),k=-1 或 -3. ②当 AO=AB 时,易知 B 点坐标为( 2,0),k=-2. 综上所述, k 的值为 -1或-2 或-3. 【 2018 贵港中考(删减) 】2019 盐城中考删减 】如图所示, 二次函数 y k (x 1)2 2 的图像与一次函数 y kx k 2 的图像交于 A 、B 两点, 点 B 在点 A 的右侧,直线 AB 分别与 x 、 y 轴交于 C 、 D 两点,其中 k 0 . 1)求 A 、 B 两点的横坐标;2)若 OAB 是以 OA 为腰的等腰三角形,求 k 的值.分析】1)A 、B 两点横坐标分别为 1、 2;B 点横坐标始终为 2 ,故点 B 可以看成是直线 x=2 上的一个动点, 满足△ OAB 是以 OA 为腰的等腰三角形, 又 A 点坐标为( 1, 2),故 OA 5 ① 当 OA=OB 时,即 OB 5 ,如图,已知二次函数 y ax2 bx c 的图像与x 轴相交于 A( 1,0) , B(3,0) 两点,与y 轴相交于点 C(0, 3) .(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图像上任意一点,P H x轴于点H ,与线段 BC 交于点M ,连接 PC .当 PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.y② 当 MP =MC 时,(表示线段列方程)设 P 点坐标为 (m,m 22m 3),则 M 点坐标为 (m, m 3), 故线段 PM (m 3) (m 2 2m 3) m 2 3m 故点M 作y 轴的垂线,垂足记为 N ,则 MN =m ,考虑△ MCN 是等腰直角三角形,故 MC 2m ,m 2 3m 2m ,解得 m 32 或 0(舍),故 P 点坐标为 (3 2,2 综上所述, P点坐标为( 2, -3)或 (3 2,2 分析】1) y x 2 2 x 3 ;2)①当 PM=PC 时,(特殊角分析) 考虑∠ PMC =45°,∴∠ PCM=45°, 即△ PCM 是等腰直角三角形, P 点坐标为( 2,-3);4 2 ).【2019 眉山中考删减】如图,在平面直角坐标系中,抛物线 y 4 x2 bx c经过点 A( 5,0)和点 B(1,0).9(1)求抛物线的解析式及顶点D 的坐标;(2)如图,连接AD、BD,点M在线段AB上(不与A 、B重合),作 DMN DBA,MN 交线段AD 于点 N ,是否存在这样点M ,使得 DMN 为等腰三角形?若存在,求出 AN 的长;若不存在,请说明理由.x分析】1) y 4 x2 16 x 20,顶点 D 坐标为( 2,4 );9 9 92)考虑到∠ DAB=∠DBA=∠DMN,即有△ BMD ∽△ ANM(一线三等角)①当 MD=MN 时,有△ BMD≌△ ANM,可得 AM=BD =5,故 AN=BM=1;②当 NM=ND 时,则∠ NDM =∠ NMD =∠DAB,③当 DM=DN时,∠ DNM =∠DMN =∠DAB,显然不成立,故不存在这样的点M.△ MAD ∽△ DAB ,可得AM=25,6BM116ANBMAM,即BDAN116256,5解得: AN5536AN 的值为 1 或55.综上,36【2019 葫芦岛中考(删减)】如图,直线 y x 4与x轴交于点B,与y轴交于点 C,抛物线 y x2 bx c经过B,C 两点,与x轴另一交点为A.点P以每秒 2个单位长度的速度在线段 BC上由点B向点 C 运动(点P 不与点B 和点 C 重合),设运动时间为 t 秒,过点P 作x 轴垂线交x轴于点E ,交抛物线于点M .(1)求抛物线的解析式;(2)如图,连接AM 交 BC 于点D ,当PDM 是等腰三角形时,直接写出 t 的值.y分析】1) y x2 3x 4 ;2)①考虑到∠ DPM =45°,当 DP=DM 时,即∠ DMP =45°,直线 AM :y=x+1,联立方程:x 3 x 4 x 1,解得: x1 3 , x2 1 (舍).此时 t=1 .②当 PD=PM 时,∠ PMD =∠ PDM =67.5°,∠ MAB=22.5°,考虑 tan∠ 22.5 °= 2 1 ,直线 AM :综上所述, t 的值为附: tan22.5 =° 2 1 .总结】具体问题还需具体分析题目给的关于动点的条件,选取恰当的方法,联立方程:x2 3 x 4 ( 2 1)x 21解得:x1 5 2 , x2 1 (舍).此时 t= 2 1.222.5 °tan 22.5 1 2 121可减轻计算量.。
等腰三角形存在性问题(带标准答案)
等腰三角形存在性问题(两圆一线)类型一、格点中的等腰三角形1、在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()2、.如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有( )个.3、如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于.4、如图,在图中能画出与△ABC全等的格点三角形有几个?类型二、定边几何法讨论:两圆一线5、以线段AB为一边的等腰直角三角形有个,请在下列图中画出来6、(1)如图所示,线段OD的一个端点O在直线AB上,以OD为一边的等腰三角形ODP,并且使点P也在AB 上,这样的等腰三角形能画个(在图中作出点P)(2)若△DOB=60°,其它条件不变,则这样的等腰三角形能画个,(只写出结果)(3)若改变(2)中△DOB的度数,其他条件不变,则等腰三角形ODP的个数和(2)中的结果相同,则改变后△DOB=.7、如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△PAB是等腰三角形,则这样的点P最多能确定()个.8、线段AB和直线l在同一平面上.则下列判断可能成立的有个直线l上恰好只有个1点P,使△ABP为等腰三角形直线l上恰好只有个2点P,使△ABP为等腰三角形直线l上恰好只有个3点P,使△ABP为等腰三角形直线l上恰好只有个4点P,使△ABP为等腰三角形直线l上恰好只有个5点P,使△ABP为等腰三角形直线l 上恰好只有个6点P ,使△ABP 为等腰三角形.9、如图AOB ∠,当ο30为AOB ∠,ο60,ο120时,请在射线OA 上找点P ,使POB ∆为等腰三角形,并分析出当AOB ∠发生变化时,点P 个数的情况;类型三、三角形、长方形和正方形中的等腰三角形10、如图,在长方形ABCD 中,AB=4,AD=10,点Q 是BC 的中点,点P 在AD 边上运动,若△BPQ 是腰长为5的等腰三角形,则满足题意的点P 有( )个11、如图所示,在长方形ABCD的对称轴上找一点P,使得△PAB,△PBC均为等腰三角形,则满足条件的点P有( )个12、如图,边长为6的正方形ABCD内部有一点P,BP=4,△PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有____个.13、在等边△ABC所在的平面内求一点P,使△PAB,△PBC,△PAC都是等腰三角形,请画出所有满足条件的点;等腰三角形存在性问题(两圆一线)答案类型一、格点中的等腰三角形1、在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是(4)2、.如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB为其中一腰.这样的C点有( B )个.A.8B.9C.10D.113、如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有3处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于15.【解答】解:格点C的不同位置分别是:C、C′、C″,∵网格中的每个小正方形的边长为1,∴S△ABC=×4×3=6,S△ABC′=20﹣2×3﹣=6.5,S△ABC″=2.5,∴S△ABC+S△ABC′+S△ABC″=6+6.5+2.5=15.故答案分别为:3;15.4、如图,在图中能画出与△ABC全等的格点三角形有几个?类型二、定边几何法讨论:两圆一线5、以线段AB为一边的等腰直角三角形有个,请在下列图中画出来6、(1)如图所示,线段OD的一个端点O在直线AB上,以OD为一边的等腰三角形ODP,并且使点P也在AB 上,这样的等腰三角形能画4个(在图中作出点P)(2)若△DOB=60°,其它条件不变,则这样的等腰三角形能画2个,(只写出结果)(3)若改变(2)中△DOB的度数,其他条件不变,则等腰三角形ODP的个数和(2)中的结果相同,则改变后△DOB= 90°.7、如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△PAB是等腰三角形,则这样的点P最多能确定()个.8、线段AB和直线l在同一平面上.则下列判断可能成立的有5个直线l上恰好只有个1点P,使△ABP为等腰三角形直线l上恰好只有个2点P,使△ABP为等腰三角形直线l上恰好只有个3点P,使△ABP为等腰三角形直线l上恰好只有个4点P,使△ABP为等腰三角形直线l上恰好只有个5点P,使△ABP为等腰三角形直线l 上恰好只有个6点P ,使△ABP 为等腰三角形.9、如图AOB ∠,当ο30为AOB ∠,ο60,ο120时,请在射线OA 上找点P ,使POB ∆为等腰三角形,并分析出当AOB ∠发生变化时,点P 个数的情况;【结论】当AOB ∠为锐角,AOB ∠ο60≠,有三个点,当AOB ∠=ο60,只有一个点;当AOB ∠为钝角或直角,只有一个点;类型三、三角形、长方形和正方形中的等腰三角形10、如图,在长方形ABCD中,AB=4,AD=10,点Q是BC的中点,点P在AD边上运动,若△BPQ是腰长为5的等腰三角形,则满足题意的点P有( B )A.2个B.3个C.4个D.5个11、如图所示,在长方形ABCD的对称轴上找一点P,使得△PAB,△PBC均为等腰三角形,则满足条件的点P有( C )A.1个B.3个C.5个D.无数多个12、如图,边长为6的正方形ABCD内部有一点P,BP=4,△PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有____个.13、在等边△ABC所在的平面内求一点P,使△PAB,△PBC,△PAC都是等腰三角形,请画出所有满足条件的点;。
等腰三角形存在性问题(带答案)
( 带答等腰三角形存在性问题等腰三角形存在性问题(两圆一线)类型一、格点中的等腰三角形1、在如图所示的5×5方格中,每个小方格都是边长为 1 的正方形,△ ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ ABC 有一条公共边且全等的所有格点三角形的个数是()2、. 如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ ABC是等腰三角形,且AB为其中一腰.这样的C 点有()个.3、如图,A、B 是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ ABC为等腰三角形时,格点 C 的不同位置有处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于.4、如图,在图中能画出与△ ABC全等的格点三角形有几个?类型二、定边几何法讨论:两圆一线5、以线段AB为一边的等腰直角三角形有个,请在下列图中画出来6、(1)如图所示,线段OD的一个端点O在直线AB 上,以OD为一边的等腰三角形ODP,并且使点P 也在AB上,这样的等腰三角形能画个(在图中作出点P)2)若∠ DOB=6°0 ,其它条件不变,则这样的等腰三角形能画个,(只写出结果)(3)若改变(2)中∠ DOB的度数,其他条件不变,则等腰三角形ODP的个数和(2)中的结果相同,则改变后∠DOB= .7、如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△ PAB是等腰三角形,则这样的点P 最多能确定()个.8、线段AB和直线l 在同一平面上.则下列判断可能成立的有个直线l 上恰好只有个 1 点P,使△ ABP为等腰三角形直线l 上恰好只有个 2 点P,使△ ABP为等腰三角形直线l 上恰好只有个 3 点P,使△ ABP为等腰三角形直线l 上恰好只有个 4 点P,使△ ABP为等腰三角形直线l 上恰好只有个 5 点P,使△ ABP为等腰三角形直线l 上恰好只有个 6 点P,使△ ABP为等腰三角形.9、如图AOB, 当AOB为30 ,60 ,120 时,请在射线OA上找点P,使POB为等腰三角形,并分析出当AOB发生变化时,点P 个数的情况;类型三、三角形、长方形和正方形中的等腰三角形10、如图,在长方形ABCD中,AB=4,AD=10,点Q是BC的中点,点P在AD边上运动,若△ BPQ是腰长为 5 的等腰三角形,则满足题意的点P有( )个11、如图所示,在长方形ABCD的对称轴上找一点P,使得△PAB,△PBC均为等腰三角形,则满足条件的点P有( ) 个12、如图,边长为 6 的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△ PBQ是等腰三角形,则符合条件的Q点有个.13、在等边△ ABC所在的平面内求一点P,使△ PAB,△PBC,△PAC都是等腰三角形,请画出所有满足条件的点;等腰三角形存在性问题(两圆一线)答案类型一、格点中的等腰三角形1、在如图所示的5×5方格中,每个小方格都是边长为 1 的正方形,△ ABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ ABC 有一条公共边且全等的所有格点三角形的个数是( 4 )2、. 如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ ABC是等腰三角形,且AB为其中一腰.这样的 C 点3、如图, A 、B 是网格中的两个格点,点 C 也是网格中的一个格点,连接 AB 、BC 、AC ,当△ ABC 为等腰三角形时,格点 C 的不同位置有 3 处,设网格中的每个小正方形的边长 为 1,则所有满足题意的等腰三角形 ABC 的面积之和等于 15 .∵网格中的每个小正方形的边长为 1, ∴ S △ABC= ×4×3=6,S△ABC ′=20﹣2×3﹣ =6.5 ,故答案分别为: 3;15.格点 C 的不同位置分别是: C 、C ′、C ″,S△A BC ″=2.54、如图,在图中能画出与△ ABC全等的格点三角形有几个?类型二、定边几何法讨论:两圆一线5、以线段AB为一边的等腰直角三角形有个,请在下列图中画出来6、(1)如图所示,线段OD的一个端点O在直线AB上,以OD为一边的等腰三角形ODP,并且使点P 也在AB 上,这样的等腰三角形能画 4 个(在图中作出点P)(2)若∠ DOB=6°0 ,其它条件不变,则这样的等腰三角形能画 2 个,(只写出结果)(3)若改变(2)中∠ DOB的度数,其他条件不变,则等腰三角形ODP的个数和(2)中的结果相同,则改变后∠ DOB= 907、如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△ PAB是等腰三角形,则这样的点P 最多能确定()个.8、线段AB和直线l 在同一平面上.则下列判断可能成立的有5 个直线l 上恰好只有个1点P,使△ ABP为等腰三角形直线l 上恰好只有个2点P,使△ ABP为等腰三角形直线l 上恰好只有个3点P,使△ ABP为等腰三角形直线l 上恰好只有个4点P,使△ ABP为等腰三角形直线l 上恰好只有个5点P,使△ ABP为等腰三角形直线l 上恰好只有个6点P,使△ ABP为等腰三角形.9、如图AOB, 当AOB为30 ,60 ,120 时,请在射线OA上找点P,使POB为等腰三角形,并分析出当AOB发生变化时,点P 个数的情况;结论】当AOB为锐角,AOB 60 ,有三个点,当AOB= 60 ,只有一个点;当AOB 为钝角或直角,只有一个点;类型三、三角形、长方形和正方形中的等腰三角形10、如图,在长方形ABCD中,AB=4,AD=10,点Q是BC的中点,点P在AD边上运动,若△ BPQ是腰长为 5 的等腰三角形,则满足题意的点P有( B )A.2 个B.3 个C.4 个D.5 个11、如图所示,在长方形ABCD的对称轴上找一点P,使得△PAB,△PBC均为等腰三角形,则满足条件的点P 有( C ) A.1 个 B.3 个 C.5 个 D. 无数多个12、如图,边长为 6 的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△ PBQ是等腰三角形,则符合条件的Q点有个.13、在等边△ ABC所在的平面内求一点P,使△ PAB,△PBC,△PAC都是等腰三角形,请画出所有满足条件的点;。
专题 图形折叠中的等腰三角形存在性问题
专题06图形折叠中的等腰三角形存在性问题【题型演练】一、解答题1.对于面积为S 的三角形和直线l ,将该三角形沿直线l 折叠,重合部分的图形面积记为0S ,定义00S S S -为该三角形关于直线l 的对称度.如图,将面积为S 的ABC 沿直线l 折叠,重合部分的图形为C DE ',将C DE '的面积记为0S ,则称00S S S -为ABC 关于直线l的对称度.在平面直角坐标系xOy 中,点A(0,3),B(-3,0),C(3,0).(1)过点M(m ,0)作垂直于x 轴的直线1l ,①当1m =时,ABC 关于直线1l 的对称度的值是:②若ABC 关于直线1l 的对称度为1,则m 的值是.(2)过点N(0,n)作垂直于y 轴的直线2l ,求△ABC 关于直线2l 的对称度的最大值.(3)点P(-4,0)满足5AP =,点Q 的坐标为(t ,0),若存在直线,使得APQ 关于该直线的对称度为1,写出所有满足题意的整数t 的值.2.如图1,在ABC 中,90C ∠=︒,40A ∠=︒,D 为AC 的中点,E 为边AB 上一动点,连接DE ,将ADE V 沿DE 翻折,点A 落在AC 上方点F 处,连接EF ,CF .(1)判断∠1与∠2是否相等并说明理由;(2)若DEF 与以点C ,D ,F 为顶点的三角形全等,求出ADE ∠的度数:(3)翻折后,当DEF 和ABC 的重叠部分为等腰三角形时,直接写出ADE ∠的度数.3.数学兴趣小组开展实践探究活动,将三角形ABC纸片沿某条直线折叠,使其中一个角的顶点落在一边上.在△ABC中,AB=9,BC=6.(1)如图1,若∠ACB=90°,将△ABC沿CM折叠,使点B与边AB上的点N重合,求BM的长(2)如图2,若∠ACB=2∠A,将△ABC沿CM折叠,使点B与边AC上的点N重合,①求AC的长;②若O是AC的中点,P为线段ON上的一个动点,将△APM沿PM折叠得到△A′PM,A M与AC相交于点F,则PFFM的取值范围为.4.在△ABC中,∠ACB=90°,AC=4,BC=3.(1)如图1,D为线段BC上一点,点C关于AD的对称点C恰好落在AB边上,求CD的长;(2)如图2,E为线段AB上一点,沿CE翻折△CBE得到△CEB′,若EB′∥AC,求证:AE=AC;(3)如图3,D为线段BC上一点,点C关于AD的对称为点C′,是否存在异于图1的情况的C′、B、D为顶点的三角形为直角三角形,若存在,请直接写出BC′长;若不存在,请说明理由.5.如图1,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图2);△是等腰三角形,若存在,请求出所有符合条件的点P的(3)在y轴上是否存在一点P(不与C重合),使得CDP坐标;若不存在,请说明理由.折纸是一种将纸张折成各种不同形状的艺术活动,折纸大约起源于公元1世纪或者2世纪时的中国,6世纪时传入日本,再经由日本传到全世界,折纸与自然科学结合在一起,不仅成为建筑学院的教具,还发展出了折纸几何学,成为现代几何学的一个分支.今天折纸被应用于世界各地,其中比较著名的是日本筑波大学的芳贺和夫发现的折纸几何三定理,它已成为折纸几何学的基本定理.芳贺折纸第一定理的操作过程及内容如下:第一步:如图1,将正方形纸片ABCD 对折,使点A 与点D 重合,点B 与点C 重合.再将正方形ABCD 展开,得到折痕EF ;第二步:将正方形纸片的右下角向上翻折,使点C 与点E 重合,边BC 翻折至B E '的位置,得到折痕MN ,B E '与AB 交于点P .则点P 为AB 的三等分点,即:2:1AP PB =.问题解决如图1,若正方形ABCD 的边长是2.(1)CM 的长为______;(2)请通过计算AP 的长度,说明点P 是AB 的三等分点.类比探究(3)将长方形纸片()ABCD AB BC >按问题背景中的操作过程进行折叠,如图2,若折出的点P 也为AB 的三等分点,请直接写出AB AC 的值.在数学综合实践课上,老师让同学们探究等腰直角三角形中的折叠问题.问题情境:如图,在ABC 中,6AB AC ==,90A ∠=︒,点D 在边AB 上运动,点E 在边BC 上运动.探究发现:(1)如图2,当沿DE 折叠,点B 落在边AC 的点B '处,且DB BC '∥时,发现四边形BEB D '是菱形.请证明;探究拓广:(2)如图3,奇异小组同学的折叠方法是沿DE 折叠,点B 落在点B '处,延长DB '交AC 于点F ,DF BC ∥,点G 在边BC 上运动,沿FG 折叠使点C 落在线段DB '的中点C '处,求线段DF 的长;探究应用:(3)沿DE 折叠,点B 的对应点B '恰好落在边AC 的三等分点处,请借助图1探究,并直接写出BD 的长.8.在平面直角坐标系中,O 为坐标原点,在四边形OABC 中,顶点A (0,2),)C ,)B n ,且点B 在第一象限,△OAB 是等边三角形.(1)如图①,求点B 的坐标;(2)如图②,将四边形OABC 沿直线EF 折叠,使点A 与点C 重合,求点E ,F 的坐标;(3)如图③,若将四边形OABC 沿直线EF 折叠,使EF OB ∥,设点A 对折后所对应的点为A ',△AEF 与四边形EOBF 的重叠面积为S ,设点E 的坐标为(0,m )(0<m <1),请直接写出S 与m 的函数关系式.9.如图,Rt△AOB中,∠AOB=90°,OA=OB=4,点P在直线OA上运动,连接PB,将△OBP沿直线BP 折叠,点O的对应点记为O′.(1)若AP=AB,则点P到直线AB的距离是;(2)若点O′恰好落在直线AB上,求△OBP的面积;(3)将线段PB绕点P顺时针旋转45°得到线段PC,直线PC与直线AB的交点为Q,在点P的运动过程中,是否存在某一位置,使得△PBQ为等腰三角形?若存在,请直接写出OP的长;若不存在,请说明理由.10.定义:若a,b,c是△ABC的三边,且a2+b2=2c2,则称△ABC为“方倍三角形”.(1)对于①等边三角形②直角三角形,下列说法一定正确的是.A.①一定是“方倍三角形”B.②一定是“方倍三角形”C.①②都一定是“方倍三角形”D.①②都一定不是“方倍三角形”,则该三角形的面积为;(2)若Rt△ABC是“方倍三角形”,且斜边AB(3)如图,△ABC中,∠ABC=120°,∠ACB=45°,P为AC边上一点,将△ABP沿直线BP进行折叠,点A落在点D处,连接CD,AD.若△ABD为“方倍三角形”,且AP PDC的面积.11.如图1,在ABC 中,5cm AB AC ==,6cm BC =,AE 为BC 边上的中线.(1)求AE 的长;(2)动点P 的速度为2cm /s ,运动时间为t 秒.①如图2,当点P 从点B 开始沿BC 边向点C 移动时,若ABP 是以BP 为腰的等腰三角形,请你求出所有满足条件的t 的值.②如图3,当点P 从点C 开始沿AC 边向点A 移动时,将CPE △沿直线PE 对折,点C 的对称点为C ',当C PE '△与AEP △重叠部分为直角三角形时,请直接写出t 的值为_________12.如图,在平面直角坐标系中,已知点A(5,0),以原点O为圆心、3为半径作⊙O,⊙O与x轴交于点B、C.点P从点O出发,以每秒1个单位的速度沿y轴正半轴运动,运动时间为t(s).连结AP,将△OAP沿AP 翻折,得到△APQ.(1)当△OAQ为等边三角形时,请直接写出P点坐标;(2)若△ABQ为直角三角形时,请求出t的值;(3)求△APQ有一边所在直线与⊙O相切时,请直接写出t的值.13.(1)操作发现:如图①,在Rt ABC中,∠C=2∠B=90°,点D是BC上一点,沿AD折叠ADC,使得点C恰好落在AB上的点E处,请写出AB、AC、CD之间的关系?并说明理由.(2)问题解决:如图②,若(1)中∠C≠90°,其他条件不变,请猜想AB、AC、CD之间的关系,并证明你的结论;(3)类比探究:如图③,在四边形ABCD中,∠B=120°,∠D=90°,AB=BC,AD=BC,连接AC,点E是CD上一点,沿AE折叠,使得点D正好落在AC上的点F处,若BC=3,求出DE的长.14.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.【发现与证明】ABCD Y 中,AB BC ≠,将ABC 沿AC 翻折至AB C 'V ,连结B D '.结论1:AB C 'V 与ABCD Y 重叠部分的图形是等腰三角形.结论2://B D AC ';……(1)请利用图1证明结论1或结论2;【应用与探究】在ABCD Y 中,已知30B ∠=︒,将ABC 沿AC 翻折至AB C 'V ,连结B D '.(2)如图,若AB =75AB D '∠=︒,则ACB =∠_____︒,BC =_____;(3)已知AB =BC 长为多少时,AB D 'V 是直角三角形?请直接写出答案15.如图,在平行四边形纸片ABCD中,AD=6cm,将纸片沿对角线BD对折,边AB的对应边BF与CD边交于点E,此时△BCE恰为等边三角形.(1)求AB的长度;(2)重叠部分的面积为;(3)将线段BC沿射线BA方向移动,平移后的线段记作B'C',请直接写出B'F+C'F的最小值.16.定义:有三个角相等的四边形叫做三等角四边形.(1)在三等角四边形ABCD 中,A B C ∠=∠=∠,则A ∠的取值范围为_______;(2)如图1,折叠平行四边形DEBF ,使得顶点,E F 分别落在边,BE BF 上的点,A C 处,折痕为DG DH 、.求证:四边形ABCD 为三等角四边形;(3)如图2,在三等角四边形ABCD 中,A B C ∠=∠=∠,若5AB =,AD =7DC =,则BC 的长度为_______.17.综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在ABCD Y 中,BE AD ⊥,垂足为E ,F 为CD 的中点,连接EF ,BF ,试猜想EF 与BF 的数量关系,并加以证明;独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将ABCD Y 沿着BF (F 为CD 的中点)所在直线折叠,如图②,点C 的对应点为'C ,连接'DC 并延长交AB 于点G ,请判断AG 与BG 的数量关系,并加以证明;问题解决:(3)智慧小组突发奇想,将ABCD Y 沿过点B 的直线折叠,如图③,点A 的对应点为'A ,使'A B CD ⊥于点H ,折痕交AD 于点M ,连接'A M ,交CD 于点N .该小组提出一个问题:若此ABCD Y 的面积为20,边长5AB =,BC =,求图中阴影部分(四边形BHNM )的面积.请你思考此问题,直接写出结果.18.综合与实践在一次综合实践活动课上,数学王老师给每位同学各发了一张正方形纸片,要求同学们仅通过折纸的方法来确定该正方形一边上的一个三等分点.“启航”小组的同学在经过一番思考和讨论交流后,进行了如下的操作:第一步:如图1,将正方形纸片ABCD的一条边AD对折,使点A和点D重合,得到AD的中点E,然后展开铺平;第二步:如图2,将CD边沿CE翻折到CF的位置;第三步:如图3,再将BC沿过点C的直线翻折,使点B和点F重合,折痕与AB边交于点G.他们认为:该点G就是AB边的一个三等分点.(1)试证明上面的结论:(2)“奋进”小组的同学是这样操作的:第一步:先将正方形纸片ABCD的一条边AD对折,使点A和点D重合,找到AD的中点E;第二步:再折出正方形纸片ABCD的对角线AC,以及点B和点E的连线BE,这两条折痕相交于点F;第三步:最后,过点F折出AB的平行线GN,分别与AD,BC交于点G和点N.①请根据上面的描述,在图4中画出所有的折痕,确定点G和点N的位置;②请结合①中所画的图形,判断点G是否为AD边的三等分点,并说明理由.。
专题一:二次函数中等腰三角形存在性问题
专题:二次函数中等腰三角形存在性问题类型一、等腰三角形存在性问题以(,)A A A x y 、(,)B B B x y 为三角形的边,在x 轴上找一点P 使得△PAB 为等腰三角形(二定一动)一.找法:画圆和作垂直平分线①以A 为圆心,线段AB 为半径画圆,与x 轴交点即为1P 、2P 点;(AB=AP )②以B 为圆心,线段AB 为半径画圆,与x 轴交点即为3P 、4P 点;(AB=BP )③作线段AB 的垂直平分线,与x 轴交点即为5P 点;(AP=BP )二、算法:利用两点距离公式进行计算 公式:22()()A B A B AB x x y y =-+- ,设(,)p p P x y ,分三种情况:①AB=AP 时 2222()()()()A B A B A P A P x x y y x x y y -+-=-+-可得1P 、2P ,(特殊情况可能是一个点,例如2P 与B 重合)②AB=BP 时2222()()()()A B A B B P B P x x y y x x y y -+-=-+-可得3P 、4P ,(特殊情况可能是一个点,例如3P 与A 重合)③AP=BP 时2222()()()()A P A P B P B P x x y y x x y y -+-=-+-可得5P 、例题1、如图,已知二次函数2y x bx c =++的图像与x 轴交于点A 、B 两点,其中A 点坐标为(-3,0),与y 轴交于点C ,点D (-2,-3)在抛物线上.(1)求抛物线的表达式;(2)抛物线的对称轴上是否存在动点Q ,使得△BCQ 为等腰三角形?若存在,求出点Q 的坐标;若不存在,说明理由.1、(2021·云南九年级一模)如图所示,抛物线()240y ax bx a =++≠经过点()1,0A -,点()4,0B ,与y 轴交于点C ,连接AC ,BC .点M 是线段OB 上不与点O 、B 重合的点,过点M 作DM x ⊥轴,交抛物线于点D ,交BC 于点E .(1)求抛物线的表达式;(2)过点D 作DF BC ⊥,垂足为点F .设M 点的坐标为(),0M m ,请用含m 的代数式表示线段DF 的长,并求出当m 为何值时DF 有最大值,最大值是多少?(3)试探究是否存在这样的点E ,使得以A ,C ,E 为顶点的三角形是等腰三角形.若存在,请求出此时点E 的坐标;若不存在,请说明理由.2、(八中2020级初三第三次月考)如图在平面直角坐标系中,已知抛物线2(0)y ax bx c a =++≠交x 轴于A (-4,0),B (1,0),交y 轴于C (0,3)(1)求此抛物线解析式;(2)如图1,点P 为直线AC 上方抛物线上一点,过点P 作PQ ⊥x 轴于点Q ,再过点Q 作QR//AC 交y 轴于点R ,求PQ+QR 的最大值及此时点P 的坐标;(3)如图2,点E 在抛物线上,横坐标为-3,连接AE ,将线段AE 沿直线AC 平移,得到线段''A E ,连接'CE ,当△''A E C 为等腰三角形时,只写写出点'A 的坐标。
专题复习优质教案:二次函数中等腰三角形的存在性问题(一等奖)
专题复习:二次函数中等腰三角形的存在性问题教学目标:1. 通过题组训练,理解等腰三角形的性质,掌握分类讨论及其基本的作图方法.2. 掌握二次函数中等腰三角形存在性问题的解题思路及解题方法.3. 通过综合题提高运算能力、分析问题与解决问题的能力,养成良好的思维习惯,熟悉中考压轴题结构,把握答题规范.4. 感悟数学内容本质,积累思维经验,体会分类讨论、数形结合、转化化归和方程建模等数学思想.教学重点:掌握二次函数中等腰三角形存在性问题的解题思路及解题方法. 教学难点:运用转化与化归的数学思想,把复杂问题化解为几个基础问题,基本图形,形成解决压轴题的一种解题策略。
教学过程:一、知识与方法回顾(预习完成)1. 知识梳理:等腰三角形的性质与判定.2. 如图1,若△ABC 是等腰三角形时,三边存在哪几种情况?怎样分类?(明理)3. 如图2,已知线段AB 和直线 l ,在直线l 上存在一点P ,使△P AB 是等腰三角形?如何确定点P 的位置. 思考:为什么这样画?依据是什么?【方法小结】1. 若一个三角形是等腰三角形,没有明确给出底边和腰,则需要进行分类讨论.2. 以线段AB 为边的等腰三角形构造方法如上图所示(基本图形). 等腰三角形的另一个顶点在线段AB 的垂直平分线上,或以点A 、点B 为圆心,AB 长为半径的圆周上(不与线段AB 共线).二、基础训练训练1:如图3,在平面直角坐标系中,点D 的坐标为(3,4)P 是x 轴正半轴上的一个动点,若以P ,O ,D 为顶点的三角形是等腰三角形,求点P 的坐标.【思路分析】1.学生审题,思考,尝试解题,展示解法;2.思路分析,回答以下问题:图3 图1 C A B A B A l(1)题目中的定点、动点分别是什么?求什么?联想曾经学过解决类似问题的方法.(2)要求点P 的坐标,只需求什么?(点P 的横坐标即求线段OP 的长)(3)这时点P 的位置有几种情况?画出点P 的位置,写出每种情况中相等的线段.(4)观察所画的点P 的位置,哪种情况可以直接求得OP 的长?理由是什么?(5)当PO =PD 时,如何求OP 的长?求线段长度的常用方法有哪些?怎样转化?怎样构造“基本图形”求解?请思考,讨论.(开放性问题,解法多样.)【解题分析】 1. 第(1)、(2)种情况计算较易,由学生独立完成.2.重点研究:当PO =PD 时,求OP 的长. 怎样想?为什么这样想?思路1:根据PO =PD ,列方程求解. 关键是用参数(设未知数)的代数式表示相关动线的长度. 用到知识“两点间距离公式”.思路2:根据Rt △DEP 中,DE 2+EP 2=PD 2,列方程求解. 关键设EP =t ,则DP =3+t . 思路3:用相似或三角函数求解. 作PF ⊥OD 于点F ,OF =25,ODOE OP OF =. 思路4:用直线与x 轴交点求解. 作PF ⊥OD 于点F ,设直线PF 的解析式为:b x y +-=43,F (23,2),易求得82543+-=x y ,所以P (625,2). 用到k 1×k 2=-13.学生的解题思路、答题情况展示、点评与小结.点评:解法1、2的思路特点是设未知量,建立方程求解;解法3几何推理(相似或三角函数),计算;解法4用函数与方程思路求解. 相对而言,解法1思路更为简明、直接,易理解,解题步骤简单,具有一定通用性,但有时计算量较大.【题后反思】学生感悟,方法规律总结。
最新一次问题--等腰三角形存在性问题
最新一次问题--等腰三角形存在性问题
等腰三角形是指具有两条边相等的三角形。
本文将讨论等腰三
角形的存在性问题。
在几何学中,我们知道要构成一个等腰三角形,至少需要两条
边相等。
因此,我们需要分两种情况来讨论等腰三角形的存在性。
- 第一种情况是已知两条边的长度是否相等。
如果两条边的长
度相等,那么根据等腰三角形的定义,我们可以得出结论:存在一
个等腰三角形。
- 第二种情况是已知两个角是否相等。
如果两个角的大小相等,那么根据等腰三角形的性质,我们可以推出结论:存在一个等腰三
角形。
上述两种情况都能保证等腰三角形的存在性。
然而,若只给出
了其中一种条件(即两条边的长度相等或两个角的大小相等),我
们不能确定是否存在一个等腰三角形。
因此,同时满足两个条件才
能推断等腰三角形的存在。
综上所述,等腰三角形的存在性取决于两个条件的同时满足。
当两条边的长度相等且两个角的大小相等时,我们可以确定存在一个等腰三角形。
若只满足其中一个条件,我们不能确保等腰三角形的存在。
请注意,以上讨论基于几何学的基本定义和性质,准确性得到确认。