高三数学第一轮复习阶段性测试题8

合集下载

2023届高三数学一轮复习大题专练08导数构造函数证明不等式2

2023届高三数学一轮复习大题专练08导数构造函数证明不等式2

一轮大题专练8—导数(构造函数证明不等式2)()a R ∈.(1)讨论函数()f x 的单调性;解:(1)函数的定义域为(0,)+∞()i 当0a =时,()()10,()0g x g x f x x'=-<=<,此时()f x 在(0,)+∞上单调递减;()ii 当0a ≠时,()g x 为二次函数,△①若△0…,即时,()g x 的图象为开口向下的抛物线且()0g x …时()f x 在(0,)+∞上5单调递减;②当△>0a >时,令()0g x =当8a <-时,()g x,)+∞时,()0g x …,则()0f x '<,()f x 单调递减,当()0g x >,则()0f x '>,()f x 单调递增;当a >时,()g x 的图象为开口向上的抛物线,120x x <<,当2(0,)x x ∈,()0g x …,则()0f x '<,()f x 单调递减,当,)+∞,()0g x >,则()0f x '>,()f x 单调递增;综上,当8a <-时,()f x 在单调递减,在时,()f x 在当80a -……(0,)+∞上单调递减.(2)证明:由(1()f x()f x f >(1),即又20lnx x x <<-令121()(1),12x m x e x x -=-+…1x …,()0m x ''∴…)+∞1)0=,()0m x '…[1上单调递增,又m (11),即2.已知函数()xf x xe =.212||(1)4x x e a -<++.解:(1)()x f x xe =()(1)x f x x e ∴'=+故2x =-时的切线方程是(2)证明:由(1)知:()f x (1,)-+∞递增,1(1)f e -=-时,方程()f x a =有2,故1()0g x >,故(2,0)x ∈-(1)讨论关于x 的方程||()lnx f x =根的个数;(2)当x ∈()1()f x x F x -…….解:(1)令()||()g x lnx f x =-,(0,)x ∈+∞,()0g x =当(0,1)x ∈2121()x x g x x e+'=-+因此()g x '在区间上单调递增,()g x g ''<(1,()g x 在(0,1)区间上单调递减,22(1)0g e =-<210x +>g (1,g (e )0>,2个.(2)21()(22cos 2x x F x x x --=--++设2()2cos 22x M x x =+-()M x '1]1]所以,1()0x F x --…,当(0,1)x ∈1](1)求()f x 的单调区间;边和右边两个不等式可只选一个证即可)解:(1当1m…()f x()0f x'<11xm<<-,综上,当1m…时单调递增区间为(0,)+∞;单调递增区间为(2)证明:()g x lnx x m=-+设()(0)h x x lnx x=->,则x→h(1①若证所证不等式的左边,即112m e bb-<+又b)=,则故即证即证221(1)ln ln b b-<+-,设t(b)2(1)ln b b=+-bb1②若证所证不等式的右边,即即证即证221(1)ln m ln a lna+->+-,又g(a)=,即故即证221(1)ln a lna ln a lna+-->+-,即证设ϕ(aa a 1(1)求实数a 的值;解:(1易知函数()f x令2()10ag x x '=-=1)10a =-=,解得故实数a 的值为1;(2)由(1)知,函数()f x 在又11()1,(1)1,(3)33f f f ln e e =--=-=-1()min f x f =(3①当10k +>,即1k >-时,对不等式成立,即为13k ln ∴-…,此时k 的取值范围为13k ln -…;②当10k +<,即1k <-时,对不等式成立,即为则1()()33132min max k f x f x ln ln +-=-+=-…,33k ln ∴-…,此时k 的取值范围为33k ln -…,综上,实数k 的取值范围为,)+∞;(3下证:1x xlnx e x -<--()112x x h x lnx e lnx e '=+-+=-+,1()x h x e x''=-,(0,)+∞()0h x ''=00lnx x =-,且当0(0,)x x ∈时,,)+∞时,2000000(1)1()()220x maxx x h x lnx e x x x -''==-+=--+=-<,()h x ∴又0x →时,()0h x <再证:1cos 1(0)x x x --<->()sin 10m x x '=-+…,()m x ∴(1)讨论()f x 的极值情况;(2)若a …解:(1)()21x f x e ax b =--+①0a …()f x()0f x '>故()f x综上:0a …(2()11x f x e b b =-+>-+则10b -+…,1b …1时,()(2)2221min f x f ln a a aln a b ==--+,()0f x …设2()22214g x x xln x x =-+-为(0,)+∞上的减函数,且则存在唯一实数01(8x ∈当0(0,)x x ∈时,,)+∞时,2000()421g x x x =++,a。

天津市武清区杨村第一中学高三数学上学期第一次阶段性检测试题 理

天津市武清区杨村第一中学高三数学上学期第一次阶段性检测试题 理

数学理一.选择题(本题共8小题,每小题5分,共计40分) 1.已知全集R U =,函数x x x f 52)(-=的定义域为M ,则=M C U ( )A .]0,(-∞B .),0(+∞C .)0,(-∞D .),0[+∞2. 已知幂函数)(x f 的图象过点)21,4(,则()8f 的值为 ( ) A. 42 B.64 C. 22 D. 6413.已知命题p 、q ,“p ⌝为真”是“p q ∧为假”的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件4.当210≤<x 时,x a xlog 4<,则实数a 的取值范围是 ( )A .)2,1(B .),2(+∞C .)22,0( D .)1,22(5.已知)(x f 是定义域为R 的偶函数,当0≥x 时,x x x f 4)(2-=, 则不等式5)32(≤+x f 的解集为 ( ) A .]5,5[- B .]2,8[- C .]1,4[- D .]4,1[6.已知奇函数)(x f 的定义域为R ,若)1(+x f 为偶函数,且1)1(=f ,则=+)2015()2014(f f ( ) A .2- B .1- C .0 D .17.设函数⎪⎩⎪⎨⎧>+-≤-=0,20,2)(22x x x x x x x f ,且关于x 的方程)(,)(R m m x f ∈=恰有3个不同的实数根321,,x x x ,则321x x x 的取值范围是 ( )A .)0,1(-B .),21(+∞-C .)1,0(D .)0,21(-8. 已知函数x x f x 2log 2)(+=,1log 2)(2+=x x g x ,1log 2)(2-=x x h x的零点分别为,,a b c ,则 ,,a b c 的大小关系为 ( )A.a b c <<B.c b a <<C.c a b <<D.b a c << 二、填空题(本大题共6个小题,每小题5分,共30分)9.若对任意R x ∈,a a x x 4|3||2|2-≥++-恒成立,则实数a 的取值范 围是 .10.已知直线l 的参数方程为:2,14x t y t =⎧⎨=+⎩(t 为参数),圆C 的极坐标方程为2cos ρθ=,则圆C 的圆心到直线l 的距离为 . 11.函数)2(log log )(24x x x f ⋅=的值域用区间表示为________.12.函数⎩⎨⎧>≤+=)0(,log )0(,1)(2x x x x x f ,则函数1)]([-=x f f y 的零点个数是 . 13.如图,ABC ∆内接于⊙O ,过BC 中点D 作平行于AC 的直线l ,l 交AB 于点E ,交⊙O 于G 、F ,交⊙O 在点A 切线于点P ,若3,2,3===EF ED PE ,则PA 的长为 . 14.设R b a ∈,,已知函数)(x f y =是定义域为R 的偶函数,当0≥x 时,⎪⎩⎪⎨⎧≥<≤⎪⎭⎫ ⎝⎛=2log 20,21)(16x x x x f x.若关于x 的方程0)()]([2=++b x af x f 有且只有7个不同实数根,则a b的取 值范围是 .三、解答题(本题共6题,满分80分.解答应写出文字说明, 证明过程或演算步骤.)15.设命题p :函数21()lg()16f x ax x a =-+的定义域为R ;命题q :不等式39x x a -<对一切R x ∈均成立。

【走向高考】(2013春季发行)高三数学第一轮总复习 8-4椭圆 新人教A版

【走向高考】(2013春季发行)高三数学第一轮总复习 8-4椭圆 新人教A版

8-4椭圆基础巩固强化1.(文)椭圆x 2a 2+y 2b 2=1(a >b >0)上任一点到两焦点的距离分别为d 1、d 2,焦距为2c .若d 1,2c ,d 2成等差数列,则椭圆的离心率为( )A.12B.22C.32D.34 [答案] A[解析] 由椭圆的定义,d 1+d 2=2a ,又由题意得d 1+d 2=4c ,∴2a =4c ,∴e =c a =12.(理)(2011²浙江五校联考)椭圆x 216+y 27=1的左、右焦点分别为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( )A .32B .16C .8D .4 [答案] B[解析] 由题设条件知△ABF 2的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16. 2.(2011²岳阳月考)椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D.1925或21 [答案] C[解析] 若a 2=9,b 2=4+k ,则c =5-k ,由c a =45即5-k 3=45,得k =-1925;若a2=4+k ,b 2=9,则c =k -5,由c a =45,即k -54+k =45,解得k =21. 3.(2012²新课标,4)设F 1、F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为直线x=3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A.12 B.23 C.34 D.45[答案] C[解析] 本题考查了圆锥曲线的离心率的求法.设直线x =3a2与x 轴交于点M ,则由条件知,∠F 2F 1P =∠F 2PF 1=30°,∴∠PF 2M =60°,在Rt △PF 2M 中,PF 2=F 1F 2=2c ,F 2M =3a2-c ,故cos60°=F 2M PF 2=32a -c 2c =12,解得c a =34,故离心率e =34.[点评] 求离心率时要注意数形结合的应用,在图形中设法寻求a ,c 所满足的数量关系,从而确定离心率的值.4.(文)(2011²抚顺六校检测)椭圆x 24+y 2=1的焦点为F 1、F 2,点M 在椭圆上,MF 1→²MF 2→=0,则M 到y 轴的距离为( )A.233 B.263C.33D. 3[答案] B[分析] 条件MF 1→²MF 2→=0,说明点M 在以线段F 1F 2为直径的圆上,点M 又在椭圆上,通过方程组可求得点M 的坐标,即可求出点M 到y 轴的距离.[解析] 解法1:椭圆的焦点坐标是(±3,0),点M 在以线段F 1F 2为直径的圆上,该圆的方程是x 2+y 2=3,即y 2=3-x 2,代入椭圆得x 24+3-x 2=1,解得x 2=83,即|x |=263,此即点M 到y 轴的距离.解法2:由MF 1→²MF 2→=0知,MF 1⊥MF 2,∴⎩⎪⎨⎪⎧|MF 1|+|MF 2|=4,|MF 1|2+|MF 2|2=4³4-1,∴⎩⎨⎧|MF 1|=2+2,|MF 2|=2-2,由|MF 1|2=t ²|F 1F 2|得t =3+263, ∴M 到y 轴的距离为t -3=263.解法3:设M (x 0,y 0),则x 204+y 20=1,∴y 20=1-x 204,①∵MF 1→²MF 2→=0,∴MF 1⊥MF 2, ∴|MF 1|2+|MF 2|2=|F 1F 2|2=4c 2=12, 又F 1(-3,0),F 2(3,0), ∴(x 0+3)2+y 20+(x 0-3)2+y 20=12, 将①代入解得x 0=±263,∴M 到y 轴的距离为263.[点评] 满足MA →²MB →=0(其中A ,B 是平面上两个不同的定点)的动点M 的轨迹是以线段AB 为直径的圆.(理)(2011²河北石家庄一模)已知椭圆x 216+y 225=1的焦点分别是F 1,F 2,P 是椭圆上一点,若连接F 1,F 2,P 三点恰好能构成直角三角形,则点P 到y 轴的距离是( )A.165 B .3 C.163D.253[答案] A[解析] F 1(0,-3),F 2(0,3),∵3<4, ∴∠F 1F 2P =90°或∠F 2F 1P =90°. 设P (x,3),代入椭圆方程得x =±165.即点P 到y 轴的距离是165.5.(文)(2011²山东淄博重点中学期中)已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为13,则椭圆方程为( )A.x 2144+y 2128=1 B.x 236+y 220=1 C.x 232+y 236=1 D.x 236+y 232=1 [答案] D[解析] 2a =12,∴a =6,∵e =c a =13,∴c =2,∴b 2=a 2-c 2=32,故选D.(理)(2011²长沙模拟)已知焦点在x 轴上的椭圆的离心率为12,且它的长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的标准方程是( )A.x 24+y 23=1B.x 216+y 212=1 C.x 24+y 2=1 D.x 216+y 24=1 [答案] A[解析] 由x 2+y 2-2x -15=0得,(x -1)2+y 2=16, ∴r =4,∴2a =4,∴a =2,∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.故选A.6.(2011²银川二模)两个正数a 、b 的等差中项是52,等比中项是6,且a >b ,则椭圆x2a2+y 2b2=1的离心率e 等于( ) A.32 B.133C.53D.13[答案] C[解析] 由题意可知⎩⎪⎨⎪⎧a +b =5,a ²b =6,又因为a >b ,所以解得⎩⎪⎨⎪⎧a =3,b =2,所以椭圆的半焦距为c =5,所以椭圆的离心率e =ca =53,故选C. 7.(2011²南京模拟)已知P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,若PF 1→²PF 2→=0,tan ∠PF 1F 2=12,则此椭圆的离心率为________.[答案]53[解析] ∵PF 1→²PF 2→=0,∴PF 1⊥PF 2, 在Rt △PF 1F 2中,tan ∠PF 1F 2=|PF 2||PF 1|=12,设|PF 2|=x ,则|PF 1|=2x ,由椭圆的定义|PF 1|+|PF 2|=2a ,∴x =2a3,∵|PF 1|2+|PF 2|2=|F 1F 2|2,∴x 2+4x 2=4c 2, ∴209a 2=4c 2,∴e =c a =53. 8.(文)已知实数k 使函数y =cos kx 的周期不小于2,则方程x 23+y 2k=1表示椭圆的概率为________.[答案] 12[解析] 由条件2π|k |≥2,∴-π≤k ≤π,当0<k ≤π且k ≠3时,方程x 23+y 2k=1表示椭圆,∴概率P =12.(理)已知1m +2n =1(m >0,n >0),则当mn 取得最小值时,椭圆x 2m 2+y 2n2=1的离心率是________.[答案]32[解析] ∵m >0,n >0 ∴1=1m +2n ≥22mn,∴mn ≥8,当且仅当1m =2n,即n =2m 时等号成立,由⎩⎪⎨⎪⎧n =2m ,mn =8,解得m =2,n =4.即当m =2,n =4时,mn 取得最小值8,∴离心率e =n 2-m 2n =32.9.(2011²湖南长沙一中月考)直线l :x -y =0与椭圆x 22+y 2=1相交A 、B 两点,点C是椭圆上的动点,则△ABC 面积的最大值为________.[答案]2[解析] 设与l 平行的直线方程为x -y +a =0,当此直线与椭圆的切点为C 时,△ABC 的面积最大,将y =x +a 代入x 22+y 2=1中整理得,3x 2+4ax +2(a 2-1)=0,由Δ=16a 2-24(a 2-1)=0得,a =±3,两平行直线x -y =0与x -y +3=0的距离d =62,将y =x 代入x 22+y 2=1中得,x 1=-63,x 2=63,∴|AB |=1+1|63-(-63)|=433, ∴S △ABC =12|AB |²d =12³433³62= 2.10.(2011²北京文,19)已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0),斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△PAB 的面积.[解析] (1)由已知得,c =22,c a =63, 解得a =23, 又b 2=a 2-c 2=4,所以椭圆G 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m ,由⎩⎪⎨⎪⎧y =x +m ,x 212+y24=1,得4x 2+6mx +3m 2-12=0.①设A 、B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2),AB 中点为E (x 0,y 0),则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m 4.因为AB 是等腰△PAB 的底边,所以PE ⊥AB ,所以PE 的斜率k =2-m4-3+3m 4=-1.解得m =2,此时方程①为4x 2+12x =0, 解得x 1=-3,x 2=0,所以y 1=-1,y 2=2,所以|AB |=32,此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322,所以△PAB 的面积S =12|AB |²d =92.能力拓展提升11.(2011²河北唐山市二模)P 为椭圆x 24+y 23=1上一点,F 1、F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→²PF 2→等于( )A .3 B. 3 C .2 3 D .2[答案] D[解析] 由题意可得|F 1F 2|=2,|PF 1|+|PF 2|=4, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|²cos60° =(|PF 1|+|PF 2|)2-3|PF 1||PF 2|, 所以4=42-3|PF 1||PF 2|,|PF 1||PF 2|=4, PF 1→²PF 2→=|PF 1→||PF 2→|²cos60°=4³12=2,故选D.12.(文)(2011²福建文,11)设圆锥曲线Γ的两个焦点分别为F 1,F 2,若曲线Γ上存在点P 满足|PF 1|:|F 1F 2|:|PF 2|=4:3:2,则曲线Γ的离心率等于( )A.12或32B.23或2 C.12或2 D.23或32[答案] A[解析] 设|PF 1|=4t ,|F 1F 2|=3t ,|PF 2|=2t (t >0), 若Γ为椭圆,则离心率为e =3t 6t =12,若Γ为双曲线,则离心率为3t 2t =32. (理)(2011²许昌月考)已知双曲线x 2a 21-y 2b 2=1与椭圆x 2a 22+y 2b 2=1的离心率互为倒数,其中a 1>0,a 2>b >0,那么以a 1、a 2、b 为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形[答案] B[解析] 12=e 21e 22=c 21a 21²c 22a 22=a 21+b 2a 21²a 22-b 2a 22,则a 21a 22=a 21a 22+(a 22-a 21)b 2-b 4,所以a 22-a 21=b 2,则以a 1、a 2、b 为边长的三角形是以a 2为斜边的直角三角形,故选B.13.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点作圆x 2+y 2=b 2的两条切线,切点分别为A ,B ,若∠AOB =90°(O 为坐标原点),则椭圆C 的离心率为________.[答案]22[解析] 因为∠AOB =90°,所以∠AOF =45°,所以b a =22,所以e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=12,即e =22. 14.已知椭圆x 2a 2+y 2b2=1(a >b >0),A (2,0)为长轴的一个端点,弦BC 过椭圆的中心O ,且AC →²BC →=0,|OC →-OB →|=2|BC →-BA →|,则其焦距为________.[答案]463[解析] 由题意可知|OC →|=|OB →|=12|BC →|,且a =2,又∵|OC →-OB →|=2|BC →-BA →|, ∴|BC →|=2|AC →|.∴|OC →|=|AC →|.又∵AC →²BC →=0,∴AC →⊥BC →.∴|OC →|=|AC →|= 2.如图,在Rt △AOC 中, 易求得C (1,-1), 代入椭圆方程得124+-12b 2=1⇒b 2=43,∴c 2=a 2-b 2=4-43=83.∴c =263,2c =463.15.(文)(2012²广东文,20)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程. [解析] (1)因为椭圆C 1的左焦点为F 1(-1,0), 所以c =1,将点P (0,1)代入椭圆方程x 2a 2+y 2b 2=1,得1b2=1,即b 2=1,所以a 2=b 2+c 2=2, 所以椭圆C 1的方程为x 22+y 2=1. (2)直线l 的斜率显然存在,设直线l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,消去y 并整理得,(1+2k 2)x 2+4kmx +2m 2-2=0因为直线l 与椭圆C 1相切,所以Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0 整理得2k 2-m 2+1=0,①由⎩⎪⎨⎪⎧y 2=4x ,y =kx +m ,消去y 并整理得,k 2x 2+(2km -4)x +m 2=0,因为直线l 与抛物线C 2相切, 所以Δ2=(2km -4)2-4k 2m 2=0, 整理得km =1,② 综合①②,解得⎩⎪⎨⎪⎧k =22,m =2,或⎩⎪⎨⎪⎧k =-22,m =- 2.所以直线l 的方程为y =22x +2或y =-22x - 2. (理)(2012²山西四校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,以原点为圆心,椭圆的短半轴长为半径的圆与直线x -y +2=0相切.(1)求椭圆C 的方程;(2)设过点M (2,0)的直线与椭圆C 相交于两点A ,B ,设P 为椭圆上一点,且满足OA →+OB →=tOP →(O 为坐标原点),当|PA →-PB →|<253时,求实数t 的取值范围.[解析] (1)由题意知:e =c a =22, ∴e 2=c 2a 2=a 2-b 2a 2=12,∴a 2=2b 2.又∵圆x 2+y 2=b 2与直线x -y +2=0相切, ∴b =1,∴a 2=2,故所求椭圆C 的方程为x 22+y 2=1.(2)由题意知直线AB 的斜率存在,设直线AB 的斜率为k ,则其方程为:y =k (x -2).由⎩⎪⎨⎪⎧y =k x -2,x 22+y 2=1,消去y 得,(1+2k 2)x 2-8k 2x +8k 2-2=0,Δ=64k 4-4(2k 2+1)(8k 2-2)>0,∴k 2<12.设A (x 1,y 1),B (x 2,y 2),P (x ,y ), ∴x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k2.∵OA →+OB →=tOP →,∴(x 1+x 2,y 1+y 2)=t (x ,y ),x =x 1+x 2t =8k 2t 1+2k ,y =y 1+y 2t =1t[k (x 1+x 2)-4k ]=-4kt 1+2k 2. ∵点P 在椭圆上,∴8k 22t 21+2k 22+2-4k 2t 21+2k 22=2,∴16k 2=t 2(1+2t 2).∵|PA →-PB →|<253,∴1+k 2|x 1-x 2|<253,∴(1+k 2)[(x 1+x 2)2-4x 1x 2]<209, 即(1+k 2)[64k41+2k 22-4²8k 2-21+2k 2]<209, ∴(4k 2-1)(14k 2+13)>0,解得:k 2>14,∴14<k 2<12. 又16k 2=t 2(1+2k 2),∴t 2=16k 21+2k 2=8-81+2k2,∴83<t 2<4,∴-2<t <-263或263<t <2. 故实数t 的取值范围是(-2,-263)∪(263,2).16.(文)已知椭圆C 的中心为坐标原点O ,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A 、B ,且AP →=2PB →.(1)求椭圆方程; (2)求m 的取值范围.[解析] (1)由题意知椭圆的焦点在y 轴上,设椭圆方程为y 2a 2+x 2b2=1(a >b >0),由题意知a =2,b =c ,又a 2=b 2+c 2,则b =2,所以椭圆方程为y 24+x 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意,直线l 的斜率存在, 设其方程为y =kx +m ,与椭圆方程联立即⎩⎪⎨⎪⎧y 2+2x 2=4y =kx +m ,消去y 得,(2+k 2)x 2+2mkx +m 2-4=0, Δ=(2mk )2-4(2+k 2)(m 2-4)>0 由韦达定理知⎩⎪⎨⎪⎧x 1+x 2=-2mk2+k2,x 1²x 2=m 2-42+k2.又AP →=2PB →,即有(-x 1,m -y 1)=2(x 2,y 2-m ), ∴-x 1=2x 2,∴⎩⎪⎨⎪⎧x 1+x 2=-x 2,x 1x 2=-2x 22,∴m 2-42+k 2=-2⎝ ⎛⎭⎪⎫2mk 2+k 22,整理得(9m 2-4)k 2=8-2m 2,又9m 2-4=0时不成立,所以k 2=8-2m29m 2-4>0,得49<m 2<4,此时Δ>0, 所以m 的取值范围为⎝⎛⎭⎪⎫-2,-23∪⎝ ⎛⎭⎪⎫23,2. (理)椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e =12.(1)求椭圆E 的方程;(2)求∠F 1AF 2的角平分线所在直线的方程.[解析] (1)由题意可设椭圆方程为x 2a 2+y 2b2=1(a >b >0),∵e =12,即c a =12,∴a =2c ,又b 2=a 2-c 2=3c 2,∴椭圆方程为x 24c 2+y 23c2=1.又∵椭圆过点A (2,3),∴44c 2+93c 2=1,解得c 2=4,∴椭圆方程为x 216+y 212=1.(2)法一:由(1)知F 1(-2,0),F 2(2,0),∴直线AF 1的方程y =34(x +2),即3x -4y +6=0,直线AF 2的方程为x =2.设P (x ,y )为角平分线上任意一点,则点P 到两直线的距离相等. 即|3x -4y +6|5=|x -2|, ∴3x -4y +6=5(x -2)或3x -4y +6=5(2-x ), 即x +2y -8=0或2x -y -1=0.由图形知,角平分线的斜率为正数,故所求∠F 1AF 2的平分线所在直线方程为2x -y -1=0.法二:设AM 平分∠F 1AF 2,则直线AF 1与直线AF 2关于直线AM 对称. 由题意知直线AM 的斜率存在且不为0,设为k . 则直线AM 方程y -3=k (x -2). 由(1)知F 1(-2,0),F 2(2,0),∴直线AF 1方程为y =34(x +2),即3x -4y +6=0.设点F 2(2,0)关于直线AM 的对称点F 2′(x 0,y 0),则⎩⎪⎨⎪⎧y 0x 0-2=-1k,y 02-3=k x 0+22-2,解之得F 2′(-6k +2k 2+21+k 2,61+k 2).∵直线AF 1与直线AF 2关于直线AM 对称, ∴点F 2′在直线AF 1上.即3³-6k +2k 2+21+k 2-4³61+k 2+6=0.解得k =-12或k =2.由图形知,角平分线所在直线方程斜率为正,∴k =-12(舍去).故∠F 1AF 2的角平分线所在直线方程为2x -y -1=0. 法三:∵A (2,3),F 1(-2,0),F 2(2,0), ∴AF 1→=(-4,-3),AF 2→=(0,-3),∴AF 1→|AF 1→|+AF 2→|AF 2→|=15(-4,-3)+13(0,-3) =-45(1,2),∴k l =2,∴l :y -3=2(x -2),即2x -y -1=0.[点评] 因为l 为∠F 1AF 2的平分线,∴AF 1→与AF 2→的单位向量的和与l 共线.从而可由AF 1→、AF 2→的单位向量求得直线l 的一个方向向量,进而求出其斜率.1.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线[答案] B[解析] 点P 在线段AN 的垂直平分线上,故|PA |=|PN |,又AM 是圆的半径, ∴|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |,由椭圆定义知,P 的轨迹是椭圆. 2.若直线mx +ny =4和圆x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2个C .1个D .0个[答案] B[解析] ∵直线与圆无交点,∴4m 2+n2>2,∴m 2+n 2<4,∴点(m ,n )在圆内,又圆在椭圆内,∴点(m ,n )在椭圆内,故过点(m ,n )的直线与椭圆有两个交点.3.(2012²沈阳市二模)已知F 1、F 2分别为椭圆C :x 24+y 23=1的左、右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( )A.x 236+y 227=1(y ≠0) B.4x 29+y 2=1(y ≠0) C.9x 24+3y 2=1(y ≠0) D .x 2+4y23=1(y ≠0)[答案] C[解析] 椭圆C :x 24+y 23=1中,a 2=4,b 2=3,∴c 2=a 2-b 2=1,∴焦点F 1(-1,0),F 2(1,0), 设G (x ,y ),P (x 1,y 1),则⎩⎪⎨⎪⎧x =-1+1+x 13y =y13,∴⎩⎪⎨⎪⎧x 1=3xy 1=3y ,∵P 在椭圆C 上,∴3x 24+3y 23=1,∴9x 24+3y 2=1.当y =0时,点G 在x 轴上,三点P 、F 1、F 2构不成三角形, ∴y ≠0,∴点G 的轨迹方程为9x 24+3y 2=1.(y ≠0).4.(2012²河南商丘二模)已知椭圆x 2a 2+y 2b2=1(a >b >0),M ,N 是椭圆的左、右顶点,P是椭圆上任意一点,且直线PM 、PN 的斜率分别为k 1,k 2(k 1k 2≠0),若|k 1|+|k 2|的最小值为1,则椭圆的离心率为( )A.12B.22C.32D.33[答案] C[解析] M (-a,0),N (a,0),设P (x 0,y 0),则k 1=y 0x 0+a,k 2=y 0x 0-a,∴k 1k 2=y 20x 20-a2,由P 在椭圆上知,x 20a 2+y 20b 2=1,∴a 2y 20b 2=a 2-x 20,∴k 1k 2=-b 2a 2,|k 1k 2|=b 2a2为定值,∴|k 1|+|k 2|≥2|k 1k 2|=2ba,∴2ba=1,∴a =2b ,∴a 2=4b 2=4(a 2-c 2),∴e 2=34,∴e =32.5.(2011²江西理,14)若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点(1,12)作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.[答案]x 25+y 24=1[解析] 点⎝ ⎛⎭⎪⎫1,12在圆外,过点(1,12)与圆相切的一条直线方程为x =1,一个切点为(1,0),设另一条切线的方程为y =m (x -1)+12,由|-m +12|1+m2=1得m =-34,故另一条切线的方程为y =-34x +54代入圆的方程联立解得切点为⎝ ⎛⎭⎪⎫35,45,则直线AB 的方程为y =-2x +2,故椭圆的上顶点坐标为(0,2).因此c =1,b =2,a =5,所求椭圆方程为x 25+y 24=1.[点评] 直接设另一条切线的切点为(m ,n ),解得切点坐标(35,45)更简便.6.(2012²新疆维吾尔自治区模拟)已知椭圆G 的方程为x 2a 2+y 2b2=1(a >b >0),它与x 轴交于A 、B 两点,与y 轴正半轴交于C 点,点D (0,4),若AC →²BC →=-3,|BD →|=2 5.(1)求椭圆G 的方程;(2)过点D 的直线l 交椭圆G 于M ,N 两点,若∠NMO =90°,求|MN |的长.[解析] (1)∵A (-a,0)、B (a,0)、D (0,4)、C (0,b ), AC →²BC →=-3,|BD →|=25,∴⎩⎨⎧a ,b ²-a ,b =-3a 2+42=25,∴a 2=4,b 2=1,∴椭圆G 的方程为x 24+y 2=1.(2)设M (x 1,y 1),则有⎩⎪⎨⎪⎧x 21+4y 21=4,y 1-4x 1²y 1x 1=-1.⇒x 1=±253,y 1=23,∴直线l 的斜率k =± 5 则直线l 的方程为y =±5x +4, 由⎩⎨⎧y =±5x +4x 2+4y 2=4⇒21x 2±325x +60=0,∴x 1+x 2=±32521,x 1x 2=6021.∴|MN |=1+k 2x 1+x 22-4x 1x 2=43021.。

高三一轮总复习理科数学新课标第8章-第2节

高三一轮总复习理科数学新课标第8章-第2节

作 业

菜单
高三一轮总复习数学·新课标(理科)


主 落
规律方法 2
1.(1)求两直线的交点坐标,转化为求两直线
考 体


· 方程组成的方程组的解.
·


基 础
(2)过直线 l1:A1x+B1y+C1=0 与 l2:A2x+B2y+C2=0
考 情
的交点的直线系方程为 A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ
· 明


础 l2(
)

(2)如果两条直线 l1 与 l2 垂直,则它们的斜率之积一定等
于-1( )


(3)若两直线的方程组成的方程组有唯一解,则两直线相

究 交( )
·
课 时
提 知 能
(4)点 P(x0,y0)到直线 y=kx+b 的距离为|kx10+ +kb2|(
)
作 业
菜单
高三一轮总复习数学·新课标(理科)
自 △OAB 为直角三角形,则必有( )



落 实
A.b=a3
体 验
·
·
固 基 础
B.b=a3+1a
明 考 情
C.(b-a3)b-a3-a1=0

例 探 究 ·
D.|b-a3|+b-a3-1a=0
课 时
提 知
【思路点拨】
(1)由两直线平行或重合的条件,求出 a
作 业

值进行检验.(2)依据直角三角形的垂直条件,确定 a,b 间的



菜单
1.两条直线平行与垂直的判定

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析考点规范练39空间几何体的表面积与体积基础巩固1.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.82.一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.23.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为()A. B.1 C. D.4.(2016山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.πB.πC.πD.1+π5.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B.4π C.2π D. ?导学号37270348?6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是.8.某四棱柱的三视图如图所示,则该四棱柱的体积为.9.(2016邯郸一模)已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为.?导学号37270349?10.在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是.11.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm和30 cm,且其侧面积等于两底面面积之和,求棱台的高.12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.能力提升13.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D. ?导学号37270350?14.某几何体的三视图如图所示,则该几何体的体积为()A.+πB.+πC.+2πD.+2π15.(2016浙江,理11)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.16.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.高考预测17.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为()A.3B.2C.D.1 ?导学号37270351?参考答案考点规范练39空间几何体的表面积与体积1.B解析由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S表=2r×2r+2r2+πr×2r+4πr2=5πr2+4r2=16+20π,解得r=2.2.C解析由三视图可得该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD 为全等的等腰直角三角形,AB=AD=BC=CD=取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1.由勾股定理得AC=,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得S△ABC=S△ACD=,S△ABD=S△BCD=1,所以四面体的表面积为2+3.C解析由题意知,球心在侧面BCC1B1的中心O上,BC为△ABC所在圆面的直径,所以∠BAC=90°,△ABC的外接圆圆心N是BC的中点,同理△A1B1C1的外心M是B1C1的中点.设正方形BCC1B1的边长为x,Rt△OMC1中,OM=,MC1=,OC1=R=1(R为球的半径),所以=1,即x=,则AB=AC=1.所以侧面ABB1A1的面积S=1=4.C解析由三视图可知,上面是半径为的半球,体积为V1=,下面是底面积为1,高为1的四棱锥,体积V2=1×1=,故选C.5.D解析因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r==1,所以V球=13=故选D.6.B解析设底面圆半径为R,米堆高为h.∵米堆底部弧长为8尺,2πR=8,∴R=∴体积V=πR2h=π5.∵π≈3,∴V(立方尺).∴堆放的米约为22(斛).7.32解析由三视图,可得棱长为4的正方体被平面AJGI截成两个几何体,且J,I分别为BF,DH的中点,如图,两个几何体的体积各占正方体的一半,则该几何体的体积是43=32.8解析由三视图可知,四棱柱高h为1,底面为等腰梯形,且底面面积S=(1+2)×1=,故四棱柱的体积V=S·h=9.12π解析由题意三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,三棱锥P-ABC 的三个侧面的面积之和最大,三棱锥P-ABC的外接球就是它扩展为正方体的外接球,求出正方体的体对角线的长为2,所以球的直径是2,半径为,球的表面积为4π×()2=12π.10解析由题意,可得直三棱柱ABC-A1B1C1如图所示.其中AB=AC=AA1=BB1=CC1=A1B1=A1C1=1.∵M,N,P分别是棱AB,BC,B1C1的中点,∴MN=,NP=1.∴S△MNP=1=∵点A1到平面MNP的距离为AM=,11.解如图所示,三棱台ABC-A1B1C1中,O,O1分别为两底面中心,D,D1分别为BC和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB=30,则OD=5,O1D1=,由S侧=S上+S下,得3(20+30)×DD1=(202+302),解得DD1=,在直角梯形O1ODD1中,O1O==4(cm),所以棱台的高为4 cm.12.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=1×1(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1+1×2)=6+213.A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=,AG=GD=BH=HC=,所以S△AGD=S△BHC=1=所以V=V E-ADG+V F-BHC+V AGD-BHC=2V E-ADG+V AGD-BHC=2+1=14.A解析由三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V1=2×1×1=;其右边是一个半圆柱,底面半径为1,高为2,所以体积V2=π·12·2=π,所以该几何体的体积V=V1+V2=+π.15.7232解析由三视图,可知该几何体为两个相同长方体组合而成,其中每个长方体的长、宽、高分别为4 cm,2 cm,2 cm,所以其体积为2×(2×2×4)=32(cm3).由于两个长方体重叠部分为一个边长为2的正方形,所以其表面积为2×(2×2×2+4×2×4)-2×(2×2)=72(cm2).16.解(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为17.C解析如图,过A作AD垂直SC于D,连接BD.由于SC是球的直径,所以∠SAC=∠SBC=90°.又∠ASC=∠BSC=30°,又SC为公共边,所以△SAC≌△SBC.由于AD⊥SC,所以BD⊥SC.由此得SC⊥平面ABD.所以V S-ABC=V S-ABD+V C-ABD=S△ABD·SC.由于在Rt△SAC中,∠ASC=30°,SC=4,所以AC=2,SA=2由于AD= 同理在Rt△BSC中也有BD=又AB=,所以△ABD为正三角形.所以V S-ABC=S△ABD·SC=()2·sin 60°×4=,所以选C.。

【导与练】(新课标)2019届高三数学一轮复习 第8篇 椭圆的定义与标准方程学案 理

【导与练】(新课标)2019届高三数学一轮复习 第8篇 椭圆的定义与标准方程学案 理

第五十课时 椭圆的定义与标准方程课前预习案考纲要求1、掌握椭圆的定义,并会用椭圆定义解题;掌握求椭圆标准方程的基本步骤(定型、定位、定量)掌握求椭圆标准方程的基本方法(定义法和待定系数法)2、基础知识梳理1.定义:①平面内与两个定点12,F F 的距离之和等于常数2a (122___a F F ),这个动点的轨迹叫椭圆(这两个定点叫 ). 两焦点间的距离叫做②定义的符号表示: 。

注意:当122a F F =时,轨迹是 ;当122a F F < 时, 。

③,,a b c 之间的关系 。

2.椭圆的标准方程(1)若椭圆的焦点在x 轴上,则椭圆的标准方程为 ,焦点坐标为 ,焦距为 。

(2)若椭圆的焦点在y 轴上,则椭圆的标准方程为 ,焦点坐标为 ,焦距为 。

预习自测1.已知椭圆的焦点为1F (-1,0)和2F (1,0),P 是椭圆上的一点,且21F F 是1PF 与2PF 的等差中项,则该椭圆的方程为( )A .191622=+y x B .1121622=+y x C .13422=+y x D .14322=+y x 2.已知椭圆的方程是2221(5)25x y a a +=>,它的两个焦点分别是F 1,F 2,且| F 1F 2|=8,弦AB 过F 1,则∆ABF 2的周长为( )A.10B.20C.241D.4412.P 是椭圆14522=+y x 上的一点,1F 和2F 是焦点,若1230F PF ∠=,则12F PF ∆的面积等于()A .3316 B .)32(4- C .)32(16+ D .16课内探究案典型例题考点1:椭圆的定义【典例1】下列说法中,正确的是( )A .平面内与两个定点1F ,2F 的距离和等于常数的点的轨迹是椭圆B .与两个定点1F ,2F 的距离和等于常数(大于12F F )的点的轨迹是椭圆C .方程()2222210x y a c a a c +=>>-表示焦点在x 轴上的椭圆 D .方程()222210,0x y a b a b+=>>表示焦点在y 轴上的椭圆【变式1】1F ,2F 是定点,126F F =,动点M 满足126MF MF +=,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆考点2.椭圆的标准方程【典例2】(1)已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P(3,0),求椭圆的方程;(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),求椭圆的方程.【变式2】已知椭圆的中心在原点,且经过点(0,3)P ,b a 3=,求椭圆的标准方程.考点3.椭圆的焦距【典例3】椭圆 63222=+y x 的焦距是( ) A .1B .)23(2-C .2D .)23(2+【变式3】椭圆1422=+y m x 的焦距为2,则m 的值是( )A .5B .3C .5或3D .不存在当堂检测1.如果方程222=+my x 表示焦点在y 轴的椭圆,那么实数m 的取值范围是( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)2.若椭圆116222=+b y x 过点(-2,3),则其焦距为( ) A.25 B.23 C. 43 D. 45 3.若椭圆的两焦点为(2,0)-和(2,0),且椭圆过点53(,)22-,则椭圆方程是( )A .22184y x += B .221106y x += C .22148y x += D .221106x y += 4. (2019年高考广东)已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是( ) A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x课后拓展案A 组全员必做题1.(2019年高考大纲卷)已知()()1221,0,1,0,F F C F -是椭圆的两个焦点过且垂直于x 轴的直线交于A B 、两点,且3AB =,则C 的方程为( )A .2212x y += B .22132x y += C .22143x y += D .22154x y += 2.设AB 是椭圆Γ的长轴,点C 在Γ上,且π4CBA ∠=.若4AB =,2BC =,则Γ的两个焦点之间的距离为_______.3.如图所示,椭圆M :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,直线x =±a 和y =±b 所围成的矩形ABCD 的面积为8.求椭圆M 的标准方程.4.在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O,焦点在x 轴上,短轴长为2,离心率为22,求椭圆C 的方程.5.已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.1.(2019年高考安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点(23)P ,,求椭圆C 的方程.2.椭圆2222:1(0)x y C a b a b +=>>的离心率32e =,a+b=3求椭圆C 的方程;3.在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y2b2=1(a>b>0)的左焦点为F 1(-1,0),且点P(0,1)在C 1上.求椭圆C 1的方程.参考答案预习自测1.C2.D3.B典型例题【典例1】C 【变式1】C【典例2】(1)2219x y +=或221819y x +=;(2)22193x y +=. 【变式2】198122=+y x 或1922=+x y 【典例3】C【变式3】C当堂检测1.D2.C3.D4.DA 组全员必做题1.C2.4633.221 4xy+=4.221 2xy+=5.22143x y+=.B组提高选做题1.221 84x y+=2.221 4xy+=3.221 2xy+=。

高三理科数学一轮复习考试试题精选()分类汇编集合含答案

高三理科数学一轮复习考试试题精选()分类汇编集合含答案

广东省2014届高三理科数学一轮复习考试试题精选(1)分类汇编1:集合一、选择题1 .(广东省佛山市南海区2014届普通高中高三8月质量检测理科数学试题 )设集合{}{}>1,|(2)0A x x B x x x ==-<,则B A 等于 ( ) A .{|01}x x << B .{}21<<x x C .{}20<<x x D .{|2}x x > 【答案】B2 .(广东省深圳市宝安区2014届高三上学期调研测试数学理试卷)已知集合{1,2,3,4,5,6},U =集合{1,2,3,4},{3,4,5},P Q ==则()U P C Q = ( )A .{1,2,3,4,6,}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}【答案】D3 .(广东省湛江市第二中学2014届高三理科数学8月考试题 )已知集合{}9|7|<-=x x M ,{}2|9N x y x ==-,且N M 、都是全集U 的子集,则下图韦恩图中阴影部分表示的集合( )A .{}23-≤-<x xB .}{23-≤≤-x xC .}{16≥x xD .}{16>x x【答案】B4 .(广东省南雄市黄坑中学2014届高三上学期第一次月考测试数学(理)试题)设集合},02|{},,02|{22R x x x x N R x x x x M ∈=-=∈=+=,则=⋃N M ( )A .}0{B .}2,0{C .}0,2{-D .}2,0,2{-【答案】D5 .(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)(2013广东)设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )A .{}0B .{}0,2C .{}2,0-D .{}2,0,2-【答案】D6 .(广东省广州市仲元中学2014届高三数学(理科)10月月考试题)己知集合[0,)M =+∞,集合{2N x x =>或}1x <-,U R =,则集合UM C N ⋂=( )A .{}|02x x <≤B .{}|02x x ≤<C .{}|02x x ≤≤D .{}|02x x <<【答案】C7 .(广东省广州市执信、广雅、六中2014届高三9月三校联考数学(理)试题)已知全集U R =,集合{}Z x x x A ∈≤=,1|, {}02|2=-=x x x B ,则图中的阴影部分表示的集合为( )A .{}1-B .{}2C .{}2,1D .{}2,0【答案】B8 .(广东省珠海一中等六校2014届高三上学期第二次联考数学(理)试题)设2{0,2},{|320}A B x x x ==-+=,则A B = ( )A .{0,2,4}--B .{0,2,4}-C .{0,2,4}D .{0,1,2}【答案】D9 .(2013-2014学年广东省(宝安中学等)六校第一次理科数学联考试题)设U=R ,集合2{|2,},{|40}xA y y x RB x Z x==∈=∈-≤,则下列结论正确的是 ( )A .(0,)AB =+∞ B .(](),0UCA B =-∞C .(){2,1,0}UCA B =--D .(){1,2}UCA B =【答案】C10.(广东省惠州市2014届高三第一次调研考试数学(理)试题)已知集合{}{}1,2,3,14M N x Z x ==∈<<,则 ( )A .N M ⊆B .N M =C .}3,2{=N MD .)4,1(=N M 【答案】{}{}3,241=<<∈=x Z x N ,故}3,2{=N M ,故选 C .11.(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)已知集合(){,A x y =∣,x y 为实数,且}221x y +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为 ( )A .0B .1C .2D .3【答案】C12.(广东省南雄市黄坑中学2014届高三上学期第二次月考测试数学(理)试题)已知集合2{|10},{|0},A x xB x x x =+>=-<则=B A( )A .{|1}x x >-B .{|11}x x -<<C .{|01}x x <<D .{|10}x x -<<【答案】C13.(广东省珠海市2014届高三9月开学摸底考试数学理试题)已知集合{1}A x x =>,2{20}B x x x =-<,则A B ⋃= ( )A .{0}x x >B .{1}x x >C .{12}x x <<D .{02}x x <<【答案】A14.(广东省韶关市2014届高三摸底考试数学理试题)若集合}1|{2<=x x M ,1{|}N x y x==,则N M = ( )A .NB .MC .φD .{|01}x x <<【答案】解析:D .M ={|x —1〈x<1}, N={|x 0x >}NM ={|01}x x <<15.(广东省兴宁市沐彬中学2014届上期高三质检试题 数学(理科))设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )A .{2}-B .{2}C .{2,2}-D .∅【答案】A16.(广东省南雄市黄坑中学2014届高三上学期第一次月考测试数学(理)试题)已知集合}2,1,0{},1,0,1{=-=N M ,则如图所示韦恩图中的阴影部分所表示的集合为( )A .}1,0{B .}1,0,1{-C .}2,1{-D .}2,1,0,1{-【答案】C17.(广东省汕头市金山中学2014届高三上学期期中考试数学(理)试题)设集合2{103A x x x =+-≥0},{1B x m =+≤x ≤21}m -,如果有AB B =,则实数m 的取值范围是 ( )A .(,3]-∞B .[3,3]-C .[2,3]D .[2,5]【答案】A18.(广东省珠海四中2014届高三一轮复习测试(一)数学理试题)若集合{}|21A x x =-<<,{}|02B x x =<<,则集合A B = ( ) A .{}|11x x -<< B .{}|21x x -<<C .{}|22x x -<<D .{}|01x x <<【答案】D19.(广东省汕头市金山中学2014届高三上学期开学摸底考试数学(理)试题)设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的S b a ∈,,对于有序元素对()b a ,,在S 中有唯一确定的元素b a *与之对应),若对任意的S b a ∈,,有b a b a =**)(,则对任意的S b a ∈,,下列等式中不.恒成立的是 ( )A .[]()a b a a b a =****)(B .b b b b =**)(C .a a b a =**)(D .[]b b a b b a =****)()(【答案】C20.(广东省惠州市2014届高三第一次调研考试数学(理)试题)对于任意两个正整数,m n ,定义某种运算“※”如下:当,m n 都为正偶数或正奇数时,m ※n =m n +;当,m n 中一个为正偶数,另一个为正奇数时,m ※n =mn 。

高三数学一轮复习第一次模拟考试试题 理含解析 试题

高三数学一轮复习第一次模拟考试试题 理含解析 试题

卜人入州八九几市潮王学校一中2021届高三数学一轮复习第一次模拟考试试题理〔含解析〕一、单项选择题〔每一小题5分,一共60分〕 1.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,那么M N ⋃=〔〕A.{}22x x -≤<B.{}2x x ≥-C.{}2x x <D.{}12x x ≤<【答案】B 【解析】 【分析】求解出集合M ,根据并集的定义求得结果. 【详解】(){}{}{}2log 1001112M x x x x x x =-<=<-<=<<此题正确选项:B【点睛】此题考察集合运算中的并集运算,属于根底题. 2.设函数23()x x f x e -=〔e 为自然底数〕,那么使()1f x <成立的一个充分不必要条件是〔〕 A.01x << B.04x << C.03x <<D.34x <<【答案】A 【解析】 【分析】 由()1f x <可得:03x <<,结合充分、必要条件的概念得解.【详解】()1f x <⇔231x x e -<⇔230x x -<解得:03x <<又“01x <<〞可以推出“03x <<〞但“03x <<〞不能推出“01x <<〞所以“01x <<〞是“()1f x <〞充分不必要条件.应选:A.【点睛】此题主要考察了等价转化思想及充分、必要条件的概念,属于根底题。

3.p :“,[]1e ∀∈,ln a x >q :“x R ∃∈,240x x a -+=〞〞假设“p q ∧a 的取值范围是〔〕A.(1,4]B.(0,1]C.[1,1]-D.(4,)+∞【答案】A 【解析】 【分析】p 和q 的真假,从而求得参数的取值范围. 【详解】p :“,[]1e ∀∈,ln a x >那么ln 1a e >=,q :“x R ∃∈,240x x a -+=那么1640a ∆=-≥,解得4a ≤, 那么p ,q那么14a a >⎧⎨≤⎩,解得:14a <≤.故实数a 的取值范围为(1,4]. 应选:A . 【点睛】p ,q 的等价条件是解决此题的关键.4.方程ln 40x x +-=的实根所在的区间为〔〕 A.(1,2) B.(2,3)C.(3,4)D.(4,5)【答案】B 【解析】 【分析】 构造函数()ln 4f x x x =+-,考察该函数的单调性,结合零点存在定理得出答案。

高三数学第一轮复习专题测试试题

高三数学第一轮复习专题测试试题
卜人入州八九几市潮王学校二零二零—二零二壹第一学期高三数学第一轮复习专题测试
〔1〕—集合与函数
〔2〕—数列
〔3〕—三角函数
〔4〕—平面向量
〔5〕—不等式
〔1〕—集合与函数
一、选择题:本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.
1.设集合 ,那么满足 的集合B的个数是〔〕
[解法二]当 时, .
由 得 ,
令 ,解得 或者 ,
在区间 上,当 时, 的图像与函数 的图像只交于一点 ;
当 时, 的图像与函数 的图像没有交点.
如图可知,由于直线 过点 ,当 时,直线 是由直线
绕点 逆时针方向旋转得到.因此,在区间 上, 的图像
位于函数 图像的上方.
22.〔1〕∵ ,∴要使 有意义,必须 且 ,即
A.1B.3C.4D.8
2.集合M={x| },N={y|y=3x2+1,xR},那么MN=〔〕
A.B.{x|x1}C.{x|x1}D.{x|x1或者x0}
3.有限集合 中元素个数记作card ,设 、
① 的充要条件是card =card +card ;
② 的必要条件是card card ;
③ 的充分条件是card card ;
card card =0 .由 的定义知card card .
4.D. ,用数轴表示可得答案D.
5.A.∵ ∴ 即
∵ ∴ 即
∴函数 的反函数为 .
6.B.由 ,应选B.
7.B.在其定义域内是奇函数但不是减函数;C在其定义域内既是奇函数又是增函数;D在其定义域内不是奇
函数,是减函数;应选A.
8.C.利用互为反函数的图象关于直线y=x对称,得点〔2,0〕在原函数 的图象上,即 ,

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编8:函数的应用问题

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编8:函数的应用问题

江苏省2014届高三数学一轮复习考试试题精选(1)分类汇编8:函数的应用问题一、填空题1 .(江苏省诚贤中学2014届高三上学期摸底考试数学试题)甲地与乙地相距250公里.某天小袁从上午7∶50由甲地出发开车前往乙地办事.在上午9∶00,10∶00,11∶00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有1小时到达乙地”.假设导航仪提示语都是正确的,那么在上午11∶00时,小袁距乙地还有________公里.【答案】60二、解答题2 .(江苏省阜宁中学2014届高三第一次调研考试数学(理)试题)某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段.已知跳水板AB长为2m,跳水板距水面CD的高BC为3m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达到距水面最大高度4m.规定:以CD 为横轴,BC为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.【答案】3 .(江苏省兴化市2014届高三第一学期期中调研测试)已知某公司生产品牌服装的年固定成本为10万元,每生产千件,须另投入 2.7万元,设该公司年内共生产品牌服装x千件并全部销售完,每千件的销售收入为()x R 万元,且()⎪⎪⎩⎪⎪⎨⎧>-≤<-=10,31000108100,3018.1022x x x x x x R . (1)写出年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?【答案】解:(1)由题意得⎪⎪⎩⎪⎪⎨⎧>--⎪⎭⎫ ⎝⎛-≤<--⎪⎭⎫ ⎝⎛-=10,107.231000108100,107.23018.1022x x x x xx x x x W , 即⎪⎪⎩⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛+-≤<--=10,7.23100098100,103011.83x x x x x x W . (2)①当100≤<x 时,103011.83--=x x W 则()()109910811011.822x x x x W -+=-=-=' ∵100≤<x∴当90<<x 时,0>'W ,则W 递增;当109≤<x 时,0<'W ,则W 递减;∴当9=x 时,W 取最大值6.385193=万元. ②当10>x 时,⎪⎭⎫⎝⎛+-=x x W 7.23100098387.231000298=⋅-≤x x . 当且仅当x x 7.231000=,即109100>=x 取最大值38. 综上,当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.4 .(江苏省徐州市2014届高三上学期期中考试数学试题)如图,某生态园欲把一块四边形地BCED 辟为水果园,其中90,C D BC BD ∠=∠=︒=,1CE DE ==.若经过DB 上一点P 和EC 上一点Q 铺设一条道路PQ ,且PQ 将四边形BCED 分成面积相等的两部分,设,DP x EQ y ==.(1)求,x y 的关系式;(2)如果PQ 是灌溉水管的位置,为了省钱,希望它最短,求PQ 的长的最小值;(3)如果PQ 是参观路线,希望它最长,那么P Q 、的位置在哪里?。

立体几何专题检测——江苏省2023届高三数学一轮总复习

立体几何专题检测——江苏省2023届高三数学一轮总复习

江苏省2023届高三数学一轮总复习专题检测立体几何一、选择题:本题共8小题,每小题5分共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、下列命题正确的是A 、正方形的直观图是正方形B 、用一个平面去截棱锥,底面和截面之间的部分组成的几何体是棱台C 、各个面都是三角形的几何体是三棱锥D 、圆锥有无数条母线2、设,αβ是两个不同的平面,,m n 是两条不同的直线,则下列结论中正确的是A 、 若m α⊥,m n ⊥,则 n α∥B 、 若αβ⊥,m α⊥,n β⊥,则m n ⊥C 、若n α∥,m n ⊥,则m α⊥D 、若αβ∥,m ⊂α,n ⊂β,则m n ∥3、已知圆锥的高为6,其侧面展开图为一个半圆,则该圆锥的母线长为A .2 2B .2 3C .2 6D .4 24、正多面体共有5种,统称为柏拉图体,它们分别是正四面体、正六面体(即正方体)、正八面体、正十二面体、正二十面体.连接正方体中相邻面的中心,可以得到另一个柏拉图体.已知该柏拉图体的体积为323,则生成它的正方体的棱长为( ) A. 2 B. 322 C. 324 D. 45、南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .7 2.65≈)( ) A. 931.010m ⨯B. 931.210m ⨯C. 931.410m ⨯D.931.610m ⨯6、在平行六面体1111ABCD A B C D -中,底面ABCD 是边长为 1 的正方形,侧棱1113,60AA A AD A AB ︒=∠=∠=,则1AC =( ).A 22 .B 10 .C 3 .D 177、如图,正方体1111ABCD A B C D -的棱长为1,,,,E F G H 分别是所在棱上的动点,且满足1DH BG AE CF +=+=,则以下四个结论正确的是( )A .,,,E G F H 四点一定不共面B .若四边形EGFH 为矩形,则DH CF =C .若四边形EGFH 为菱形,则,E F 一定为所在棱的中点D .若四边形EGFH 为菱形,则四边形EFGH 周长的取值范围为[4,25]8. 足球运动成为当今世界上开展最广、影响最大、最具魅力、拥有球迷数最多的体育项目之一,2022年卡塔尔世界杯是第22届世界杯足球赛.比赛于2022年11月21日至12月18日在卡塔尔境内7座城市中的12座球场举行.已知某足球的表面上有四个点A ,B ,C ,D 满足2dm AB BC AD BD CD =====,二面角A BD C --的大小为23π,则该足球的体积为( ) A.342dm 27πB.3352dm 27πC.314dm 27πD.32dm 27π二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得 5分,有选错的得0分,部分选对的得2分. 9、已知直线l 与平面α相交于点P ,则( ) A .α内不存在直线与l 平行 B .α内有无数条直线与l 垂直C .α内所有直线与l 是异面直线D .至少存在一个过l 且与α垂直的平面 10、已知正方体1111ABCD A B C D -,则( ) A. 直线1BC 与1DA 所成的角为90︒ B. 直线1BC 与1CA 所成的角为90︒ C. 直线1BC 与平面11BB D D 所成的角为45︒D. 直线1BC 与平面ABCD 所成的角为45︒11、在一个圆锥中,D 为圆锥的顶点,O 为圆锥底面圆的圆心,P 为线段DO 的中点,AE 为底面圆的直径,△ABC 是底面圆的内接正三角形,AB =AD =3,则下列说法正确的是 A .BE ∥平面PACB .PA ⊥平面PBCC .在圆锥侧面上,点A 到DB 中点的最短距离为32D .记直线DO 与过点P 的平面α所成的角为θ,当cos θ∈(0,33)时,平面α与圆锥侧面的交线为椭圆12、已知圆台1OO 上、下底面的半径分别为2和4,母线长为4.正四棱台上底面1111D C B A 的四个顶点在圆台上底面圆周上,下底面ABCD 的四个顶点在圆台下底面圆周上,则( ) A. 1AA 与底面所成的角为60° B. 二面角1A ABC 小于60°C. 正四棱台1111ABCD A B C D -的外接球的表面积为64πD. 设圆台1OO 的体积为1V ,正四棱台1111ABCD A B C D -的体积为2V ,则12V V π=三、填空题:本题共4小题,每小题5分,共20分.13、已知正四棱锥P ABCD -32,则正四棱锥P ABCD -的侧面积为14、已知圆台的一个底面周长是另一个底面周长的3倍,圆台的高为23cm ,母线与轴的夹角为30︒,则这个圆台的轴截面的面积等于 2.cm 15、已知,,,A B C D 在球O 的球面上,ABC 为等边三角形且其面积为33,AD ⊥平面,2ABC AD =,则球O 的表面积为 .16、在等腰梯形ABCD 中,22AB CD ==,3DAB CBA π∠=∠=,O 为AB 的中点.将BOC∆沿OC 折起,使点B 到达点B '的位置,则三棱锥B ADC '-外接球的表面积为 ;当3B D '=B ADC '-外接球的球心到平面B CD '的距离为 .四、解答题:本题共6小题,共 70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)在四棱锥P ABCD -中,//AB CD ,2CD AB =,AC 与BD 相交于点M ,点N 在线段AP 上,AN AP λ=(0λ>),且//MN 平面PCD . (I )求实数λ的值;(Ⅱ)若1AB AD DP ===,2PA PB ==,60BAD ︒∠=,求点N 到平面PCD 的距离.18.(本小题满分12分)如图,在以P ,A ,B ,C ,D 为顶点的五面体中,四边形ABCD 为等腰梯形,AB CD ∥,12AD CD AB ==,平面PAD ⊥平面PAB ,PA PB ⊥. (1)求证:平面PAD ⊥平面PBC ; (2)若二面角P AB D --的余弦值为33,求直线PD 与平面PBC 所成角的大小.19.(本小题满分12分)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为2. (1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.20.(本小题满分12分)如图,在多面体ABCDP 中,ABC 是边长为2的等边三角形,,22PA AB BD CD ===,22PC PB ==,点E 是BC 中点,平面ABC ⊥平面BCD .(1) 求证://DE 平面PAC ;(2) F 是直线BC 上的一点,若二面角F DA B --为直二面角,求BF 的长.21.(本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥点M 在棱PB 上,2PM MB =点N 在棱PC 上,223PA AB AD BC ====. (1)若2CN NP =,Q 为PD 的中点,求证:A ,M ,N ,Q 四点共面; (2)求直线PA 与平面AMN 所成角的正弦的最大值.22.(本小题满分12分)如图1,在平行四边形ABCD 中,AB =2,AD =33,∠ABC =30º,AE ⊥BC ,垂足为E .以AE 为折痕把△ABE 折起,使点B 到达点P 的位置,且平面PAE 与平面AECD 所成的角为90º(如图2).(1)求证:PE ⊥CD ;(2)若点F 在线段PC 上,且二面角F -AD -C 的大小为30º,求三棱锥F -ACD 的体积.补充练习:1、如图,在直四棱柱1111ABCD A B C D -中,//AD BC ,AD AB ⊥,122AA AD BC ===,2AB E 在棱11A D 上,平面1BC E 与棱1AA 交于点F .(1)求证:1BD C F ⊥;(2)若BE 与平面ABCD 所成角的正弦值为45,试确定点F 的位置.【解答】(1)证明:在直四棱柱中1111ABCD A B C D -中,1AA ⊥平面ABCD ,BD ⊂平面ABCD ,1AA BD ∴⊥,连接AC ,2tan 2AB ADB AD ∠==,2tan 2CB CAB AB ∠==, ADB CAB ∴∠=∠,AC BD ∴⊥, 1AA ,AC ⊂平面11ACC A ,1AA AC A =,BD ∴⊥平面11ACC A ,1C F ⊂平面11ACC A ,1BD C F ∴⊥.(2)以A 为坐标原点,AD 为x 轴,AB 为y 轴,1AA 为z 轴,建立空间直角坐标系,则(0A ,0,0),(0B 20),(1C 20),1(1C 22), 平面ABCD 的法向量为(0n =,0,1),(BE x =,2-2),0x >,则242|cos ,|56BE n x =<>=+,解得12x =, 则1(2E ,0,2),1(2BE =,22),11(2C E =-,2-0),设(0F ,0,)z ,1(1C F =-,2-2)z -,则(1-,2-12)(2z m -=,2-12)(2n +-,2-0),∴11122222m n m n ⎧-=-⎪⎨⎪--=-⎩,解得12m =-,32n =,1z =,(0F ∴,0,1),F ∴为棱1AA 的中点.参考答案1、D2、B3、A4、D5、C6、D7、D8、A 8、【详解】根据题意,三棱锥A BCD -如图所示,图中点O 为线段BD 的中点,,N M 分别是线段,AO CO 上靠近点O 的三等分点, 因为2dm AB BC AD BD CD =====,所以ABD △和CBD 均为等边三角形,因为点O 为线段BD 的中点,所以,AO BD CO BD ⊥⊥, 所以AOC ∠为二面角A BD C --的平面角,所以23AOC π∠=, 因为ABD △和CBD 均为等边三角形,点O 为线段BD 的中点, 所以,AO CO 分别为ABD △和CBD 的中线,因为,N M 分别是线段,AO CO 上靠近点O 的三等分点, 所以,N M 分别为ABD △和CBD 的外心,过,N M 分别作平面ABD 和平面CBD 的垂线,EN EM ,交于点E ,则点E 为三棱锥A BCD -外接球的球心,即为足球的球心,所以线段EB 为球的半径,因为,AO BD CO BD ⊥⊥,2dm AB BC AD BD CD =====,所以6dm 2AO CO ==,则6dm 6NO MO ==, 因为,,90AO CO EO EO ENO EMO ==∠=∠=︒, 所以ENO △≌EMO △,所以123EON EMO AOC π∠=∠=∠=, 在直角EMO △中,2tan32EM OM π==,因为EM ⊥平面BCD ,BM ⊂平面BCD ,所以BM EM ⊥, 因为M 是CBD 的外心,所以63BM =,所以2276EB EM BM =+=, 所以3344774233627V EB πππ⎛⎫=⋅== ⎪ ⎪⎝⎭, 所以足球的体积为742dm 27π,故选:A9、ABD 10、ABD 11、BD 12、AC12、【详解】如图,过1A 作1A P AO ⊥,作出截面11ACC A 的平面图,易知11ACC A 为等腰梯形,且1,O O 为11,AC A C 中点,易得1114,8,4AC AC AA ===,1122AC AC AP -==,故22114223OO A P ==-=即圆台的高3h =111122,4222A B AB ====2242 选项A :易得1A AO ∠即为1AA 与底面所成角,则111cos 2AP A AO AA ∠==,故13A AO π∠=,正确;选项B :过P 作PQ AB ⊥于Q ,连接1A Q ,由1A P AB ⊥,1A P PQ P ⋂=,故AB ⊥面1A PQ ,1AQ ⊂面1A PQ ,故1AB A Q ⊥, 1A QP ∠即为二面角1A AB C 的平面角,111sin A P AQP A Q ∠=,111sin A PA AP A A∠=,又11A Q A A <,故11sin sin AQP A AP ∠>∠,即160AQP ∠>,B 错误; 选项C :设外接球半径为R ,球心到下底距离为x ,在11ACC A 的平面图中,2O 为球心, 则221,23O O x O O x ==,112,4O C OC ==,212O C O C R ==,故()2222164234R x R R x ⎧-=⎪⇒=⎨-=⎪⎩, 故表面积2464S R ππ==,正确;选项D :()2215632482333V ππ=++⨯=,()21112383216233V =++⨯=然12V V π≠,错误. 故选:AC.13、8 14、3 15、8π 16、4π313. 16、解:等腰梯形ABCD 中,22AB CD ==,3DAB CBA π∠=∠=,O 为AB 的中点,BOC ∴∆,ADO ∆,DOC ∆为等边三角形,1OA OB OC OD ====,∴三棱锥B ADC '-处接球的球心为O ,半径为1,414S ππ∴=⨯=,连接BD 与OC 交于M ,则OC MD ⊥,OC MB ⊥,OC MB ⊥',B MD ∴∠'是二面角的平面角,3BM DM B D =='=,3B MD π∴∠'=, B ∴'到平面COD 的距离为3334h π'==, 在△B CD '中,1B C '=,3B D '=1CD =,2133391()24B CDS '=-=, 设球心O 到平面B CD '的距离为h , 由O B CD B COD V V ''--=,得1133B CDCOD Sh S h '∆'⋅=⋅, ∴139133334h =,解得313h ,∴三棱锥B ADC '-外接球的球心到平面B ADC '-处接球的球心到平面B CD '的距离为31313. 故答案为:4π;31313.17、【详解】分析:解法一:(1)由平行线的性质可得13AM AC =,结合线面平行的性质定理有//MN PC .据此可得13λ=. (2) 由题意可知ABD ∆为等边三角形,则1BD AD ==,结合勾股定理可知PD BD ⊥且PD DA ⊥,由线面垂直的判断定理有PD ⊥平面ABCD ,进一步有平面PCD ⊥平面ABCD .作ME CD ⊥于E ,则ME ⊥平面PCD . ME 即为N 到平面PCD 的距离.结合比例关系计算可得N 到平面PCD 3解法二:(1)同解法一.(2)由题意可得ABD ∆为等边三角形,所以1BD AD ==,结合勾股定理可得PD BD ⊥且PD DA ⊥,则PD ⊥平面ABCD .设点N 到平面PCD 的距离为d ,利用体积关系:2233N PCD A PCD P ACD V V V ---==, 即2193ACDPCDPD Sd S ⋅=⋅.求解三角形的面积然后解方程可得N 到平面PCD 3 详解:解法一:(1)因为//AB CD ,所以1,2AM AB MC CD ==即13AM AC =. 因为//MN 平面PCD ,MN ⊂平面PAC ,平面PAC ⋂平面PCD PC =, 所以//MN PC . 所以13AN AM AP AC ==,即13λ=.(2) 因为0,60AB AD BAD =∠=,所以ABD ∆为等边三角形,所以1BD AD ==, 又因为1PD =,2PA PB ==,所以222PB PD BD =+且222PA PD AD =+,所以PD BD ⊥且PD DA ⊥,又因为DA DB D ⋂=,所以PD ABCD ⊥平面 因PD ⊂平面PCD ,所以平面PCD ⊥平面ABCD .作ME CD ⊥于E ,因为平面PCD ⋂平面=ABCD CD ,所以ME ⊥平面PCD . 又因为//MN 平面PCD ,所以ME 即为N 到平面PCD 的距离. 在△ABD 中,设AB 边上的高为h ,则3h =因为23MD MC BD AC ==,所以233ME h ==N 到平面PCD 3 解法二、(1)同解法一.(2)因为0,60AB AD BAD =∠=,所以ABD ∆为等边三角形,所以1BD AD ==, 又因为1PD =,2PA PB ==,所以222PB PD BD =+且222PA PD AD =+,所以PD BD ⊥且PD DA ⊥,又因为DA DB D ⋂=,所以PD ⊥平面ABCD . 设点N 到平面PCD 的距离为d ,由13AN AP =得23NP AP =, 所以2233N PCD A PCD P ACD V V V ---==, 即2193ACDPCDPD S d S ⋅=⋅.因为1322ACDS AD DC sin ADC =⋅⋅∠=,112PCDS PD CD =⋅=,1PD =, 所以23193d =,解得3d =N 到平面PCD 318、【1】因为平面PAD ⊥平面PAB ,平面PAD 平面PAB PA =,PA PB ⊥,PB ⊂平面PAB ,所以PB ⊥平面PAD ,又因为PB ⊂平面PBC ,所以平面PAD ⊥平面PBC . 【2】过D 作DH PA ⊥,⊥DO AB ,垂足分别为H ,O ,连接HO ,因为平面PAD ⊥平面PAB ,平面PAD 平面PAB PA =,DH PA ⊥,DH ⊂平面PAD ,所以DH ⊥平面PAB ,又AB 平面PAB ,所以DH AB ⊥,又⊥DO AB ,且DO DH D =,DO ,DH ⊂平面DHO ,所以AB ⊥平面DHO , 因为HO ⊂平面DHO ,所以AB HO ⊥,即DOH ∠即为二面角P AB D --的平面角, 不妨设4AB =,则可知2AD CD BD ===,且1AO =,3OD =因为3cos DOH ∠=1OH =,所以4BAP π∠=,过O 作OM ⊥平面PAB ,以{},,OA OH OM 为x ,y ,z 轴,建立空间直角坐标系,则()0,1,2D ,()1,2,0P -,()3,0,0B -,(2C -, 所以(1,2PD =-,()2,2,0BP =,(1,1,2CP =-,设平面PBC 的法向量为(),,m x y z =,则22020m BP x y m CP x y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,则1y =-,0z =,所以()1,1,0m =-,设直线PD 与平面PBC 所成角为θ,则2sin 211112m PD m PDθ⋅===+⋅++⋅, 即4πθ=.19、【1】在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h , 则111111112211433333A A BC A A ABC A ABC AB BC C C B V S h h V S A A V ---=⋅===⋅==, 解得2h =所以点A 到平面1A BC 2;【2】取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥, 又平面1A BC ⊥平面11ABB A ,平面1A BC平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC , 在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥, 又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得2AE =12AA AB ==,122A B =2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1A C 的中点()1,1,1D , 则()1,1,1BD =,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎪⎨⋅==⎪⎩,可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c =,则020m BD a b c m BC a ⎧⋅=++=⎪⎨⋅==⎪⎩, 可取()0,1,1n =-, 则11cos ,222m n m n m n⋅===⨯⋅,所以二面角A BD C --21312⎛⎫-= ⎪⎝⎭. 20、(1)ABC 是边长为2的等边三角形,则2PA AB AC ===,又22PC PB ==股定理知,PA AB PA AC ⊥⊥,故PA ⊥平面ABC ,BD CD =,点E 是BC 中点,则DE BC ⊥,由于平面ABC ⊥平面BCD 知DE ⊥平面ABC ,则//DE PA ,//DE 平面PAC (2) 以点E 为原点,EC 方向为x 轴,EA 方向为y 轴,ED 方向为z 轴建系 则(0,0,1),3,0),(1,0,0)D A B -,设(,0,0)F a平面FDA 内,(0,3,1),(,0,1)DA DF a =-=-,法向量(3,3)m a a = 平面BDA 内,(0,3,1),(1,0,1)DA DB =-=--,法向量(3,1,3)m =-设直二面角F DA B --的平面角θ,则37cos 0,430,,44m n a a BF θ==-===21、【1详】解:以A 为坐标原点建立如图所示空间直角坐标系,如图所示,则()0,0,0A ,()0,1,1Q ,42,0,33M ⎛⎫ ⎪⎝⎭,24,1,33N ⎛⎫ ⎪⎝⎭, 则42,0,33AM ⎛⎫= ⎪⎝⎭,()0,1,1AQ Q =,24,1,33AN ⎛⎫= ⎪⎝⎭,设AN x AM y AQ =+,则243314233x y x y ⎧=⎪⎪=⎨⎪⎪=+⎩,解得1,12x y ==,则12AN AM AQ =+,即A ,M ,N ,Q 四点共面.【2】解:由(1)中的空间直角坐标系,可得(0,0,2)P ,()2,3,0C ,()0,0,2AP =, 设PN PC =λ,(其中01λ≤≤),且(),,N x y z , 则()(),,22,3,2x y z λ-=-,解得()2,3,22N λλλ-, 可得42(,0,)33AM =()2,3,22AN λλλ=-设平面AMN 的法向量为(),,n a b c =,由4203323(22)0n AM a c n AN a b c λλλ⎧⋅=+=⎪⎨⎪⋅=++-=⎩, 取1a =,可得42,23b c λ=-=-,所以41,2,23n λ⎛⎫=-- ⎪⎝⎭设直线AP 与平面AMN 所成角为θ,则225sin 4523AP n AP nθλ⋅==≤⎛⎫+- ⎪⎝⎭,当且仅当23λ=时等号成立. 直线PA 与平面AMN 25.22、解:(1)方法1在平行四边形ABCD 中,AE ⊥BC ,所以AE ⊥PE .因为平面PAE 与平面AECD 所成的角为90º,即平面PAE ⊥平面AECD . ················· 2分 又因为平面PAE ∩平面AECD =AE ,PE ⊂平面PAE ,所以PE ⊥平面AECD .因为CD ⊂平面AECD ,所以PE ⊥CD . ············································································ 4分 方法2在平行四边形ABCD 中,AE ⊥BC ,所以AE ⊥PE ,AE ⊥CE , 所以∠PEC 为平面PAE 与平面AECD 所成角的平面角.因为平面PAE 与平面AECD 所成的角为90º,所以∠PEC =90º,即PE ⊥CE . ········· 2分 又PE ⊥AE ,AE ∩CE =E ,AE ⊂平面AECD ,CE ⊂平面AECD ,所以PE ⊥平面AECD . 因为CD ⊂平面AECD ,所以PE ⊥CD . ············································································ 4分 (2)方法1由(1)得PE ⊥平面AECD ,AE ⊥EC ,故以{EA →,EC →,EP →}为正交基底,建立空间直角坐标系.易得A (1,0,0),C (0,23,0),D (1,33,0),P (0,0,3),所以PC →=(0,23,-3),AP →=(-1,0,3),AD →=(0,33,0). ································································································· 5分 设PF →=λPC →=(0,23λ,-3λ),λ∈[0,1],则AF →=AP →+PF →=(-1,23λ,3-3λ). ······························································ 6分设平面FAD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AD →·n =0,AF →·n =0,即⎩⎪⎨⎪⎧y =0,-x +23λy +(3-3λ)z =0,取z =1,得x =3-3λ,则平面FAD 的一个法向量为n =(3-3λ,0,1). ·················································· 8分 又因为平面AECD 的一个法向量为m =(0,0,1), 且二面角F -DA -C 的大小为30º,所以|cos <m ,n >|=|m ·n |m |·|n ||=|1(3-3λ)2+1|=32,整理得9λ2-18λ+8=0,即(3λ-2)(3λ-4)=0,解得λ=23或λ=43(舍去),故PF →=23PC →. ................................................................................ 10分因为S △ACD =12×33×1=332,所以V F -ACD =13V P -ACD =13S △ACD ×13PE =12. ............................................................................... 12分方法2在△PEC 中,过F 作FG ∥EC ,交PE 于点G .因为EC ∥AD ,所以FG ∥AD ,因此A ,D ,F ,G 共面. 在平行四边形ABCD 中,易知AD ⊥AE .由(1)得PE ⊥平面AECD , 因为AD ⊂平面AECD ,所以AD ⊥PE .又PE ∩AE =E ,AE ,PE ⊂平面PAE ,所以AD ⊥平面PAE . 因为AG ⊂平面PAE ,所以AD ⊥AG .所以∠GAE 为二面角F -AD -C 的平面角,所以∠GAE =30º. ································· 8分 在Rt △AEG 中,∠AEG =90º,∠GAE =30º,AE =1,所以EG =33. ···················· 10分 因为FG ∥AD ,FG ⊄平面AECD ,AD ⊂平面AECD ,所以FG ∥平面AECD .因此V F -ACD =V G -ACD =13×(12×33×1)×33=12.······················································ 12分。

高三一轮数学复习备考试卷归纳

高三一轮数学复习备考试卷归纳

高三一轮数学复习备考试卷归纳高三年级数学复习试题一、选择题:本大题共8小题,每小题5分,共40分..1.若复数的实部与虚部相等,则实数()A(A)(B)(C)(D)2.已知,猜想的表达式为().A.B.C.D.3.等比数列中,,则“”是“”的B(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件4.从甲、乙等名志愿者中选出名,分别从事,,,四项不同的工作,每人承担一项.若甲、乙二人均不能从事工作,则不同的工作分配方案共有B(A)种(B)种(C)种(D)种5.已知定义在上的函数的对称轴为,且当时,.若函数在区间()上有零点,则的值为A(A)或(B)或(C)或(D)或6.已知函数,其中.若对于任意的,都有,则的取值范围是D(A)(B)(C)(D)7.已知函数有且仅有两个不同的零点,,则BA.当时,,B.当时,,C.当时,,D.当时,,8.如图,正方体中,为底面上的动点,于,且,则点的轨迹是A(A)线段(B)圆弧(C)椭圆的一部分(D)抛物线的一部分第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.设等差数列的公差不为,其前项和是.若,,则______.510.的展开式中的系数是.16011.设.若曲线与直线所围成封闭图形的面积为,则______.12.在直角坐标系中,点与点关于原点对称.点在抛物线上,且直线与的斜率之积等于,则______.13.数列的通项公式,前项和为,则___________。

301814.记实数中的_大数为,_小数为.设△的三边边长分别为,且,定义△的倾斜度为(ⅰ)若△为等腰三角形,则______;1(ⅱ)设,则的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题共14分)已知函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)讨论的单调性;(III)若存在_大值,且,求的取值范围.(18)(共14分)解:(Ⅰ)当时,..所以.又,所以曲线在点处的切线方程是,即.(Ⅱ)函数的定义域为,.当时,由知恒成立,此时在区间上单调递减.当时,由知恒成立,此时在区间上单调递增.当时,由,得,由,得,此时在区间内单调递增,在区间内单调递减. (III)由(Ⅱ)知函数的定义域为,当或时,在区间上单调,此时函数无_大值.当时,在区间内单调递增,在区间内单调递减,所以当时函数有_大值._大值.因为,所以有,解之得.所以的取值范围是.16.(本小题满分13分)已知函数的一个零点是.(Ⅰ)求实数的值;(Ⅱ)设,求的单调递增区间.(Ⅰ)解:依题意,得,………………1分即,………………3分解得.………………5分(Ⅱ)解:由(Ⅰ)得.………………6分………………7分………………8分………………9分.………………10分由,得,.………………12分所以的单调递增区间为,.………………13分117.(本小题满分13分)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{bn}的通项公式bn;(2)设数列{an}的通项an=loga(1+)(其中a0且a≠1)记Sn是数列{an}的前n项和,试比较Sn与logabn+1的大小,并证明你的结论.(1)解:设数列{bn}的公差为d,由题意得,∴bn=3n-2(2)证明:由bn=3n-2知Sn=loga(1+1)+loga(1+)+…+loga(1+)=loga[(1+1)(1+)…(1+)]而logabn+1=loga,于是,比较Sn与logabn+1的大小比较(1+1)(1+)…(1+)与的大小.取n=1,有(1+1)=取n=2,有(1+1)(1+推测:(1+1)(1+)…(1+)(_)①当n=1时,已验证(_)式成立.②假设n=k(k≥1)时(_)式成立,即(1+1)(1+)…(1+)则当n=k+1时,,即当n=k+1时,(_)式成立由①②知,(_)式对任意正整数n都成立.于是,当a1时,Snlogabn+1,当0a1时,snlogabn+1 p=18.(本小题满分13分)已知函数,,其中.(Ⅰ)求的极值;(Ⅱ)若存在区间,使和在区间上具有相同的单调性,求的取值范围.18.(本小题满分13分)(Ⅰ)解:的定义域为,………………1分且.………………2分①当时,,故在上单调递减.从而没有极大值,也没有极小值.………………3分②当时,令,得.和的情况如下:↘↗故的单调减区间为;单调增区间为.从而的极小值为;没有极大值.………………5分(Ⅱ)解:的定义域为,且.………………6分③当时,显然,从而在上单调递增.由(Ⅰ)得,此时在上单调递增,符合题意.………………8分④当时,在上单调递增,在上单调递减,不合题意.……9分⑤当时,令,得.和的情况如下表:↘↗当时,,此时在上单调递增,由于在上单调递减,不合题意.………………11分当时,,此时在上单调递减,由于在上单调递减,符合题意.综上,的取值范围是.………………13分19.(本小题满分14分)如图,椭圆的左焦点为,过点的直线交椭圆于,两点.当直线经过椭圆的一个顶点时,其倾斜角恰为.(Ⅰ)求该椭圆的离心率;(Ⅱ)设线段的中点为,的中垂线与轴和轴分别交于两点.记△的面积为,△(为原点)的面积为,求的取值范围.19.(本小题满分14分)(Ⅰ)解:依题意,当直线经过椭圆的顶点时,其倾斜角为.………………1分设,则.………………2分将代入,解得.………………3分所以椭圆的离心率为.………………4分(Ⅱ)解:由(Ⅰ),椭圆的方程可设为.………………5分设,.依题意,直线不能与轴垂直,故设直线的方程为,将其代入,整理得.………………7分则,,.………………8分因为,所以,.………………9分因为△∽△,所以………………11分.………………13分所以的取值范围是.………………14分(20)(本小题共13分)设是由个有序实数构成的一个数组,记作:.其中称为数组的“元”,称为的下标.如果数组中的每个“元”都是来自数组中不同下标的“元”,则称为的子数组.定义两个数组,的关系数为.(Ⅰ)若,,设是的含有两个“元”的子数组,求的_大值;(Ⅱ)若,,且,为的含有三个“元”的子数组,求的_大值.(20)(共13分)解:(Ⅰ)依据题意,当时,取得_大值为2.(Ⅱ)①当是中的“元”时,由于的三个“元”都相等,及中三个“元”的对称性,可以只计算的_大值,其中.由,得.当且仅当,且时,达到_大值,于是.②当不是中的“元”时,计算的_大值,由于,所以.,当且仅当时,等号成立.即当时,取得_大值,此时.综上所述,的_大值为1.高三数学复习试题整理一、选择题。

2022届高考数学一轮复习第8章立体几何第5讲空间角与距离空间向量及应用作业试题2含解析新人教版

2022届高考数学一轮复习第8章立体几何第5讲空间角与距离空间向量及应用作业试题2含解析新人教版

第五讲空间角与距离、空间向量及应用1.[2020湖北部分重点中学高三测试]如图8-5-1,E,F分别是三棱锥P-ABC的棱AP,BC的中点,PC=10,AB=6,EF=7,则异面直线AB与PC所成的角为( )图8-5-1A.30°B.60°C.120°D.150°2.[2020湖南长沙市长郡中学模拟]图8-5-2中的三个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G 作正方体的截面.下列各选项中,关于直线BD1与平面EFG的位置关系描述正确的是( )图8-5-2∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②③1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有①1∥平面EFG的有且只有①,BD1⊥平面EFG的有且只有②1∥平面EFG的有且只有②,BD1⊥平面EFG的有且只有③13.[多选题]如图8-5-3,正方体ABCD-A1B1C1D1的棱长为1,则以下说法正确的是( )图8-5-31D1所成的角等于π4B.点C到平面ABC1D1的距离为√221C和BC1所成的角为π41D1-BB1C1的外接球的半径为√324.[2019吉林长春质量监测][双空题]已知正方体ABCD-A1B1C1D1的棱长为2,M,N,E,F分别是A1B1,AD,B1C1,C1D1的中点,则过EF且与MN平行的平面截正方体所得截面的面积为,CE 和该截面所成角的正弦值为.5.[2021广州市阶段模拟]如图8-5-4,在四棱锥E-ABCD中,底面ABCD为菱形,BE⊥平面ABCD,G为AC与BD的交点.(1)证明:平面AEC⊥平面BED.(2)若∠BAD=60°,AE⊥EC,求直线EG与平面EDC所成角的正弦值.图8-5-46.[2021晋南高中联考]如图8-5-5,在四棱锥P-ABCD中,平面PAD⊥底面ABCD,其中底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD,PA⊥PD,∠PAD=60°,Q为PD的中点.(1)证明:CQ∥平面PAB.(2)求二面角P-AQ-C的余弦值.图8-5-57.[2021湖南六校联考]如图8-5-6,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2a,AD=√2a,点E是SD 上的点,且DE=λa(0<λ≤2).(1)求证:对任意的λ∈(0,2],都有AC⊥BE.(2)设二面角C-AE-D的大小为θ,直线BE与平面ABCD所成的角为φ,若sin φ=cos θ,求λ的值.图8-5-68.[2020福建五校联考]图8-5-7是一个半圆柱与多面体ABB1A1C构成的几何体,平面ABC与半圆柱的下底面共面,⏜上的动点(不与B1,A1重合).且AC⊥BC,P为B1A1(1)证明:PA1⊥平面PBB1.,求二面角P-A1B1-C的余弦值.(2)若四边形ABB1A1为正方形,且AC=BC,∠PB1A1=π4图8-5-79.[2020全国卷Ⅱ,12分]如图8-5-8,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F.(2)设O为△A1B1C1的中心.若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.图8-5-810.[2021黑龙江省六校联考]如图8-5-9,正方形ABCD和ABEF所在的平面互相垂直,且边长都是1,M,N,G分别为线段AC,BF,AB上的动点,且CM=BN,AF∥平面MNG,记BG=a(0<a<1).(1)证明:MG⊥平面ABEF.(2)当MN的长度最小时,求二面角A-MN-B的余弦值.图8-5-911.[2021蓉城名校联考]如图8-5-10(1),AD是△BCD中BC边上的高,且AB=2AD=2AC,将△BCD沿AD翻折,使得平面ACD⊥平面ABD,如图8-5-10(2)所示.(1)求证:AB⊥CD.时,求直线AE与平面BCE (2)在图8-5-10(2)中,E是BD上一点,连接AE,CE,当AE与底面ABC所成角的正切值为12所成角的正弦值.图8-5-1012.[2020洛阳市联考]如图8-5-11,底面ABCD是边长为3的正方形,平面ADEF⊥平面ABCD,AF∥DE,AD⊥DE,AF=2√6,DE=3√6.(1)求证:平面ACE⊥平面BED.(2)求直线CA与平面BEF所成角的正弦值.的值;若不存在,请说明理由. (3)在线段AF上是否存在点M,使得二面角M-BE-D的大小为60°?若存在,求出AMAF图8-5-1113.如图8-5-12,三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,平面α经过棱PC的中点E,与棱PB,AC分别交于点F,D,且BC∥平面α,PA∥平面α.(1)证明:AB⊥平面α.(2)若AB=BC=PA=2,点M在直线EF上,求平面MAC与平面PBC所成锐二面角的余弦值的最大值.图8-5-1214.[2021安徽江淮十校第一次联考]如图8-5-13(1),已知圆O的直径AB的长为2,上半圆弧上有一点C,∠COB=60°,点P是弧AC上的动点,点D是下半圆弧的中点.现以AB为折痕,使下半圆所在的平面垂直于上半圆所在的平面,连接PO,PD,PC,CD,如图8-5-13(2)所示.(1)当AB∥平面PCD时,求PC的长;(2)当三棱锥P-COD体积最大时,求二面角D-PC-O的余弦值.图8-5-13答案第四讲直线、平面垂直的判定及性质1.B 如图D 8-5-8,取AC的中点D,连接DE,DF,因为D,E,F分别为AC,PA,BC的中点,所以DF∥AB,DF=12AB,DE∥PC,DE=12PC,所以∠EDF或其补角为异面直线PC与AB所成的角.因为PC=10,AB=6,所以在△DEF中,DE=5,DF=3,EF=7,由余弦定理得cos∠EDF=DE2+DF2-EF22DE×DF =25+9−492×5×3=-12,所以∠EDF=120°,所以异面直线PC与AB所成的角为60°.故选B.图D 8-5-82.A 对于题图①,连接BD,因为E,F,G均为所在棱的中点,所以BD∥GE,DD1∥EF,又BD⊄平面EFG,DD1⊄平面EFG,从而可得BD∥平面EFG,DD1∥平面EFG,又BD∩DD1=D,所以平面BDD1∥平面EFG,所以BD1∥平面EFG.对于题图②,连接DB,DA 1,设正方体的棱长为1,因为E,F,G 均为所在棱的中点,所以BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·GE ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(12DA 1⃗⃗⃗⃗⃗⃗⃗⃗ )=12(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ )=12(1×√2×cos 45°-√2×√2×cos 60°)=0, 即BD 1⊥EG.连接DC 1,则BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(12DC 1⃗⃗⃗⃗⃗⃗⃗ )=12(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·DC 1⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ ·DC 1⃗⃗⃗⃗⃗⃗⃗ )=12(1×√2×cos 45°-√2×√2×cos 60°)=0,即BD 1⊥EF. 又EG ∩EF=E,所以BD 1⊥平面EFG.对于题图③,设正方体的棱长为1,连接DB,DG,因为E,F,G 均为所在棱的中点,所以BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EG ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DG ⃗⃗⃗⃗⃗ -DE ⃗⃗⃗⃗⃗ )=(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DC ⃗⃗⃗⃗⃗ +12DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -12DA ⃗⃗⃗⃗⃗ )=12DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-DB ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ +12DB ⃗⃗⃗⃗⃗⃗ ·DA ⃗⃗⃗⃗⃗ =12-√2×1×√22+12×√2×1×√22=0, 即BD 1⊥EG.连接AF,则BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ =(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(AF ⃗⃗⃗⃗⃗ -AE ⃗⃗⃗⃗⃗ )=(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ -DB ⃗⃗⃗⃗⃗⃗ )·(DD 1⃗⃗⃗⃗⃗⃗⃗⃗ +12DC ⃗⃗⃗⃗⃗ +12DA ⃗⃗⃗⃗⃗ )=DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-12DB ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ -12DB ⃗⃗⃗⃗⃗⃗ ·DA ⃗⃗⃗⃗⃗ =1-12×√2×1×√22-12×√2×1×√22=0, 即BD 1⊥EF.又EG ∩EF=E,所以BD 1⊥平面EFG.故选A.3.ABD 正方体ABCD-A 1B 1C 1D 1的棱长为1,对于A,直线BC 与平面ABC 1D 1所成的角为∠CBC 1=π4,故A 正确;对于B,点C 到平面ABC 1D 1的距离为B 1C 长度的一半,即距离为√22,故B 正确;对于C,连接AC,因为BC 1∥AD 1,所以异面直线D 1C 和BC 1所成的角即直线D 1C 和AD 1所成的角,又△ACD 1是等边三角形,所以异面直线D 1C 和BC 1所成的角为π3,故C 错误;对于D,三棱柱AA 1D 1-BB 1C 1的外接球就是正方体ABCD-A 1B 1C 1D 1的外接球,正方体ABCD-A 1B 1C 1D 1的外接球半径r=√12+12+122=√32,故D 正确.故选ABD.√2√1010如图D 8-5-9,正方体ABCD-A 1B 1C 1D 1中,设CD,BC 的中点分别为H,G,连接HE,HG,GE,HF,ME,NH.图D 8-5-9易知ME ∥NH,ME=NH,所以四边形MEHN 是平行四边形,所以MN ∥HE.因为MN ⊄平面EFHG,HE ⊂平面EFHG,所以MN ∥平面EFHG,所以过EF 且与MN 平行的平面为平面EFHG,易知平面EFHG 截正方体所得截面为矩形EFHG,EF=√2,FH=2,所以截面EFHG 的面积为2×√2=2√2.连接AC,交HG 于点I,易知CI ⊥HG,平面EFHG ⊥平面ABCD,平面EFHG ∩平面ABCD=HG,所以CI ⊥平面EFHG,连接EI,因为EI ⊂平面EFHG,所以CI ⊥EI,所以∠CEI 为直线CE 和截面EFHG 所成的角.在Rt △CIE 中,易知CE=√1+22=√5,CI=14AC=2√24=√22,所以sin ∠CEI=CICE=√1010. 5.(1)因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD,AC ⊂平面ABCD,所以AC ⊥BE.又BE ∩BD=B,所以AC ⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED.(2)解法一 设AB=1,在菱形ABCD 中,由∠BAD=60°,可得AG=GC=√32,BG=GD=12.因为AE ⊥EC,所以在Rt △AEC 中可得EG=AG=√32.由BE ⊥平面ABCD,得△EBG 为直角三角形,则EG 2=BE 2+BG 2,得BE=√22.如图D 8-5-10,过点G 作直线Gz ∥BE,因为BE ⊥平面ABCD, 所以Gz ⊥平面ABCD,又AC ⊥BD,所以建立空间直角坐标系 G-xyz.G(0,0,0),C(0,√32,0),D(-12,0,0),E(12,0,√22),图D 8-5-10所以GE ⃗⃗⃗⃗⃗ =(12,0,√22),DE ⃗⃗⃗⃗⃗ =(1,0,√22),CE ⃗⃗⃗⃗⃗ =(12,-√32,√22). 设平面EDC 的法向量为n=(x,y,z),由{DE ⃗⃗⃗⃗⃗ ·n =0,CE ⃗⃗⃗⃗⃗ ·n =0,得{x +√22z =0,12x -√32y +√22z =0,取x=1,则z=-√2,y=-√33,所以平面EDC 的一个法向量为n=(1,-√33,-√2).设直线EG 与平面EDC 所成的角为θ,则sin θ=|cos<GE⃗⃗⃗⃗⃗ ,n>|=|12+0−1√14+12×√1+13+2|=|-12√32×√103|=√1010. 所以直线EG 与平面EDC 所成角的正弦值为√1010. 解法二 设BG=1,则GD=1,AB=2,AG=√3.设点G 到平面EDC 的距离为h,EG 与平面EDC 所成角的大小为θ.因为AC ⊥平面EBD,EG ⊂平面EBD,所以AC ⊥EG.因为AE ⊥EC,所以△AEC 为等腰直角三角形.因为AC=2AG=2√3,所以AE=EC=√6,EG=AG=√3.因为AB=BD=2,所以Rt △EAB ≌Rt △EDB,所以EA=ED=√6.在△EDC 中,ED=EC=√6,DC=2,则S △EDC =√5.在Rt △EAB 中,BE=√EA 2-AB 2=√(√6)2-22=√2.V E-GDC =13BE ·12S △CBD =16×√2×S △ABD =16×√2×12×2×√3=√66.由V G-EDC =13h ·√5=V E-GDC =√66,得h=√62√5=√3010.所以sin θ=ℎEG =√1010.所以直线EG 与平面EDC 所成角的正弦值为√1010.解法三 如图D 8-5-11,以点B 为坐标原点,建立空间直角坐标系B-xyz.图D 8-5-11不妨设AB=2,在菱形ABCD 中,由∠BAD=60°,可得AG=GC=√3,BG=GD=1.因为AE ⊥EC,所以在Rt △AEC 中可得EG=AG=√3.由BE ⊥平面ABCD,得△EBG 为直角三角形,则EG 2=BE 2+BG 2,得BE=√2.则C(2,0,0),E(0,0,√2),D(1,√3,0),G(12,√32,0), 所以EG ⃗⃗⃗⃗⃗ =(12,√32,-√2),ED ⃗⃗⃗⃗⃗ =(1,√3,-√2),EC ⃗⃗⃗⃗⃗ =(2,0,-√2). 设平面EDC 的法向量为n=(x,y,z), 则{n ·ED ⃗⃗⃗⃗⃗ =0,n ·EC ⃗⃗⃗⃗⃗ =0,得{x +√3y -√2z =0,2x -√2z =0,令x=√3,则z=√6,y=1.所以平面EDC 的一个法向量为n=(√3,1,√6).设EG 与平面EDC 所成的角为θ,则sin θ=|cos<EG⃗⃗⃗⃗⃗ ,n>|=|√32+√32-2√3|√1+2×√3+1+6=√1010. 所以直线EG 与平面EDC 所成角的正弦值为√1010. 6.(1)如图D 8-5-12,取PA 的中点N,连接QN,BN.图D 8-5-12∵Q,N 分别是PD,PA 的中点,∴QN ∥AD,且QN=12AD. ∵PA ⊥PD,∠PAD=60°,∴PA=12AD, 又PA=BC,∴BC=12AD,∴QN=BC,又AD ∥BC,∴QN ∥BC,∴四边形BCQN 为平行四边形,∴BN ∥CQ.又BN ⊂平面PAB,CQ ⊄平面PAB,∴CQ ∥平面PAB.(2)在图D 8-5-12的基础上,取AD 的中点M,连接BM,PM,取AM 的中点O,连接BO,PO,如图D 8-5-13.图D 8-5-13设PA=2,由(1)得PA=AM=PM=2,∴△APM 为等边三角形,∴PO ⊥AM,同理BO ⊥AM.∵平面PAD ⊥平面ABCD,平面PAD ∩平面ABCD=AD,PO ⊂平面PAD,∴PO ⊥平面ABCD.以O 为坐标原点,分别以OB ⃗⃗⃗⃗⃗ ,OD⃗⃗⃗⃗⃗⃗ ,OP ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O-xyz, 则A(0,-1,0),C(√3,2,0),P(0,0,√3),Q(0,32,√32), ∴AC⃗⃗⃗⃗⃗ =(√3,3,0),AQ ⃗⃗⃗⃗⃗ =(0,52,√32), 设平面ACQ 的法向量为m=(x,y,z),则{m ·AC⃗⃗⃗⃗⃗ =0,m ·AQ ⃗⃗⃗⃗⃗ =0,∴{√3x +3y =0,52y +√32z =0,取y=-√3,得m=(3,-√3,5)是平面ACQ 的一个法向量,又平面PAQ 的一个法向量为n=(1,0,0),∴cos<m,n>=m ·n|m|·|n|=3√3737, 由图得二面角P-AQ-C 的平面角为钝角,∴二面角P-AQ-C 的余弦值为-3√3737. 7.(1)由题意SD ⊥平面ABCD,AD ⊥DC,以D 为原点,DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DS ⃗⃗⃗⃗⃗ 的方向分别作为x,y,z 轴的正方向建立如图D 8-5-14所示的空间直角坐标系,图D 8-5-14则D(0,0,0),A(√2a,0,0),B(√2a,√2a,0),C(0,√2a,0),E(0,0,λa), ∴AC ⃗⃗⃗⃗⃗ =(-√2a,√2a,0),BE ⃗⃗⃗⃗⃗ =(-√2a,-√2a,λa), ∴AC ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ =2a 2-2a 2+0×λa=0, 即AC ⊥BE.(2)解法一 由(1)得EA ⃗⃗⃗⃗⃗ =(√2a,0,-λa),EC ⃗⃗⃗⃗⃗ =(0,√2a,-λa),BE ⃗⃗⃗⃗⃗ =(-√2a,-√2a,λa). 设平面ACE 的法向量为n=(x,y,z),则由n ⊥EA ⃗⃗⃗⃗⃗ ,n ⊥EC ⃗⃗⃗⃗⃗ 得 {n ·EA ⃗⃗⃗⃗⃗ =0,n ·EC ⃗⃗⃗⃗⃗ =0,得{√2x -λz =0,√2y -λz =0,取z=√2,得n=(λ,λ,√2)为平面ACE 的一个法向量,易知平面ABCD 与平面ADE 的一个法向量分别为DS⃗⃗⃗⃗⃗ =(0,0,2a)与DC ⃗⃗⃗⃗⃗ =(0,√2a,0), ∴sin φ=|DS ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ ||DS⃗⃗⃗⃗⃗ |·|BE ⃗⃗⃗⃗⃗ |=√λ2+4,易知二面角C-AE-D 为锐二面角,∴cos θ=|DC⃗⃗⃗⃗⃗ ·n||DC⃗⃗⃗⃗⃗ |·|n|=√2λ2+2,由sin φ=cos θ得√λ2+4=√2λ2+2,解得λ2=2,又λ∈(0,2],∴λ=√2.解法二 如图D 8-5-15,连接BD,由SD ⊥平面ABCD 知,∠DBE=φ.图D 8-5-15由(1)易知CD ⊥平面SAD.过点D 作DF ⊥AE 于点F,连接CF,则∠CFD 是二面角C-AE-D 的平面角,即∠CFD=θ.在Rt △BDE 中,BD=2a,DE=λa,∴BE=√4a 2+λ2a 2,sin φ=DEBE =√λ2+4,在Rt △ADE 中,AD=√2a,DE=λa,∴AE=a √λ2+2,∴DF=AD ·DE AE=√2λa√λ2+2, 在Rt △CDF 中,CF=√DF 2+CD 2=2√λ2+1√λ2+2a,∴cos θ=DFCF =√2λ2+2,由sin φ=cos θ得√λ2+4=√2λ2+2,解得λ2=2,又λ∈(0,2],∴λ=√2.8.(1)在半圆柱中,BB 1⊥平面PA 1B 1,PA 1⊂平面PA 1B 1,所以BB 1⊥PA 1.因为A 1B 1是上底面对应圆的直径,所以PA 1⊥PB 1.因为PB 1∩BB 1=B 1,PB 1⊂平面PBB 1,BB 1⊂平面PBB 1,所以PA 1⊥平面PBB 1.(2)根据题意,以C 为坐标原点建立空间直角坐标系C-xyz,如图D 8-5-16所示.图D 8-5-16设CB=1,则C(0,0,0),A 1(0,1,√2),B 1(1,0,√2), 所以CA 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,√2),CB 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,√2).易知n 1=(0,0,1)为平面PA 1B 1的一个法向量. 设平面CA 1B 1的法向量为n 2=(x,y,z),则{n 2·CA 1⃗⃗⃗⃗⃗⃗⃗ =0,n 2·CB 1⃗⃗⃗⃗⃗⃗⃗ =0,即{y +√2z =0,x +√2z =0,令z=1,则x=-√2,y=-√2,所以n 2=(-√2,-√2,1)为平面CA 1B 1的一个法向量.所以cos<n 1,n 2>=1×√5=√55.由图可知二面角P-A 1B 1-C 为钝角,所以所求二面角的余弦值为-√55.9.(1)因为M,N 分别为BC,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN.因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 11C 1⊥MN,故B 1C 1⊥平面A 1AMN.所以平面A 1AMN ⊥平面EB 1C 1F.(2)由已知得AM ⊥BC.以M 为坐标原点,MA ⃗⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|MB ⃗⃗⃗⃗⃗⃗ |为单位长度,建立如图D 8-5-17所示的空间直角坐标系M-xyz,则AB=2,AM=√3.图D 8-5-17连接NP,则四边形AONP 为平行四边形,故PM=2√33,E(2√33,13,0).由(1)知平面A 1AMN ⊥平面ABC.作NQ ⊥AM,垂足为Q,则NQ ⊥平面ABC.设Q(a,0,0),则NQ=(2√331(a,1,(2√33故B 1E ⃗⃗⃗⃗⃗⃗⃗ =(2√33-a,-23,-√4−(2√33-a)2),|B 1E ⃗⃗⃗⃗⃗⃗⃗ |=2√103. 又n=(0,-1,0)是平面A 1AMN 的一个法向量,故 sin(π2- n,B 1E ⃗⃗⃗⃗⃗⃗⃗ )=cos n,B 1E ⃗⃗⃗⃗⃗⃗⃗ =n ·B 1E⃗⃗⃗⃗⃗⃗⃗⃗ |n|·|B 1E ⃗⃗⃗⃗⃗⃗⃗⃗ |=√1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为√1010. 10.(1)因为AF ∥平面MNG,且AF ⊂平面ABEF,平面ABEF ∩平面MNG=NG,所以AF ∥NG,所以CM=BN=√2a,所以AM=√2(1-a),所以AMCM =AGBG =1−a a,所以MG ∥BC,所以MG ⊥AB.又平面ABCD ⊥平面ABEF,且MG ⊂平面ABCD,平面ABCD ∩平面ABEF=AB,所以MG ⊥平面ABEF.(2)由(1)知,MG ⊥NG,MG=1-a,NG=a,所以MN=√a 2+(1−a)2=√2a 2-2a +1=√2(a -12)2+12≥√22,当且仅当a=12时等号成立,即当a=12时,MN 的长度最小.以B 为坐标原点,分别以BA,BE,BC 所在的直线为x 轴、y 轴、z 轴建立如图D 8-5-18所示的空间直角坐标系B-xyz,则A(1,0,0),B(0,0,0),M(12,0,12),N(12,12,0),图D 8-5-18设平面AMN 的法向量为m=(x 1,y 1,z 1),因为AM ⃗⃗⃗⃗⃗⃗ =(-12,0,12),MN⃗⃗⃗⃗⃗⃗⃗ =(0,12,-12), 所以{m ·AM ⃗⃗⃗⃗⃗⃗ =−x12+z12=0,m ·MN⃗⃗⃗⃗⃗⃗⃗ =y 12-z 12=0,取z 1=1,得m=(1,1,1)为平面AMN 的一个法向量.设平面BMN 的法向量为n=(x 2,y 2,z 2),因为BM ⃗⃗⃗⃗⃗⃗ =(12,0,12),MN ⃗⃗⃗⃗⃗⃗⃗ =(0,12,-12), 所以{n ·BM ⃗⃗⃗⃗⃗⃗ =x22+z22=0,n ·MN ⃗⃗⃗⃗⃗⃗⃗ =y 22-z 22=0,取z 2=1,得n=(-1,1,1)为平面BMN 的一个法向量.所以cos<m,n>=m ·n|m||n|=13, 又二面角A-MN-B 为钝二面角,所以二面角A-MN-B 的余弦值为-13.11.(1)由题图(1)知,在题图(2)中,AC ⊥AD,AB ⊥AD.∵平面ACD ⊥平面ABD,平面ACD ∩平面ABD=AD,AB ⊂平面ABD,∴AB ⊥平面ACD,又CD ⊂平面ACD,∴AB ⊥CD.(2)以A 为坐标原点,AC,AB,AD 所在的直线分别为x,y,z 轴建立如图D 8-5-19所示的空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),AD ⃗⃗⃗⃗⃗ =(0,0,1),BC ⃗⃗⃗⃗⃗ =(1,-2,0),DB⃗⃗⃗⃗⃗⃗ =(0,2,-1).图D 8-5-19设E(x,y,z),由DE ⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗⃗ (0<λ<1),得(x,y,z-1)=(0,2λ,-λ), 得E(0,2λ,1-λ),∴AE⃗⃗⃗⃗⃗ =(0,2λ,1-λ),又平面ABC 的一个法向量为AD ⃗⃗⃗⃗⃗ =(0,0,1),AE 与底面ABC 所成角的正切值为12, 所以|tan AD ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ |=2,于是|cos AD ⃗⃗⃗⃗⃗ ,AE⃗⃗⃗⃗⃗ |=√5=√55, 即|√(2λ)2+(1−λ)2|=√55,解得λ=12,则E(0,1,12),AE ⃗⃗⃗⃗⃗ =(0,1,12),BE⃗⃗⃗⃗⃗ =(0,-1,12). 设平面BCE 的法向量为n=(x,y,z),则{n ·BC⃗⃗⃗⃗⃗ =0,n ·BE ⃗⃗⃗⃗⃗ =0,即{x -2y =0,-y +12z =0, 令y=1,得x=2,z=2,则n=(2,1,2)是平面BCE 的一个法向量,设直线AE 与平面BCE 所成的角是θ,则sin θ=|cos AE ⃗⃗⃗⃗⃗ ,n |=|AE⃗⃗⃗⃗⃗ ·n||AE ⃗⃗⃗⃗⃗ ||n|=√52×3=4√515, 故直线AE 与平面BCE 所成角的正弦值为4√515.12.(1)因为平面ADEF ⊥平面ABCD,平面ADEF ∩平面ABCD=AD,DE ⊂平面ADEF,DE ⊥AD,所以DE ⊥平面ABCD.因为AC ⊂平面ABCD,所以DE ⊥AC.又四边形ABCD 是正方形,所以AC ⊥BD.因为DE ∩BD=D,DE ⊂平面BED,BD ⊂平面BED,所以AC ⊥平面BED.又AC ⊂平面ACE,所以平面ACE ⊥平面BED.(2)因为DA,DC,DE 两两垂直,所以以D 为坐标原点,建立如图D 8-5-20所示的空间直角坐标系D-xyz. 则A(3,0,0),F(3,0,2√6),E(0,0,3√6),B(3,3,0),C(0,3,0),所以CA⃗⃗⃗⃗⃗ =(3,-3,0),BE ⃗⃗⃗⃗⃗ =(-3,-3,3√6),EF ⃗⃗⃗⃗⃗ =(3,0,-√6).图D 8-5-20设平面BEF 的法向量为n=(x,y,z), 则{n ·BE ⃗⃗⃗⃗⃗ =−3x -3y +3√6z =0,n ·EF ⃗⃗⃗⃗⃗ =3x -√6z =0,取x=√6,得n=(√6,2√6,3)为平面BEF 的一个法向量.所以cos<CA ⃗⃗⃗⃗⃗ ,n>=CA⃗⃗⃗⃗⃗ ·n |CA⃗⃗⃗⃗⃗ ||n|=√63√2×√39=-√1313. 所以直线CA 与平面BEF 所成角的正弦值为√1313.(3)假设在线段AF 上存在符合条件的点M,由(2)可设M(3,0,t),0≤t ≤2√6,则BM ⃗⃗⃗⃗⃗⃗ =(0,-3,t).设平面MBE 的法向量为m=(x 1,y 1,z 1), 则{m ·BM ⃗⃗⃗⃗⃗⃗ =−3y 1+tz 1=0,m ·BE⃗⃗⃗⃗⃗ =−3x 1-3y 1+3√6z 1=0,令y 1=t,得m=(3√6-t,t,3)为平面MBE 的一个法向量.由(1)知CA ⊥平面BED,所以CA ⃗⃗⃗⃗⃗ 是平面BED 的一个法向量,|cos<m,CA ⃗⃗⃗⃗⃗ >|=|m ·CA⃗⃗⃗⃗⃗ ||m||CA⃗⃗⃗⃗⃗ |=√6-3√2×√(3√6-t)2+t 2+9=cos 60°=12,整理得2t 2-6√6t+15=0,解得t=√62,故在线段AF 上存在点M,使得二面角M-BE-D 的大小为60°,此时AMAF =14. 13.(1)因为BC ∥平面α,BC ⊂平面PBC,平面α∩平面PBC=EF,所以BC ∥EF,且F 为棱PB 的中点,因为BC ⊥AB,所以EF ⊥AB.因为PA ∥平面α,PA ⊂平面PAC,平面α∩平面PAC=DE,所以PA ∥DE.因为PA ⊥平面ABC,所以PA ⊥AB, 所以DE ⊥AB.又DE ∩EF=E,DE ⊂平面DEF,EF ⊂平面DEF,所以AB ⊥平面DEF,即AB ⊥平面α.(2)如图D 8-5-21,以点B 为坐标原点,分别以BA,BC 所在直线为x,y 轴,过点B 且与AP 平行的直线为z 轴建立空间直角坐标系,则B(0,0,0),A(2,0,0),C(0,2,0),P(2,0,2),E(1,1,1),F(1,0,1),AC⃗⃗⃗⃗⃗ =(-2,2,0),BC ⃗⃗⃗⃗⃗ =(0,2,0), BP⃗⃗⃗⃗⃗ =(2,0,2).图D 8-5-21设M(1,t,1),平面MAC 的法向量为m=(x 1,y 1,z 1),则AM ⃗⃗⃗⃗⃗⃗ =(-1,t,1),则{m ·AC⃗⃗⃗⃗⃗ =−2x 1+2y 1=0,m ·AM ⃗⃗⃗⃗⃗⃗ =−x 1+ty 1+z 1=0,令x 1=1,则y 1=1,z 1=1-t,所以m=(1,1,1-t)为平面MAC 的一个法向量.设平面PBC 的法向量为n=(x 2,y 2,z 2),则{n ·BC ⃗⃗⃗⃗⃗ =2y 2=0,n ·BP ⃗⃗⃗⃗⃗ =2x 2+2z 2=0,得y 2=0,令x 2=1,则z 2=-1,所以n=(1,0,-1)为平面PBC 的一个法向量.设平面MAC 与平面PBC 所成的锐二面角为θ,则cos θ=|cos<m,n>|=|m ·n||m|×|n|=√12+12+(1-t)2×√2=√t 2-2t+3×√2.当t=0时,cos θ=0; 当t ≠0时, cos θ=√3t 2-2t+1×√2=√3(1t -13)+23×√2,当且仅当1t =13,即t=3时,3(1t -13)2+23取得最小值23,cos θ取得最大值,最大值为√23×√2=√32.所以平面MAC 与平面PBC 所成锐二面角的余弦值的最大值为√32.14.(1)因为AB ∥平面PCD,AB ⊂平面OCP,平面OCP ∩平面PCD=PC,所以AB ∥PC.又∠COB=60°,所以∠OCP=60°.又OC=OP,所以△OCP 为正三角形,所以PC=1.(2)由题意知DO ⊥平面COP,而V P-COD =V D-COP ,S △COP =12·OC ·OP ·sin ∠COP, 所以当OC ⊥OP 时,三棱锥P-COD 的体积最大.解法一 易知OP,OD,OC 两两垂直,以O 为坐标原点,OP⃗⃗⃗⃗⃗ ,OD ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向,建立如图D 8-5-22所示的空间直角坐标系O-xyz,则P(1,0,0),D(0,1,0),C(0,0,1),PC ⃗⃗⃗⃗⃗ =(-1,0,1),DP ⃗⃗⃗⃗⃗ =(1,-1,0).图D 8-5-22设平面DPC 的法向量为n 1=(x,y,z),则{PC⃗⃗⃗⃗⃗ ·n 1=0,DP ⃗⃗⃗⃗⃗ ·n 1=0,即{-x +z =0,x -y =0,取x=1,得平面DPC 的一个法向量为n 1=(1,1,1).易知平面PCO 的一个法向量为n 2=(0,1,0),设二面角D-PC-O 的平面角为α,由题图知,二面角D-PC-O 的平面角为锐角,则cos α=|n 1·n 2||n 1||n 2|=√33, 所以二面角D-PC-O 的余弦值为√33.解法二如图D 8-5-23所示,取PC的中点H,连接OH,DH.图D 8-5-23 因为OC=OP,DC=DP,所以OH,DH都与PC垂直,即∠OHD为所求二面角的平面角.在Rt△OPC中,可得OH=√22,在Rt△OHD中,DH=(√22=√62,所以cos∠OHD=√22√62=√33,所以二面角D-PC-O的余弦值为√33.。

2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(真题测试)解析版

2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(真题测试)解析版

专题8.2 空间几何体的表面积和体积(真题测试)一、单选题1.(2020·天津·高考真题)若棱长为 ) A .12π B .24π C .36π D .144π【答案】C【解析】【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R =,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.2.(2020·北京·高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为(). A .63+ B .623+ C .123+ D .1223+【答案】D【解析】【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.3.(2022·浙江·高考真题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .22πB .8πC .22π3D .16π3【答案】C【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm ,圆台的下底面半径为2cm ,所以该几何体的体积(322214122ππ1π122π2π12333V =⨯⨯+⨯⨯+⨯⨯⨯+⨯=3cm .故选:C .4.(2022·全国·高考真题)已知正三棱台的高为1,上、下底面边长分别为面上,则该球的表面积为( )A .100πB .128πC .144πD .192π【答案】A【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以123432,260sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =2d =121d d -=或121d d +=,即1=1,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .5.(2021·浙江·高考真题)某几何体的三视图如图所示,则该几何体的体积是( )A .32B .3C .2D .【答案】A【解析】【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【详解】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,1=故1111131222ABCD A B C D V -=⨯⨯=, 故选:A. 6.(2021·全国·高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A B C D A 【解析】【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【详解】,1AC BC AC BC ⊥==,ABC ∴为等腰直角三角形,AB ∴=,则ABC 1, 设O 到平面ABC 的距离为d ,则2d =所以11111332O ABC ABC V S d -=⋅=⨯⨯⨯= 故选:A.7.(2022·全国·高考真题(文))已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( )A .13B .12CD 【答案】C【解析】【分析】先证明当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α, 则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅⋅= (当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r又22r h 1+=则2123O ABCDV r h -=⋅⋅=当且仅当222r h =即h 时等号成立,故选:C8.(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤ ) A .8118,4⎡⎤⎢⎥⎣⎦ B .2781,44⎡⎤⎢⎥⎣⎦ C .2764,43⎡⎤⎢⎥⎣⎦ D .[18,27]【答案】C【解析】【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =- 所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭, 所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l ≤0V '<,所以当l =V 取最大值,最大值为643,又3l =时,274V =,l =814V =, 所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,. 故选:C.二、多选题9.(2022·广东茂名·二模)某一时段内,从天空降落到地面上的液态或固态的水,未经蒸发,而在水平面上积聚的深度称为这段时间的降雨量.24h 降雨量的等级划分如下:在一次暴雨降雨过程中,小明用一个大容量烧杯(如图,瓶身直径大于瓶口直径,瓶身高度为50cm ,瓶口高度为3cm )收集雨水,容器内雨水的高度可能是( )A .20cmB .22cmC .25cmD .29cm【答案】CD【解析】【分析】设降雨量为x ,容器内雨水高度为h,根据雨水的体积相等关系可得到h,x 之间的关系49h x =,结合题意可得4200400[,)999x ∈,由此判断出答案. 【详解】设降雨量为x ,容器内雨水高度为h,根据体积相等关系可得:22π100π150x h ⨯=⨯,解得49h x = , 由于[50,100)x ∈ ,故4200400[,)999x ∈, 故20040020040020,22[,),25,29[,)9999∉∈故选:CD .10.(2023·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为42B .体积为5023π C .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22【答案】AC【解析】 【分析】设圆台的上底面半径为r ,下底面半径为R ,求出1,3r R ==,即可判断选项A 正确;利用公式计算即可判断选项BCD 的真假得解.【详解】解:设圆台的上底面半径为r ,下底面半径为R ,则11223,22933r R ππππ=⨯⨯=⨯⨯,解得1,3r R ==.圆台的母线长6l =,圆台的高为h ==,则选项A 正确;圆台的体积()22133113π=⨯+⨯+=,则选项B 错误; 圆台的上底面积为π,下底面积为9π,侧面积为()13624ππ+⨯=,则圆台的表面积为92434ππππ++=,则C 正确;由前面可知上底面积、下底面积和侧面积之比为1:9:24,则选项D 错误.故选:AC .11.(2022·湖南·长沙一中模拟预测)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.“圆柱容球”是阿基米德最为得意的发现;如图是一个圆柱容球,12O O ,为圆柱上下底面的圆心,O 为球心,EF 为底面圆1O 的一条直径,若球的半径2r =,则( )A .球与圆柱的表面积之比为12:B .平面DEF 截得球的截面面积最小值为165π C .四面体CDEF 的体积的取值范围为3203⎛⎤ ⎥⎝⎦,D .若P 为球面和圆柱侧面的交线上一点,则PE PF +的取值范围为2⎡+⎣【答案】BCD【解析】【分析】利用球的表面积公式及圆柱的表面积公式可判断A ,由题可得O 到平面DEF 的距离为1d 平面DEF 截得球的截面面积最小值可判断B ,由题可得四面体CDEF 的体积等于12E DCO V -可判断C ,设P 在底面的射影为P ',设2t P E '=,PE PF +PE PF +的取值范围可判断D.【详解】由球的半径为r ,可知圆柱的底面半径为r ,圆柱的高为2r ,则球表面积为24r π,圆柱的表面积222226r r r r πππ+⋅=, 所以球与圆柱的表面积之比为23,故A 错误;过O 作1OG DO ⊥于G ,则由题可得12OG == 设O 到平面DEF 的距离为1d ,平面DEF 截得球的截面圆的半径为1r ,则1d OG ≤,22221114164455r r d d =-=-≥-=, 所以平面DEF 截得球的截面面积最小值为165π,故B 正确; 由题可知四面体CDEF 的体积等于12E DCO V -,点E 到平面1DCO 的距离(0,4]d ∈, 又114482DCO S =⨯⨯=,所以123228(0,]33E DCO V d -=⨯∈,故C 正确; 由题可知点P 在过球心与圆柱的底面平行的截面圆上,设P 在底面的射影为P ', 则2222222,2,2,16PP PE P E PF P F P E P F '''''==+=++=,设2t P E '=,则20,4t ⎡⎤∈⎣⎦,PE PF +所以()2224PE PF +==+2424⎡⎤=++⎣⎦,所以2PE PF ⎡+∈+⎣,故D 正确.故选:BCD.12.(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD【解析】【分析】直接由体积公式计算12,V V ,连接BD 交AC 于点M ,连接,EM FM ,由3A EFM C EFM V V V --=+计算出3V ,依次判断选项即可.【详解】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅=, ()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅=,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥, 又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D =,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ==,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ===,3EF a =,222EM FM EF +=,则EM FM ⊥,212EFM SEM FM =⋅=,AC =, 则33123A EFM C EFM EFM V V V AC S a --=+=⋅=,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确.故选:CD.三、填空题 13.(2021·全国·高考真题(文))已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.【答案】39π【解析】【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵216303V h ππ=⋅=∴52h =∴132l =∴136392S rl πππ==⨯⨯=侧. 故答案为:39π.14.(2020·江苏·高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是 ____ cm 3. 【答案】1232π-【解析】【分析】先求正六棱柱体积,再求圆柱体积,相减得结果.【详解】正六棱柱体积为262⨯ 圆柱体积为21()222ππ⋅=所求几何体体积为2π故答案为: 2π15.(2019·天津·高考真题(文)若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. 【答案】4π. 【解析】【分析】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】借助勾股定理,2=,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为12,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,故圆柱的体积为21124ππ⎛⎫⨯⨯= ⎪⎝⎭. 16.(2022·吉林·长春市第二实验中学高三阶段练习)在三棱锥P ABC -中,点P 在底面的射影是ABC 的外心,2,3BAC BC PA π∠===___________. 【答案】12548π 【解析】【分析】先由正弦定理得,ABC 外接圆的半径,再由勾股定理,即可求出半径,从而可得外接球体积.【详解】解:设ABC 的外心为1O ,连接1PO ,则球心O 在1PO 上,连接1O A ,则1O A 为ABC 外接圆的半径r ,连接OA ,设外接球的半径为R ,则OA OP R ==,在ABC 中,由正弦定理得2,BC r sin BAC ==∠解得1r =,即11O A =, 在1Rt PAO 中,12,PO =在1Rt AOO ,中22211OO AO AO +=,即()22221R R -+=,解得:54R =, 所以外接球的体积为:3344125334854R V πππ⎛⎫⋅ ⎪⎝⎭===, 故答案为:12548π 四、解答题17.(2022·安徽芜湖·高一期末)如图①,有一个圆柱形状的玻璃水杯,底面圆的直径为20cm ,高为30cm ,杯内有20cm 深的溶液.如图①,现将水杯倾斜,且倾斜时点B 始终不离开桌面,设直径AB 所在直线与桌面所成的角为α.要使倾斜后容器内的溶液不会溢出,求α的最大值. 【答案】4π【解析】【分析】当水杯倾斜过程中,溶液恰好不溢出时,此时α最大;在这个临界条件下,结合溶液的体积不变,可以得到关于α的一个不等式,即可求出α的取值范围,得到最大值.【详解】如图所示,在Rt △CDE 中20tan DE α=,()2221020tan 103020tan 10202παπαπ⨯⨯⨯⨯-+≥⨯⨯解得tan 1α≤,即α的最大值4π. 18.(2022·全国·南宁二中高三期末(文))图1是由矩形ABGF ,Rt ADE △和菱形ABCD 组成的一个平面图形,其中2AB =,1==AE AF ,60BAD ∠=︒,将该图形沿AB ,AD 折起使得AE 与AF 重合,连接CG ,如图2.(1)证明:图2中的C ,D ,E ,G 四点共面;(2)求图2中三棱锥C BDG -的体积.【答案】(1)证明见解析【解析】【分析】(1)依题意可得//AB FG ,//AB CD ,即可得到//AB GE ,从而得到//CD EG ,即可得证;(2)依题意可得AE AD ⊥、AE AB ⊥,即可得到AE ⊥平面ABCD 从而得到BG ⊥平面ABCD ,再根据13C BDG G BCD BCD V V BG S --==⋅计算可得;(1)证明:在矩形ABGF 和菱形ABCD 中,//AB FG ,//AB CD ,所以//AB GE ,所以//CD EG ,所以C 、D 、E 、G 四点共面;(2)解:在Rt ADE △中AE AD ⊥,矩形ABGE 中AE AB ⊥,AD AB A ⋂=,,AD AB ⊂平面ABCD ,所以AE ⊥平面ABCD ,又//BG EA ,所以BG ⊥平面ABCD ,又11sin 2222BCD S BC CD BCD =⋅⋅∠=⨯⨯=所以11133C BDG G BCD BCD V V BG S --==⋅=⨯ 19.(2022·山西吕梁·高一期末)如图是某种水箱用的“浮球”,它是由两个半球和一个圆柱筒组成.已知球的半径是2cm ,圆柱筒的高是2cm .(1)求这种“浮球”的体积;(2)要在100个这种“浮球”的表面涂一层防水漆,每平方厘米需要防水漆0.5g ,共需多少防水漆?【答案】(1)356(cm)3π (2)1200g π【解析】【分析】(1)由球的体积公式和圆柱的体积公式求解即可;(2)由球的表面积公式和圆柱的侧面积公式求解即可.(1)因为该“浮球”的圆柱筒底面半径和半球的半径2cm r =,圆柱筒的高为2cm ,所以两个半球的体积之和为331432(cm)33V r ππ==, 圆柱的体积2328(cm)V r h ππ==,∴该“浮球”的体积是31256(cm)3V V V π=+=; (2)根据题意,上下两个半球的表面积是221416(cm)S r ππ==,而“浮球”的圆柱筒侧面积为2228(cm)S rh ππ==,∴“浮球”的表面积为21224(cm)S S S π=+=;所以给100个这种浮球的表面涂一层防水漆需要100240.51200g ππ⨯⨯=.20.(2022·全国·高三专题练习)如图1,在直角梯形ABCD 中,//AD BC ,∠BAD =90°,12AB BC AD a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图2中1A BE 的位置,使平面1A BE ⊥平面BCDE ,得到四棱锥1A BCDE -.当四棱锥1A BCDE -的体积为a 的值.【答案】6a =.【解析】【分析】在直角梯形ABCD 中,证明BE AC ⊥,在四棱锥1A BCDE -中,由面面垂直的性质证得1A O ⊥平面BCDE ,再利用锥体体积公式计算作答.【详解】如图,在直角梯形ABCD 中,连接CE ,因E 是AD 的中点,12BC AD a ,有//,AE BC AE BC =,则四边形ABCE 是平行四边形,又,90BAD AB BC ∠==,于是得ABCE 是正方形,BE AC ⊥,在四棱锥1A BCDE -中,1BE AO ⊥,因平面1A BE ⊥平面BCDE ,且平面1A BE 平面BCDE BE =,1A O ⊂平面1A BE ,因此1A O ⊥平面BCDE ,即1A O 是四棱锥1A BCDE -的高,显然112AO AO CO AC ====,平行四边形BCDE 的面积2S CO BE a =⋅==,因此,四棱锥1A BCDE -的体积为2311133V S AO a =⋅===6a =, 所以a 的值是6.21.(2022·北京·高一期末)《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑 (四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,已知3AB =,4BC =,5AC =.当阳马111C ABB A -体积等于24时, 求:(1)堑堵111ABC A B C -的侧棱长;(2)鳖臑1C ABC -的体积;(3)阳马111C ABB A -的表面积.【答案】(1)6(2)12 (3)51313【解析】【分析】(1)设堑堵111ABC A B C -的侧棱长为x ,根据阳马111C ABB A -体积等于24求解即可;(2)根据棱锥的体积计算即可;(3)分别计算111C ABB A -的侧面积与底面积即可(1)因为3AB =,4BC =,5AC =,所以222AB BC AC +=.所以△ABC 为直角三角形.设堑堵111ABC A B C -的侧棱长为x ,则113A ABB S x 矩形,则111143243AA BB V x C , 所以6x =,所以堑堵111ABC A B C -的侧棱长为6.(2)因为13462ABC S =⨯⨯=△, 所以1111661233ABC ABC V S CC C . 所以鳖臑1C ABC -的体积为12.(3) 因为11113462A B C S,11164122BB C S , 11165152AA C S ,1132133132ABC S , 113618A ABB S 矩形,所以阳马111C ABB A -的表面积的表面积为612151831351313. 22.(2022·重庆市巫山大昌中学校高一期末)如图,AB 是圆柱OO '的一条母线,BC 过底面圆心O ,D 是圆O 上一点.已知5,3AB BC CD ===,(1)求该圆柱的表面积;(2)将四面体ABCD 绕母线AB 所在的直线旋转一周,求ACD △的三边在旋转过程中所围成的几何体的体积.【答案】(1)75π2(2)15π【解析】【分析】(1)由题意求出柱的底面圆的半径即可求解;(2)ACD △绕AB 旋转一周而成的封闭几何体的体积为两个圆锥的体积之差,结合圆锥体积公式求解即可(1)由题意知AB 是圆柱OO '的一条母线,BC 过底面圆心O ,且5AB BC ==, 可得圆柱的底面圆的半径为52R =, 则圆柱的底面积为221525πππ24S R ⎛⎫==⨯= ⎪⎝⎭, 圆柱的侧面积为252π2π525π2S Rl ==⨯⨯= 所以圆柱的表面积为12257522π25ππ42S S S =+=⨯+=. (2) 由线段AC 绕AB 旋转一周所得几何体为以BC 为底面半径,以AB 为高的圆锥,线段AD 绕AB 旋转一周所得的几何体为BD 为底面半径,以AB 为高的圆锥,所以以ACD △绕AB 旋转一周而成的封闭几何体的体积为:22221111πππ55π4515π3333V BC AB BD AB =⋅⋅-⋅⋅=⋅⋅-⋅⋅=.。

最新版精选2019年高考数学第一轮复习测试版题库(含标准答案)

最新版精选2019年高考数学第一轮复习测试版题库(含标准答案)

2019年高考数学第一轮复习模拟测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若非空集合A,B,C 满足A ∪B=C ,且B 不是A 的子集,则 A .“x ∈C ”是“x ∈A ”的充分条件但不是必要条件 B . “x ∈C ”是“x ∈A ”的必要条件但不是充分条件 C . “x ∈C ”是“x ∈A ”的充分条件D . “x ∈C ”是“x ∈A ”的充分条件也不是“x ∈A ”必要条件(2008湖北理)2.集合A= {x ∣12x -≤≤},B={x ∣x<1},则()R AB ð= (D )(A ){x ∣x>1} (B) {x ∣x ≥ 1} (C) {x ∣12x <≤ } (D) {x ∣12x ≤≤} (2007)3.若实数,a b 满足0,0a b ≥≥,且0ab =,则称a 与b 互补,记(,),a b a b ϕ-那么(,)0a b ϕ=是a 与b 互补的A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件4.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A. 充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5.已知数列{an }满足a1=3,an+1 - an + 1=0 (n ∈N* ), 则数列{an }的通项公式为 A. an= n 2 +2 B. an= n +2 C. an=4-n D. an= 2 n +16.lgx,lgy,lgz 成等差数列是y2=xz 成立的 A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件二、填空题7.函数2)1(log )(++=x x f a ,0(>a 且)1≠a 必过定点 ▲ ;8.已知函数()f x 是偶函数,并且对于定义域内任意的x ,满足()()12f x f x +=-, 若当23x <<时,()f x x =,则)5.2007(f =__________ _9.已知当椭圆的长半轴长为a ,短半轴长为b 时,椭圆的面积是πab .请针对椭圆2212516x y +=,求解下列问题: (1)若m ,n 是实数,且|m |≤5,|n |≤4.求点P (m ,n )落在椭圆内的概率;(2)若m ,n 是整数,且|m |≤5,|n |≤4.求点P (m ,n )落在椭圆外的概率以及点P 落在椭圆上的概率。

(浙江版)高考数学一轮复习 第08章 立体几何测试题-浙江版高三全册数学试题

(浙江版)高考数学一轮复习 第08章 立体几何测试题-浙江版高三全册数学试题

第八章 立体几何测试题班级__________ 某某_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。

)1.【2018届某某省某某市高级中学高三上学期第二次模拟】已知是两条不同直线,是平面,则下列命题是真命题的是( ) A. 若,则 B. 若,则 C. 若,则D. 若,则【答案】B2.【2018届市某某区高三上学期期中】已知,m n 表示两条不同的直线,α表示平面,下列说法正确的是A. 若//m α, //n α,则//m nB. 若//m α, m n ⊥,则n α⊥C. 若m α⊥, m n ⊥,则//n αD. 若m α⊥, //m n ,则n α⊥ 【答案】D【解析】对于A ,//m α, //n α,则,m n 可能相交,可能异面,也可能平行,命题错误; 对于B ,//m α, m n ⊥,则//n α,n α⊂或n 与α斜交,命题错误; 对于C ,m α⊥, m n ⊥,则//n α,或n α⊂,命题错误; 对于D ,若m α⊥, //m n ,则n α⊥,显然正确》 故选:D.3.【2018届某某省某某市高三上学期尖子生第一次联考】已知球O 与棱长为4的正四面体的各棱相切,则球O 的体积为( )A.823π B. 833π C. 863π D. 1623π 【答案】A4.【2018届西城161高三上期中】在如图所示的空间直角坐标系O xyz -中,一个四面体的顶点坐标分别是()0,0,2,()2,2,0,()1,2,1,()2,2,2,给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为().A. ①和②B. ③和①C. ④和③D. ④和② 【答案】D【解析】在空间直角坐标系O xyz中,根据所给的条件标出已知的四个点,结合三视图的画图规则,可得三棱锥的正视图和俯视图分别为④②.选D.5.【2017届某某省某某高三下学期第一次模拟】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是().A. B. C. D.【答案】C6.【2018届某某某某市第十八中学高三上学期第三次月考】多面体的三视图如图所示,则该多面体的外接球的表面积为()A.3416π B. 173432π C. 178π D. 2894π 【答案】D【解析】如图所示,由三棱锥的三视图得:该三棱锥的底面是腰长为6的等腰直角三角形,设该三棱锥的外接球的半径为,R 球心为H 则()()222222174324DH HO OD R R R =+⇒=-+⇒=故则该三棱锥的外接球的表面积为22172894444S R πππ⎛⎫=== ⎪⎝⎭选D.7.【2018届某某省某某一中高三第二次月考】正三棱锥S ABC -中,若三条侧棱两两垂直,且3SA =,则正三棱锥S ABC -的高为() A. 2 B. 2 C. 3 D. 3 【答案】C【解析】8.【2018届某某省某某市高新技术开发区月考】已知直三棱柱111ABC A B C -的6个顶点都在表面积为100π的球O 的球面上,若4AB AC ==, 43BC =,则该三棱柱的体积为( )A. 83B. 123C. 132D. 243 【答案】D9.【2017届东北师大附中、某某师大附中、某某省实验中学高三下第四次模拟】已知正四棱锥P ABCD -中,2,,PA AB E F ==分别是,PB PC 的中点,则异面直线AE 与BF 所成角的余弦值为( )A.33 B. 63 C. 16 D. 12【答案】C【解析】建立如图所示空间直角坐标系,可知()()22222,0,0,0,.,0,2,0,,0,2222AE BF ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.则22222,,,,2,2222AE BF ⎛⎫⎛⎫=-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则1112cos ,1111222222AE BF AE BF AE BF-+⋅〈〉===++⋅++16.故本题答案选C.10.【2017年某某省数学基地校】已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α, H 为垂足,α截球O 所得截面的面积为π,则球O 的体积为( )(A)169π (B) 32327π (C) 1627π(D)1639π【答案】B【解析】如图,11.【2018届某某省某某外国语学校高三上练习三】三棱锥P ABC -中,,,PA PB PC 互相垂直,1PA PB ==,M 是线段BC 上一动点,若直线AM 与平面PBC 所成角的正切的最大值是62,则三棱锥P ABC -的外接球的表面积是( ) A. 2π B. 4π C. 8π D. 16π 【答案】B三棱锥P ABC -扩充为长方体,则长方体的对角线长为1122++=,∴三棱锥P ABC -的外接球的半径为1R =, ∴三棱锥P ABC -的外接球的表面积为244R ππ=. 选B.12.【2018届某某省源清中学高三9月月考】如图,矩形ADFE ,矩形CDFG ,正方形ABCD 两两垂直,且2AB =,若线段DE 上存在点P 使得GP BP ⊥,则边CG 长度的最小值为( )A. 4B. 43C.D. 23 【答案】D【解析】() 24022ax ax PB PG x x a ⎛⎫=-++-= ⎪⎝⎭.显然0x ≠且2x ≠. 所以221642a x x=--. 因为()0,2x ∈,所以(]220,1x x -∈. 所以当221x x -=,2a 取得最小值12. 所以a 的最小值为23. 故选D.二、填空题(本大题共4小题,每小题5分,共20分。

高三数学一轮专题复习第八章第2讲两直线的位置关系理试题

高三数学一轮专题复习第八章第2讲两直线的位置关系理试题

卜人入州八九几市潮王学校第2讲两直线的位置关系〔A 组〕1点(1,-1)到直线x-y+1=0的间隔是()(A)12(B)32(C)2(D)22.过两直线2x-y-5=0和x+y+2=0的交点且与直线3x+y-1=0平行的直线方程为()A.3x+y+1=0B.3x+y-2=0C.3x+y=0D.3x+y-3=03.假设经过点(3,a )、(-2,0)的直线与经过点(3,-4)且斜率为的直线垂直,那么a 的值是()A. B. D.-104.设a ∈R ,那么“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行〞的()5.直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等间隔,那么直线l 的方程为() x +3y -18=0x -y -2=0x -2y +18=0或者x +2y +2=0x +3y -18=0或者2x -y -2=06.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,那么反射光线所在的直线方程为 ()A.x +2y -4=0 x +y -1=0C.x +6y -16=0x +y -8=07.过点(1,2)与直线2x +y -10=0垂直的直线方程为____________.8.直线Ax +3y +C =0与直线2x -3y +4=0的交点在y 轴上,那么C 的值是________.9.假设直线3x+4y-3=0与直线6x+my+14=0平行,那么它们之间的间隔为.10.直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,那么实数a =________.11.两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足以下条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的间隔相等.12.直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;(3)直线l关于点A(-1,-2)对称的直线l′的方程.第2讲两直线的位置关系〔B组〕1.“m=3”是“直线l1:2(m+1)x+(m-3)y+7-5m=0与直线l2:(m-3)x+2y-5=0垂直〞的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.a,b满足a+2b=1,那么直线ax+3y+b=0必过定点A.(−16,12)B.(12,16)C.(12,−16)D.(16,−12)3.设a、b、c分别是△ABC中∠A、∠B、∠C所对边的边长,那么直线x sin A+ay+c=0与bx-y sin B+sin C =0的位置关系是 ()4.假设点A(3,5)关于直线l:y=kx的对称点在x轴上,那么k是()(B)5.A,B两点分别在两条互相垂直的直线2x-y=0和x+ay=0上,且AB线段的中点为P10 (0,)a,那么线段AB的长为()A.11B.10 C.9D.86.一只虫子从点(0,0)出发,先爬行到直线l:x-y+1=0上的P点,再从P点出发爬行到点A(1,1),那么虫子爬行的最短路程是()A.√2B.27.过点P(3,0)作一直线l,使它被两直线l1:2x-y-2=0和l2:x+y+3=0所截的线段AB以P为中点,那么此直线l的方程为___________________.8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,那么m+n=________.9.l1,l2是分别经过A(1,1),B(0,-1)两点的两条平行直线,当l1,l2间的间隔最大时,那么直线l1的方程是__________________________.10.假设直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为2,那么m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是________.11在△ABC 中,A(0,1),AB 边上的高CD 所在直线的方程为x+2y-4=0,AC 边上的中线BE 所在直线的方程为2x+y-3=0.(1)求直线AB 的方程.(2)求直线BC 的方程.(3)求△BDE 的面积.12.直线l :x -2y +8=0和两点A (2,0),B (-2,-4).(1)在直线l 上求一点P ,使|PA |+|PB |最小;(2)在直线l 上求一点P ,使||PB |-|PA ||最大.第2讲两直线的位置关系〔C 组〕1.过点A(-2,m)和点B(m,4)的直线为l 1,直线2x+y-1=0为l 2,直线x+ny+1=0为l 3.假设l 1∥l 2,l 2⊥l 3,那么实数m+n 的值是()A.-10B.-2l 1:y =x sin α和直线l 2:y =2x +c ,那么直线l 1与l 2()会重合B.通过绕l 1上某一点旋转可以重合C.可能垂直D.可能与x 轴围成等腰直角三角形 3.曲线-=1与直线y =2x +m 有两个交点,那么m 的取值范围是()A .(-∞,-4)∪(4,+∞)B.(-4,4)C .(-∞,-3)∪(3,+∞)D.(-3,3)4.b >0,直线x-b 2y-1=0与直线(b 2+1)x+ay+2=0互相垂直,那么ab 的最小值等于() (A)1(B)2(C)2235.如图,A (4,0)、B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,那么光线所经过的路程是()6.一条光线从点()2,3--射出,经y 轴反射后与圆()()22321x y ++-=相切,那么反射光线所在直线的斜率为〔〕 〔A 〕53-或者35-〔B 〕32-或者23-〔C 〕54-或者45-〔D 〕43-或者34- 7.点P (2,1)到直线l :mx -y -3=0(m ∈R )的最大间隔是________.8.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,那么b 的取值范围是________.9.如图,直线l 1∥l 2,点A 是l 1,l 2之间的定点,点A 到l 1,l 2之间的间隔分别为3和2,点B 是l 2上的一动点,作AC ⊥AB ,且AC 与l 1交于点C ,那么△ABC 的面积的最小值为________.10在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的间隔之和最小的点的坐标是________.11.点P (2,-1).(1)求过P 点且与原点间隔为2的直线l 的方程;(2)求过P 点且与原点间隔最大的直线l 的方程,并求出最大间隔.(3)是否存在过P 点且与原点间隔为6的直线?假设存在,求出方程;假设不存在,请说明理由.12.如图,函数f (x )=x +的定义域为(0,+∞).设点P 是函数图象上任一点,过点P 分别作直线y =x 和y 轴的垂线,垂足分别为M ,N .(1)证明:|PM |·|PN |为定值;(2)O 为坐标原点,求四边形OMPN 面积的最小值.。

高三数学一轮复习阶段性测评试题 文 试题

高三数学一轮复习阶段性测评试题 文 试题

河三中2021届高三数学一轮复习阶段性测评试题 文制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题:本大题一一共12个小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的. 1. 设集合{}{}1,0,1,2,|1A B x y x =-==-,那么以下图中阴影局部所表示的集合为〔 〕A . {}1B . {}0C . {}1,2D .{}0,1 2. 以下函数中,既是偶函数又在()0,+∞上单调递减的是〔 〕 A .()x f x e = B . ()1f x x x=+C .()lg f x x =D . ()2f x x =- 3. “假设2a ≥,那么24a ≥〞的否命题是〔 〕A .假设2a ≤,那么24a ≤B .假设2a ≥,那么24a ≤ C .假设2a <,那么24a < D .假设2a ≥,那么24a < 函数3y x =在点()2,8处的切线方程为〔 〕A .1216y x =-B .1216y x =+ C. 1216y x =-- D .1216y x =-+5. 函数xy a =〔0a >且1a ≠〕与函数()212y a x x =--在同一坐标系内的图象可能是〔 〕A .B . C. D .6.“lg lg a b >>〕A . 充分不必要条件B .必要不充分条件 C. 充分必要条件 D .既不充分也不必要条件7. 0.30.23log 3,log 2,2a b c ===,那么,,a b c 的大小关系为〔 〕A . a b c >>B .c b a >> C. b c a >> D .c a b >> 8.函数()221f x ax x =-+在区间()1,1-和区间()1,2上分别存在一个零点,那么实数a 的取值范围是〔 〕 A . 31a -<< B .314a << C. 334a -<< D .3a <-或者34a > 9. 函数()f x 是定义在R 上的奇函数,当0x ≥时,()f x 为减函数,且()11f -=,假设()21f x -≥-,那么x 的取值范围是〔 〕A . (],3-∞+B .(],1-∞ C. [)3,+∞ D .[)1,+∞10. 函数()f x 定义域为R ,且对任意x R ∈,都有()()2f x f x +=,假设在区间[]1,1-上()()2,102,01xax x f x a x e x +-≤≤⎧=⎨-<≤⎩,那么()()20172018f f +=〔 〕 A . 0 B . 1 C. 2 D .202111. 定义在R 上的函数()f x 与其导函数()f x '满足()()0f x f x '+>,那么以下不等式一定成立的是〔 〕A . ()()01f ef <B .()()01f ef > C. ()()10f ef < D .()()10f ef <12. 某班学生进展了三次数学测试,第一次有8名学生得满分是,第二次有10名学生得满分是,第三次有12名学生得满分是,前两次均为满分是的学生有5名,三次测试中至少有一次得满分是的学生有15名,假设后两次均为满分是的学生至少有n 名,那么n 的值是〔 〕A . 7B . 8 C. 9 D .10二、填空题〔每一小题5分,满分是20分,将答案填在答题纸上〕*:,2x p x N x ∀∈>,那么命题:p ⌝ .14. 设[]x 表示不超过x 的最大整数,如[][]1,52,1,51-=-=,那么方程[]20x -=的解集为 .15. 假设函数()()10101x x f x =+是偶函数,那么a = .16.(),0111,1x e x f x e x e x⎧<≤⎪=⎨+-<≤⎪⎩,假设方程()f x kx e =+有且仅有3个实数解,那么实数k的取值范围是 .三、解答题:本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤.17. 设集合()(){}1|24,|02x A x B x x a x b ⎧⎫=≤≤=-+≤⎨⎬⎩⎭. 〔1〕假设A B =且0a b +<,务实数,a b 的值;〔2〕假设B 是A 的真子集,且2a b +=,务实数b 的取值范围.2:,40p x R mx x m ∀∈++≤.〔1〕假设p 为真命题,务实数m 的取值范围;〔2〕假设有命题[]2:2,8,log 10q x m x ∃∈+≥,当p q ∨为真命题且p q ∧为假命题时,务实数m 的取值范围.19.某公司研发出一款新产品,批量消费前先在某城销售30天进展场调查.调查结果发现:日销售量()f t 与天数t 的对应关系服从图①所示的函数关系;每件产品的销售利润()h t 与天数t 的对应关系服从图②所示的函数关系.图①由抛物线的一局部〔A 为抛物线顶点〕和线段AB 组成.图①,图②〔1〕设该产品的日销售利润为()()030,Q t t t N ≤≤∈,分别求出()()(),,f t h t Q t 的解析式;〔2〕假设在30天的销售中,日销售利润至少有一天超过8500元,那么可以投入批量消费,该产品是否可以投入批量消费,请说明理由.()322234f x x mx nx m =--+在1x =处有极值10.〔1〕务实数,m n 的值;〔2〕设11,3a ⎛⎫∈-+∞ ⎪⎝⎭,讨论函数()f x 在区间[],1a a +上的单调性. 21. 函数()f x 的定义域为R ,值域为()0,+∞,且对任意,m n R ∈,都有()()()f m n f m f n +=,()()()11f x x f x ϕ-=+.〔1〕求()0f 的值,并证明()x ϕ为奇函数;〔2〕假设0x >时,()1f x >,且()34f =,判断()f x 的单调性〔不要求证明〕,并利用判断结果解不等式()1517x ϕ>. ()ln f x a x x =+在()1,+∞上存在两个零点12,x x ,且12x x <.〔1〕务实数a 的取值范围;〔2〕假设方程()ln f x x =的两根为12,x x '',且12x x ''<,求证:1212x x x x ''->-.试卷答案一、选择题1-5:BDCAA 6-10:ABBAC 11、12:AD 二、填空题13. *,2xx N x ∃∈≤ 14. [)2,3 15. 12-16. 211,4e e -⎛⎤- ⎥⎝⎦三、解答题 17.解:〔1〕{}124|122x A x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭, ∵0a b +<,∴a b <-,∴()(){}{}|0|B x x a x b x a x b =-+≤=≤≤-, ∵A B =, ∴1,2a b =-=-.〔2〕∵2a b +=, ∴{}|2B x b x b =-≤≤-, ∵B 是A 的真子集, ∴1b -≥-且22b -≤, 解得01b ≤≤.18.解:〔1〕∵2,40x R mx x m ∀∈++≤, ∴0m <且21160m ∆=-≤,解得01144m m m <⎧⎪⎨≤-≥⎪⎩或,∴p 为真命题时,14m ≤-. 〔2〕[][]2212,8,log 102,8,log x m x x m x∃∈+≥⇔∃∈≥-, 又[]2,8x ∈时,2111,log 3x ⎡⎤-∈--⎢⎥⎣⎦, ∴1m ≥-,∵p q ∨为真命题且p q ∧为假命题时, ∴p 真q 假或者p 假q 真,当p 假q 真,有114m m ≥-⎧⎪⎨>-⎪⎩,解得14m >-; 当p 真q 假,有114m m m <-⎧⎪⎨≤-⎪⎩,解得1m <-;∴p q ∨为真命题且p q ∧为假命题时,1m <-或者14m >-. 19.解:〔1〕()214,0201060,2030t t t f t t t ⎧-+≤≤⎪=⎨⎪-+≤≤⎩,()20,010200,1030t t h t t ≤≤⎧=⎨≤≤⎩,由题可知,()()()Q t f t h t =, ∴当010t ≤≤时,()232142028010Q t t t t t t ⎛⎫=-+=-+ ⎪⎝⎭; 当1020t ≤≤时,()22142002080010Q t t t t t ⎛⎫=-+=-+ ⎪⎝⎭; 当2030t ≤≤时,()()6020020012000Q t t t =-+=-+,()()322280,01020800,102020012000,2030t t t Q t t t t t N t t ⎧-+≤≤⎪=-+≤≤∈⎨⎪-+≤≤⎩〔2〕该产品不可以投入批量消费,理由如下: 当010t ≤≤时,()()max 106000Q t Q ==, 当1020t ≤≤时,()()max 208000Q t Q ==, 当2030t ≤≤时,()()max 208000Q t Q ==,∴()Q t 的最大值为()2080008500Q =<,∴在一个月的销售中,没有一天的日销售利润超过8500元,不可以投入批量消费. 20.解:〔1〕()f x 定义域为()2,343R f x x mx n '=--, ∵()f x 在1x =处有极值10, ∴()10f '=且()110f =,即23430123410m n m n m --=⎧⎨--+=⎩,解得:321m n ⎧=⎪⎨⎪=-⎩或者2113m n =-⎧⎪⎨=⎪⎩, 当3,12m n ==-时,()()22363310f x x x x '=-+=-≥, 当112,3m n =-=时,()()()238111311f x x x x x '=+-=-+,∴()f x 在1x =处有极值10时,112,3m n =-=.〔2〕由〔1〕可知()2241116f x x x x =+-+,其单调性和极值分布情况如下表:∴①当3a >-且11a +≤,即03a -<≤时,()f x 在区间[],1a a +上的单调递减; ②当11a a ≤<+,即01a <≤时,()f x 在区间[),1a 上单调递减,在区间(]1,1a +上单调递增;③当1a >时,()f x 在区间[],1a a +上单调递增. 综上所述,当11,3a ⎛⎫∈-+∞ ⎪⎝⎭时,函数()f x 在区间[],1a a +上的单调性为: 1103a -<≤时,单调递减;01a <≤时,()f x 在[],1a 上单调递减,在[]1,1a +上单调递增;1a >时,()f x 在[],1a a +上单调递增.21.〔1〕解:令0m n ==,得()()()000f f f =, ∵()f x 值域为()0,+∞, ∴()01f =,∵()f x 的定义域为R , ∴()x ϕ的定义域为R , 又∵()()()0f f x f x =-,∴()()()()()()()()11111111f x f x f x x x f x f x f x ϕϕ-----====--+++,()x ϕ为奇函数.〔2〕判断:()f x 为R 上的增函数,()()()()115151617117f x x f x f x ϕ->⇔>⇔>+, ∵()34f =, ∴()()()16336f f f ==, 又()f x 为R 上的增函数, ∴()166f x x >⇔>, 故()1517x ϕ>的解集为{}|6x x >. 22.解:〔1〕()0ln 0ln x f x a x x a x=⇔+=⇔-=. 令()ln x x x ϕ=,那么()()2ln 1ln x x x ϕ-'=, ()x ϕ'的符号以及()x ϕ单调性和极值分布情况如下表:∴()()x e e ϕϕ≥=,当1x →时,()x ϕ→+∞;x →+∞时,()x ϕ→+∞, 故()ln f x a x x =+在区间()1,+∞上存在两个零点时,a e <-.〔2〕证明:由〔1〕知()()121,,,x e x e ∈∈+∞,且1212ln ln x xa x x ==-, 又()ln ln ln 1ln xf x x a x x x a x=⇔+=⇔=-, 那么有()()121,,,x e x e ''∈∈+∞,且12121ln ln x x a x x ''==-'', ∵()ln xx xϕ=在()1,e 上单调递减,(),e +∞上单调递增,且1a a ->-, ∴1122,x x x x ''<>, ∴1212x x x x ''->-,得证.制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。

【走向高考】2016届高三数学一轮阶段性测试题8 立体几何初步(含解析)北师大版

【走向高考】2016届高三数学一轮阶段性测试题8 立体几何初步(含解析)北师大版

阶段性测试题八(立体几何初步)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟. 第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·某某七校联考)已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m α;④α⊥β;⑤α∥β.能推导出m ∥β的是( )A .①④B .①⑤C .②⑤D .③⑤[答案] D[解析] 由两平面平行的性质可知两平面平行,在一个平面内的直线必平行于另一个平面,于是选D .2.(2015·某某第一次检测)在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB 、BC 、SC 、SA 交于D 、E 、F 、H ,D 、E 分别是AB 、BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为( )A .452B .4532C .45D .45 3[答案] A[解析] 取AC 的中点G ,连接SG ,BG.易知SG ⊥AC ,BG ⊥AC ,故AC ⊥平面SGB ,所以AC ⊥SB .因为SB ∥平面DEFH ,SB 平面SAB ,平面SAB ∩平面DEFH =HD ,则SB ∥HD .同理SB ∥FE.又D 、E 分别为AB 、BC 的中点,则H 、F 也为AS 、SC 的中点,从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形.又AC ⊥SB ,SB ∥HD ,DE ∥AC ,所以DE ⊥HD ,所以四边形DEFH为矩形,其面积S =HF·HD =(12AC)·(12SB)=452.3.(文)已知直线l ⊥平面α,直线m 平面β,则α∥β是l ⊥m 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] 若α∥β,则由l ⊥α知l ⊥β,又m β,可得l ⊥m ,若α与β相交(如图),设α∩β=n ,当m ∥n 时,由l ⊥α可得l ⊥m ,而此时α与β不平行,于是α∥β是l ⊥m 的充分不必要条件,故选A .(理)对于直线m ,n 和平面α,β,γ,有如下四个命题:(1)若m ∥α,m ⊥n ,则n ⊥α(2)若m ⊥α,m ⊥n ,则n ∥α(3)若α⊥β,γ⊥β,则α∥γ(4)若m ⊥α,m ∥n ,n β,则α⊥β其中真命题的个数是( )A .1B .2C .3D .4[答案] A[解析] (1)错误.(2)当n α时,则不成立.(3)不正确.当m ⊥α,m ∥n ,有n ⊥α,又n β,所以有α⊥β,所以只有(4)正确.选A .4.正方体ABCD -A1B1C1D1中E 为棱BB1的中点(如图1),用过点AEC1的平面截去该正方体的上半部分,则剩余几何体的左视图为( )[答案] C[解析] 取DD1的中点F ,连接AF 、C1F ,则剩余几何体为A1B1C1D1—AFC1E ,因此其左视图为选项C .5.(文) 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .12πC .11πD .10π[答案] B[解析] 从三视图可以看出该几何体是由一个球体和一个圆柱组合而成的,其表面为S =4π×12+π×12×2+2π×1×3=12π,故选B .(理)一个几何体的三视图如图所示,则该几何体的体积为( ) A .8π3 B .3π C .10π3 D .6π[答案] B[解析] 由三视图还原几何体,如图所示,为圆柱被一个不垂直于轴线的平面所截得到的几何体,其体积为V =4π-12×2π=3π.6.(2015·某某检测)若设平面α、平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] A[解析] 由α⊥β和b ⊥m ,知b ⊥α,又a α,∴a ⊥b ,“α⊥β”可以推出“a ⊥b”,反过来,不一定能推出,即“α⊥β”是“a ⊥b”的充分不必要条件.7.(文)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为( )A .6B .9C .12D .18 [答案]B [解析] 本题主要考查简单几何体的三视图及体积计算,是简单题.由三视图知,其对应几何体为三棱锥,其底面为三角形,一边长为6,这边上的高为3,棱锥的高为3,故其体积为13×12×6×3×3=9,故选B .(理)如图,如图,某三棱锥的三视图都是直角边为2的等腰直角三角形,则该三棱锥的四个面的面积中最大的是 ( )A . 3B .2 3C .1D .2[答案] A[解析] 由三视图可知,该几何体是一个三棱锥,三棱锥的三个侧面都是等腰直角三角形,所以四个面中面积最大的为△BCD ,且△BCD是边长为2的正三角形,所以S △BCD =12×2×2×32=3,选A .8.(2014·某某统考)如图,直三棱柱ABC -A1B1C1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为( )A .2B .1C . 2D .22[答案] C[解析] 由题意知,球心在侧面BCC1B1的中心O 上,BC 为截面圆的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A1B1C1的外心M 是B1C1的中点.设正方形BCC1B1的边长为x ,Rt △OMC1中,OM =x 2,MC1=x 2,OC1=R =1(R 为球的半径),∴(x 2)2+(x 2)2=1,即x =2,则AB =AC =1,∴S 矩形ABB1A1=2×1= 2.9.(文)某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是( )A .203B .163C .8-π6D .8-π3[答案] A[解析] 由三视图知,原几何体为一个正方体挖掉一个正四棱锥其中正方体的棱为2,正四棱锥的底面边长为正方体的上底面,高为1.∴原几何体的体积为V =23-13×2×2×1=8-43=203,选A .(理)如图,空间四边形OABC 中,OA =a ,OB =b ,OC =C .点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN =( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -12cD .-23a +23b -12c[答案] B [解析] 由向量加法法则可知 MN =MO +ON =-23OA +12(OB +OC)=-23a +12(b +c)=-23a +12b +12C .10.(文)已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大(柱体体积=底面积×高)时,其高的值为( )A .3 3B .2 3C .233D . 3[答案] B[分析] 根据正六棱柱和球的对称性,球心O 必然是正六棱柱上下底面中心连线的中点,作出轴截面即可得到正六棱柱的底面边长、高和球的半径的关系,在这个关系下求函数取得最值的条件即可求出所要求的量.[解析] 解法1:以正六棱柱的最大对角面作截面,设球心为O ,正六棱柱的上下底面中心分别为O1,O2,则O 是O1,O2的中点.设正六棱柱的底面边长为a ,高为2h ,则a2+h2=9.正六棱柱的体积为V =6×34a2×2h ,即V =332(9-h2)h ,则V ′=332(9-3h2),得极值点h=3,不难知道这个极值点是极大值点,也是最大值点,故当正六棱柱的体积最大,其高为2 3.解法2: 求函数V =332(9-h2)h 的条件可以使用三个正数的均值不等式进行,即V =332(9-h2)h =33229-h2·9-h2·2h2≤3649-h2+9-h2+2h233,等号成立的条件是9-h2=2h2,即h = 3. (理)(2014·新课标Ⅱ)直三棱柱ABC -A1B1C1中,∠BCA =90°,M 、N 分别是A1B1、A1C1的中点,BC =CA =CC1,则BM 与AN 所成的角的余弦值为( )A .110B .25C .3010D .22[答案] C[解析] 如图,分别以C1B1、C1A1、C1C 为x 、y 、z 轴,建立空间直角坐标系.令AC =BC =C1C =2,则A(0,2,2),B(2,0,2),M(1,1,0),N(0,1,0).∴BM →=(-1,1,-2),AN →=(0,-1,-2).cosθ=BM →·AN →|BM →|·|AN →|=0-1+46·5=3010.故选C . 第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上)11.湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下了一个直径为12cm ,深2cm 的空穴,则该球的半径是________cm ,表面积是________cm2.[答案] 10 400π[解析] 设球的半径为r ,画出球与水面的位置关系图,如图:由勾股定理可知,r2=(r -2)2+36,解得r =10.所以表面积为4πr2=4π×100=400π.12.(2015·某某期末)已知不重合的直线m 、l 和不重合的平面α、β,且m ⊥α,l β,给出下列命题:①若α∥β,则m ⊥l ;②若α⊥β,则m ∥l ;③若m ⊥l ,则α∥β;④若m ∥l ,则α⊥β.其中正确命题的个数是________.[答案] 2[解析] 对于①,∵m ⊥α,α∥β,∴m ⊥β,又l β,∴m ⊥l ,①正确;对于②,∵m ⊥α,α⊥β,∴m ∥β或m β,又l β,∴m 与l 可能相交、平行或异面,②错误;对于③,∵m ⊥α,m ⊥l ,∴l ∥α或l α,又l β,∴α与β有可能相交,也有可能平行,③错误;对于④,∵m ⊥α,m ∥l ,则l ⊥α,又l β,∴α⊥β,④正确,∴正确命题的个数是2.13.已知△ABC 的斜二侧直观图是边长为2的等边△A1B1C1,那么原△ABC 的面积为________.[答案] 2 6[解析] 如图:在△A1D1C1中,由正弦定理a sin 2π3=2sin π4,得a =6,故S △ABC =12×2×26=2 6.14.(2015·海淀区期末)已知某四棱锥的底面是边长为2的正方形,且俯视图如图所示.(1)若该四棱锥的左视图为直角三角形,则它的体积为________;(2)关于该四棱锥的下列结论中:①四棱锥中至少有两组侧面互相垂直;②四棱锥的侧面中可能存在三个直角三角形;③四棱锥中不可能存在四组互相垂直的侧面.所有正确结论的序号是________.[答案] 43①②③[解析] 由三视图可知该几何体是底面边长为2的正方形、高为1的四棱锥,如图所示,所以该四棱锥的体积为13×2×2×1=43.(2)由图可知PQ ⊥平面ABCD ,则有PQ ⊥AB ,又AB ⊥BC ,所以AB ⊥平面PBC ,于是侧面PAB ⊥侧面PBC ,同理可知侧面PDC ⊥侧面PBC ,故①正确;由上述易知AB ⊥PB ,CD ⊥PC ,所以△PAB ,△PCD 为直角三角形,又四棱锥的左视图为直角三角形,所以△PBC 为直角三角形,故②正确;由图易判断平面PAB 与平面PAD 不垂直,故③正确.综上知①②③均正确.15.如图,直三棱柱ABC -A1B1C1中,AB =1,BC =2,AC =5,AA1=3,M 为线段BB1上的一动点,则当AM +MC1最小时,△AMC1的面积为________.[答案] 3[解析] 将三棱柱的侧面A1ABB1和B1BCC1以BB1为折痕展平到一个平面α上,在平面α内AC1与BB1相交,则当交点为M 点时,AM +MC1取最小值,易求BM =1,∴AM =2,MC1=22,又在棱柱中,AC1=14,∴cos ∠AMC1=AM2+MC21-AC212AM·MC1=2+8-142×2×22=-12, ∴∠AMC1=120°,∴S △AMC1=12AM·MC1·sin ∠AMC1=12×2×22×32= 3.三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)如图所示,在三棱锥A -BOC 中,OA ⊥底面BOC ,∠OAB =∠OAC =30°,AB =AC =4,BC =22,动点D 在线段AB 上.(1)求证:平面COD ⊥平面AOB ;(2)当OD ⊥AB 时,求三棱锥C -OBD 的体积.[解析] (1)∵AO ⊥底面BOC ,∴AO ⊥OC ,AO ⊥OB .∵∠OAB =∠OAC =30°,AB =AC =4,∴OC =OB =2.又BC =22,∴OC ⊥OB ,∴OC ⊥平面AOB .∵OC 平面COD ,∴平面COD ⊥平面AOB .(2)∵OD ⊥AB ,∴BD =1,OD = 3.∴VC -OBD =13×12×3×1×2=33.17.(本小题满分12分)(文)(2015·某某苏北四市高三调研)如图,在四棱锥P -ABCD 中,四边形ABCD 是菱形,PB =PD ,且E ,F 分别是BC ,CD 的中点.求证:(1)EF ∥平面PBD ;(2)平面PEF ⊥平面PAC .[解析](1)因为E,F分别是BC,CD的中点,所以EF∥BD,因为EF⊆/平面平面PBD,BD平面PBD,所以EF∥平面PBD.(2)设BD交AC于点O,连接PO,因为ABCD是菱形,所以BD⊥AC,O是BD中点,又PB=PD,所以BD⊥PO,又EF∥BD,所以EF⊥AC,EF⊥PO.又AC∩PO=O,所以EF⊥平面PAC.因为EF平面PEF,所以平面PEF⊥平面PAC.(理)如图,正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=A.(1)求证:AD⊥B1D;(2)求证:A1C∥平面AB1D.[解析](1)∵ABC-A1B1C1是正三棱柱,∴BB1⊥平面ABC,∴BD是B1D在平面ABC上的射影.在正△ABC中,∵D是BC的中点,∴AD⊥BD, 根据三垂线定理得,AD⊥B1D.(2)连接A1B,设A1B∩AB1=E,连接DE.∵AA1=AB,∴四边形A1ABB1是正方形,∴E是A1B的中点,又D是BC的中点,∴DE∥A1C.∵DE平面AB1D,A1C⊆/平面AB1D,∴A1C∥平面AB1D.18.(本小题满分12分)如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=3,D为C1B的中点,P为AB边上的动点.(1)当点P 为AB 的中点时,证明DP ∥平面ACC1A1;(2)若AP =3PB ,求三棱锥B -CDP 的体积.[解析] (1)连接DP ,AC1,∵P 为AB 中点,D 为C1B 中点,∴DP ∥AC1,又∵AC1平面ACC1A1,DP ⊆/平面ACC1A1,∴DP ∥平面ACC1A1.(2)由AP =3PB ,得PB =14AB =12.过点D 作DE ⊥BC 于E ,则DE 12CC1,又CC1⊥平面ABC ,∴DE ⊥平面BCP ,又CC1=3,∴DE =32.则S △BCP =12·2·12sin60°=34,∴VB -CDP =VD -BCP =13·34·32=38.19.(本小题满分12分)(文)(2014·高考)如图,在三棱柱ABC -A1B1C1中,侧棱垂直于底面,AB ⊥BC ,AA1=AC =2,BC =1,E 、F 分别为A1C1、BC 的中点.(1)求证:平面ABE ⊥平面B1BCC1;(2)求证:C1F ∥平面ABE ;(3)求三棱锥E -ABC 的体积.[解析] (1)在三棱柱ABC -A1B1C1中,BB1⊥底面ABC ,所以BB1⊥AB ,又因为AB ⊥BC ,所以AB ⊥平面B1BCC1.又AB 平面ABE.所以平面ABE ⊥平面B1BCC1.(2)取AB 中点G ,连结EG 、FG.因为E 、F 分别是A1C1、BC 的中点.所以FG ∥AC ,且FG =12AC .因为AC ∥A1C1,且AC =A1C1,所以FG ∥EC1,且FG =EC1.所以四边形FGEC1为平行四边形.所以C1F ∥EG.又因为EG ⊂平面ABE ,C1F ⊄平面ABE ,所以C1F ∥平面ABE.(3)因为AA1=AC =2,BC =1,AB ⊥BC ,所以AB =AC2-BC2=3,所以三棱锥E -ABC 的体积V =13S △ABC·AA1=13×12×3×1×2=33.(理) 如图所示,在棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,PA =AD =DC =2,AB =4且AB ∥CD ,∠BAD =90°,(1)求证:BC ⊥PC ;(2)求PB 与平面PAC 所成角的正弦值.[解析] (1)在直角梯形ABCD 中,AC =22,取AB 中点E ,连接CE ,则四边形AECD 为正方形,∴AE =CE =2,又BE =12AB =2,则△ABC 为等腰直角三角形,∴AC ⊥BC ,又∵PA ⊥平面ABCD ,BC 平面ABCD ,∴PA ⊥BC ,由AC ∩PA =A 得BC ⊥平面PAC ,∵PC 平面PAC ,所以BC ⊥PC .(2)以A 为坐标原点,AD ,AB ,AP 分别为x ,y ,z 轴,建立空间直角坐标系.则P(0,0,2),B(0,4,0),C(2,2,0),BP →=(0,-4,2),BC →=(2,-2,0).由(1)知BC →即为平面PAC 的一个法向量,cos<BC →,BP →>=BC →·BP →|BC →||BP →|=105. 即PB 与平面PAC 所成角的正弦值为105.20.(本小题满分13分)(文)(2014·某某高考)如图,在正方体ABCD -A1B1C1D1中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ ;(2)直线AC1⊥平面PQMN.[解析] 思路分析:(1)直线与平面平行,主要通过直线与直线平行来证明,由BC1∥AD1,AD1∥FP ,得出BC1∥FP ,即可证明;(2)直线与平面垂直,主要通过直线与直线垂直来证明,而直线与直线垂直往往又要通过直线与平面垂直来证明.由BD ⊥平面ACC1,得BD ⊥AC1,从而MN ⊥AC1;同理,证明PN ⊥AC1,即可完成证明.解:(1)连接AD1,由ABCD -A1B1C1D1是正方体,知AD1∥BC1,因为F ,P 分别是AD ,DD1的中点,所以FP ∥AD1.从而BC1∥FP .而FP 平面EFPQ ,且BC1⊆/平面EFPQ.故直线BC1∥平面EFPQ.(2)如图,连接AC ,BD ,则AC ⊥BD .由CC1⊥平面ABCD ,BD 平面ABCD ,可得CC1⊥BD .又AC ∩CC1=C ,所以BD ⊥平面ACC1,而AC1平面ACC1,所以BD ⊥AC1.因为M ,N 分别是A1B1,A1D1的中点,所以MN ∥BD ,从而MN ⊥AC1.同理可证PN ⊥AC1,又PN ∩MN =N ,所以直线AC1⊥平面PQMN.(2014·某某高考)如图,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F 分别为AC ,DC 的中点.(1)求证:EF ⊥BC ;(2)求二面角E -BF -C 的正弦值.[解析] (1)方法一:过E 作EO ⊥BC ,垂足为O ,连接OF ,由△ABC ≌△DBC 可证出△EOC ≌△FOC ,图1所以∠EOC =∠FOC =π2,即FO ⊥BC .又EO ⊥BC ,因此BC ⊥平面EFO.又EF 平面EFO ,所以EF ⊥BC .方法二:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系,易得B(0,0,0),A(0,-1,3),D(3,-1,0),C(0,2,0),因而E(0,12,32),F(32,12,0),所以EF→=(32,0,-32),BC →=(0,2,0),因此EF →·BC →=0,从而EF →⊥BC →,所以EF ⊥BC .(2)方法一:在图1中过O 作OG ⊥BF ,垂足为G 连EG ,由平面ABC ⊥平面BDC ,从而EO ⊥平面BDC , 又OG ⊥BF ,由三垂线定理知EG ⊥BF.因此∠EGO 为二面角E -BF -C 的平面角, 在△EOC 中,EO =12EC =12BC·cos30°=32,由△BGO ∽△BFC 知OG =BO BC ·FC =34.因此tan ∠EGO =EO OG =2,从而sin ∠EGO =255.即二面角的正弦值为255.方法二:在图(2)中平面BFC 的一个法向量为n1=(0,0,1),设平面BEF 的法向量n2=(x ,y ,z)图2又BF →=(32,12,0),BE →=(0,12,32).由⎩⎪⎨⎪⎧n2·BF →=0n2·BE →=0得其中一个n2=(1,-3,1) 设二面角E -BF -C 的大小为θ,由题意知θ为锐角,则cosθ=|cos<n1,n2>|=|n1·n2|n1||n||=15. 因此sinθ=25=255. 即所求二面角的正弦值为255.21.(本小题满分14分)(文) (2014·某某模拟)如图,在三棱锥P -ABC 中,平面PAC ⊥平面ABC ,PA ⊥AC ,AB ⊥BC .设D 、E 分别为PA 、AC 中点.(1)求证:DE ∥平面PBC ;(2)求证:BC ⊥平面PAB ;(3)试问在线段AB 上是否存在点F ,使得过三点D ,E ,F 的平面内的任一条直线都与平面PBC 平行?若存在,指出点F 的位置并证明;若不存在,请说明理由.[解析] (1)证明:因为点E 是AC 中点,点D 为PA 的中点,所以DE ∥PC .又因为DE ⊆/平面PBC ,PC 平面PBC ,所以DE ∥平面PBC .(2)证明:因为平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC ,又PA 平面PAC ,PA ⊥AC , 所以PA ⊥平面ABC .所以PA ⊥BC .又因为AB ⊥BC ,且PA ∩AB =A ,所以BC ⊥平面PAB .(3)当点F 是线段AB 中点时,过点D ,E ,F 的平面内的任一条直线都与平面PBC 平行.取AB 中点F ,连EF ,DF.由(1)可知DE ∥平面PBC .因为点E 是AC 中点,点F 为AB 的中点,所以EF ∥BC .又因为EF ⊆/平面PBC ,BC 平面PBC ,所以EF ∥平面PBC .又因为DE ∩EF =E ,所以平面DEF ∥平面PBC ,所以平面DEF 内的任一条直线都与平面PBC 平行.故当点F 是线段AB 中点时,过点D ,E ,F 所在平面内的任一条直线都与平面PBC 平行. (理)(2014·某某模拟)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥AC .(1)求证:AC ⊥PB ;(2)设 O ,D 分别为AC ,AP 的中点,点G 为△OAB 内一点,且满足OG →=13(OA →+OB →),求证:DG∥平面PBC ;(3)若AB =AC =2,PA =4,求二面角A -PB -C 的余弦值.[解析] (1)因为PA ⊥平面ABC ,AC 平面ABC ,所以PA ⊥AC .又因为AB ⊥AC ,且PA ∩AB =A ,所以AC ⊥平面PAB .又因为PB 平面PAB ,所以AC ⊥PB .(2)解法1:因为PA ⊥平面ABC ,所以PA ⊥AB ,PA ⊥AC ,又因为AB ⊥AC , 所以建立如图所示的空间直角坐标系A -xyz.设AC =2a ,AB =b ,PA =2c ,则A(0,0,0),B(0,b,0),C(2a,0,0),D(0,0,c),O(a,0,0),P(0,0,2c)又因为OG →=13(OA →+OB →),所以OG →=(-23a ,b 3,0). ∴G(a 3,b 3,0)于是DG →=(a 3,b 3,-c),BC →=(2a ,-b,0),PB →=(0,b ,-2c).设平面PBC 的一个法向量n =(x0,y0,z0),则有⎩⎪⎨⎪⎧ n·BC →=0,n·PB →=0, 即⎩⎪⎨⎪⎧2ax0-by0=0,by0-2cz0=0.不妨设z0=1,则有y0=2c b ,x0=c a ,所以n =(c a ,2c b ,1).因为n·DG →=(c a ,2c b ,1)·(a 3,b 3,-c)=c a ·a 3+2c b ·b 3+1·(-c)=0, 所以n ⊥DG →.又因为DG ⊆/平面PBC ,所以DG ∥平面PBC .解法2:取AB 中点E ,连接OE ,则OE →=12(OA →+OB →) 由已知OG →=13(OA →+OB →)可得OG →=23OE.则点G 在OE 上.连接AG 并延长交CB 于F ,连接PF因为O ,E 分别为AC ,AB 的中点,所以OE ∥BC ,即G 为AF 的中点.又因为D 为线段PA 的中点,所以DG ∥PF.又DG ⊆/平面PBC ,PF 平面PBC .所以DG ∥平面PBC .(3)由(2)可知平面PBC 的一个法向量n =(c a ,2c b ,1)=(2,2,1).又因为AC ⊥平面PAB ,所以平面PAB 的一个法向量是AC →=(2,0,0).又cos<n·AC →>=n·AC →|n|·|AC →|=43×2=23,由图可知,二面角A -PB -C 为锐角,所以二面角A -PB -C 的余弦值为23.。

2022-2023学年高三一轮复习数学阶段性检测卷(含答题纸答案)

2022-2023学年高三一轮复习数学阶段性检测卷(含答题纸答案)

2022-2023学年高三一轮复习数学阶段性检测卷(含答题纸答案)数学测试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}231,{|340}=≥=-->x A x B x x x ,则=A BA.{}1<-x xB.{}04<≤x xC.{}4x x >D.{}104x x x -<≤>或2.函数()2ln 1x f x x =+-的零点所在的区间为A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .31,2⎛⎫⎪⎝⎭D .3,22⎛⎫ ⎪⎝⎭3.已知1sin 24α=-,则2πsin 4α⎛⎫+= ⎪⎝⎭A.18B.38C.8D. 584.《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百錢.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪裹、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成等差数列,这5个人各出多少钱?”在这个问题中,若大夫出4钱,则上造出的钱数为A .8B .12C .20D .285.函数()32cos 1x xf x x =+的图象大致为A. B.C. D.6.设()f x 是定义域为R 的偶函数,且在()0,+∞上单调递增,则 A.233231log 224--⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f fB.23332122log 4--⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f fC.233231log 224--⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f fD.23323122log 4--⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f7.若tan 2,θ=则sin cos 2cos sin θθθθ=+A.65B. 65- C.25D. 25-8.十八世纪早期,英国数学家泰勒发现了公式:()()357211sin 13!5!7!21!--=-+-+⋅⋅⋅+-+⋅⋅⋅-n n x x x x x x n ,(其中x ∈R ,n *∈N ,!123n n =⨯⨯⨯⋅⋅⋅⨯,0!1=),现用上述公式求()()11111112!4!6!22!--+-+⋅⋅⋅+-+⋅⋅⋅-n n 的值,下列选项中与该值最接近的是A.0sin30 B .0sin33 C .0sin36D .0sin39二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.定义在R 的奇函数()f x 满足()()3f x f x -=-,当[]0,3x ∈时2()3f x x x =-,则以下结论正确的有 A .()f x 的周期为6B .()f x 的图象关于3,02⎛⎫⎪⎝⎭对称C .()20212f =D .()f x 的图象关于32x =对称10.已知1a >,1b >,且lg a b 成等差数列,则下列说法正确的是 A.4+≥a b B. 9+a b 的最小值为12C. ()()22112-+-≥a bD.228+<a b11.已知由样本数据()(),1,2,3,,10i i x y i =组成的一个样本,得到回归直线方程为20.4y x =-,且2x =,去除两个歧义点()2,1-和()2,1-后,得到新的回归直线的斜率为3.则下列说法正确的是 A .相关变量x ,y 具有正相关关系B .去除两个歧义点后的回归直线方程为33y x =-C .去除两个歧义点后,样本(4,8.9)的残差为0.1-D .去除两个歧义点后,随x 值增加相关变量y 值增加速度变小12.已知函数()f x ,则A.()f x 的最小正周期为2πB.()f x 的单增区间是22,2(k Z)33k k ππππ⎛⎫-+∈ ⎪⎝⎭ C.()f x 的最大值为2 D.()f x 的图象关于,06π⎛⎫- ⎪⎝⎭对称三、填空题:本题共4小题,每小题5分,共20分. 13.写出函数13sin 2+=x y 的一个对称中心 . 14.若二项式6sin ()x x θ-展开式中的常数项为52,则cos 2θ的值为________.15.函数()31())221x x e f x x x e +=+-≤≤+设函数()f x 的最大值为M ,最小值为N ,则+M N 的值为 .16.有一种投掷骰子走跳棋的游戏:棋盘上标有第1站、第2站、第3站、…、第10站,共10站,设棋子跳到第n 站的概率为n P ,若一枚棋子开始在第1站,棋手每次投掷骰子一次,棋子向前跳动一次.若骰子点数小于等于3,棋子向前跳一站;否则,棋子向前跳两站,直到棋子跳到第9站(失败)或者第10站(获胜)时,游戏结束.则3P =_________;该棋手获胜的概率为__________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知数列{}n a 的前n 项和1*44(N )33n n S n +=-∈. (1)求数列{}n a 的通项公式;(2)若2log n n n b a a =+,求数列{}n b 的前n 项和n T .18(12分)已知集合A 是函数()2lg 208y x x =--的定义域,集合B 是不等式22210(0)x x a a -+-≥>的解集,:p x A ∈,:q x B ∈.(1)若A B ⋂=∅,求实数a 的取值范围;(2)若¬p 是q 的充分不必要条件,求实数a 的取值范围.19.(12分)在①sin 2a B =;②ABC 的面积ABC S =△;③222bc b c a =+-这三个条件中任选一个补充在下面横线上,并解决该问题.问题:在ABC 中,它的内角A ,B ,C 所对的边分别为a ,b ,c ,A 为锐角,6b c +=,______.(1)求a 的最小值;(2)若D 为BC 上一点,且满足2AD CD BD ==,判断ABC 的形状.20.(12分)已知2()e ()2xx f x x a x a ⎛⎫=-+∈ ⎪⎝⎭R .(1)当1a =时,求函数()f x 的极值; (2)讨论函数()(1)f x x >-的单调性.21.(12分)汽车尾气排放超标是全球变暖、海平面上升的重要因素.我国近几年着重强调可持续发展,加大在新能源项目的支持力度,积极推动新能源汽车产业发展,某汽车制造企业对某地区新能源汽车的销售情况进行调查,得到7下面的统计表:(1)统计表明销量y 与年份代码x 有较强的线性相关关系,求y 关于x 的线性回归方程,并预测该地区新能源汽车的销量最早在哪一年能突破50万辆; (2)为了解购车车主的性别与购车种类(分为新能源汽车与传统燃油汽车)的情况,该企业心随机调查了该地区200位购车车主的购车情况作为样本,其中男性车主中购置传统燃油汽车的有w 名,购置新能源汽车的有45名,女性车主中有20名购置传统燃油汽车.①若95w =,将样本中购置新能源汽车的性别占比作为概率,以样本估计总体,试用(1)中的线性回归方程预测该地区2023年购置新能源汽车的女性车主的人数(假设每位车主只购买一辆汽车,结果精确到千人);②设男性车主中购置新能源汽车的概率为p ,将样本中的频率视为概率,从被调查的所有男性车主中随机抽取5人,记恰有3人购置新能源汽车的概率为()f p ,求当w 为何值时,()f p 最大.附:ˆˆy bxa =+ 为回归方程,1221ˆni ii nii x y nxyb xnx ==-=-∑∑,ˆˆay bx =-.22.(12分)已知函数()e (sin cos )x f x x x =-,将满足()0f x '=的所有正数x 从小到大排成数列}.{n x(1)证明:数列{})(n x f 为等比数列;(2)令)(11n n n n x f x b ⋅⋅-=-)(,求数列{}n b 的前n 项和.n S高三数学(三)答题纸一、二、选择题(每小题5分,共60分)三、填空题(每小题5分,共20分)13. (0,1) 14. 1215. 4 16. 385,425617.解:(1)因为1*44(N )33n n S n +=-∈, 当1n =时,21144433a S ==-=,当2n ≥时,111444444344333333n n n n nn n n n a S S ++-⎛⎫⎛⎫-⨯=-=---===⎪ ⎪⎝⎭⎝⎭, 因为14a =也满足4nn a =,综上,*4(N )n n a n =∈;(2)由题可知2log 42nn n n b a a n =+=+,所以23(4444)2(123)nn T n =+++++++++()()12414144=21423n n n n n n +-+-+⨯=++-. 18.解:(1)由条件得:{102}A xx =-<<∣,{11}B x x a x a =≥+≤-∣或 3分 若A B ⋂=∅,则必须满足121100a a a +≥⎧⎪-≤-⎨⎪>⎩,解得:1110a a a ≥⎧⎪≥⎨⎪>⎩,所以11a ≥,所以,a 的取值范围的取值范围为:{11}a a ≥∣; 6分 (2)易得:¬:2p x ≥或10x ≤-, 7分 ∵¬p 是q 的充分不必要条件,∴{210}xx x ≥≤-∣或是{11}B x x a x a =≥+≤-∣或的真子集, 8分 则121100a a a +≤⎧⎪-≥-⎨⎪>⎩,解得:1110a a a ≤⎧⎪≤⎨⎪>⎩,所以01a <≤. ∴a 的取值范围的取值范围为:{01}a a <≤∣. 12分 19.解:(1)选①,sin 2a B =,由正弦定理得sin sin A B B =,又B 是三角形内角,sin 0B ≠,所以sin A =,而A 为锐角,所以3A π=,222222cos ()236336392b c a b c bc A b c bc bc bc +⎛⎫=+-=+--=-≥-⨯= ⎪⎝⎭,当且仅当b c =时等号成立,所以min 3a =.选②,1sin 42ABC S bc bc A ==△,所以sin 2A =,A 是锐角,所以3A π=, 222222cos ()236336392b c a b c bc A b c bc bc bc +⎛⎫=+-=+--=-≥-⨯= ⎪⎝⎭,当且仅当b c =时等号成立,所以min 3a =.选③,222bc b c a =+-,由余弦定理2221cos 22b c a A bc +-==,A 是锐角,所以3A π=. 222222cos ()236336392b c a b c bc A b c bc bc bc +⎛⎫=+-=+--=-≥-⨯= ⎪⎝⎭,当且仅当b c =时等号成立,所以min 3a =.(2)设BD x =,则2CD AD x ==,2ADB C ∠=,3BAD C π∠=-,ABC 中,sin sin AB BC C BAC=∠,3sin sin 3AB xC π=,sin AB C =, ABD △中,sin sin BD AB BAD ADB =∠∠,sin()3x C π==-,3cos sin()cos cos sin )cos 3332C C C C C C πππ=-=-=,1cos 02C C =,cos()03C π+=,03C π<<,所以6C π=,从而2B π=,ABC 是直角三角形.20.解:(1)当1a =时,2()2xx f x xe x ⎛⎫=-+ ⎪⎝⎭()()(1)(1)1x x x f x e xe x x e =+-='++-, 令()0f x '=得1x =-或0x =. 3分∴1x =-时,()f x 有极大值(1)2f e-=-, 0x =时,()f x 有极小值()00f =. 5分(2)()()(1)(1)x x x f x e xe a x x e a =+-+=+-', ∵1x >-,∴10x +>. (1)当0a ≤时,有0x e a ->,当1x >-,()0f x '>,()f x 在(1,)-+∞上单调递增. 7分 (2)当0a >时,令()0f x '=,得ln x a =.①当ln 1a ≤-,即10a e<≤,有()0f x '>, 从而函数()f x 在(1,)-+∞上单调递增. 9分②当ln 1a >-,即1a e>时,当(1,ln )x a ∈-,()0f x '<,()f x 单调递减;当(ln ,)x a ∈+∞,()0f x '>,()f x 单调递增. 11分综上,1a e ≤时,()f x 在(1,)-+∞上单调递增:当1a e>时,()f x 在(1,ln )a -单调递减,在(ln ,)a +∞单调递增. 12分21.解:(1)由题意得1234535x ++++== ,1110212317542052269ni ii x y==⨯+⨯+⨯++=⨯⨯∑,1012172026175y ++++==,22222211234555ni i x ==++++=∑.所以12212955317ˆ45545ni ii nii x ynx ybxnx ==-⋅-⨯⨯===--∑∑,ˆˆ17435a y bx=-=-⨯=. 所以y 关于x 的线性回归方程为45y x =+,令4550y x =+>,得11.25x >, 所以最小的整数为12,2016122028+=,所以该地区新能源汽车的销量最早在2028年能突破50万辆. (2)①由题意知,该地区200名购车者中女性有200954560--=名, 故其中购置新能源汽车的女性车主的有602040-=名. 所购置新能源汽车的车主中,女性车主所占的比例为408404517=+. 所以该地区购置新能源汽车的车主中女性车主的概率为817. 预测该地区2023年购置新能源汽车的销量为33万辆, 因此预测该地区2020年购置新能源汽车的女性车主的人数为83315.517⨯≈万人 ②由题意知,45,013545p w w =≤≤+,则()3325435()C (1)102f p p p p p p =-=-+ ()()43222()1058310583f p p p p p p p =-+=-+'210(1)(53)p p p =--当30,5p ⎛⎫∈ ⎪⎝⎭时,知()0f p '>所以函数()f p 单调递增 当3,15p ⎛⎫∈ ⎪⎝⎭时,知()0f p '<所以函数()f p 单调递减 所以当()3,5p f p =取得最大值3235333216C 1555625f ⎛⎫⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 此时453455w =+,解得30w =,所以当30w =时()f p 取得最大值216625. 22.(1)证明:.sin 2)sin (cos )cos (sin )(x e x x e x x e x f x x x =++-='………………1分 由,0)(='x f 解出n n x ,π=为整数,从而 ,3,2,1,==n n x n π ………………3分.)1()(1πn n n e x f --= .)()(1πe x f x f nn -=+………………4分所以数列)}({n x f 是公比πe q -=的等比数列,且首项为.)(1πe x f =………………5分(2)解:ππn n n n n e n x f x b =⋅⋅-=-)(11)(………………6分 )(1)()(12211n n n n x f x x f x x f x S --++-=)(),3232πππππn ne e e e ++++= (………………7分 ),32)1(432ππππππ+++++=n n ne e e e S e ( ),1)1(32πππππππ+-+++=-n n n ne e e e e S e ()(………………9分 ()).11(1ππππππn n n ne ee e S e ---=-………………10分 .1)1(112πππππππe ne e e e S n n n ----=+)( (12)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阶段性测试题八(平面解析几何)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.(2011·辽宁沈阳二中阶段检测)“a =2”是“直线2x +ay -1=0与直线ax +2y -2=0平行”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[答案] B[解析] 两直线平行的充要条件是2a =a 2≠-1-2,即两直线平行的充要条件是a =±2.故a=2是直线2x +ay -1=0与直线ax +2y -2=0平行的充分不必要条件.[点评] 如果适合p 的集合是A ,适合q 的集合是B ,若A 是B 的真子集,则p 是q 的充分不必要条件,若A =B ,则p ,q 互为充要条件,若B 是A 的真子集,则p 是q 的必要不充分条件.2.(2011·福州市期末)若双曲线x 2a 2-y 2b2=1的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A. 5 B .5 C. 2 D .2[答案] A[解析] 焦点F (c,0)到渐近线y =b ax 的距离为d =bc a 2+b 2=2a ,两边平方并将b 2=c 2-a 2代入得c 2=5a 2,∵e =c a>1,∴e =5,故选A.3.(2011·黄冈期末)已知直线l 交椭圆4x 2+5y 2=80于M 、N 两点,椭圆与y 轴的正半轴交于B 点,若△BMN 的重心恰好落在椭圆的右焦点上,则直线l 的方程是( )A .6x -5y -28=0B .6x +5y -28=0C .5x +6y -28=0D .5x -6y -28=0[答案] A[解析] 由椭圆方程x 220+y 216=1知,点B (0,4),右焦点F (2,0),∵F 为△BMN 的重心,∴直线BF 与MN 交点D 为MN 的中点,∴BD →=32BF →=(3,-6),又B (0,4),∴D (3,-2),将D 点坐标代入选项检验排除B 、C 、D ,选A.4.(2011·江西南昌调研)直线l 过抛物线y 2=2px (p >0)的焦点F ,且与抛物线交于A 、B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线方程是( )A .y 2=12x B .y 2=8x C .y 2=6x D .y 2=4x[答案] B[解析] 设AB 中点为M ,A 、M 、B 在抛物线准线上的射影为A 1、M 1、B 1,则2|MM 1|=|AA 1|+|BB 1|=|AF |+|BF |=|AB |=8, ∴|MM 1|=4,又|MM 1|=p2+2,∴p =4,∴抛物线方程为y 2=8x .5.(2011·福州市期末)定义:平面内横坐标为整数的点称为“左整点”.过函数y =9-x 2图象上任意两个“左整点”作直线,则倾斜角大于45°的直线条数为( ) A .10 B .11 C .12 D .13[答案] B[解析] 依据“左整点”的定义知,函数y =9-x 2的图象上共有七个左整点,如图过两个左整点作直线,倾斜角大于45°的直线有:AC ,AB ,BG ,CF ,CG ,DE ,DF ,DG ,EF ,EG ,FG 共11条,故选B.6.(文)(2011·巢湖质检)设双曲线y 2m -x 22=1的一个焦点为(0,-2),则双曲线的离心率为( )A. 2 B .2 C. 6 D .2 2[答案] A[解析] 由条件知m +2=4,∴m =2, ∴离心率e =22= 2.(理)(2011·山东潍坊一中期末)已知抛物线y 2=2px (p >0)与双曲线x 2a 2-y 2b2=1有相同的焦点F ,点A 是两曲线的交点,且AF ⊥x 轴,则双曲线的离心率为( )A.5+12B.3+1C.2+1D.22+12[答案] C[解析] 由AF ⊥x 轴知点A 坐标为⎝ ⎛⎭⎪⎫p 2,p ,代入双曲线方程中得,p 24a 2-p 2b 2=1,∵双曲线与抛物线焦点相同,∴c =p2,即p =2c ,又b 2=c 2-a 2,∴4c 24a 2-4c2c 2-a2=1,由e =c a代入整数得,e 4-6e 2+1=0, ∵e >1,∴e 2=3+22,∴e =2+1.7.(2011·烟台调研)与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线方程是( )A.x 24-y 2=1 B.x 22-y 2=1 C.x 23-y 23=1 D .x 2-y 22=1[答案] B[解析] 椭圆的焦点F 1(-3,0),F 2(3,0), 由双曲线定义知2a =|PF 1|-|PF 2|=2+32+1-2-32+1=8+43-8-43=22,∴a =2,∴b 2=c 2-a 2=1,∴双曲线方程为x 22-y 2=1.8.(文)(2011·辽宁沈阳二中检测)椭圆x 24+y 2=1的焦点为F 1,F 2,点M 在椭圆上,MF 1→·MF 2→=0,则M 到y 轴的距离为( )A.233 B.263C.33D. 3[答案] B[分析] 条件MF 1→·MF 2→=0,说明点M 在以线段F 1F 2为直径的圆上,点M 又在椭圆上,通过方程组可求得点M 的坐标,即可求出点M 到y 轴的距离.[解析] 椭圆的焦点坐标是(±3,0),点M 在以线段F 1F 2为直径的圆上,该圆的方程是x 2+y 2=3,即y 2=3-x 2,代入椭圆得x 24+3-x 2=1,解得x 2=83,即|x |=263,此即点M到y 轴的距离.[点评] 满足MF →·MB →=0(其中A ,B 是平面上两个不同的定点)的动点M 的轨迹是以线段AB 为直径的圆.(理)(2011·山东实验中学期末)已知双曲线的两个焦点为F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( )A.x 29-y 2=1 B .x 2-y 29=1C.x 23-y 27=1D.x 27-y 23=1 [答案] A[解析] 由条件知,MF 1→⊥MF 2→,∴|MF 1→|2+|MF 2→|2=|F 1F 2→|2=(210)2=40, (|MF 1→|-|MF 2→|)2=|MF 1→|2+|MF 2→|2-2|MF 1→|·|MF 2→|=40-2|MF 1→|·|MF 2→|=36, ∴||MF 1|-|MF 2||=6=2a ,∴a =3,又c =10,∴b 2=c 2-a 2=1,∴双曲线方程为x 29-y 2=1.9.(2011·宁波市期末)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,O 为坐标原点.若以F 为圆心,FO 为半径的圆与双曲线C 的一条渐近线交于点A (不同于O 点),则△OAF 的面积为( )A .abB .bcC .ac D.a 2b c[答案] A[解析] 由条件知,|FA |=|FO |=c ,即△OAF 为等腰三角形,F (c,0)到渐近线y =b ax 的距离为b ,∴OA =2a ,∴S △OAF =12×2a ×b =ab .10.(2011·北京朝阳区期末)已知圆的方程为x 2+y 2-2x +6y +8=0,那么下列直线中经过圆心的直线方程为( )A .2x -y +1=0B .2x +y +1=0C .2x -y -1=0D .2x +y -1=0[答案] B[解析] 将圆心(1,-3)坐标代入直线方程检验知选B.11.(文)(2011·江西南昌调研)设圆C 的圆心在双曲线x 2a 2-y 22=1(a >0)的右焦点上,且与此双曲线的渐近线相切,若圆C 被直线l :x -3y =0截得的弦长等于2,则a =( )A.14B. 6C. 2 D .2[答案] C[解析] 由条件知,圆心C (a 2+2,0),C 到渐近线y =2ax 的距离为d =2a 2+22+a2=2为⊙C 的半径,又截得弦长为2,∴圆心C 到直线l :x -3y =0的距离a 2+22=1,∴a 2=2,∵a >0,∴a = 2.(理)(2011·辽宁沈阳二中阶段检测)直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-34,0 B.⎝⎛⎦⎥⎤-∞,-34∪[0,+∞) C.⎣⎢⎡⎦⎥⎤-33,33 D.⎣⎢⎡⎦⎥⎤-23,0[答案] A[解析] 由条件知,圆心(3,2)到直线y =kx +3的距离不大于1,∴|3k -2+3|1+k 2≤1,解之得-34≤k ≤0.12.(2011·辽宁沈阳二中检测)已知曲线C :y =2x 2,点A (0,-2)及点B (3,a ),从点A 观察点B ,要使视线不被曲线C 挡住,则实数a 的取值范围是( )A .(4,+∞)B .(-∞,4]C .(10,+∞)D .(-∞,10][答案] D[解析] 过点A (0,-2)作曲线C :y =2x 2的切线, 设方程为y =kx -2,代入y =2x 2得, 2x 2-kx +2=0,令Δ=k 2-16=0得k =±4, 当k =4时,切线为l ,∵B 点在直线x =3上运动,直线y =4x -2与x =3的交点为M (3,10),当点B (3,a )满足a ≤10时,视线不被曲线C 挡住,故选D.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2011·广东高州市长坡中学期末)若方程x 24-k +y 26+k =1表示焦点在x 轴上的椭圆,则k 的取值范围是________.[答案] (-6,-1)[解析] 由题意知,4-k >6+k >0,∴-6<k <-1.14.(文)(2011·浙江宁波八校联考)已知F 1、F 2是双曲线的两焦点,以线段F 1F 2为边作正三角形,MF 1的中点A 在双曲线上,则双曲线的离心率是________.[答案]3+1[解析] 由条件知,|F 1F 2|=2c ,|AF 1|=c , ∴|AF 2|=3c ,由双曲线定义知,|AF 2|-|AF 1|=2a , ∴3c -c =2a ,∴e =c a=23-1=3+1. (理)(2011·重庆南开中学期末)设双曲线x 2-y 23=1的左右焦点分别为F 1、F 2,P 是直线x =4上的动点,若∠F 1PF 2=θ,则θ的最大值为________.[答案] 30°[解析] F 1(-2,0)、F 2(2,0),不妨设P (4,y ),y >0,过P 作PM ⊥x 轴,垂足为M ,设∠F 1PM =β,∠F 2PM =α,则θ=β-α,∴tan θ=tan(β-α)=tan β-tan α1+tan βtan α=6y -2y 1+6y ·2y=4y +12y≤4212=33,∴θ≤30°. 15.(文)(2011·黑龙江哈六中期末)设抛物线y 2=8x 的焦点为F ,过点F 作直线交抛物线于A 、B 两点,若线段AB 的中点E 到y 轴的距离为3,则AB 的长为________.[答案] 10[解析] 2p =8,∴p2=2,∴E 到抛物线准线的距离为5,∴|AB |=|AF |+|BF |=2×5=10.(理)(2011·辽宁大连联考)已知抛物线“y 2=4x 的焦点为F ,准线与x 轴的交点为M ,N为抛物线上的一点,且满足|NF |=32|MN |”,则∠NMF =________. [答案]π6[解析] 设N 在准线上射影为A ,由抛物线的定义与条件知,|NA |=|NF |=32|MN |,∴∠AMN =π3,从而∠NMF =π6.16.(文)(2011·湖南长沙一中月考)直线l :x -y =0与椭圆x 22+y 2=1相交A 、B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________.[答案]2[解析] 设与l 平行的直线方程为x -y +a =0,当此直线与椭圆的切点为C 时,△ABC 的面积最大,将y =x +a 代入x 22+y 2=0中整理得,3x 2+4ax +2(a 2-1)=0,由Δ=16a 2-24(a 2-1)=0得,a =±3,两平行直线x -y =0与x -y +3=0的距离d =62,将y =x 代入x 22+y 2=1中得,x 1=-63,x 2=63,∴|AB |=1+1|63-(-63)|=433, ∴S △ABC =12|AB |·d =12×433×62= 2.(理)(2011·湖北荆门调研)已知P 为椭圆C :x 225+y 216=1上的任意一点,F 为椭圆C 的右焦点,M 的坐标为(1,3),则|PM |+|PF |的最小值为________.[答案] 5[解析] 如图,连结F 1M ,设直线F 1M 与C 交于P ,P ′是C 上任一点,则有|PF 1|+|PF |=|P ′F 1|+|P ′F |, 即|PM |+|MF 1|+|PF |=|P ′F 1|+|P ′F |, ∵|P ′F 1|≤|P ′M |+|MF 1|,∴|PM |+|PF |≤|P ′M |+|P ′F |, 故P 点是使|PM |+|PF |取最小值的点, 又M (1,3),F 1(-3,0),∴|MF 1|=5,∴|PM |+|PF |=|PF 1|+|PF |-|MF 1|=2×5-5=5.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(2011·山东潍坊一中期末)已知椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1,F 2,椭圆上一点M ⎝⎛⎭⎪⎫263,33满足MF 1→·MF 2→=0. (1)求椭圆的方程;(2)若直线L :y =kx +2与椭圆恒有不同交点A 、B ,且OA →·OB →>1(O 为坐标原点),求k 的取值范围.[解析] (1)设F 1(-c,0),F 2(c,0),MF 1→=⎝ ⎛⎭⎪⎫-c -263,-33,MF 2→=⎝⎛⎭⎪⎫c -263,-33, ∵MF 1→·MF 2→=0,∴-c 2+⎝ ⎛⎭⎪⎫2632+⎝ ⎛⎭⎪⎫332=0,∴c 2=3,∴a 2-b 2=3① 又点M 在椭圆上,∴83a 2+13b2=1② ①代入②得83a 2+13a 2-3=1,整理得,a 4-6a 2+8=0,∴a 2=2或a 2=4, ∵a 2>3,∴a 2=4,b 2=1, ∴椭圆方程为x 24+y 2=1.(2)由⎩⎪⎨⎪⎧x 24+y 2=1y =kx +2,消去y 解得⎝ ⎛⎭⎪⎫14+k 2x 2+22kx +1=0,设A (x 1,y 1),B (x 2,y 2),则OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(1+k 2)x 1x 2+2k (x 1+x 2)+2=6-4k21+4k2>1,∴k 2<58,又由Δ=k 2-14>0得k 2>14,∴14<k 2<58,∴k ∈⎝ ⎛⎭⎪⎫-104,-12∪⎝ ⎛⎭⎪⎫12,104. 18.(本小题满分12分)(2010·湖北文)已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.(1)求曲线C 的方程;(2)是否存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有FA →·FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由.[解析] (1)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足:x -12+y 2-x =1(x >0)化简得y 2=4x (x >0)(2)设过点M (m,0)(m >0)的直线l 与曲线C 的交点为A (x 1,y 1),B (x 2,y 2).设l 的方程为x =ty +m ,由⎩⎪⎨⎪⎧x =ty +m y 2=4x得y 2-4ty -4m =0,此时Δ=16(t 2+m )>0.于是⎩⎪⎨⎪⎧y 1+y 2=4t y 1·y 2=-4m ①又FA →=(x 1-1,y 1),FB →=(x 2-1,y 2) FA →·FB →<0⇔(x 1-1)(x 2-1)+y 1y 2=x 1·x 2-(x 1+x 2)+1+y 1y 2<0②又x =y 24,于是不等式②等价于y 214·y 224+y 1y 2-(y 214+y 224)+1<0⇔y 1y 2216+y 1y 2-14[(y 1+y 2)2-2y 1y 2]+1<0③由①式,不等式③等价于m 2-6m +1<4t 2④对任意实数t,4t 2的最小值为0,所以不等式④对于一切t 成立等价于m 2-6m +1<0,即3-22<m <3+2 2由此可知,存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任意一直线,都有FA →·FB →<0,且m 的取值范围是(3-22,3+22).19.(本小题满分12分)(2011·巢湖市质检)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过原点O 斜率为1的直线与椭圆C 相交于M ,N 两点,椭圆右焦点F 到直线l 的距离为 2.(1)求椭圆C 的方程;(2)设P 是椭圆上异于M ,N 外的一点,当直线PM ,PN 的斜率存在且不为零时,记直线PM 的斜率为k 1,直线PN 的斜率为k 2,试探究k 1·k 2是否为定值?若是,求出定值;若不是,说明理由.[解析] (1)设椭圆的焦距为2c (c >0),焦点F (c,0),直线l :x -y =0,F 到l 的距离为|c |2=2,解得c =2, 又∵e =c a =22,∴a =22,∴b =2. ∴椭圆C 的方程为x 28+y 24=1.(2)由⎩⎪⎨⎪⎧x 28+y 24=1,y =x ,解得x =y =263,或x =y =-263,不妨设M ⎝⎛⎭⎪⎫263,263,N ⎝ ⎛⎭⎪⎫-263,-263,P (x ,y ),∴k PM ·k PN =y -263x -263·y +263x +263=y 2-83x 2-83,由x 28+y 24=1,即x 2=8-2y 2,代入化简得k 1·k 2=k PM ·k PN =-12为定值. 20.(本小题满分12分)(2011·厦门期末质检)已知抛物线C :y 2=4x ,直线l :y =12x+b 与C 交于A 、B 两点,O 为坐标原点.(1)当直线l 过抛物线C 的焦点F 时,求|AB |;(2)是否存在直线l 使得直线OA 、OB 倾斜角之和为135°,若存在,求出直线l 的方程;若不存在,请说明理由.[解析] (1)抛物线C :y 2=4x 的焦点为F (1,0),代入直线y =12x +b 可得b =-12,∴l :y =12x -12,设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y 2=4x y =12x -12,消去y 得x 2-18x +1=0,∴x 1+x 2=18,x 1x 2=1,(方法一)|AB |=1+k 2·|x 1-x 2| =54·x 1+x 22-4x 1x 2=20.(方法二)|AB |=x 1+x 2+p =18+2=20. (2)假设存在满足要求的直线l :y =12x +b ,设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y 2=4x y =12x +b ,消去x 得y 2-8y +8b =0,∴y 1+y 2=8,y 1y 2=8b ,设直线OA 、OB 的倾斜角分别为α、β,斜率分别为k 1、k 2,则α+β=135°,tan(α+β)=tan135°⇒k 1+k 21-k 1k 2=-1,其中k 1=y 1x 1=4y 1,k 2=y 2x 2=4y 2,代入上式整理得y 1y 2-16+4(y 1+y 2)=0,∴8b -16+32=0,即b =-2, 代入Δ=64-32b =128>0,满足要求.综上,存在直线l :y =12x -2使得直线OA 、OB 的倾斜角之和为135°.21.(本小题满分12分)(2011·黑龙江哈六中期末)已知菱形ABCD 的顶点A ,C 在椭圆x 2+3y 2=4上,对角线BD 所在直线的斜率为1.(1)当直线BD 过点(0,1)时,求直线AC 的方程;(2)当∠ABC =60°时,求菱形ABCD 面积的最大值. [解析] (1)由题意得直线BD 的方程为y =x +1. 因为四边形ABCD 为菱形,所以AC ⊥BD . 于是可设直线AC 的方程为y =-x +n .由⎩⎪⎨⎪⎧x 2+3y 2=4,y =-x +n得4x 2-6nx +3n 2-4=0.因为A ,C 在椭圆上,所以Δ=-12n 2+64>0, 解得-433<n <433.设A ,C 两点坐标分别为(x 1,y 1),(x 2,y 2),则 x 1+x 2=3n 2,x 1x 2=3n 2-44,y 1=-x 1+n ,y 2=-x 2+n .所以y 1+y 2=n 2,所以AC 的中点坐标为⎝ ⎛⎭⎪⎫3n 4,n 4.由四边形ABCD 为菱形可知,点⎝ ⎛⎭⎪⎫3n 4,n 4在直线y =x +1上,所以n 4=3n 4+1,解得n =-2.所以直线AC 的方程为y =-x -2, 即x +y +2=0.(2)因为四边形ABCD 为菱形,且∠ABC =60°, 所以|AB |=|BC |=|CA |. 所以菱形ABCD 的面积S =32|AC |2. 由(1)可得|AC |2=(x 1-x 2)2+(y 1-y 2)2=-3n 2+162,所以S =34(-3n 2+16)⎝ ⎛⎭⎪⎫-433<n <433. 所以当n =0时,菱形ABCD 的面积取得最大值4 3.22.(本小题满分12分)(文)(2011·温州八校期末)如图,在由圆O :x 2+y 2=1和椭圆C :x 2a 2+y 2=1(a >1)构成的“眼形”结构中,已知椭圆的离心率为63,直线l 与圆O 相切于点M ,与椭圆C 相交于两点A ,B .(1)求椭圆C 的方程;(2)是否存在直线l ,使得OA →·OB →=12OM →2,若存在,求此时直线l 的方程;若不存在,请说明理由.[解析] (1)∵e =c a =63,c 2=a 2-1,∴23=a 2-1a2,解得:a 2=3,所以所求椭圆C 的方程为x 23+y 2=1.(2)假设存在直线l ,使得OA →·OB →=12OM →2易得当直线l 垂直于x 轴时,不符合题意,故设直线l 方程为y =kx +b , 由直线l 与圆O 相切,可得b 2=k 2+1①把直线y =kx +b 代入椭圆C :x 23+y 2=1中,整理得:(1+3k 2)x 2+6kbx +3b 2-3=0则x 1+x 2=-6kb 1+3k 2,x 1·x 2=3b 2-31+3k 2,OA →·OB →=x 1·x 2+y 1·y 2=x 1·x 2+(kx 1+b )(kx 2+b )=(1+k 2)x 1·x 2+kb (x 1+x 2)+b 2=(1+k 2)3b 2-31+3k 2+6k 2b 21+3k 2+b 2=4b 2-3k 2-31+3k 2=12② 由①②两式得k 2=1,b 2=2,故存在直线l ,其方程为y =±x ± 2.(理)(2011·山东淄博一中期末)已知椭圆的两个焦点F 1(-3,0),F 2(3,0),过F 1且与坐标轴不平行的直线l 1与椭圆相交于M ,N 两点,如果△MNF 2的周长等于8.(1)求椭圆的方程;(2)若过点(1,0)的直线l 与椭圆交于不同两点P 、Q ,试问在x 轴上是否存在定点E (m,0),使PE →·QE →恒为定值?若存在,求出E 的坐标及定值;若不存在,请说明理由.[解析] (1)由题意知c =3,4a =8,∴a =2,b =1,∴椭圆的方程为x 24+y 2=1.(2)当直线l 的斜率存在时,设其斜率为k ,则l 的方程为y =k (x -1),由⎩⎪⎨⎪⎧x 24+y 2=1y =k x -1消去y 得(4k 2+1)x 2-8k 2x +4k 2-4=0,设P (x 1,y 1),Q (x 2,y 2)则由韦达定理得x 1+x 2=8k 24k 2+1,x 1x 2=4k 2-44k 2+1,则PE →=(m -x 1,-y 1),QE →=(m -x 2,-y 2), ∴PE →·QE →=(m -x 1)(m -x 2)+y 1y 2 =m 2-m (x 1+x 2)+x 1x 2+y 1y 2=m 2-m (x 1+x 2)+x 1x 2+k 2(x 1-1)(x 2-1)=m 2-8k 2m 4k 2+1+4k 2-44k 2+1+k 2⎝ ⎛⎭⎪⎫4k 2-44k 2+1-8k 24k 2+1+1=4m 2-8m +1k 2+m 2-44k 2+1要使上式为定值须4m 2-8m +1m 2-4=41,解得m =178, ∴PE →·QE →为定值3364,当直线l 的斜率不存在时P ⎝ ⎛⎭⎪⎫1,32,Q ⎝ ⎛⎭⎪⎫1,-32, 由E ⎝ ⎛⎭⎪⎫178,0可得PE →=⎝ ⎛⎭⎪⎫98,-32,QE →=⎝ ⎛⎭⎪⎫98,32,∴PE →·QE →=8164-34=3364,综上所述当E ⎝ ⎛⎭⎪⎫178,0时,PE →·QE →为定值3364.。

相关文档
最新文档