六年级数学---图形与几何
新人教版数学六年级下册总复习《图形与几何》课件(知识点全面)
这些计算公式是怎样推导出来的?它们之间有什么联系?
长方形和正方形是用面积单 位量出来的。
平行四边形转化成长方形。
两个完全相同的三角形或梯形 都可以拼成平行四边形。
利用割补、转化的方 法来推导图形的面积 公式。
长方形的面积是研究其它图形面积的基础。
9.三角形三边的关系
4cm
7cm
13cm
三角形其中两条线段的和大于第三条线段时,这样的三条 线段才能组成一个三角形。
30cm
上升的水的体积就是马铃薯的体积。
在方格纸上分别画出从不同方向看到左边立体图形 的形状图。
正面
左面
上面
连一连。
一个蓄水池(如下图),长10米,宽4米,深2米。 (1)蓄水池占地面积有多大?
10×4 = 40(平方米) 答:占地面积是40平方米。 (2)在蓄水池的底面和四周抹上水泥,抹水泥的面积有多大? 10×4 +(4×2+2×10)×2= 96(平方米)
三角形
锐角三角形 直角三角形
等腰三角形
(三个角都是 (有一个角是直角) 不等边三角形 (两条边相等)
锐角) 钝角三角形
(三条边都 等边三角形 不相等) (三条边都相等)
(有一个角是钝角)
1.平面图形的分类
四边形的分类
平行四边形 长方形
正方形
四边形 梯形
等腰梯形 直角梯形
2.直线、射线和线段
名称
相同点
比例尺 1∶20000
2.辨认方向
在平面图中确定方位,通常是上北、下南、左西、右东。
北
西北
东北
西
东
西南
南
东南
3.根据方向和距离,确定物体位置的一般步骤。
小学数学六年级上册优质课件第3课时 图形与几何
与 方 向 (二)
根用定据方某平向个面和点示距的意离位图 确 置,(长(以12度)确)确根代定定据表平观方的面测向实图点和际上、距距某方离离个向两点标个的和条具图件体上,位单才置位可
描述简单路线图 起点、方向、距离、终点
以题为例,解决问题
1.如图,一个公园是圆形布局,半径长1km,圆心处设立了 一座纪念碑。公园有四个门,每两个相邻的门之间有一条直 的水泥路,长约1.41km。 【教科书P111 第4题】 (1)这个公园的围墙有多长?
3.14×1×2= 6.28(km) 答:这个公园的围墙长6.28 km。
如图,一个公园是圆形布局,半径长1km,圆心处设立了一 座纪念碑。公园有四个门,每两个相邻的门之间有一条直 的水泥路,长约1.41km。 【教科书P111 第4题】 (2)北门在南门的什么方向?距离南门多远?
2×1=2(km) 答:北门在南门的正北方,距南门2km。
强化练习,巩固应用
1.(1)说一说小动物们居住的位置。
【教科书P115 练习二十三 第14题】
1. (1)说一说小动物们居住的位置。
【教科书P115 练习二十三 第14题】
45°
1. (1)说一说小动物们居住的位置。
【教科书P115 练习二十三 第14题】
45°
【教科书P115 练习二十三 第14题】
怎样确定位置?
既要明确方向,又要明确距离。
如图,一个公园是圆形布局,半径长1km,圆心处设立了一 座纪念碑。公园有四个门,每两个相邻的门之间有一条直 的水泥路,长约1.41km。 【教科书P111 第4题】 (3)如果公园里有一个半径为0.2km的圆形小湖, 这个公园的陆地面积是多少平方千米?
3.14×12-3.14×0.22 =3.14×1-3.14×0.04 =3.14-0.1256=3.0144(km2) 答:这个公园的陆地面积是3.0144平方千米。
六年级数学《图形与几何专项复习》学程
六年级数学大单元整体学习复习学程单元名称:图形与几何专项复习班级___________________小组___________________姓名___________________【学习目标】1.梳理图形与几何的核心概念内在的关系,构建知识网络,体会分类思想和集合思想再认识图形中的应用;2.应用面积、体积公式及相关方法解决不规则图形的面积等问题,体会转化、类比、数形结合等数学思想;3.通过过关活动,熟练应用平面、立体图形的公式解决实际问题,并做好总结反思。
【单元前测】一、填空1.直线、射线与线段:如图共有()条直线,()条射线,()条线段。
A B C D E2.一个直角三角形两个锐角的度数比是2∶3,两个锐角分别是( )度和( )度。
3.已知图中涂色部分的面积为,则圆的面积是( )。
4.如图中圆的面积是,平行四边形的面积是(),三角形的面积是()。
5.一个圆形水池周长是31.4米,在它周围修一条1米宽的水泥路,水泥路面积是()平方米。
6.把一根2m长的圆柱形木料截成4个小圆柱,表面积增加了60cm²,这根木料的体积是( )cm3。
7.一条环形小路,外圆半径是18米,内圆半径是16米,这条环形小路的面积是()平方米。
要在这条小路的外围栽树,两棵树之间的距离是1.57米,要栽()棵树。
8.如图所示,以小汽车为观测点,加油站在小汽车的( )偏( )( )°方向上。
二.计算下列图形的面积及体积1.求下图阴影面积。
(单位:厘米)三、解决问题1.用铁丝做一个长方体框架,长30厘米,宽20厘米,高10厘米。
要用铁丝多少厘米,如果要在这个框架外面包一层铁皮,至少需要铁皮多少平方厘米?(接口处忽略不计)2.一个圆锥形容器,底面直径是8厘米,高9厘米,将它装满水后,倒入底面积是12.56平方厘米的圆柱形容器中,水的高度是多少?3.光明小学操场上有一堆圆锥形的黄沙,测得底面周长是12.56米,高1.5米。
六年级数学下册试题《图形与几何立体图形》苏教版(含答案)
《图形与几何-立体图形》一、选择题1.下面的平面图形中()能围成长方体A.B.C.D.2.如图,把一个高6分米的圆柱的底面分成许多相等的扇形,然后把圆柱切开,拼成一个与它等底等高的近似长方体,它的表面积比圆柱体的表面积增加了36平方分米.原来这个圆柱的体积是()立方分米.A.105πB.54πC.36πD.18π3.一个长方体木块,长5分米,它有一组相对的面是正方形,其余4个面的面积和是40平方分米,则这个木块的体积是()立方分米.A.20或50 B.20或48 C.204.在长12厘米,宽10厘米,高8厘米的长方体中切出一个体积最大的圆柱,这个圆柱的体积是()立方厘米.A.1130.4 B.602.88 C.628 D.904.325.一个物体是由圆柱和圆锥黏合而成的(如图),如果把圆柱和圆锥重新分开,表面积就增加了250.24cm,原来这个物体的体积是()A.3401.92cm 200.96cm B.3301.44cm D.3226.08cm C.3二、填空题1.李叔叔把一根铁丝截成一些小段后,正好焊接成一个长5cm、宽4cm、高3cm的长方体框架,这个长方体的体积是3cm,这根铁丝原有cm.2.将36厘米长的铁丝,做成一个正方体框架,这个正方体的体积是立方厘米,表面积是平方厘米.3.用如图硬纸板做成一个无盖的长方体纸盒.这张硬纸的面积是平方厘米,这个纸盒的容积是立方厘米.4.有一张长方体铁皮(如图),剪下图中两个圆及一块长方形,正好可以做成一个圆柱体,这个圆柱体的底面半径为10厘米,那么圆柱的底面积是平方厘米,体积是立方厘米.5.一根圆柱形的木料长5米,把它锯成4段,表面积增加了12平方分米,这根木料的体积是.如果锯成4段用了9分钟,那么把它锯成6段要用分钟.6.一节长2米的通风管,它的横截面是边长4分米的正方形.做10节这样的通风管至少需要铁皮平方米.7.一个长方体木块长、宽、高分别是5cm、4cm、4cm.如果用它锯成一个最大的正方体,体积比原来减少了%.8.一个圆锥体橡皮泥,底面积是15平方厘米,高是6厘米.这个圆锥的体积是立方厘米:如果把它捏成与这个圆锥等底的圆柱,圆柱的高是厘米9.李叔叔家新买了一台空调,外观为圆柱体,底面半径30厘米,高约2米,这台空调所占空间为立方米,若需要一个防尘罩,至少需要布平方米.10.一个圆锥和一个圆柱底面积相等,圆锥高15厘米,圆柱高10厘米,圆柱体积和圆锥体积的最简整数比是.11.一根长方体木料,横截面是边长10厘米的正方形.从这根木料上截下6厘米长的一段,切削成一个最大的圆锥.圆锥的体积是2cm,约占截下这段长方体木料体积的%(百分号前面保留一位小数).12.图中一个小球的体积是立方厘米,一个大球的体积是立方厘米.三、判断题1.长方体的面中可能有正方形,正方体的面中不可能有长方形. ( )2.把一个圆柱削成一个最大的圆锥,削去部分的体积是圆锥体积的2倍. ( )3.将圆柱的侧面展开有可能是长方形,也有可能是正方形,还有可能是平行四边形.()4.四个棱长2厘米的正方体拼一个长方体,长方体表面积最大是96平方厘米( )四、计算题1.求下面立体图形的表面积和体积(单位)cm2.看图计算.(单位:)dm(1)如图1:①求表面积.②求体积(2)如图2:求体积.3.求如图的表面积和体积.单位()dm五、解决问题1.一个长方体的玻璃缸容器,长6dm,宽5dm,高4dm,里面的水深3.2dm,再把一个棱长为3dm的正方体铁块放入水中(完全浸没),玻璃容器里的水会溢出多少升?2.在内侧棱长为20厘米的正方体容器里装满水,将容器如图倾斜放置,流出的水正好装满一个内侧长25厘米、宽8厘米、高5厘米的长方体容器.求图中线段AB的长度.3.一个长方体,如果长增加3厘米,宽和高不变,它的体积增加96立方厘米;如果宽减少2厘米,长和高不变,它的体积减少160立方厘米;如果高增加2厘米,长和宽不变,它的体积增加80立方厘米,求原长方体的表面积.4.如图是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径2米的半圆.(1)这个大棚的种植面积是多少平方米?(2)覆盖在这个大棚上的塑料薄膜约有多少平方米?(3)大棚内的空间大约有多大?5.六一儿童节,康康把一块橡皮泥揉成圆柱形,切成三块(如图1),表面积增加了50.24平方厘米;切成四块(如图2),表面积增加了48平方厘米.请你算算圆柱形橡皮泥的体积是多少立方厘米.6.有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30立方厘米.现在瓶中装有一些饮料,正放时饮料的高度是20厘米,倒放时空余部分的高度为5厘米,瓶内现有饮料多少立方厘米?7.有一个高8厘米,容量为50毫升的圆形容器A,里面装满了水,现把长16厘米的圆柱B垂直放入,使B的底和A的底面接触,这时一部分水从容器中溢出,当把B从A拿走后,A中的水的高度只有6厘米,求圆柱体B的体积是多少?答案一、选择题1.D.2.B.3.A4.C.5.A.二、填空题1.60,48.2.27,54.3.432、720.4.314、6280.5.100立方分米,15.6.32.7.20.8.30,2.9.0.5652;4.0506.10.2:1.11.157;26.2.12.30,35.三、判断题1.√.2.√.3.√.4.⨯.四、计算题1.解:(1)表面积:(838333)2334⨯+⨯+⨯⨯+⨯⨯=++⨯+⨯(24249)294=⨯+57236=+11436=(平方厘米);150体积:833333⨯⨯+⨯⨯7227=+=(立方厘米);99答:这个组合图形的表面积是150平方厘米,体积是99立方厘米.(2)表面积:30306430306⨯⨯⨯-⨯⨯=⨯⨯-⨯900649006=⨯-540045400=-216005400=(平方厘米);16200体积:3030304⨯⨯⨯=⨯⨯900304270004=⨯=(立方厘米);108000答:这个组合图形的表面积是16200平方厘米、体积是108000立方厘米.2.解:(1)①表面积:23.14612 3.14(62)2⨯⨯+⨯÷⨯=+226.0856.52=(平方分米)282.6②体积:23.14(62)12⨯÷⨯=⨯⨯3.14912=(立方分米)339.12答:圆柱体的表面积是282.6平方分米,体积是339.12立方分米.(2)21⨯÷⨯+⨯3.14(42)(3 1.2)3=⨯⨯3.144 3.4=(立方分米)42.704答:体积是42.704立方分米.3.解:10106 3.1446⨯⨯+⨯⨯60075.36=+=(平方分米)675.362⨯⨯-⨯÷⨯101010 3.14(42)6=-100075.36924.64=(立方分米)答:这个图形的表面积为675.36平方分米,体积为924.64立方分米.五、解决问题1.解:33365 3.2654⨯⨯+⨯⨯-⨯⨯=+-2796120=-123120=(立方分米)3答:玻璃容器里的水会溢出3立方分米.2.解:如图:2025852(2020)-⨯⨯⨯÷⨯=-⨯÷2010002400=-÷202000400205=-=(厘米)15答:线段AB的长度是15厘米.3.解:(长⨯宽+长⨯高+宽⨯高)2⨯=÷+÷+÷⨯(9631602802)2=++⨯(328040)2=⨯1522=(平方厘米)304答:这个长方体的表面积是304平方厘米.4.解:(1)15230⨯=(平方米),答:这个大棚的种植面积是30平方米.(2)2⨯⨯÷+⨯÷,3.142152 3.14(22)=+,47.1 3.14=(平方米),50.24答:覆盖在这个大棚上的塑料薄膜约有50.24平方米.(2)2⨯÷⨯÷,3.14(22)1523.14152=⨯÷,=(立方米),23.55答:大棚的空间是23.55立方米.5.解:50.24412.56÷=(平方厘米);假设圆柱的底面半径是r,则212.56π=,r所以212.56 3.144r=÷=,所以2r=(厘米);圆柱的高:484(22)÷÷⨯=÷124=(厘米)3体积为:23.1423⨯⨯=⨯12.563=(立方厘米)37.68答:圆柱形橡皮泥的体积是37.68立方厘米.6.解:30[20(205)]⨯÷+,430=⨯,5=(立方厘米);24答:瓶内现有饮料24立方厘米.7.解:圆形容器A的底面积:÷=(平方厘米);508 6.25溢出水的体积,即放入容器A的圆柱B的体积:⨯-,6.25(86)6.252=⨯,=(毫升);12.5圆柱体B的体积是:÷⨯,12.581612.52=⨯,=(立方厘米);25答:圆柱体B的体积是25立方厘米.。
人教版小学六年级数学下册第六单元2《图形与几何》PPT课件
旋转 45°
放大
旋转 45°
旋转 45°
放大
二 巩固练习
1. ⑤号图形是③号长方形放大后的图形,它 是按( 3 )∶( 1 )放大的。
二 巩固练习
2.
二 巩固练习
3.
二 巩固练习
二 巩固练习
二 巩固练习
人教版小学六年级数学下册
第六单元 整理和复习 2. 图形与几何
第5课时 图形与位置
一 复习导入
一 复习导入
平面图形的测量
周长 面积
一 复习导入
周长
围成一个图形所有边长 的总和,叫做这个图形 的周长。
一 复习导入
常见的周长公式
图形
长方形
正方形
周长 (长+宽)×2 边长×4
圆
2πr
一 复习导入
面积
物体的表面或 围成的平面图 形的大小。
一 复习导入
常见的面积公式
图 形
正方形
长方形
平行四 边形
立体图形的表面积和体积
表面积
一个立体图形所有面的 面积的总和,叫做它的 表面积。正方体的表面 积是它6个面的面积和。 用平方单位表示。
一 复习导入
立体图形的表面积和体积
体积
一个立体图形所占空间的 大小叫做它的体积。正方 体的体积用底面积×高。 用立方单位表示。
一 复习导入
二 巩固练习
1.在一个长60㎝、宽32㎝、高22㎝的长方体 箱子里,最多可以装多少个棱长为4㎝的 正方体物品?
沿长的方向一行能摆60÷4=15(个) 沿宽的方向一行能摆32÷4=8(个) 沿高的方向一行能摆22÷4≈5(个) (去尾法) 15×8×5=600(个) 答:最多能装600个棱长为4㎝的正方体物品。
人教版六年级数学 下册第6单元《整理和复习》2图形与几何【全单元】课件
13、圆的半径扩大3倍,直径扩大( 3 )倍,周长扩 大(3 )倍;面积扩大( 9 )倍。
14、小铁环直径6分米,大铁环直径8分米。小铁环和大 铁环半径的比是( 3:4 );周长的比是( 3:4 ); 面积的比是( 9:16 )。如果它们滚过相同的路程, 则转动的圈数的比是( 3:4 )。
(二)复习平面图形的特点及关系
提问:我们先复习平面图形。那对于这些平面图形你又有哪些了解 呀?那这样吧,你可以结合这几个问题,先自己想一想,再和 小伙伴商量商量,建议大家做好相应的记录。如果有困难可以 向老师举手示意。
课件出示: (1)直线、射线和线段有什么联系和区别?同一平面内的两条直
线有哪几种位置关系? (2)我们学过哪些角?在放大镜下看角,它的大小会变化吗? (3)关于三角形,你知道些什么? (4)关于平行四边形,你知道些什么? (5)圆与上面的平面图形有什么不同?圆有哪些特点?
监控:长、正方体的棱长总和 长方体、正方体和圆柱的表面积 长方体、正方体、圆柱和圆锥的体积、容积
(教师随着学生的发言在黑板上梳理出表格)
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
立体图形 棱长总和 表面积
体积(容积)
长方体
正方体
圆柱
圆锥
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
课件出示:
二、回顾梳理 构建联系
(三)复习立体图形的特征、联系及公式
提问9:这些图形有没有一个共同的体积计算公式呢? (长方体、正方体和圆柱的体积都可以用底面积乘高,圆锥的体积再 乘 1 即可。)
六年级数学下册教案-第6单元:图形与几何-3 图形与位置-人教版 (7)
六年级数学下册教案-第6单元:图形与几何-3 图形与位置-人教版一、教学目标1. 让学生理解和掌握图形的位置关系,包括图形的平行、垂直、相交等关系,并能运用这些关系解决实际问题。
2. 培养学生的空间想象能力,提高他们对图形的观察、分析和推理能力。
3. 培养学生运用数学语言进行表达和交流的能力,提高他们的数学思维能力。
二、教学内容1. 图形的平行、垂直、相交关系2. 图形的位置关系的应用三、教学重点和难点1. 教学重点:图形的平行、垂直、相交关系2. 教学难点:图形的位置关系的应用四、教学方法和手段1. 教学方法:采用讲解、示范、练习相结合的方式进行教学,注重启发式教学,引导学生主动参与,培养学生的动手操作能力和解决问题的能力。
2. 教学手段:利用多媒体课件、教具等辅助教学,使教学内容更加直观、生动。
五、教学过程1. 导入:通过生活中的实例,引导学生观察图形的位置关系,激发学生的学习兴趣。
2. 讲解:讲解图形的平行、垂直、相交关系,通过示范和练习,让学生理解和掌握这些关系。
3. 应用:通过解决实际问题,让学生运用图形的位置关系,培养学生的应用能力。
4. 巩固:通过练习和讨论,巩固学生对图形位置关系的理解和应用。
5. 总结:总结本节课的学习内容,强调图形位置关系在实际生活中的应用。
六、课后作业1. 完成课后练习题,巩固图形的位置关系。
2. 观察生活中的图形,运用图形的位置关系解决实际问题。
七、教学反思本节课通过讲解、示范、练习等方式,让学生理解和掌握图形的位置关系,培养学生的空间想象能力和解决问题的能力。
在教学过程中,要注意引导学生的主动参与,注重启发式教学,提高学生的数学思维能力。
同时,要注重培养学生的动手操作能力,使他们在实际操作中理解和掌握图形的位置关系。
在课后作业的布置上,要注重培养学生的应用能力,让他们在实际生活中运用图形的位置关系解决问题。
需要重点关注的细节是“教学过程”部分。
教学过程是教案的核心,它直接关系到教学目标的实现和学生的学习效果。
人教版数学六年级上册第3课时 图形与几何教案与反思牛老师
第3课时图形与几何人非圣贤,孰能无过?过而能改,善莫大焉。
《左传》江缘学校陈思梅▶教学内容教科书P113第4题,完成教科书P117“练习二十三”中第14~16题。
▶教学目标1.通过课前整理、比较,促进对确定位置、圆的相关知识的进一步理解。
2.在经历空间和图形相关知识的整理和运用的基础上,加强应用数学知识解决问题能力的培养,发展学生的空间观念。
3.体验数学知识和日常生活之间的联系。
▶教学重、难点进一步掌握确定位置的方法,熟练运用相关知识解决圆及组合图形的问题。
▶教学准备课件、圆规、剪刀。
▶教学过程一、小组交流,提出问题1.交流资料,构建框架。
师:同学们,你们课前整理了本学期图形与几何部分的内容,在小组内展示交流一下,看看谁梳理得科学、有条理,相互检查是否存在问题。
【学情预设】学生课前能够整理出位置与方向(二)和圆两个单元的知识,包括一些概念、公式以及知识之间的一些关系。
师:在本册教科书中,图形与几何我们主要学习了哪些内容?学生交流,课件形成知识框架。
(板书课题:图形与几何)【教学提示】小组交流时,教师要参与到小组内,进行适当指导。
【设计意图】通过学生课前对本册图形与几何知识的复习,培养学生自主学习的能力,通过对相关知识的梳理,进一步理解知识之间的相互关系。
通过这个环节,唤起学生已有的经验,为进一步学习打下基础。
2.复习圆的知识。
师:通过刚才的交流,我们已经知道了各内容的知识框架,现在来说说,每个框架里有哪些具体的知识点?教师引导汇报交流,课件出示相关内容,提炼板书。
【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。
3.复习位置与方向(二)。
【教学提示】每个知识点需要教师提示,有序提示引导学生有序回答。
师:在位置与方向(二)中,我们学习了哪些知识呢?我们该如何确定物体的位置?该如何描述呢?【学情预设】学生在小组内交流的基础上,可以说出“↑”表示北,可以用距离和方向、数对来表示物体的位置。
小学数学六年级下册总复习《图形与几何》专项练习(附参考答案和相关知识整理汇总)
六年级数学下册图形与几何练习题班级考号姓名总分一、填空题。
1. 3.5平方米=()平方分米2立方分米3立方厘米=()立方分米5.02升=()升()毫升公顷=()平方米2.在钟面上,6时的时候,分针和时针所夹的角的度数是(),是一个()角。
3.一个三角形中,∠1=∠2=35°,∠3=(),按边分是()三角形。
4.一个三角形与一个平行四边形等底等高,如果三角形的面积是3.6平方分米,那么平行四边形的面积是()平方分米。
5.一个圆柱的底面直径是8厘米,高是1分米,它的侧面积是()平方厘米。
把它沿着底面直径垂直切成两半,表面积会增加()平方厘米。
6.三个棱长为2厘米的正方体拼成一个长方体,这个长方体的体积是()立方厘米,表面积是()平方厘米。
7.一个长方体相交于同一个顶点的三条棱的长度之比是3∶2∶1,这个长方体的棱长总和是72厘米。
长方体的表面积是()平方厘米,体积是()立方厘米。
8.一个圆柱和一个圆锥等底等高,圆柱与圆锥的体积之和是60立方厘米,圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。
二、判断题。
(对的画“√”,错的画“✕”)1.平角是一条直线。
()2.三角形具有稳定性,四边形不具有稳定性。
()3.两个面积相等的梯形,可以拼成一个平行四边形。
()4.一个玻璃容器的体积与容积相等。
()5.一个棱长是6厘米的正方体的表面积和体积相等。
()三、选择题。
(把正确答案的序号填在括号里)1.射线()端点。
A.没有B.有一个C.有两个2.下面图形中对称轴最少的是()。
A.长方形B.正方形C.等腰梯形3.下面的立体图形从左边看到的图形是()。
4.下图中,甲和乙两部分面积的关系是()。
A.甲>乙B.甲<乙C.甲=乙5.一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面半径的比值是()。
A.πB.2πC.r四、计算题。
1.计算下面图形中阴影部分的面积。
(单位:厘米)2.计算以红色直线为轴旋转形成的立体图形的体积。
北师版小学六年级上册数学 总复习 第4课时 图形与几何
(9+4)×2=26(米)
3.14×8=25.12(米)
26>25.12 答:笑笑先走完一周。
(教材P105 练习T5)
5.用圆规画出右面的图形,并涂上颜色。 你能求出涂色部分的周长和面积吗?
周长: 3.14×2×2=12.56(厘米)
பைடு நூலகம்
2cm
12.56+2×4=20.56(厘米)
面积: 3.14×(2÷2)²×2=6.28(平方厘米)
观察的范围
1.观察物体的时候,观察点距离被观察物体越近, 观察到物体越大,观察景物的范围越小。
2.观察物体的时候,观察点距离被观察物体越远, 观察到物体越小,观察景物的范围越大。
天安门广场
1.判断拍摄地点与照片的对应关系的方法:可 以假设自己在拍摄地点,根据照片中的景物 特点,联系生活经验判断。
圆的认识
圆有无数条直径,无数条半径;同圆(或 等圆)内的直径都相等,半径都相等。
在同一圆内,直径的长度是半径的 2 倍, 可以表示为 d=2r 或 r d 。
2
欣赏与设计
圆在图案设计中有广泛应用,设计时可单独 或综合运用平移、轴对称等知识。
圆的周长
围成圆的曲线的长度叫作圆的周长。 圆的周长除以直径的商是一个固定的数, 我们把它叫作圆周率,用字母 π 表示,计算 时通常取 3.14。 圆的周长计算公式:如果用C表示圆的周长, 则C=πd或C=2πr。
答:涂色部分的周长是20.56厘米,面积是 6.28平方厘米。
40cm
(教材P105 练习T6)
6.
车轮一共要转多少周? 全长31.4m
3.14×40=125.6(厘米) 31.4米=3140厘米 3140÷125.6=25(周) 答:车轮一共要转25周。
人教版数学六年级下册1 第3课时 立体图形
(3)如图,这是一个圆锥和一个圆柱
(单位:m),则V圆锥∶V圆柱=(1∶24 )。
三、巩固反馈
2、做一个底面直径是4dm、高是7dm的圆柱形无盖铁皮水桶,
大约需要多少平方分米的铁皮?
圆柱表面积= 2r ×高 + r2
想一想:这个水桶
是什么样的,它由
哪几面组成?
3.14×(4÷2)2+3.14×4×7
店铺中的店员都是太监、宫女妆扮的,皇帝游览的时候才营业。我正享受
着皇帝的待遇,店里的小贩都在卖力的吆喝着。
►走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠
叠地挤在水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。荷叶
上滚动着几颗水珠,真像一粒粒珍珠,亮晶希望对您有帮助,谢谢 晶的。
个顶点。
圆柱
圆柱是由长方形以长(或宽)为轴或正方形以边长为轴
旋转而成的。圆柱的上下两个底面是大小相等的圆,侧
面是一个曲面,有无数条高。
圆锥
圆锥是由直角三角形以直角边为轴旋转而成的。圆锥的
底面是一个圆,侧面是一个曲面,只有一条高。
一、回顾整理
长方体和正方体
名称
长方体
正方体
6个
6个
个数
6个面都是长方形(可能有 6个面都是正
它们有时聚成一颗大水珠,骨碌一下滑进水里,真像一个顽皮的孩子!
►在有欢声笑语的校园里,满地都是雪,像一块大地毯。房檐上挂满了冰凌
,一根儿一根儿像水晶一样,真美啊!我们一个一个小脚印踩在大地毯上
,像画上了美丽的图画,踩一步,吱吱声就出来了,原来是雪在告我们:
和你们一起玩儿我感到真开心,是你们把我们这一片寂静变得热闹起来。
人教版小学六年级数学《整理与复习-图形与几何》教学反思(二篇)
小学数学《图形与几何》教学反思(一)《小学数学图形与几何》的教学,我们知道数学来源与生活,而且数学与生活也密切相关。
对于几何方面的教学,我想小学生第一次接触几何这个陌生的概念,我是从学生熟悉的农村生活实物入手。
小学生尽管具备了一定的农村生活经验,但他们对农村周围的各种事物、现象有很强的好奇心。
所以在教学中,应抓住学生的好奇心,根据教材的特占,结合学生现有的生活实际,把农村生活经验数学化,把数学问题生活化。
如以教室为情境,让学生认位置∶以学生孰悉的搭积木为情境,认识长方体、正方体、圆柱和球等。
让学生在这样的情境中主动地学习。
动手实践、自主探索与合作交流是学生学习数学的重要方式。
图形与几何的教学内容上设计了很多这方面的活动。
在合作中进行学习,体验合作学习的必要性和乐趣。
因此教学时,我充分结合学生的认识规律,由浅入深,由易到难,适时归纳出图形的本质特征,及时沟通知识间的内在联系,帮助学生分辨异同,达到沟通、同化知识,增强理解及其应用的能力。
通过以上学习,学生对几何概念的认识印象深刻,而且在运用概念解决问题的过程中提高了运用知识的能力。
不足的是学生合作学习过程中配合还不够理想,教师还要加大引导力度。
有时现实题材较少,难以达到预想效果。
小学数学《图形与几何》教学反思(二)一、通过系统整理已学的图形的认识与测量、图形与运动、图形与位置的知识,沟通知识之间的联系,构建知识网络1.充分回忆是基础,讨论交流为前提整套教材对于空间与图形知识的编排,是按照内容本身的特点和学生的认知规律,以螺旋上升的形式呈现。
而本节内容是对第一、二学段图形与几何知识的系统整理,因此,在实际教学中,应结合问题的提出留给学生充足的回忆时间。
关于这一点,在“图形的认识与测量”这部分内容的复习中尤须重视,以该部分内容例1的第一个问题为例:我们学过哪些平面图形和立体图形?学生开始的回忆通常是“点状”的,但在时间充裕的情况下会逐步呈现出“线性”,这是开展后续学习的基础。
人教版六年级数学下册第一单元图形与几何7阴影部分面积
竹溪县实验小学 吴怀忠
图中阴影部分的面积是5平方厘米, 圆环的面积是多少?
2018年4月24日星期二
竹溪县实验小学 吴怀忠
8
求阴影部分面积。(单位:dm)
o 10
2018年4月24日星期二 竹溪县实验小学 吴怀忠
14
求阴影部分面积。
2cm
2学 吴怀忠
11
求阴影部分周长和 面积。(单位:cm)
竹溪县实验小学 吴怀忠
计算图中蓝色部分的面积
8分米
3分米
15分米
2
求阴影部分的周长与面积。(单位:cm)
4
10
2018年4月24日星期二
竹溪县实验小学 吴怀忠
3
求阴影部分周长和 面积。(单位:dm)
3
5
2018年4月24日星期二
竹溪县实验小学 吴怀忠
4
求阴影部分面积。(单位:dm)
1
3
2018年4月24日星期二
4m
竹溪县实验小学 吴怀忠
8
2018年4月24日星期二
竹溪县实验小学 吴怀忠
求下列各图中阴影部分面积。
S = 3.14 ×(22 - 12)÷2 = 3.14 × 3÷2 = 4.71 cm2
S = 10×10 – 3.14 × 102÷4 = 100 – 314÷4 = 100 – 78.5 = 21.5 cm2
17
求阴影部分面积。
10cm
8、
求阴影部分的面积。
10
S=3.14 ×10×10÷2 = 314÷2 = 157(平方米)
10
18
求阴影部分的周长和面积。
6dm
9
求阴影部分周长和 面积。(单位:cm)
人教版小学数学六年级下册《图形与几何》作业设计
小学数学单元作业设计一、单元信息二、单元分析本单元是空间与图形领域的内容,教材将“图形的认识"和“测量”两部分内容整合起来进行复习,“图形与变换”与“图形与位置”两部分则单列复习。
本单元通过问题情境,联系实际或联系数学实例,加深对已学知识的理解,加强对相关知识内在联系的认识。
注重对所学知识的运用,在“用”的过程中,促使对本学期知识的理解和掌握。
三、单元学习与作业目标掌握所学几何形体的特征。
能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用。
巩固掌握所学的简单画图、测量等技能。
巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识。
能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。
四、单元作业设计思路分层设计作业。
每课时均设计“基础性作业”(面向全体,体现课标,题量2-5大题,要求学生必做)和“发展性作业”(体现个性化,探究性、实践性,题量为2-6大题,要求学生有选择的完成)。
具体设计体系如下:五、课时作业图形的认识与测量基础性作业一个三角形的面积比它等底等高的平行四边形的面积少12.5平方分米,平行四边形的面积是()平方分米,三角形的面积是()平方分米。
用一副三角板能拼成()度的角。
一种微型零件的长5毫米,画在图纸上长20厘米,这幅图的比例尺是()。
一个梯形的上底是12厘米,下底是20厘米,高是30厘米,用两个这样的梯形拼成一个平行四边形,拼成的平行四边形的底是()厘米,面积是()平方厘米。
一个正方体木块,从顶点上挖去一个小正方体后,表面积(),体积()。
用五块同样大小的木板(长都是5分米,宽都是3分米)制作成一个长方体木箱,每个面只许用一块木板(不许拼接),这个木箱的体积最大是多少?锯下来的废料是多少平方分米?发展性作业等底等高的圆锥和圆柱容器各一个,将圆柱容器内装满水后,再倒入圆锥容器内,当圆柱容器的水全部倒光时,结果溢出36.2这升。
六年级下册数学习题课件6 整理与复习——图形与几何 人教版
1. 填空。 (1) 数对(3,4)表示第( 3 )列,第( 4 )行;数对(4,3)表示第( 4 )列,第
( 3 )行。 (2) 平面图上通常是按上北,下( 南 ),左( 西 ),右( 东 )来确定方向的。 (3) 林林家在学校的东偏南48°方向800 m处,那么学校就在林林家的( 西 )偏
3. 以电视塔为观测点,量一量,填一填,画一画。
(1) 市民广场在电视塔的( 正东 )方向( 1000 )m处;电信大楼在电视塔的 ( 正北 ) 方向( 1250 )m处。 (2) 市政府在电视塔的( 北 )偏( 东 )( 50°)方向( 1750 )m处 ( 或东 北 40°1750 );少年宫在电视塔的( 南 )偏( 西)( 35°)方向 ( 1500 )m处( 或西 南 55° 1500 )。 (3) 学校在电视塔的南偏东30°方向1000 m处,图书馆在电视塔的北偏西45° 方向1500 m处。在图中表示出学校和图书馆的位置。 略
2. 选择。
(1) 至少要用( ② )个棱长相等的正方体木块,才能拼成一个更大的正方体。
①4
②8
③9
(2) 一个正方体的棱长扩大为原来的3倍,它的表面积扩大为原来的( ③ ),体
积扩大为原来的( ④ )。
① 3倍
② 6倍
③ 9倍
④ 27倍
(3) 下面的图形中,不是正方体展开图的是( ③ )。
② 略
(5) 在一个长为12 dm、宽为7 dm的长方形纸片上,最多能剪下18个半径为1 dm
的圆。( √ )
3. 选择。
(1) 两个圆的直径之比是2∶3,它们的周长之比是( ① ),面积之比是( ③ )。
① 2∶3
② 8∶27
小学数学六年级下册《图形与几何》知识点归纳
图形与几何一线和角(1)线* 直线直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。
* 射线射线只有一个端点;长度无限。
* 线段线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。
* 平行线在同一平面内,不相交的两条直线叫做平行线。
两条平行线之间的垂线长度都相等。
* 垂线两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。
从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。
(2)角(1)从一点引出两条射线,所组成的图形叫做角。
这个点叫做角的顶点,这两条射线叫做角的边。
(2)角的分类锐角:小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:角的两边成一条直线,这时所组成的角叫做平角。
平角180°。
周角:角的一边旋转一周,与另一边重合。
周角是360°。
二平面图形1长方形(1)特征对边相等,4个角都是直角的四边形。
有两条对称轴。
(2)计算公式c=2(a+b) s=ab2正方形(1)特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
(2)计算公式c= 4as=a23三角形(1)特征由三条线段围成的图形。
内角和是180度。
三角形具有稳定性。
三角形有三条高。
(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。
直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
钝角三角形:有一个角是钝角。
按边分不等边三角形:三条边长度不相等。
等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
4平行四边形(1)特征两组对边分别平行的四边形。
相对的边平行且相等。
对角相等,相邻的两个角的度数之和为180度。
平行四边形容易变形。
人教版小学数学六年级下册第六单元整理和复习《图形与几何》教学设计共3课时
生1:我们学过的平面图形有长方形、正方形、三角形、梯形、平行四边形、圆形你能对学过的图形进行分类吗?生2:我们学过的立体图形有长方体、正方体、球、圆柱体、圆锥体我们学过的直线、射线、线段、角,属于什么图形?生3:我们学过的直线、射线、线段、角,属于平面图形。
这节课我们复习线与角及平面图形的知识(板书课题)。
[设计意图:通过复习,学会将学过的图形会逐级分类、整理,感悟分类的数学思想,掌握分类方法,形成知识网络。
在分类的过程中,一要注意引导学生确定分类的标准,使学生掌握分类方法,感悟分类的数学思想;二要鼓励学生自主尝试分类,并把分类的结果记录下来,促进学生自主建构知识,形成知识网络。
] 【环节二:合作探究归纳整理。
】(一)复习直线、射线、线段。
问题1:直线、射线和线段有什么区别?同一平面内的两条直线有几种位置关系?1.教师组织学生分组讨论。
学生汇报讨论结果预设:生1:直线可以向两端无限延伸,直线没有端点。
生2:射线只能向一端延伸,射线只有一个端点。
生3:线段有两个端点生4:同一平面内的两条直线可以是互相平行,可以是互相垂直生5:还可以是相交、重合2.教师引导学生总结:(1)用直尺把两点连接起来,就得到一条线段;把线段一端无限延长,可以得到一条射线;把线段两端无限延长,可以得到一条直线。
教书板书:(2)直线、射线、线段的区别与联系:(3)同一平面内两条直线的位置关系:学生在练习纸上按要求画一画①同一平面内相交的两条直线②同一平面内互相平行的两条直线③同一平面内互相垂直的两条直线④过点A,画出下面直线的平行线和垂线。
(4)随堂检测练习87页做一做第1题按要求画一画,教师出示练习内容。
(二)复习角。
问题2:我们学过的角有哪几种?角的大小和什么有关?各种角的特征是什么?直角、平角、周角之间的关系是什么?怎样用量角器测量角的度数?怎样画一个角?1.组织学生分组讨论、交流。
并用量角器量角的度数、用量角器规定度数的角。
北师大六年级数学上册教案:第2课时 总复习 图形与几何(一)
一、六年级数学上册应用题解答题1.美美服装公司赶制360件演出服。
甲组单独做需要8天,乙组单独做需要10天,丙组单独做需要12天。
(1)甲、乙两组合作,需要几天完成?(2)如果甲组先完成任务的40%,剩下的任务按5:4分派给乙、丙两组。
甲、乙、丙三个组分别做了多少件演出服?2.一辆快车与一辆慢车分别从甲、乙两站同时相对开出,在距中点5千米处相遇.已知快、慢车的速度比是3:2,甲、乙两站相距多少千米?(用方程解)3.六年级一、二、三3个班献爱心捐书,一班捐的本数是三个班总数的25,二、三两个班捐的本数比是4:3.已知三个班捐书总数为700本.求三班捐了多少本?4.甲车间有男工45人,女工36人;乙车间女工人数是男工人数的120%.如果把两个车间的工人合在一起,那么男工和女工的人数正好相等.乙车间共有工人多少人?5.下图中,涂色部分甲比乙的面积大211.25cm。
求BC的长。
6.下图中的阴影部分是由两个大小不同的正方形重叠而成的,图中阴影部分的面积是40平方米,若以O点为圆心,分别以两个正方形的边长作半径,画出一个圆环,这个圆环的面积是多少平方米?7.(1)某大酒店里有一种方圆两用餐桌(即外圆中方)。
请你借助圆规等学具,选择相对合理数据画出这种方圆两用桌的桌面模形(要保留作图痕迹),并将正方形外的部分涂上阴影。
(提示:在圆中画一个最大的正方形)(2)如果圆桌的直径是1米,那么图中阴影部分的面积是多少平方米?8.生命在于运动。
为了进一步提高全体同学的身体素质,拥有健康强杜的体魄,东华小学开展了“天天晨跑”活动。
陈刚共跑了60km,张华所跑路程是陈刚所跑路程的45还多8km。
张华共跑了多少km?9.赵叔叔加工一批零件,计划每小时加工125个,6小时完成,实际工作效率提高20%。
实际多少时间可以完成?10.聪聪读一本故事书,读完的页数比这本书总页数的13还多20页。
此时,读完的页数与未读页数的比是5:7,这本书一共有多少页?11.一辆大巴从广州开往韶关,行了一段路程后,离韶关还有210千米,接着又行了全程的20%,这时已行路程与未行路程的比是3:2。
六年级上册数学教案-第九单元第3课时图形与几何人教新课标
六年级上册数学教案第九单元第3课时图形与几何人教新课标教学内容本节课主要围绕六年级上册数学第九单元第3课时的内容,即图形与几何。
课程内容将涵盖基本的几何图形识别、图形的测量、图形的变换以及空间与位置等知识点。
学生将通过观察、操作、推理和交流等方式,理解和运用几何知识,培养空间观念和逻辑思维能力。
教学目标1. 知识与技能:使学生能够识别和描述常见的二维和三维几何图形,掌握图形的测量方法,理解图形的变换规律,并能运用这些知识解决实际问题。
2. 过程与方法:通过观察、操作、推理和交流等活动,培养学生独立思考和合作学习的能力,提高学生的实践操作能力和解决问题的能力。
3. 情感、态度与价值观:激发学生对数学学习的兴趣,培养学生的空间观念和审美意识,增强学生对几何图形在生活中应用的意识。
教学难点1. 几何图形的识别和描述:学生对一些复杂的几何图形可能难以准确识别和描述,需要通过直观的教具和实例来帮助学生理解和掌握。
2. 图形的测量方法:学生在测量图形的面积、周长等参数时可能会遇到困难,需要通过具体的操作和实例来引导学生掌握测量方法。
3. 图形的变换规律:学生对图形的平移、旋转等变换规律可能不太熟悉,需要通过具体的实例和操作来帮助学生理解和应用。
教具学具准备1. 教具:几何图形模型、尺子、量角器、直角三角形板、圆形板等。
2. 学具:学生用尺子、量角器、彩纸、剪刀、胶水等。
教学过程1. 导入:通过展示一些生活中的几何图形实例,引起学生对本节课的兴趣,引导学生思考几何图形在生活中的应用。
2. 新课导入:通过教具展示和讲解,引导学生识别和描述常见的几何图形,讲解图形的测量方法和变换规律。
3. 实践操作:让学生分组进行实践操作,通过测量、剪纸、拼图等活动,加深对几何图形的理解和运用。
6. 课堂练习:让学生进行一些相关的课堂练习,巩固所学知识,提高学生的实际操作能力。
7. 课堂小结:对本节课所学知识进行小结,强调重点和难点,回答学生的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学---图形与几何
学校__________ 班级_________ 姓名_____________ 等级_________
一、填空。
1.经过两点能画出()条直线,过一点可以画()条射线,过两点可以画()条线段。
2.一个圆柱和与它等底等高的圆锥的体积和是144 cm3。
圆柱的体积是()cm3,圆锥的体积是()cm3。
3.一个圆环,外圆半径是6厘米,内圆半径是4厘米,圆环面积是()平方厘米。
4.看图数一数,填一填。
(每个方格面积按1cm2计算。
)
A图()cm2 B图()cm2
C图()cm2 D图大约是()cm2
5.
如左图所示,把一个高为10厘米的圆柱切成若干
等份,拼成一个近似的长方体。
如果这个长方体
的底面积是50平方厘米,那么圆柱的体积是()立方厘米。
6.一个梯形的面积是8 cm2 ,如果它的上底、下底和高各扩大到原来的2倍,它的面积是()cm2 。
7.两个圆的半径分别是3厘米和5厘米,它们周长的比是(),面积的比是()。
8.三角形的内角和是180°,四边形的内角和是(),八边形的内角和是()。
9.一个圆锥与一个圆柱等底等体积,已知圆柱的高是2厘米,圆锥的高是()。
二、判断(对的打“√”,错的打“×”)
1.一个三角形中,只要两个内角的度数和小于另一个内角,这个三角形一定是钝角三角形。
()
2.一条直线上的两点把这条直线分成两条射线和一条线段,所以射线比直线短。
()
3.圆的半径决定圆的大小,圆心决定圆的位置。
()
4.长方形、正方形、圆、等腰梯形都是轴对称图形。
()
5.圆有无数条对称轴,而半圆只有一条对称轴。
()
三、选择题。
1.下面的图形,()是正方体的展开图。
A. B. C. D.
2.下面各组线段中,能围成三角形的是()。
A.1cm 1cm 2cm
B.1cm 2.5cm 3cm
C.0.9cm 1dm 2dm
D.4m 7m 2m
3.一个正方体的棱长是a,它的表面积是()。
A.12a
B.a2
C.6a2
D.a3
4.一个正方形的边长和圆的半径相等,已知正方形的面积是20平方米,则圆的面积是()平方米。
A.15.7
B.62.8
C.12.56
5.学校传达室的门坏了,下图分别是木工师傅修门的4中方案,()种修理方案可以使这扇门最牢固。
A. B. C. D.
四、操作题。
(1)用数对表示图中A、B、C的位置:
A(,)、B(,)、C(,)。
(2)画出把三角形ABC绕B点逆时针旋转90°
后的图形。
(3)以虚线为对称轴画出三角形ABC的对称图
形A
1
B
1
C
1。
(4)画出把三角形A
1
B
1
C
1
向下平移4格后的图形。
2.有一块长10米,宽5米的长方形空地。
如何在空地上设计一个草坪,使草坪的面积占空地的
1
2。
画一画。
五、看图计算。
1.求下图阴影部分的周长。
(单位:分米)
10m
5m
2.已知下图中圆的半径是3cm,求阴影部分三角形的面积。
六、解决问题。
1.一根铁丝可以围成一个半径是3厘米的半圆,这根铁丝有多长?它所围成的圆的面积有多大?
2. 有一块平行四边形的钢板,底是2.5分米,高是1.6分米,如果每平方米钢板重24千克,这块钢板重多少千克?
3.健康制药厂要做一个圆柱形水箱,底面周长是25.12
米,深2米,要在它的四周抹上亮漆,如果每平方米用漆10
千克,共需油漆多少千克?
4.下面是学校操场的平面图,比例尺是
1
2000
,先量出图上的长和宽(保留整
厘米数)并标在图上,再计算出操场的实际面积是多少平方米?
5.用一根48分米的铁丝做一个长方体框架,使它的长、宽、高的比是5:4:3。
在这个长方体的框架外面糊一层纸,至少需要多少平方分米的纸?它的体积是多少立方分米?
6.一个圆锥形沙堆的底面周长是6.28米,沙堆高0.9米,这堆沙的体积是多少立方米?把这堆沙铺在一条长为20米、宽为1米的路上,能铺多厚?。