史密斯圆图与阻抗匹配讲义
第节 Smith 圆图及应用阻抗匹配
(1) /4阻抗变换器匹配方法
此处接/4阻抗 变换器
Z 01 Z 0 Rl
Zin Z0
Z0
第一个电压波节点 所处的位置
/4
Z0
Z01
电容性负载
l1
4
l
4
l1
Z0
Z01
Z0
Zi n=Z0
Rx=Z0/
Z0
第一个电压波腹点 所处的位置
/4
Z0
Z01
电感性负载
Zl Rl jX l
l1
4
在圆图上做直线找到P1点相对中心点对称的P2点, P2点即是归一化负载导纳(查图得其归一化导纳即为0.4-j0.2)对应位置; P2点对应的向电源方向的电长度为0.463 ;
将P2点沿等l圆顺时针旋转与匹配电导圆交于A点B 点
A点的导纳为1+j1,对应的电长度为0.159,
B点的导纳为1-j1,对应的电长度为0.338。
纯电导线
g=1 匹配圆
开路点
匹配点
短路点
纯电纳圆
下半圆电感性
b=-1电纳圆弧
《微波技术与天线》
[例1-8]设负载阻抗为Zl=100+j50接入特性阻抗为Z0=50的传输线上。要用支节 调配法实现负载与传输线匹配,试用Smith圆图求支节的长度及离负载的距离。
解:
A
B
0.463 负载阻抗归一化2+j,并在圆图上找到与相对应的点P1;
(1)支节离负载的距离为
d1=(0.5-0.463) +0.159 =0.196 d2=(0.5-0.463) +0.338 =0.375
0.159 0.125
A B
(2)短路支节的长度:
Smith(史密斯)圆图阻抗匹配
利用归一化阻抗与反射系数之间的一一对应 关系,将归一化阻抗表示在反射系数复平面上。
(z ') 2e j2z' 2 e j(2 2z')
构成反射系数复平面
2
ZL Z0 ZL Z0
2
tan 1
RL2
2 X LZ0
X
2 L
Z02
Z (z ') R jX 1 (z ') 1 (z ')
可得
2a b2 2 2 且 2 1
等反射系数模值圆的方程
jb
||=0.5 S=3
j
||=1, =0
开路点
a
1
1
||=1, = 短路点
j
||=0.2 S=1.5
1、反射系数曲线坐标(续)
2 2 z ' tan1 a b 反射系数相角射线方程
X
2b
(1
2 a
)2
b2
a
2
R R 1
b2
1
2
R 1
等归一化电阻圆方程
a
12
b
1 X
2
1 X
2
等归一化电抗圆方程
归一化电阻圆
j b
R0 R 0.5 R 1 R2
圆心都在实轴a上; a=1 圆心坐标与半径之和恒
一一对应关系
二、圆图的基本构成
阻抗圆图是表示在复平面上的反射系数和归 一化阻抗轨迹图,包括两个曲线坐标系统和四簇 曲线。
阻抗匹配与史密斯(Smith)圆图:基本原理
阻抗匹配与史密斯(Smith)圆图:基本原理在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括:计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
经验: 只有在RF领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
史密斯圆图: 本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
史密斯圆图与阻抗匹配讲义
•
实例图
史密斯圆图与阻抗匹配讲义
• 在网分中,我们通常使用仿真软件来进行阻抗匹配,下面是串并联电容、电阻的Marker点的走向规 律:
• 但在我们实际进行电路匹配时,通常会出现Marker点的走向与理论的不一致,这是一个疑点?(在 校准电延迟时,有时发现校准端口与校准制具线Smith图中Marker点位置不一样?)
史密斯圆图与阻抗匹配讲义
• 首先将S22散射参数转换成等效的归一化源阻抗。MAX2472的Z0为50Ω,S22 = 0.81/-29.4°转换成 zS = 1.4 - j3.2, zL = 1和zL* = 1。下一步,在圆图上定位两个点,zS标记为A,zL*标记为D。因为 与信号源连接的是第一个元件是并联电感,将源阻抗转换成导纳,得到点A’。
• 从等式3.5,我们可以推导出下面的式子:
• 它也是复平面 ( r , i )上圆的参数方程,以(-1,-1/b)为圆心,半径为1/b。
史密斯圆图与阻抗匹配讲义
• 六、史密斯圆图的应用 6.1 求解等效阻抗
当解决同时存在串联和并联元件的混合电路时,可以使用同一个史密斯圆图,在需要进行从 z 到y 或从y到z 的转换时将图形旋转。考虑图 所示网络(其中的元件以Zo=50 进行了归一化)。串联 电抗(x)对电感元件而言为正数,对电容元件而言为负数。而电纳(b)对电容元件而言为正数,对电 感元件而言为负数。
特性阻抗 输入阻抗
图3:负载阻抗 • 负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。反射系数的表达式定义为:
• 由于阻抗是复数,反射系数也是复数。
史密斯圆图与阻抗匹配讲义
• 为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。这里Zo (特性阻 抗)通常为常数并且是实数,是常用的归一化标准值,如50Ω 、75Ω 、100Ω 和600Ω 。于是我 们可以定义归一化的负载阻抗:
Smith_chart
阻抗匹配与史密斯(Smith)圆图: 基本原理本文利用史密斯圆图作为RF阻抗匹配的设计指南。
文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz的匹配网络。
实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。
在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括:•计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
•手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
•经验: 只有在RF领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
•史密斯圆图: 本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
smith圆图阻抗匹配
阻抗匹配调试
1.阻抗匹配要求(@1GHz)
Z t=77.1+j*4.2(Target Res)
Z L=44.52-j*22.03(Load Res)
图1 匹配网络
2.匹配工具
选用ADS里面的Smith Chart Utility阻抗匹配调试工具。
3
1
2
图2 阻抗匹配调试
步骤如下:
✓先将频点设置为1GHz,特性阻抗为Z0=50Ω。
Load设置为Z L=44.52-j*22.03,Source设置为Z S=77.1+j*4.2;
✓从Z L作为匹配的起点,分别串电容,并电感。
✓根据匹配的要求,需要匹配的网路为:
图3 匹配网络元件值
3.电路仿真验证
采用ADS仿真,仿真验证原理图如下:
图4 匹配后的阻抗仿真
将图4的元件值及Z L代入仿真网络,ADS量测S11参数,频率范围从30MHz~3GHz。
图5 仿真图
图6图5 匹配阻抗调试后的仿真图
通过仿真可以看出,匹配调试后的阻抗为77.761+j3.887,比较接近我们预期的值,有些许差异与我们仿真选取的频点差异以及采用元件模拟Z L 的精度有关。
freq (30.00MHz to 3.000GHz)
S (1,1)。
Smith圆图在天线阻抗匹配上的应用
Smith圆图在天线阻抗匹配上的应用天线性能的好坏直接决定了所发射信号的强弱,在调试天线时,阻抗匹配、电压驻波比对天线的性能影响很大,在调试阻抗以及驻波比时,利用Smith圆图能够简单方便的提供帮助。
通过Smith圆图,我们能够迅速的得出在传输线上任意一点阻抗、电压反射系数、驻波比等数据。
图1-1Smith圆图如图1-1所示,Smith圆图中包括电阻圆(图中红色的,从右半边开始发散的圆)和电导圆(图中绿色的,从左半圆发散开的圆),和电阻电导圆垂直相交的半圆则称为电抗圆,其中,中轴线以上的电抗圆为正电抗圆(表现为感性),中轴线以下的为负电抗圆(表现为容性)。
一、利用Smith圆图进行阻抗匹配1、使用并联短截线的阻抗匹配我们可以通过改变短路的短截线的长度与它在传输线上的位置来进行传输网络的匹配,当达到匹配时,连接点的输入阻抗应正好等于线路的特征阻抗。
图2-1并联短截线的阻抗匹配假设传输线特征阻抗的导纳为Yin,无损耗传输线离负载d处的输入导纳Yd=Yin+jB(归一化导纳即为1+jb),输入导纳为Ystub=-jB的短截线接在M点,以使负载和传输线匹配。
在Smith圆图上的操作步骤:1.做出负载的阻抗点A,反向延长求出其导纳点B;2.将点B沿顺时针方向(朝着源端)转动,与r=1的圆交于点C和D;3.点D所在的电抗圆和圆周交点为F;4.分别读出各点对应的长度,B(aλ),C(bλ),F(kλ);5.可以得出:负载至短截线连接点的最小距离d=bλ-aλ,短截线的长度S=kλ-0.25λ。
图2-2Smith圆图联短截线的阻抗匹配2、使用L-C电路的阻抗匹配在RF电路设计中,还经常用L-C电路来达到阻抗匹配的目的,通常的可以有如下8种匹配模型可供选择:图2-3L-C阻抗匹配电路这些模型可根据不同的情况合理选择,如果在低通情况下可选择串联电感的形式,而在高通时则要选择串联电容的形式。
使用电容电感器件进行阻抗匹配,在Smith圆图上的可以遵循下面四个规则:-沿着恒电阻圆顺时针走表示增加串联电感;-沿着恒电阻圆逆时针走表示增加串联电容;-沿着恒电导圆顺时针走表示增加并联电容;-沿着恒电导圆逆时针走表示增加并联电感。
如何用史密斯圆图进行阻抗匹配
如何用史密斯圆图进行阻抗匹配如何用史密斯圆图进行阻抗匹配史密斯圆图简介史密夫图表(Smith chart,又称史密斯圆图)是在反射系散平面上标绘有归一化输入阻抗(或导纳)等值圆族的计算图。
是一款用于电机与电子工程学的图表,主要用于传输线的阻抗匹配上。
该图由三个圆系构成,用以在传输线和某些波导问题中利用图解法求解,以避免繁琐的运算。
一条传输线(transmission line)的电阻抗力(impedance)会随其长度而改变,要设计一套匹配(matching)的线路,需要通过不少繁复的计算程序,史密夫图表的特点便是省略一些计算程序。
阻抗匹配简介阻抗匹配(impedance matching)信号源内阻与所接传输线的特性阻抗大小相等且相位相同,或传输线的特性阻抗与所接负载阻抗的大小相等且相位相同,分别称为传输线的输入端或输出端处于阻抗匹配状态,简称为阻抗匹配。
否则,便称为阻抗失配。
有时也直接叫做匹配或失配。
如何用史密斯圆图进行阻抗匹配史密斯圆图红色的代表阻抗圆,蓝色的代表导纳圆!先以红色线为例!圆中间水平线是纯阻抗线,如果有点落在该直线上,表示的是纯电阻!例如一个100欧的电阻,就在中间那条线上用红色标2.0的地方;15欧的电阻就落在中间红色标0.3的点上!水平线上方是感抗线,下方是容抗线;落在线上方的点,用电路表示,就是一个电阻串联一个电感,落在线下方的点,是一个电阻串联一个电容。
图上的圆表示等阻抗线,落在圆上的点阻抗都相等,向上的弧线表示等感抗线,向下的弧线表示等容抗线!可以看出是感是容,是高是低接着讲蓝色线。
因为导纳是阻抗的倒数,所以,很多概念都很相似。
中间的是电导线,图上的圆表示等电导圆,向上的是等电纳线,向下的是等电抗线!用。
阻抗匹配与史密斯圆图:基本原理
阻抗匹配与史密斯(Smith)圆图: 基本原理本文利用史密斯圆图作为RF阻抗匹配的设计指南。
文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz的匹配网络。
实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。
在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括:•计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
•手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
•经验: 只有在RF领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
•史密斯圆图: 本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
射频阻抗匹配与史密斯_Smith_圆图:基本原理详解
阻抗匹配与史密斯(Smith)圆图:基本原理在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括•计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的 格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
• • •手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
经验: 只有在 RF 领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础基础知识在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。
Smith圆图和阻抗匹配网络PDF格式讲义
中较大的那个Q值。
• π型匹配网络的有载Q值
电路 Q 值
Q=
Lω 0 Ri
=
L1ω 0 Ri
+
L2ω 0 Ri
= Q1 + Q2
网络有载 Q 值
Qe
=
Lω 0 2Ri
=
L1ω 0 2Ri
+
L2ω 0 2Ri
=
1 2
Q 1
+
1 2
Q 2
= Qe1 + Qe2
20
• 当RS/Ri>>1, RL/Ri >>1时
L = X L = X L1 + X L2 = 0.675mH
解 已知RL>RS
Ls
L1
RS
计算Q值:Q =
RL RS
−1
=
58 −1 =1.96 12
VS
计算L网络并联支路电抗:X P
=
RL Q
= 58 = 29.6Ω 1.96
计算L网络串联支路电抗:XS = QRS =1.96×12 = 23.5Ω
则
电容
CP
=
1 2πfXP
=
2π
1 ×1.5×109 × 29.6
3dB带宽为 BW ≈ f0 / Qe
ω0 与 Q 的关系为 ω0 =
1 LC
1
−
1 Q2
=
1 LC
1
−
1 4Qe2
17
– L匹配网络举例
• 已知信号源内阻RS=12Ω,并串有寄生电感LS=1.2nH。负载电阻 RL=58Ω,并带有并联的寄生电容CL=1.8pF,工作频率为
f=1.5GHz。设计L匹配网络,使信号源和负载达到共轭匹配。
阻抗匹配与史密斯(Smith)圆图:基本原理
阻抗匹配与史密斯(Smith)圆图:基本原理摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。
文中给出了反射系数、阻抗和导纳的作图范例,并给出了MAX2474工作在900MHz时匹配网络的作图范例。
事实证明,史密斯圆图仍然是确定传输线阻抗的基本工作。
在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。
一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。
匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。
频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。
需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括∙计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。
设计者必须熟悉用正确的格式输入众多的数据。
设计人员还需要具有从大量的输出结果中找到有用数据的技能。
另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。
∙手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。
∙经验:只有在RF领域工作过多年的人才能使用这种方法。
总之,它只适合于资深的专家。
∙史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。
讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。
当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。
史密斯圆图与阻抗匹配讲义30页PPT
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
史密斯圆图与阻抗匹配讲义
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
40、学而不思则罔
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
史密斯圆图不阻抗匹配讲义
主讲人:
史密斯圆图不阻抗匹配讲义
• 一、阻抗匹配 • 二、史密斯圆图 • • • • 三、反射系数 四、等阻圆及等抗圆的化简 五、导纳圆图 六、史密斯圆图的应用
史密斯圆图与阻抗匹配讲义
• 一、阻抗匹配
• 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的丌同阻抗 迚行匹配 就是其中之一。一般情况下,需要迚行匹配的电路包括天线不低噪声放大器(LNA)之间的 匹配、功率放大器 输出(RFOUT)不天线之间的匹配、LNA/VCO输出不混频器输入之间的匹配。匹 配的目的是为了保证信号戒能 量有效地从“信号源”传送到“负载”。 大家都知道,要使信号源传送到负载的功率最大,信号源阻抗必须等于负载的共轭阻抗,即:
史密斯圆图与阻抗匹配讲义
• 在前面的讨论中,我们看到阻抗圆图上的每一个点都可以通过以 复平面原点为中心旋转180°后得 到不之对应的导纳点。于是,将整个阻抗圆图旋转180°就得到了导纳圆图。这种斱法十分斱便,它 使我们丌用建立一个新图。所有圆周的交点(等电导圆和等电纳圆)自然出现在点(-1, 0)。使用导纳圆 图,使得添加并联元件变得很容易。在数学上,导纳圆图由下面的公式构造:
•
实例图
史密斯圆图与阻抗匹配讲义
• 在网分中,我们通常使用仿真软件来进行阻抗匹配,下面是串并联电容、电阻的Marker点的走向规 律:
•
但在我们实际进行电路匹配时,通常会出现Marker点的走向与理论的不一致,这是一个疑点?(在 校准电延迟时,有时发现校准端口与校准制具线Smith图中Marker点位置不一样?)
•
Rs + jXs = RL - jXL
图1: 表达式Rs + jXs = RL - jXL 的等效图 在这个条件下,从信号源到负载传输的能量最大。另外,为有效传输功率,满足这个条件可以能从 负载反射到信号源,尤其是在诸如视频传输、RF 戒微波网络的高频应用环境更是如此。
史密斯圆图与阻抗匹配讲义
• 二、史密斯圆图
图一个多元件电路
史密斯圆图与阻抗匹配讲义
这个电路需要进行简化从最右边开始,有一个电阻和一个电感,数值都是1,我们可以在r=1的圆周和 x=1 的圆周的交点处得到一个串联等效点,即点A。下一个元件是并联元件,我们转到导纳图(将整个 平面旋转180°),此时需要将前面的那个点变成导纳,记为A''''''''。现在我们将平面旋转180°,于是 我们在导纳模式下加入并联元件,沿着电导圆逆时针方向(负值)移动距离0.3,得到点B。然后又是一 个串联元件。现在我们再回到阻抗圆图。
等式1
•
•
从上式我们可以看到负载阻抗与其反射系数间的直接关系。但是这个关系式是一个复数,所以并不 实用。 我们可以把史密斯圆图当作上述方程的图形表示。
史密斯圆图与阻抗匹配讲义
• 四、等阻圆及等抗圆的化简 4.1 等阻圆
为了建立圆图,方程必需重新整理以符合标准几何图形的形式(如圆或射线)。圆的方程为:
史密斯圆图与阻抗匹配讲义
• 令实部与虚部相等,得到两个独立的关系式:
•
重新整理等式2.6经过等式2.8 至2.13 得到最终的方程2.14。这个方程是在复平面( 它以(r/r+1, 0)为圆心,半径为1/1+r.
r , i
)上,
史密斯圆图与阻抗匹配讲义
• 详细的化简步骤
史密斯圆图部相等,我们得到两个新的独立的关系:
史密斯圆图与阻抗匹配讲义
• 化简上面2个等式可以得到2个圆的方程,从等式3.4,我们可以推导出下面的式子:
•
它也是复平面 (
r , i
)上圆的参数方程,以(-g/g+1, 0)为圆心,半径为1/(1+g)。
史密斯圆图与阻抗匹配讲义
• 圆周上的点表示具有相同实部的阻抗。例如,R=1 的圆,以(0.5, 0)为圆心,半径为0.5。它包含 了代表反射零点的原点(0, 0) (负载不特性阻抗相匹配)。以(0,0)为圆心、半径为1 的圆代表负载短路。 负载开路时,圆退化为一个点(以1,0 为圆心,半径为零)。不此对应的是最大的反射系数1,即所有的 入射波都被反射回来。 在作史密斯圆图时,有一些需要注意的问题。下面是最重要的几个斱面: · 所有的圆周只有一个相同的,唯一的交点(1, 0)。 · 代表0Ω 、也就是没有电阻(r = 0)的圆是最大的圆。 · 无限大的电阻对应的圆退化为一个点(1, 0) · 实际中没有负的电阻,如果出现负阻值,有可能产生振荡。 · 选择一个对应于新电阻值的圆周就等于选择了一个新的电阻。
•
图2:阻抗和史密斯圆图基础
史密斯圆图与阻抗匹配讲义
• 三、反射系数
• • • 我们知道反射系数 定义为反射波电压与入射波电压之比: 特性阻抗 输入阻抗
•
图3:负载阻抗 负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。反射系数的表达式定义为:
•
由于阻抗是复数,反射系数也是复数。
史密斯圆图与阻抗匹配讲义
• •
• • • • • • • •
史密斯圆图与阻抗匹配讲义
• 五、导纳圆图
• 史密斯圆图是用阻抗(电阻和电抗)建立的。一旦作出了史密斯圆图,就可以用它分析串联和并联情 况下的参数。可以添加新的串联元件,确定新增元件的影响只需沿着圆周移动到它们相应的数值即 可。然而,增加并联元件时分析过程就不是这么简单了,需要考虑其它的参数。通常,利用导纳更 容易处理并联元件。 我们知道,根 据定义Y = 1/Z,Z = 1/Y。导 纳的单位是姆欧Ω或者Ω -1 (早些时候导纳的单位是西 门子或S)。并且,如果Z 是复数,则Y 也一定是复数。所以Y = G + jB ,其中G 叫作元件的“电导”, B 称“电纳”。在演算的时候应该小心谨慎,按照似乎合乎逻辑的假设,可以得出:G = 1/R 及B = 1/X,然而实际情况并非如此,这样计算会导致结果错误。 用导纳表示时,第一件要做的事是归一化, y = Y/Yo,得出 y = g + jb。?通过下面的式子进行推 导:
•
•
• •
结果是G 的表达式符号与z 相反,并有 (y) = - (z)。 也就是说:如果知道z,就能通过将的符号取反找到一个与(0,0)的距离相等但在反方向的点。围绕 原点旋转180°可以得到同样的结果。
史密斯圆图与阻抗匹配讲义
180°度旋转后的结果:
当然,表面上看新的点好像是一个不同的阻抗,实际上Z 和1/Z 表示的是同一个元件。(在史密斯圆上, 不同的值对应不同的点并具有不同的反射系数,依 次类推)出现这种情况的原因是我们的图形本身是一 个阻抗图,而新的点代表的是一个导纳。因此在圆图上读出的数值单位是姆欧Ω。
x a y b
2
r i
2
R2
其中圆心为(a,b),半径为R。 从等式1中,等式两边的实部和虚部前面的系数必须是相等的,于是右边等式可先将分母中的 虚部去掉,等式上下同时乘以(1 j )。于是就有:
z r jx
1 r ji 1 r ji 1 r ji 1 r ji
• • •
史密斯圆图是由很多圆周交织在一起的一个图。正确的使用它,可以在丌作任何计算的前提下得到 一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。 史密斯圆图是反射系数(伽马,以 符号 表示)的极座标图。反 射系数也可以从数学上定义为单端口 散射参数,即s11。 史密斯圆图是通过验证阻抗匹配的负载产生的。这里我们丌直接考虑阻抗,而是用反射系数 L,反 射系数可以反映负载的特性(如导纳、增益、跨导),在处理RF 频率的问题时, L 更加有用。
史密斯圆图与阻抗匹配讲义
• 同时有公式:
Z R jWL
1 jWC
1 1 G jWC R jWL
• 从公式中看出改变电容值和电感值的大小,直接影响到Z的值,从而影响到Smith圆图中Marker点向 左戒向右移动的幅度和沿着阻抗圆移动的幅度。
史密斯圆图与阻抗匹配讲义
• 6.3 实例
2 2
1 r ji r r jr i ji jr i j 2 i r jx 1 r 2 j 2i 2
2 由于 j 1
,公式化简为:
2 2 2 2
1 r i 2i j 1 r i 2i j r jx 2 2 2 2 1 r 2 i 2 1 2r r i 1 2r r i
史密斯圆图与阻抗匹配讲义
• 4.2 等抗圆
• 经过等式2.15 至2.18 的变换,2.7 式可以推导出另一个参数方程,方程2.19。
•
同样,2.19 也是在复平面(
r , i
)上的圆的参数方程,它的圆心为(1, 1/x),半径1/x。
史密斯圆图与阻抗匹配讲义
• 圆周上的点表示具有相同虚部x 的阻抗。例如,x=1 的圆以(1, 1)为圆心,半径为1。所有的圆(x为 常数)都包括点(1, 0)。不实部圆周丌同的是,x 既可以是正数也可以是负数。这说明复平面下半部 是其上半部的镜像。所有圆的圆心都在一条经过横轴上1 点的垂直线上。 完成圆图 为了完成史密斯圆图,我们将两簇圆周放在一起。可以发现一簇圆周的所有圆会不另一簇圆周的所 有圆相交。若已知阻抗为r + jx,只需要找到对应于r 和x 的两个圆周的交点就可以得到相应的反射 系数。 可互换性 上述过程是可逆的,如果已知反射系数,可以找到两个圆周的交点从而读取相应的r 和x 的值。过 程如下: · 确定阻抗在史密斯圆图上的对应点 · 找到不此阻抗对应的反射系数 ( ) · 已知特性阻抗和 ,找出阻抗 · 将阻抗转换为导纳 · 找出等效的阻抗 · 找出不反射系数对应的元件值