美国劳工部统计局关于就业统计数据的技术说明
中美就业率统计方法
中美就业率统计方法全文共四篇示例,供读者参考第一篇示例:中美是世界上两个最大的经济体之一,就业率是衡量一个国家经济活力和劳动市场状况的重要指标。
中美的就业率统计方法虽然各有不同,但均具有其独特的特点和优势。
本文将从中美两国就业率统计的方法和数据来源等方面进行详细分析。
我们来看中国的就业率统计方法。
中国的就业率统计主要依赖于国家统计局发布的《国家统计局关于全国城乡就业基本情况的通报》和《中国就业形势报告》等官方报告,该报告会定期发布全国和各地区的就业数据统计。
中国的就业率主要分为城镇就业率和农村劳动力就业率两个方面,通过调查统计城市人口中的就业人数和农村劳动力中的就业人数,得出就业率数据。
而在美国,就业率的统计方法则更加多样化和细致。
美国的就业率统计主要依赖于美国劳工部发布的《就业统计》和《劳动力统计》等报告,该报告会收集全国各个行业和职业的就业数据,分析就业趋势和劳动力市场状况。
美国的就业率除了包括总体就业率外,还包括长期失业率、初次求职者就业率等多个指标,从不同角度综合评估劳动市场情况。
中美两国就业率统计方法的不同主要体现在数据来源和统计细节方面。
中国的就业率主要依赖于国家统计局的官方报告,数据来源比较集中且相对封闭,统计方式相对简单。
而美国的就业率数据则更加多样化和开放,包括公司调查、家庭调查、失业救济金申请等多种数据来源,统计方式更加复杂和细致。
中美两国在就业率统计方法方面还存在一些共同的问题和挑战。
比如都存在一定的数据滞后性,以及在统计方法上可能存在一些偏差和误差,需要不断改进和完善。
随着经济全球化和劳动力流动化趋势的加速,中美两国的就业率统计方法也需要更加协调和一致,以更好地反映全球经济和就业市场的实际情况。
中美两国就业率统计方法各有其特点和优势,需要结合各自国家的经济发展阶段和国情特点来选择适当的统计方法。
中美两国在就业率统计方法上还需要更加协调和合作,共同应对全球经济和就业市场的挑战,促进全球经济的可持续发展和繁荣。
美国经济数据
数据释义 密歇根大学消费者信心指数(The University of Michigan consumer confidence index)为美国密歇根大学研究人员对消费者关于个人财务状况和国家经济状况的看法进行定期调查并进行的相应评估。
关注原因 金融市场信心是消费者支出的领先指标,占经济活动中大部分。密歇根大学消费者信心指数与消费者支出之间的相关性更为密切。如果消费者信心上升,债券市场将之视为利空,价格下跌;股票市场则通常视之为利好。美元汇率通常从联储寻求暗示,若消费者信心上升,则意味着消费增长,经济走强,联储可能会提高利率,那美元就会相应走强。
美国月Markit制造业PMI终值
数据公布机构:市场调查公司Markit
统计方法:调查约600家制造类企业。
数据影响 公布值>预测值=利好美元
数据释义 市场调查公司Markit对600名左右的经理人进行调查,内容包括受访者对就业、产出、新订单、价格、库存等方面的评估。
关注原因 是反映经济状况的领先指标,因企业能对市场环境迅速做出反应。外汇投资者通过观察这类数据的变化,对美国经济前景作出判断,进而影响到汇市走势。
关注原因 个人收入指标是预测个人的消费能力,未来消费者的购买动向及评估经济情况的好坏的一个有效指标。收入与支出密切相关,消费者的可用收入越多,其支出增加的几率越大,对经济越有利,对美元是利好。
关注原因 失业率是最重要的经济指标之一,深受劳动市场供需以及经济循环之影响,失业率的高低,也反映了经济的运行状况。尽管被视为滞后指标,失业人口是衡量总体经济健康状况的重要信号,因消费者支出与就业市场条件高度关联。失业率上升,预示消费减弱,对经济发展不利;失业率下降,说明经济好转。
美国月ADP就业人数
美国:失业率是怎么统计的?
68 | ECONOMYI nternational国际失业率的高低对各个国家具有非常重要的影响。
由于高就业、低失业既满足了微观层面个体的生存和发展需求,又在宏观层面上满足了政府的需要,是政府和公众理性预期目标的最佳结合状态,因此,无论哪个国家 ,其社会各界持各种不同政见的党派和人们可以反对一切,但唯独对低失业率的目标追求是一致的。
与此同时,与失业率有关的各种因素也被置于重要的地位。
美国劳工部每月首个周五发布“非农就业报告”提供了就业前景、经济趋势、失业与月薪数据,这些数据及月度发布结果影响着全球经济表现甚至政治家的职业生涯。
美国的失业人口和失业率是如何统计的?是一个有趣而又值得研究的问题。
美国失业率的统计分析在美国,所有16岁以及以上有劳动能力和美国:失业率是怎么统计的?文/北京顺义区委党校 岳彦飞 中国社会科学院美国所 刘元玲劳动意愿并且在过去四周内积极寻求工作却不成功的人被界定为失业人口。
美国的失业率是指失业人口占劳动力人口之比。
根据《2012年美国总统经济报告》,美国拥有非机构劳动人口2.396亿(不包括军人和监狱服刑人员)。
其中,登记和申请就业的劳动人口总和(失业人口和就业人口相加)为1.536亿,就业人数1.398亿,E/P就业率58.4%,劳动参与率64.7%。
失业人数总和1374万,失业率8.9%,因各种原因不在劳动力队伍的人数总和是8600万,他们占劳动力人口总和的55.98%。
美国的失业率统计口径来源主要有两种,住户调查失业率和机构调查失业率。
“住户调查失业率”,是由美国普查局(Census Bureau)先做当期人口调查即(CPS,Current Population Survey),后由美国劳工统计局(BLS,Bureau of. All Rights Reserved.ECONOMY | 69就业数据都因为客观原因存在一些误差,其幅度大约是10万人左右。
以2012年8月为例,8月报告的第一次预计新增就业者是9.6万人,9月的报告上调为14.2万人,11月份则上调为19.2万人。
就业指标统计监测的国际比较与经验启示
18就业指标统计监测的国际比较与经验启示马丽荣 龚雅洁( 石家庄邮电职业技术学院,河北 石家庄 050031 )【摘 要】随着我国就业形态的变化,我国原有的就业统计指标在内涵、统计口径和统计方法上都发生了很大的变化。
本文借鉴美国、英国、加拿大和日本四个典型国家的就业统计经验,针对我国在就业统计中存在的问题进行探讨,并得到一些启示。
【关键词】就业统计;指标体系;经验启示就业是民生之本,失业是动荡之源。
如何有效的解决失业问题关系到社会的稳定和人民的幸福。
只有当就业数据统计的科学、真实、及时,国家才能在此基础上制定出科学有效的就业政策。
然而,我国的劳动力市场监测无论是在指标体系还是在制度安排上,都存在一些问题,鉴于国外典型国家的就业监测机制建立早、运行好等特征,有必要深入研究国外做法,提取经验,为我国的就业统计指标监测机制提供参考。
一、就业指标统计监测的国际做法(一)美国的就业统计美国的就业市场监测主要由劳工部的劳工统计局来负责实施和运行,实施企业调查和住户调查制度。
企业调查主要就美国当前的就业调查、职位空缺和劳动力流动调查、季度就业和工资调查展开;住户调查侧重于人口调查。
采用分层抽样的方式开展调查,并于每月的第一个星期五公布上月的就业数据。
对失业的定义和范围所做的界定为:在指定的调查范围内,凡是年满16对愿意工作而没有工作的人,一律算作失业,对年龄不设上限。
(二)英国的就业统计英国统计局负责调查、收集、分析和发布就业相关信息。
采用企业调查制度、雇员调查和住户的劳动力调查三种制度。
针对雇员的调查主要是通过税收系统或保险计划来获取雇员的有关信息,然后进行统计。
住户调查制度多为劳动力调查,主要是为了获取与劳动参与率、就业率、失业率等重要劳动力市场监测指标有关的数据,间接了解住户的经济活动参与情况。
(三)日本的就业统计日本是与我国处在相同文化圈的发达国家,为我国就业市场信息监测的具体方式和方法能够提供更好的借鉴。
2023年期货从业资格之期货投资分析题库附答案(典型题)
2023年期货从业资格之期货投资分析题库附答案(典型题)单选题(共30题)1、中国以()替代生产者价格。
A.核心工业品出厂价格B.工业品购入价格C.工业品出厂价格D.核心工业品购入价格【答案】 C2、根据下面资料,回答71-72题A.买入;17B.卖出;17C.买入;16D.卖出;16【答案】 A3、某款收益增强型的股指联结票据的主要条款如下表所示。
请据此条款回答以下四题。
A.5.35%B.5.37%C.5.39%D.5.41%【答案】 A4、美联储对美元加息的政策内将导致( )。
A.美元指数下行B.美元贬值C.美元升值D.美元流动性减弱【答案】 C5、以下()不属于美林投资时钟的阶段。
A.复苏B.过热C.衰退D.萧条【答案】 D6、下列关于购买力平价理论说法正确的是( )。
A.是最为基础的汇率决定理论之一B.其基本思想是,价格水平取决于汇率C.对本国货币和外国货币的评价主要取决于两国货币购买力的比较D.取决于两国货币购买力的比较【答案】 A7、某保险公司拥有一个指数型基金,规模20亿元,跟踪的标的指数为沪深300指数,其投资组合权重和现货指数相同,公司直接买卖股票现货构建指数型基金,获得资本利得和红利,其中未来6个月的股票红利为1195万元,(其复利终值系数为1.013)。
当时沪深300指数为2800点。
(忽略交易成本和税收)。
6个月后指数为3500点,那么该公司收益是()。
A.51211万元B.1211万元C.50000万元D.48789万元【答案】 A8、将取对数后的人均食品支出(y)作为被解释变量,对数化后的人均年生活费收入(x)A.存在格兰杰因果关系B.不存在格兰杰因果关系C.存在协整关系D.不存在协整关系【答案】 C9、金融机构风险度量工作的主要内容和关键点不包括()。
A.明确风险因子变化导致金融资产价值变化的过程B.根据实际金融资产头寸计算出变化的概率C.根据实际金融资产头寸计算出变化的概率D.了解风险因子之间的相互关系【答案】 D10、央行下调存款准备金率0.5个百分点,与此政策措施效果相同的是()。
美国劳动就业统计及其启示
一、政策法规:提供全方位的就 业支持
为了促进大学生的就业,美国政府制定了一系列政策和法规,为大学生提供 全方位的就业支持。这些政策和法规包括:《高等教育法案》、《全国创造机会 法案》、《劳动力投资法案》等。此外,美国各州也制定了相应的就业法规和政 策,如《加州大学毕业生创业条例》、《德克萨斯州大学生实习计划》等。这些 政策和法规旨在为大学生提供更多的就业机会和帮助。
综上所述,日本和美国在大学生就业促进政策方面的做法值得我们深入研究 和借鉴。通过不断完善我国的大学生就业政策,提高大学生的就业竞争力和职业 素养,可以为我国经济社会发展提供有力的人才保障。
参考内容二
美国作为全球教育最发达的国家之一,其大学生就业指导体系已经相当成熟。 本次演示将从政策法规、服务机构、课程设置和职业咨询四个方面探讨美国大学 生就业指导体系的现状及特点,并分析其对我国的启示。
美国的大学生就业促进政策
与日本不同,美国政府在大学生就业促进方面更注重市场机制的作用。政府 通过立法和政策支持,鼓励企业招聘大学生,并为大学生提供实习机会和奖学金。 同时,美国高校也非常注重实践教学和校企合作,以提高学生的实际操作能力和 职业素养。此外,美国政府还设立了一些专门机构,如联邦政府就业服务局和劳 工部,为大学生提供就业信息和咨询服务。
四、职业咨询:专业化和个性化 相结合
在美国,职业咨询已经成为了一种非常普遍的服务。职业咨询师通常是由具 有丰富经验的专业人士担任,他们能够根据学生的兴趣爱好、性格特点等因素, 为他们提供个性化的职业咨询服务。同时,美国的职业咨询还注重专业化和个性 化相结合,既强调咨询师的技能和专业性,又注重咨询服务的针对性和实效性。
感谢观看
参考内容
在全球范围内,大学生就业问题一直是一个重要的议题。日本和美国作为两 个经济大国,在大学生就业促进政策方面有着各自独特的做法。本次演示将分别 探讨这两个国家的政策,并从中寻找启示,以期为我国的大学生就业工作提供借 鉴。
2023年期货从业资格之期货投资分析能力提升试卷A卷附答案
2023年期货从业资格之期货投资分析能力提升试卷A卷附答案单选题(共30题)1、投资者认为未来某股票价格下跌,但并不持有该股票,那么以下恰当的交易策略为()。
A.买入看涨期权B.卖出看涨期权C.卖出看跌期权D.备兑开仓【答案】 B2、某铜加工企业为对冲铜价上涨的风险,以3700美元/吨买入LME的11月铜期货,同时买入相同规模的11月到期的美式铜期货看跌期权,执行价格为3740美元/吨,期权费为60美元/吨。
A.342B.340C.400D.402【答案】 A3、 3月大豆到岸完税价为()元/吨。
A.3140.48B.3140.84C.3170.48D.3170.84【答案】 D4、假设美元兑澳元的外汇期货到期还有4个月,当前美元兑欧元汇率为0.8USD/AUD,美国无风险利率为5%,澳大利亚无风险利率为2%,根据持有成本模型,该外汇期货合约理论价格为()。
(参考公式:F=Se^(Rd-Rf)T)A.0.808B.0.782C.0.824D.0.792【答案】 A5、某可转换债券面值1000元,转换比例为40,实施转换时标的股票的市场价格为每股24元,那么该转换债券的转换价值为()。
A.960元B.1000元C.600元D.1666元【答案】 A6、波浪理论的基础是( )A.周期B.价格C.成交量D.趋势【答案】 A7、某年11月1日,某企业准备建立10万吨螺纹钢冬储库存。
考虑到资金短缺问题,企业在现货市场上拟采购9万吨螺纹钢,余下的1万吨螺纹钢打算通过买入期货合约来获得。
当日螺纹钢现货价格为4120元/吨,上海期货交易所螺纹钢11月期货合约期货价格为4550元/吨。
银行6个月内贷款利率为5.1%,现货仓储费用按20元/吨月计算,期货交易手续费A.150B.165C.19.5D.145.5【答案】 D8、根据下面资料,回答85-88题A.买入执行价格较高的看涨期权,卖出等量执行价格较低的看跌期权B.卖出执行价格较低的看跌期权,买人等量执行价格较高的看跌期权C.买入执行价格和数量同等的看涨和看跌期权D.卖出执行价格较高的看跌期权,买入等量执行价格较低的看跌期权【答案】 D9、下列关于各种交易方法说法正确的是()。
美国经济数据解释-修订
美国经济数据解释定义就业报告包括「失业率(Unemployment)」及「非农业就业人口(Nonfarm payroll employment)」。
公布时间美国于每个月第一个星期五公布前一个月的统计结果。
制作方式就业报告的内容来自家庭调查(Household Survey)与机构调查(Establishment Survey)两份独立的调查资料。
其中家庭调查资料是由美国普查局(Census Bureau)先作当期人口调查(Current Population Survey),然后劳工统计局(BLS)再统计出失业率。
而机构调查资料又称薪资调查(Payroll survey),是由劳工统计局与州政府的就业安全机构合作汇编,根据的样本包括约38万个非农业机构。
数据解读由于公布时间是月初,一般用来当作当月经济指针的基调。
其中非农业就业人口是推估工业生产与个人所得的重要数据。
失业率降低或非农业就业人口增加,表示景气转好,利率可能调升,对美元有利;反之则对美元不利。
Income)定义个人所得(Personal Income)代表个人从各种所得来源获得的收入总合。
个人所得报告中尚包括:个人支出与储蓄的资料。
公布时间每月的第四个星期。
统计方法由美国商务部经济研究分析局负责搜集,资料来源包括﹕工资或薪水资料(得自劳工局或各行业工会)、社会福利资料(得自社会福利管理局和退伍军人管理局)和股利收入资料(来自随机抽样的公司股利分配调查)。
数据解读个人所得提高,代表经济好转,而个人消费支出可能会增加,当其它经济数据开始出现连续性成长,因个人所得与消费支出大于预估值的话,市场可能会预期美国联邦准备局将提高利率,对美元偏向利多。
定义以与居民生活有关的产品及劳务价格统计出来的物价变动指针。
公布时间每月第三个星期。
制作方式目前美国的消费者物价指数是以1982年至1984年的平均物价水准为基期,涵盖了房屋支出、食品、交通、医疗、成衣、娱乐、其它等七大类,364种项目的物价来决定各种支出的权数。
国际重要数据
重要数据美国月度季调后非农就业人口数据(万人)数据公布机构:美国劳动统计局发布频率:每月一次统计方法:过去一个月非农业人口就业人口的变化数据影响:实际值>预期值=利好货币数据释义非农业就业人数(Changes in non-farm payrolls):为就业报告中的一个项目,该项目主要统计从事农业生产以外的职位变化情形,该数据与失业率一同公布。
由美国劳工部统计局在月第一个星期五美国东部时间8:30也就是北京时间晚上20:30前一个月的数据。
关注原因非农就业人数变化反映出制造行业和服务行业的发展及其增长,数字减少便代表企业减低生产,经济步入萧条;在没有发生恶性通胀的情况下,如数字大幅增加,显示一个健康的经济状况,对美元应当有利,对原油,沥青利空。
并可能预示着更将提高利率,也对美元有利。
非农就业指数若增加,反映出经济发展的上升,反之则下降。
美国月度失业率数据公布机构:美国劳工部发布频率:每月统计方法:失业人口占劳动人口的比率数据影响:实际值<预期值=利好货币数据释义美国失业率(Unemployment Rate),也是美国就业报告中的另外一个项目,是指一定时期内,失业人口占劳动人口的比率(一定时期全部就业人口中有工作意愿而仍未有工作的劳动力数字),旨在衡量闲置中的劳动产能,是反映一个国家或地区失业状况的主要指标。
美国密歇根大学研究人员利用对500至600名成年人原始调查数据,计算出经过季节调整后的消费者信心、现况指数(包括目前财务状况和购买状况)和预期指数(包括未来一年和五年的预期财务状况和经济状况)失业率是最重要的经济指标之一,深受劳动市场供需以及经济循环之影响,失业率的高低,也反映了经济的运行状况。
尽管被视为滞后指标,失业人口是衡量总体经济健康状况的重要信号,因消费者支出与就业市场条件高度关联。
失业率上升,预示消费减弱,对经济发展不利;利好原油,银锭。
失业率下降,说明经济好转。
利空原油,银锭。
中美就业率统计方法
中美就业率统计方法就业率是衡量一个国家或地区经济繁荣程度的重要指标之一。
中美两国在统计就业率方面有着各自的方法和特点。
本文将为您详细介绍中美就业率统计方法的相关内容。
一、中国就业率统计方法1.定义:在中国,就业率通常是指城镇调查失业率,主要反映城镇劳动力市场的供需状况。
2.统计范围:就业率统计范围包括城镇户籍人口、城镇非户籍人口以及农村劳动力转移人口。
3.数据来源:中国国家统计局负责全国就业率的统计工作,数据来源于劳动力调查、城镇就业人员统计、农村劳动力转移就业统计等。
4.统计方法:中国就业率采用劳动力调查方法,通过对调查对象(16岁及以上人口)的就业状况进行问卷调查,获取就业数据。
调查周期为季度和年度。
5.计算公式:就业率=(就业人数/劳动力人数)×100%二、美国就业率统计方法1.定义:美国就业率主要指非农业就业率,反映美国非农业部门的就业状况。
2.统计范围:美国就业率统计范围包括私营部门、政府部门以及家庭服务业等非农业部门。
3.数据来源:美国劳工统计局(Bureau of Labor Statistics, BLS)负责全国就业率的统计工作,数据来源于月度就业报告、季度就业与工资统计、年度就业统计等。
4.统计方法:美国就业率采用Current Population Survey(CPS)方法,通过对全国约60,000个家庭进行调查,获取就业数据。
调查周期为月度和季度。
5.计算公式:就业率=(就业人数/劳动力人数)×100%三、中美就业率统计方法的异同1.相同点:中美两国在就业率统计方法上都采用劳动力调查,以获取就业数据。
2.不同点:(1)统计范围:中国就业率统计范围包括城镇和农村劳动力转移人口,而美国主要关注非农业部门就业状况。
(2)数据来源:中国就业率数据来源于国家统计局,美国就业率数据来源于劳工统计局。
(3)调查周期:中国就业率调查周期为季度和年度,美国为月度和季度。
美国就业预测统计综述
美国就业预测统计综述作者:许一君来源:《经济研究导刊》2013年第12期摘要:基于美国劳工统计局(BLS)出版的学术期刊Monthly Labor Review中关于美国就业预测(employment projection)的情况,主要阐述教育和培训视角、宏观经济预测法、职位空缺和劳动力流动调查以及CPS、CES的失业率和付薪雇佣调查四种就业预测方法。
关键词:就业预测;就业统计;失业率;文献综述;美国中图分类号:F241.4 文献标志码:A 文章编号:1673-291X(2013)12-0152-03美国就业统计和就业预测一直是劳动经济学的重要研究内容,美国劳工统计局(BLS)会定期公布统计结果,引导劳动力资源的合理配置。
其中不仅包括失业率等基本内容,还有就业结构、薪酬/福利结构、人口特征等诸多内容,方法先进、内容详实,值得中国统计届借鉴。
本文即介绍BLS的四种就业预测方法,并讨论一些相关问题。
一、教育和培训视角下的预测有学者通过美国劳工统计局的“教育与培训分类目录”来预测美国的劳动需求。
该目录将职业按照教育、工作和培训三个维度来描述。
美国劳工统计局每年都会发布教育与培训分类预测,不但为劳动者确定专业、寻找职业、为职业做准备提供了信息资源,也为雇主提供劳动需求、投资等决策意见。
BLS也提供了职业门槛分类,包括教育、工作经验、在职培训。
BLS也考虑了执照和证书。
政府执照因为联邦的中央、地方管理体系,很难统一;职业证书一般是为了加强一个领域的能力,高于准入门槛;而且容易与学历教育混淆。
因此BLS认为他们都不适合放在此模型中。
BLS通过这一分类目录按行业、岗位空缺以及岗位的增长进行预测。
Sommers和Morisi(2012)预测了2010—2020年的就业情况。
得出的结论是增长最快的是以硕士学位为就业典型教育门槛(typical entry-level education needed)的职位,增长率达到21.7%,但是在总需求中只占1.5%;而需求量最大的是以高中及相当水平为就业典型教育门槛的,达760万,占42.6%,但是增长率最慢。
美国经济数据系列报告之一:就业报告20070312
每季度结束后五周上午 8 点 30 分 相关月结束后大概两周上午 8 点 30 分 报告当月的第二周或者第三周上午 8 点 30 分
相关月结束后两周上午 8 点 30 分 相关月度结束后第二个星期上午 8 点 30 分
相关月结束后 3-4 周发布 相关月度结束 4-5 周
相关月 2-3 周上午 8 点 30 分 相关月结束后四周左右
lingpeng@
陈 李
chenli@
联系人
周 峰 (8621) 63295888×344
zhoufeng@ 地址:上海市南京东路 99 号 电话:(8621 )63295888 上海申银万国证券研究所有限公司
l 近两周全球股市大幅波动,其中一个重要的原因就是市场担心美国经济
会陷入衰退,另一方面由于日本加息升值,借贷资金提前还贷。其实后者 也与美国经济的 衰退预期有关,因为如果美国经济增长超出人们预期, 美国的基准利率可能还要维持一段时间,美元对日元也不会大幅下降。 所以美国经济的走势再次成为市场的焦点。众所周知,个人消费支出是 美国经济的驱动力,占 GDP 的 2/3 以上。而消费欲望由个人收入决定, 个人收入的六个组成部分中,最主要的是工资和薪水,占到 62%以上, 所以就业状况是美国经济的根本。另外一方面,就业数据较难预测,经 常会出乎人们的预料,所以美国每月第一个周五早上 8 :30 的这份就业 报告对股市、汇市的影响都很大。
美国新增就业岗位的统计方法及其启示
美国新增就业岗位的统计方法及其启示提要:美国的新增非农就业岗位数量是与消费者价格指数、失业率、平均小时工资、生产者价格指数PPI、雇佣成本指数ECI、劳动生产率、进口指数IPI一起定期公布的8大劳工经济指标之一。
除了劳动生产率指标按季度定期公布之外,其他指标均按月定期公布。
由于新增非农就业岗位数量也是美国基本宏观经济指标之一,因而深受美国内外的广泛关注。
一、统计范围1940年以来,美国劳工统计局于每月的首个周五“打包”发布就业状况长篇报告。
统计指标包括失业率和失业人数、总就业人数和劳动力、未就业人数、行业非农就业人数和新增非农就业岗位数、周工时、小时和周工资等。
就业状况报告的数据来源为每月进行的当前就业统计调查和当前人口调查。
前者由劳工统计局与各州就业保障机构合作进行调查,反映新增就业人数、行业就业人数、工时及薪酬变化等。
后者由人口普查局每月先作调查,然后由劳工统计局再统计出就业总人数、失业人数、失业率等指标数据。
可见,美国的就业状况报告反映了劳动力的各种状态。
二、新增就业岗位的调查统计特点1、按照行业和人口特征分类,注重数据的互补性新增就业岗位人数作为就业状况调查统计的重要组成部分,其重要性也较突出。
当前就业统计调查CES不仅提供新增就业岗位的总人数,而且区分了850余种行业(职位)的就业岗位数的变化。
此外,当前人口调查CPS则在家庭调查的基础上,得出按性别、各年龄段、种族、文化程度、就业方式等人口特征相互交叉分类的就业人数消长情况,从中也可对照出新增就业岗位数量的规模。
这两种调查统计可互为参照,相得益彰,统计中横向与纵向的因素分类都得到了完善。
2、注重样本分布和数据采集的科学性当前就业统计调查CES实现了从以前的定额制样本设计到概率本位设计的转变。
样本的采集每月由劳工统计局数据采集中心与州就业保障机构合作完成,包括16万家商业和政府机构(1000名雇员数以上的机构自动成为调查的样本),约40万家独立的工作场所,覆盖了约33%的雇员。
就业岗位统计法
美国新增就业岗位的统计方法及其启示2006-11-09提要:美国的新增非农就业岗位数量是与消费者价格指数、失业率、平均小时工资、生产者价格指数PPI、雇佣成本指数ECI、劳动生产率、进口指数IPI一起定期公布的8大劳工经济指标之一。
除了劳动生产率指标按季度定期公布之外,其他指标均按月定期公布。
由于新增非农就业岗位数量也是美国基本宏观经济指标之一,因而深受美国内外的广泛关注。
一、统计范围1940年以来,美国劳工统计局于每月的首个周五“打包”发布就业状况长篇报告。
统计指标包括失业率和失业人数、总就业人数和劳动力、未就业人数、行业非农就业人数和新增非农就业岗位数、周工时、小时和周工资等。
就业状况报告的数据来源为每月进行的当前就业统计调查和当前人口调查。
前者由劳工统计局与各州就业保障机构合作进行调查,反映新增就业人数、行业就业人数、工时及薪酬变化等。
后者由人口普查局每月先作调查,然后由劳工统计局再统计出就业总人数、失业人数、失业率等指标数据。
可见,美国的就业状况报告反映了劳动力的各种状态。
二、新增就业岗位的调查统计特点1、按照行业和人口特征分类,注重数据的互补性新增就业岗位人数作为就业状况调查统计的重要组成部分,其重要性也较突出。
当前就业统计调查CES不仅提供新增就业岗位的总人数,而且区分了850余种行业(职位)的就业岗位数的变化。
此外,当前人口调查CPS则在家庭调查的基础上,得出按性别、各年龄段、种族、文化程度、就业方式等人口特征相互交叉分类的就业人数消长情况,从中也可对照出新增就业岗位数量的规模。
这两种调查统计可互为参照,相得益彰,统计中横向与纵向的因素分类都得到了完善。
2、注重样本分布和数据采集的科学性当前就业统计调查CES实现了从以前的定额制样本设计到概率本位设计的转变。
样本的采集每月由劳工统计局数据采集中心与州就业保障机构合作完成,包括16万家商业和政府机构(1000名雇员数以上的机构自动成为调查的样本),约40万家独立的工作场所,覆盖了约33%的雇员。
美国经济数据公布时间及解释
美国经济数据的解释补充
失业率:是指失业人口占劳动人口的比率(一定时 期全部就业人口中有工作意愿而仍未有工作的劳 动力数字),旨在衡量闲臵中的劳动产能,是反映 一个国家或地区失业状况的主要指标 ;大多数资 料都经过季节性调整。失业率被视为滞后指标 ; 它又是市场上最为敏感的月度经济指标。若将失 业率配以同期的通胀指标来分析,则可知当时经 济发展是否过热,会否构成加息的压力,或是否 需要通过减息以刺激经济的发展。
美国经济数据的解释补充
ISM指数: ISM针对每一个组成部分提取认为订货 活跃的比例,并加上那些认为没有变化的比例的 一半。如果经济基本健康,通货膨胀处在控制之 中,那么PMI超过50时美元将可能跳得很高。相 反,假如ISM报告勾画出的制造业蹒跚着走向衰退, 外国人可能会抛售部分与美元挂钩的资本,降低 美元相对于其他主要货币的价值。
GDP与GNP的不同点:
1.GDP与GNP计算口径不同。GDP计算采用的是“国土原则”,即只 要是在本国或本地区范围内生产或创造的价值,无论是外国人或是本 国人创造的价值,均计入本国或本地区的GDP。而GNP计算采用的是 “国民原则”,即只要是本国或本地区居民,无论你在本国或本地区 内,还是在外国或外地区所生产或创造的价值,均计入本国或本地区 的GNP。 2.GDP与GNP侧重点不同。GDP强调的是创造的增加值,是“生产” 的概念。GNP则强调的是获得的原始收入。 相对来讲,在开放经济条件下,对一国财富总量的统计,GDP越来 越优于GNP。因此,20世纪90年代以前,资本主义世界各国主要侧 重采用GNP和人均GNP。但进入90年代后,96%的国家纷纷放弃GNP 和人均GNP,而开始重点采用GDP和人均GDP来衡量经济增长快慢以 及经济实力的强弱。 目前,一般将国民总收入 GNI(Gross National Income,指一个国家或地区所有常住单位在一定时 期内收入初次分配的最终结果)看做是GNP,各国(包括我国)也仅对外 公布GDP与GNI数据,GNP数据已基本不再统计和发布。 从国际组织 看,由于职能的不同,IMF仅关注GDP,以分析世界各国的经济增长; 而世界银行则既关注GDP也关注GNI(GNP),一定程度上讲更为关注 GNI(GNP),以分析世界各国的贫富差异。
非农就业数据
非农就业数据美国非农数据(US Non-farm Payrolls,即:美国非农就业数据,非农业就业人数)是美国非农业人口的就业数据,由美国劳工部每月公布一次,反应美国经济的趋势,数据好说明经济好转,数据差说明经济转坏。
非农数据会影响美联储对美元的货币政策,经济差,美联储会倾向减息,美元贬值,经济好,美联储会倾向加息,美元升值。
Investopedia Says... the economy and predict future levels of economic activity.美国劳工统计局英文名称Bureau of Labor Statistics (BLS)机构简介美国劳工统计局是美国联邦政府劳动经济和劳工统计的主要机构,负责收集、加工、分析、以及向公众发布重要的统计数据。
BLS也是美国劳动部的统计数据来源。
BLS机构网站提供的数据包括通货膨胀与价格、消费支出、失业数据、就业数据、福利待遇、产出率、工伤统计等等。
由于公布时间是月初,一般用来当作当月经济指针的基调。
其中非农业就业人口是推估工业生产与个人所得的重要数据。
失业率降低或非农业就业人口增加,表示景气转好,利率可能调升,对美元有利,利空黄金;反之则对美元不利,利多黄金。
重要性:非常高公布频率;每月第一个星期五晚上8:30(北京时间)非农数据对金价的影响基本面的影响因素将如何影响下一步的走势?基本面中美元的走势至关重要,而影响美元走势的主要是美国的经济数据,美国经济数据中最重要的是非农就业数据。
那么普通投资者如何应对非农数据对金融市场的震荡和冲击?接下来将结合自己对非农数据实战的经验给出一些金价如何对接非农数据影响的技巧。
首先,对于黄金和美元的关系定位要有清晰的认识,由于黄金是用美元来标价的,同时由于当年牙买加协议将黄金提出货币历史舞台的始作俑者就是美国,更由于美国的黄金储备是8000多吨首居各国和组织首位。
因此美元的走势向来是黄金的风向标,二者的历史传统关系是负相关,美元强的时候黄金就表现的很弱,此消彼长铸就了黄金从500多美元上涨到1032美元的历史高位。
美国主要经济指标及分类
在实际市场操作中,对基本经济因素的分析,都是通过收集、整理和分析各国反映经济发展各个方面的经济指标(经济数字)来进行的,在当今世界,美元仍然是各国外汇储备的主要货币,因此美国的经济数学对市场的影响最大。
各国投资者部关注美国的经济数字,以把握投资的时机。
一些重要的美国经济数字常常均在纽约时间8:30公布,因此,对亚洲地区的外汇交易员而言,常会因为等数字公布而工作到深夜,即常说的"等数字"。
下面以美国常用的经济数据为例进行分析。
美国政府公布的经济数学可以分为3类,先行指标、同步指标和滞后指标。
具体包括:1.先行指标(LeadingIndicator)先行指标是对未来的经济发展产生影响的经济指标的统计。
市场分析者常参考这些指标分析未来经济发展的状况及其对今后汇率发展方向的影响。
先行指标指数的组成部分及其在指数构成中的权重如下;1)生产及制造业工人平均工作周1.0142)制造业工人的失业率1.01413)消费品和原料的新订单0.973 "4)59500家大公司普通股股票价格1.1495)库存的实际变化0.9866)M2的货币供应量0.9327)流动资产总额的变化0.98)敏感性物价的变化0.8929)成套设备的合同及订单0.94610)新颁发的私人住宅建筑许可证 1.05411)净经济主体的组成0.97312)销售不畅公司的比例1.0812.同步指标和滞后指标(ConcurrentIndicator and Lagging lndicator)同步指标的变动时间与一般经济情况基本一致,滞后指标的变动时间则往往落后于一般经济情况的变动。
这两类指标可以显示经济发展的总趋势,并确定或否定先行指标预示的经济发展趋势,而且通过它们还可以看出经济变化的深度。
较重要的同步指标和滞后指标有:(1)国民生产总值及价格平减指数(GNP and GNP Deflator)国民生产总值是一国在一定时期内(年、季)以货币表示的全部产品和劳务的价值总和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Technical Notes for the Current Employment Statistics Survey IntroductionThe Bureau of Labor Statistics (BLS) collects data each month on employment, hours, and earnings from a sample of nonfarm establishments through the Current Employment Statistics (CES) program. The CES survey includes about 143,000 businesses and government agencies, which cover approximately 588,000 individual worksites drawn from a sampling frame of Unemployment Insurance (UI) tax accounts covering roughly 9 million establishments. The active CES sample includes approximately one-third of all nonfarm payroll employees in the 50 States and the District of Columbia. From these data, a large number of employment, hours, and earnings series in considerable industry and geographic detail are prepared and published each month. Historical statistics for the nation are available on the CES National website at /ces/data.htm. Historical statistics for states and metropolitan areas are available on the CES State and Metro Area website at /sae/data.htm.Table of ContentsUse the links below to skip to specific topics about the CES sample, data collection, industry classification, available statistics, estimation, and revisions. A link is included to skip to a list of equations, tables, and figures included in the CES Technical Notes.The Sample (3)Design (3)Coverage (6)Reliability (13)Data Collection (17)Collection Methods (17)Collection Forms (18)Classification (19)Industry Classification (19)Major Industry Groups (19)Available Data (21)Employment (22)Hours and Earnings (23)Derivative Series (26)Forms of Publication (28)Statistics for States and Areas (29)Estimation Methods (29)Monthly Estimation (29)Small Domain Model (40)Birth/Death Model (43)Aggregation Procedures (54)Seasonal Adjustment (56)Revisions (81)Sample-based Revisions (81)Benchmarks (83)Historical Reconstructions (92)Other Factors Contributing to Revisions (94)Table of Figures (96)Equations (96)Tables (96)Figures (97)The SampleDesignThe Current Employment Statistics (CES) sample is a stratified, simple random sample of worksites, clustered by Unemployment Insurance (UI) account number. The UI account number is a major identifier on the Bureau of Labor Statistics (BLS) Longitudinal Database (LDB) of employer records, which serves as both the sampling frame and the benchmark source for the CES employment estimates. The sample strata, or subpopulations, are defined by state, industry, and employment size, yielding a state-based design. The sampling rates for each stratum are determined through a method known as optimum allocation, which distributes a fixed number of sample units across a set of strata to minimize the overall variance, or sampling error, on the primary estimate of interest. The total nonfarm employment level is the primary estimate of interest, and the CES sample design gives top priority to measuring it as precisely as possible, or minimizing the statistical error around the statewide total nonfarm employment estimates.Frame and sample selectionThe LDB is the universe from which CES draws the establishment survey sample. The LDB contains data on the roughly 9 million U.S. business establishments covered by UI, representing nearly all elements of the U.S. economy. The Quarterly Census of Employment and Wages (QCEW) program collects these data from employers on a quarterly basis in cooperation with Labor Market Information Agencies (LMIs). The LDB contains employment and wage information from employers, as well as name, address, and location information. It also contains identification information such as UI account number and reporting unit or worksite number.The LDB contains records of all employers covered under the UI tax system. That system covers 97 percent of all employment within the scope of CES in the 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands. There are a few sections of the economy that are not covered by the QCEW, including the self-employed, unpaid family workers, railroads, religious organizations, small agricultural employers, and elected officials. Data for employers generally are reported at the worksite level. Employers who have multiple establishments within a state usually report data for each individual establishment. The LDB tracks establishments over time and links them from quarter to quarter.The total private and government portions of the CES sample are selected using two different methods. Private establishments in the CES sample frame are stratified by state, industry, and size. Stratificationgroups population members together for the purpose of sample allocation and selection. The strata, or groups, are composed of homogeneous units. With 13 industries (treating manufacturing as one industry and not including government) and 8 size classes, there are 104 total allocation cells per state. The sampling rate for each stratum is determined through a method known as optimum allocation. Optimum allocation minimizes variance at a fixed cost or minimizes cost for a fixed variance. Under the CES probability design, a fixed number of sample units for each state is distributed across the allocation strata in such a way as to minimize the overall variance, or sampling error, of the total state employment level. The number of sample units in the CES probability sample was fixed according to available program resources. The optimum allocation formula places more sample in cells for which data cost less to collect, cells that have more units, and cells that have a larger variance.The CES government sample is not part of the program's probability-based design. CES is able to achieve a very high level of universe employment coverage in government industries by obtaining full payroll employment counts for many government agencies, eliminating the need for a probability-based sample design. Government estimates are combined with the total private estimates to obtain values for total nonfarm.Annual sample selection helps keep the CES survey current with respect to employment from business births and business deaths. In addition, the updated universe files provide the most recent information about industry, size, and metropolitan area designation. Each year the CES sample is drawn from the first quarter Longitudinal Database (LDB) data in the fall of that year. A birth update is added in the early summer from the third quarter of the previous year.After all out-of-scope records are removed, the sampling frame is separated into allocation cells. Within each allocation cell, units are grouped by metropolitan statistical area (MSA), and these MSAs are sorted by the size of the MSA, defined as the number of UI accounts in that MSA. As the sampling rate is uniform across the entire allocation cell, implicit stratification by MSA ensures that a proportional number of units are sampled from each MSA. Some MSAs may have too few UI accounts in the allocation cell; these MSAs are collapsed and treated as a single MSA.Permanent Random Numbers (PRNs) are assigned to all UI accounts on the sampling frame. As new units appear on the frame, random numbers are assigned to those units as well. As records are linked across time, the PRN is carried forward in the linkage. Within each selection cell, the units are sorted by PRN, and units are selected according to the specified sample selection rate. The number of units selected randomly from each selection cell is equal to the product of the sample selection rate and the number ofeligible units in the cell plus any carryover from the prior selection cell. The result is rounded to the nearest whole number. Carryover is defined as the amount that is rounded up or down to the nearest whole number.As a result of the cost and workload associated with enrolling new sample units, all units remain in the sample a minimum of 2 years. To ensure all units meet this minimum requirement, CES has established a "swapping in" procedure. The procedure allows units to be swapped into the sample that were newly selected during the previous sample year and not reselected as part of the current probability sample. The procedure removes a unit within the same selection cell and places the newly selected unit from the previous year back into the sample. Approximately 60 percent of the CES sample for the private industries overlaps from the previous sample to the current sample.Selection weightsOnce the sample is drawn, sample selection weights are calculated based on the number of UI accounts actually selected within each allocation cell. The sample selection weight is approximately equal to the inverse of the probability of selection, or the inverse of the sampling rate. It is computed as:EQUATION 1. SAMPLE SELECTION WEIGHTSSample selection weight = N h / n hwhere:N h = the number of noncertainty UI accounts within the allocation cell that are eligible for sample selectionn h = the number of noncertainty UI accounts selected within the allocation cellTo Table of Figures Frame maintenance and sample updatesDue to the dynamic economy, there is a constant cycle of business openings (births) and closings (deaths). A sample update is performed during the summer each year drawing from the previous year's third quarter LDB data. This update selects units from the population of openings and other units not previously eligible for selection and includes them as part of the sample. Location, contact, and administrative information are updated for all establishments that were selected as part of the annual sample.Back to Top CoverageTable 1 shows the 2014 benchmark employment levels and the approximate proportion of total universe employment coverage at the total nonfarm and major industry sector levels. The coverage for individual industries within the supersectors may vary from the proportions shown. The UI counts and establishment numbers shown in Table 1 are from the benchmark year, not the current sample year, and therefore differ from UI and establishment totals for the current sample year.CES sample by industryThe sample distribution by industry reflects the goal of minimizing the sampling error in the total nonfarm employment estimate, while also providing reliable employment estimates by industry. Sample coverage rates vary by industry as a result of building a design to meet these goals (see Table 1). For example, manufacturing and leisure and hospitality industries are of similar size. Manufacturing has 12.1 million employees while leisure and hospitality has about 14.2 million employees. However their relative sample sizes are different. Manufacturing has about 19,800 sample units with a total of 3.2 million employees while leisure and hospitality has many more sample units, about 67,400 sample units but covers only about 2.9 million employees. The manufacturing sample therefore covers about 27 percent of all employment in manufacturing while the leisure and hospitality sample covers about 21 percent of all employment in that industry. The differences are linked in part to the fact that manufacturing is characterized by a much larger average firm size than leisure and hospitality. These types of differences do not cause a bias in the CES employment estimates because of the use of industry sampling strata and sampling weights which ensure each firm is properly represented in the estimates.Government sampleThe CES government sample is not part of the program's probability-based design, which is used to estimate employment for all private industries. A very high level of universe employment coverage (76 percent) is achieved by obtaining full payroll employment counts for many government agencies, thus a probability-based sample design is not necessary for this industry. The high coverage rate virtually assures a high degree of reliability for the government employment estimates. Because it is used to estimate only the government portion of total nonfarm employment, the large government sample does not bias the total nonfarm employment estimates. The private and government estimates are summed to derive total nonfarm employment estimates.Sample ImplementationCES enrollment efforts begin immediately after a sample is selected, and collection generally begins in the first month after enrollment. Prior to the July 2014 first preliminary release, CES incorporated the new sample units for all industries once a year, starting with the third release of November estimates. In January, the new sample was used for the first time to estimate November third preliminary estimates of the previous year, December second preliminary estimates of the previous year, and January first preliminary estimates for the current year. Waiting to introduce new sample for all industriessimultaneously meant newly enrolled respondents that started reporting payroll data immediately after the sample draw had provided useful data for almost a year before the data were used to produce CES estimates. The annual implementation schedule also contributed in part to revisions in national CES estimates between the November second preliminary and final releases and between the December first and second preliminary estimates. In the past, implementation of new sample units into the CES survey took a large amount of resources and time. CES updated processes for several years to improve the efficiency of sample updates and researched the effects of this change on the estimates.Beginning with the July 2014 first preliminary release, CES began a quarterly sample implementation schedule. Under the quarterly sample implementation schedule all industries have been classified into four groups that begin enrollment and data collection at a specific quarter after the sample is drawn for the year. Each group of industries begins enrollment and data collection procedures the quarter prior to being used in estimation and are used in estimation on the first reference month of the following quarter (see Table 2). All birth units selected as part of the semi-annual update are implemented in the last group, regardless of industry. Each reference month is estimated using the same sample from the estimation of the first preliminary estimate through the third preliminary estimate.Because quarterly sample implementation began with the July 2014 first preliminary estimates, the first implementation included the industries identified in groups 1 and 2.Table 2. Industry groupings for CES quarterly sample implementationGroup Major Industry SectorTiming Enrollment EstimationGroup 4 Manufacturing (durable and nondurablegoods)FourthQuarterBeginning in Q1 with theJanuary preliminaryestimate release Education and health servicesBirth units for all private industriessampled from the third quarter of theLDB that did not exist on the firstquarter of the LDBFootnotes(1) Because quarterly sample implementation began with the July 2014 first preliminary estimates, the first implementation of sample drawn in 2013 included the industries identified in groups 1 and 2. Subsequent quarters implemented new sample units one group at a time.To Table of FiguresUnder the quarterly sample implementation schedule, any quarterly sample implementation group can have an effect on industries outside the group. All the worksites associated with a UI account that are being implemented in a group are introduced into the sample at the same time, even if they are classified under a different industry.The switch to quarterly sample implementation allows units not in the new sample to be dropped at the same time as the new sample is introduced. The quarterly sample implementation process is expected to reduce respondent burden.CES sample by employment size classThe employment universe that the CES sample is estimating is highly skewed as shown by Table 3. The largest UI accounts comprise only 0.2 percent of all UI accounts but contain approximately 27.8 percent of total private employment. Therefore, it is very efficient to sample these UIs with certainty — by sampling only 0.2 percent of the UIs, the survey can cover 27.8 percent of total private universe employment. Conversely the smallest size class (0-9 employees) contains nearly 70.9 percent of all UIs but only about 10.3 percent of total private employment; therefore it is efficient to sample these UIs at a much lower rate. Sampling larger firms at a higher rate than smaller firms is a standard technique commonly used in business establishment surveys.Table 3. Total private universe employment by size of UI, March 2013Size Class Percent of All UIs Percent of Employment1 (0-9 employees) 70.9 10.32 (10-19 employees) 13.7 7.83 (20-49 employees) 9.2 12.14 (50-99 employees) 3.2 9.85 (100-249 employees) 1.9 13.46 (250-499 employees) 0.6 9.77 (500-999 employees 0.3 9.18 (1000+ employees) 0.2 27.8 Total 100.0 100.0To Table of FiguresTable 4 shows the distribution of the active CES sample units. A much greater proportion of large than small UIs are selected; however that does not create a bias in either the sample or the estimates made from the sample. Each sample unit selected is assigned a weight based on its probability of selection, which ensures that all firms of its size are properly represented in the estimates. UIs with a large number of employees are selected with certainty and assigned a weight of one, meaning they represent only themselves in the estimates. Conversely, a UI in the smallest firm stratum where 1 in every 100 firms are selected is assigned a weight of 100, because it represents itself and 99 other firms that were not sampled. The use of sample weights in the estimation process prevents a large (or small) firm bias in the estimates.Table 4. Total private CES sample employment by size of UI, March 2013Size Class Percent of All Sample UIs Percent of Sample Employment1 (0-9 employees) 27.8 0.32 (10-19 employees) 12.8 0.63 (20-49 employees) 16.1 1.74 (50-99 employees) 11.0 2.65 (100-249 employees) 12.8 6.96 (250-499 employees) 7.6 9.67 (500-999 employees 6.0 15.48 (1000+ employees) 5.9 62.9 Total 100.0 100.0To Table of FiguresBack to Top ReliabilityMeasurements of errorThe establishment survey, like other sample surveys, is subject to two types of error, sampling and nonsampling error. The magnitude of sampling error, or variance, is directly related to the size of the sample and the percentage of universe coverage achieved by the sample. The establishment survey sample covers over one-third of total universe employment; this yields a very small variance on the total nonfarm estimates. Measurements of error associated with sample estimates are provided in Table 5 and the all employee (AE), production employee (PE), and women employee (WE) standard error tables.Table 5. Errors of preliminary employment estimates(1)CES IndustryCode CES Industry Title Root-Mean-Square Error ofMonthly Level(2)Mean Percent RevisionActual Absolute00-000000 Total nonfarm 65,100 0.0 0.0 05-000000 Total private 38,600 .0 .0 90-000000 Government 40,900 .0 .1 90-910000 Federal 7,300 .0 .290-911000 Federal, except U.S. PostalService 7,100 -.1 .2 90-919120 U.S. Postal Service 2,900 .1 .1 90-920000 State government 16,800 .1 .2 90-921611 State government education 17,300 .1 .590-922000 State government, excludingeducation 5,100 .0 .1 90-930000 Local government 30,900 .0 .1 90-931611 Local government education 29,900 .0 .290-932000 Local government, excludingeducation 7,400 .0 .1 Footnotes(1) Errors are based on differences for the months January through October of years 2010 to 2014.(2) The root-mean-square error is the square root of the mean squared error. The mean squared error is the square of the difference between the final and preliminary estimates averaged across a series of monthly observations.To Table of FiguresBenchmark revision as a measure of survey errorThe sum of sampling and nonsampling error can be considered total survey error. Unlike most sample surveys which publish sampling error as their only measure of error, the CES can derive an annual approximation of total error, on a lagged basis, because of the availability of the independently derived universe data. While the benchmark error is often used as a proxy measure of total error for the CES survey estimate, it actually represents the difference between two employment estimates derived from separate statistical processes (i.e., the CES sample process and the UI administrative process) and thus reflects the net of the errors present in each program. Historically, the benchmark revision has been small for total nonfarm employment. Over the prior 10 years, absolute percentage benchmark error has averaged 0.3 percent, with an absolute range from 0.1 percent to 0.7 percent. Further discussion about the CES annual benchmark can be found in the Revisions section of this document under Benchmarks.Revisions between preliminary and final dataFirst preliminary estimates of employment, hours, and earnings, based on less than the total sample, are published immediately following the reference month. Final revised sample-based estimates are published 2 months later when nearly all the reports in the sample have been received. Table 5 presents the root-mean-square error, the mean percent, and the mean absolute percent revision over the past 5 years between the preliminary and final employment estimates.Revisions of preliminary hours and earnings estimates are normally not greater than 0.1 of an hour for weekly hours and 1 cent for hourly earnings at the total private level and may be slightly larger for the more detailed industry groupings. Further discussion about the CES sample-based monthly revisions to estimates can be found in the Revisions section of this document under Sample-based Revisions.Variance estimationThe estimation of sample variance for AE, PE, and WE for the CES survey is accomplished through use of the method of Balanced Half Samples (BHS). This replication technique uses half samples of the original sample and calculates estimates using those subsamples. The sample variance is calculated by measuring the variability of the subsample estimates. The weighted link estimator is used to calculate both estimates and variances. The sample units in each cell — where a cell is based on state, industry, and size classification — are divided into two random groups. The basic BHS method is applied to both groups. The subdivision of the cells is done systematically in the same order as the initial sample selection. Weights for units in the half sample are multiplied by a factor of 1 + γ where weights for units not in thehalf sample are multiplied by a factor of 1 − γ. Estimates from these subgroups are calculated using the estimation formula described in Equation 2.The formula used to calculate CES variances is as follows:EQUATION 2. CES VARIANCE,where• is the half-sample estimator•γ = ½•k is the number of half samples• is the original full-sample estimate.To Table of Figures Appropriate uses of sampling variancesVariance statistics are useful for comparison purposes, but they do have some limitations. Variances reflect the error component of the estimates that is due to surveying only a subset of the population, rather than conducting a complete count of the entire population. However, they do not reflect nonsampling error, such as response errors, and bias due to nonresponse. The variances of the over-the-month change estimates are very useful in determining when changes are significant at some level of confidence. Variance statistics for first and second closings are available for AE, PE, and WE. In addition, third closing variances are available upon request.Sampling errorsThe sampling errors shown for all private industries and total nonfarm have been calculated for estimates that follow the benchmark employment revision by a period of 16 to 20 months. The errors are presented as median values of the observed error estimates. These estimates have been estimated using the method of BHS with the probability sample data and sample weights assigned at the time of sample selection.Illustration of the use of relative standard error tablesAE, PE, and WE standard error tables provide a reference for relative standard errors of all major series developed from the CES. The standard errors of differences between estimates in two non-overlapping industries are calculated asEQUATION 3. CES RELATIVE STANDARD ERRORbecause the two estimates are independent.To Table of FiguresThe errors are presented as relative standard errors (standard error divided by the estimate and expressed as a percent). Multiplying the relative standard error by its estimated value gives the estimate of the standard error.Suppose that the level of all employees for financial activities in a given month at first closing is estimated at 8,041,000. The approximate relative standard error of this estimate (0.5 percent) is provided in the AE standard error tables. A 90-percent confidence interval would then be the interval:8,041,000 ± (1.645 × .005 × 8,041,000) = 8,041,000 ± 66,137 = 8,107,137 to 7,974,863 Illustration of the use of standard error tablesAE, PE, and WE standard error tables provide a reference for the standard errors of 1-, 3-, and 12-month changes in the employment, hours, and earnings series. The errors are presented as standard errors of the changes. The standard and relative standard errors for AE, PE, and WE are appropriate for use with both seasonally adjusted and not seasonally adjusted CES data. Suppose that the over-the-month change in all employee average hourly earnings (AHE) from a given month to the next in coal mining at second closing is $0.23. The standard error for a 1-month change for coal mining from the table is $0.29. The interval estimate of the over-the-month change in AHE that will include the true over-the-month change with 90-percent confidence is calculated:$0.23 ± (1.645 × $0.29) = $0.23 ± $0.48 = [-$0.25, $0.71]The true value of the over-the-month change is in the interval -$0.25 to $0.71. Because this interval includes $0.00 (no change), the change of $0.23 shown is not significant at the 90-percent confidencelevel. Alternatively, the estimated change of $0.23 does not exceed $0.48 (1.645 × $0.29); therefore, one could conclude from these data that the change is not significant at the 90-percent confidence level.Back to Top Data CollectionCollection MethodsEach month, the Bureau of Labor Statistics (BLS) collects data on employment, payroll, and paid hours from a sample of establishments. Prior to 1991, most of the Current Employment Statistics (CES) sample was collected by mail in a decentralized environment by each Labor Market Information Agency (LMI). CES has gradually centralized collection and adopted automated sample collection methods with the result that collection rates have gradually risen over time. Now, CES has a comprehensive program of new sample unit solicitation in four CES Regional Data Collection Centers (DCCs). The DCCs perform initial enrollment of each firm via telephone, collect the data for several months via Computer Assisted Telephone Interviewing (CATI), and where possible transfer respondents to a self-reporting mode such as Touchtone Data Entry (TDE), fax, or web. In addition, the DCC's conduct an ongoing program of refusal conversion. Very large firms are often enrolled via personal visit and ongoing reporting is established via Electronic Data Interchange (EDI). Offering survey respondents a choice of reporting methods helps sustain response rates to this voluntary survey. The largest portion of the CES sample is collected via EDI (42 percent), while Internet collection and CATI are used to collect approximately 16 percent and 31 percent of all reports, respectively. Under EDI, the firm provides an electronic file to CES each month in a prescribed file format. This file includes data for all of the firm's worksites. The file is received, processed, and edited by the CES operated EDI Center. Web is one of the fastest growing collection methods. Under web collection, the respondent links to a secure website that contains an image of the questionnaire and enters their data into the on-line form. The data are subject to a series of edit checks before being transmitted to CES.TDE, another self-reporting mode, is used to collect about 3 percent of the monthly reports. Under the TDE system, the respondent uses a touchtone telephone to call a toll-free number and activate an interview session. The questionnaire resides on the computer in the form of prerecorded questions that are read to the respondent. The respondent enters numeric responses by pressing the touchtone phone buttons. Each answer is read back for respondent verification.。