中考数学平行四边形(大题培优)及答案解析

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.

(1)用尺规将图1中的△ABC分割成两个互补三角形;

(2)证明图2中的△ABC分割成两个互补三角形;

(3)如图3,在图2的基础上再以BC为边向外作正方形BCHI.

①已知三个正方形面积分别是17、13、10,在如图4的网格中(网格中每个小正方形的边长为1)画出边长为、、的三角形,并计算图3中六边形DEFGHI的面积.②若△ABC的面积为2,求以EF、DI、HG的长为边的三角形面积.

【答案】(1)作图见解析(2)证明见解析(3)①62;②6

【解析】

试题分析:(1)作BC边上的中线AD即可.

(2)根据互补三角形的定义证明即可.

(3)①画出图形后,利用割补法求面积即可.

②平移△CHG到AMF,连接EM,IM,则AM=CH=BI,只要证明S△EFM=3S△ABC即可.

试题解析:(1)如图1中,作BC边上的中线AD,△ABD和△ADC是互补三角形.

(2)如图2中,延长FA到点H,使得AH=AF,连接EH.

∵四边形ABDE,四边形ACGF是正方形,

∴AB=AE,AF=AC,∠BAE=∠CAF=90°,

∴∠EAF+∠BAC=180°,

∴△AEF和△ABC是两个互补三角形.

∵∠EAH+∠HAB=∠BAC+∠HAB=90°,

∴∠EAH=∠BAC,

∵AF=AC,

∴AH=AB,

在△AEH和△ABC中,

∴△AEH≌△ABC,

∴S△AEF=S△AEH=S△ABC.

(3)①边长为、、的三角形如图4所示.

∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,

∴S六边形=17+13+10+4×5.5=62.

②如图3中,平移△CHG到AMF,连接EM,IM,则AM=CH=BI,设∠ABC=x,

∵AM∥CH,CH⊥BC,

∴AM⊥BC,

∴∠EAM=90°+90°﹣x=180°﹣x,

∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,

∴∠EAM=∠DBI,∵AE=BD,

∴△AEM≌△DBI,

∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,

∴△DBI和△ABC是互补三角形,

∴S△AEM=S△AEF=S△AFM=2,

∴S△EFM=3S△ABC=6.

考点:1、作图﹣应用与设计,2、三角形面积

2.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).

(1)当点N落在边BC上时,求t的值.

(2)当点N到点A、B的距离相等时,求t的值.

(3)当点Q沿D→B运动时,求S与t之间的函数表达式.

(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.

【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)

t=1或

【解析】

试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;

(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.

(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.

试题解析:(1)∵△PQN与△ABC都是等边三角形,

∴当点N落在边BC上时,点Q与点B重合.

∴DQ=3

∴2t=3.

∴t=;

(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,

当0<t<时,

此时,PD=t,DQ=2t

∴t=2t

∴t=0(不合题意,舍去),

当≤t<3时,

此时,PD=t,DQ=6﹣2t

∴t=6﹣2t,

解得t=2;

综上所述,当点N到点A、B的距离相等时,t=2;

(3)由题意知:此时,PD=t,DQ=2t

当点M在BC边上时,

∴MN=BQ

∵PQ=MN=3t,BQ=3﹣2t

∴3t=3﹣2t

∴解得t=

如图①,当0≤t≤时,

S△PNQ=PQ2=t2;

∴S=S菱形PQMN=2S△PNQ=t2,

如图②,当≤t≤时,

设MN、MQ与边BC的交点分别是E、F,

∵MN=PQ=3t,NE=BQ=3﹣2t,

∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,

∵△EMF是等边三角形,

∴S△EMF=ME2=(5t﹣3)2

(4)MN、MQ与边BC的交点分别是E、F,

相关文档
最新文档