2020年九年级中考数学复习专题训练《圆的综合 》(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年九年级中考数学复习专题训练:《圆的综合》

1.如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O,交AB于点D.(1)若AB=8,∠ABC=30°,求⊙O的半径;

(2)若点E是边BC的中点,连结DE,求证:直线DE是⊙O的切线;

(3)在(1)的条件下,保持Rt△ACB不动,将⊙O沿直线BC向右平移m个单位长度后得到⊙O′,当⊙O′与直线AB相切时,m=.

2.如图,矩形ABCD中,AB=13,AD=6.点E是CD上的动点,以AE为直径的⊙O与AB交于点F,过点F作FG⊥BE于点G.

(1)当E是CD的中点时:tan∠EAB的值为;

(2)在(1)的条件下,证明:FG是⊙O的切线;

(3)试探究:BE能否与⊙O相切?若能,求出此时BE的长;若不能,请说明理由.

3.如图,已知正方形ABCD 的边长为1,正方形BEFG 中,点E 在AB 的延长线上,点G 在BC 上,点O 在线段AB 上,且AO ≥BO .以OF 为半径的⊙O 与直线AB 交于点M ,N . (1)如图1,若点O 为AB 中点,且点D ,点C 都在⊙O 上,求正方形BEFG 的边长. (2)如图2,若点C 在⊙O 上,求证:以线段OE 和EF 为邻边的矩形的面积为定值,并求出这个定值.

(3)如图3,若点D 在⊙O 上,求证:DO ⊥FO .

4.如图,四边形ABCD 内接于⊙O ,AC 为直径,AC 和BD 交于点E ,AB =BC . (1)求∠ADB 的度数;

(2)过B 作AD 的平行线,交AC 于F ,试判断线段EA ,CF ,EF 之间满足的等量关系,并说明理由;

(3)在(2)条件下过E ,F 分别作AB ,BC 的垂线,垂足分别为G ,H ,连接GH ,交BO 于M ,若AG =3,S 四边形AGMO :S 四边形CHMO =8:9,求⊙O 的半径.

5.定义:当点P在射线OA上时,把的的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA上的射影值.例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点P和点B在射线OA 上的射影值均为=.

(1)在△OAB中,

①点B在射线OA上的射影值小于1时,则△OAB是锐角三角形;

②点B在射线OA上的射影值等于1时,则△OAB是直角三角形;

③点B在射线OA上的射影值大于1时,则△OAB是钝角三角形.

其中真命题有.

A.①②B.①③C.②③D.①②③

(2)已知:点C是射线OA上一点,CA=OA=1,以〇为圆心,OA为半径画圆,点B是⊙O 上任意点.

①如图2,若点B在射线OA上的射影值为.求证:直线BC是⊙O的切线;

②如图3,已知D为线段BC的中点,设点D在射线OA上的射影值为x,点D在射线OB

上的射影值为y,直接写出y与x之间的函数关系式为.

6.问题发现:

(1)如图1,△ABC内接于半径为4的⊙O,若∠C=60°,则AB=;

问题探究:

(2)如图2,四边形ABCD内接于半径为6的⊙O,若∠B=120°,求四边形ABCD的面积最大值;

解决问题:

(3)如图3,一块空地由三条直路(线段AD、AB、BC)和一条弧形道路围成,点M 是AB道路上的一个地铁站口,已知AD=BM=1千米,AM=BC=2千米,∠A=∠B=60°,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点M处,另外三个入口分别在点C、D、P处,其中点P在上,并在公园中修四条慢跑道,即图中的线段DM、MC、CP、PD,是否存在一种规划方案,使得四条慢跑道总长度(即四边形DMCP 的周长)最大?若存在,求其最大值;若不存在,说明理由.

7.如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP,AE.

(1)求证:直线PQ为⊙O的切线;

(2)若直径AB的长为4.

①当PE=时,四边形BOPQ为正方形;

②当PE=时,四边形AEOP为菱形.

8.已知AB是⊙O的直径,DA为⊙O的切线,切点为A,过⊙O上的点C作CD∥AB交AD于点D,连接BC、AC.

(1)如图①,若DC为⊙O的切线,切点为C,求∠ACD和∠DAC的大小.

(2)如图②,当CD为⊙O的割线且与⊙O交于点E时,连接AE,若∠EAD=30°,求∠ACD和∠DAC的大小.

9.已知AB为⊙O的直径,点C为⊙O上一点,点D为AB延长线一点,连接AC.(Ⅰ)如图①,OB=BD,若DC与⊙O相切,求∠D和∠A的大小;

(Ⅱ)如图②,CD与⊙O交于点E,AF⊥CD于点F连接AE,若∠EAB=18°,求∠FAC的大小.

10.如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC,BD,垂足分别为C,D,连接AM.

(1)求证:AM平分∠CAB;

(2)若AB=4,∠APE=30°,求的长.

11.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于E,过点A作AF⊥AC于F,交⊙O于D,连接DE,BE,BD

(1)求证:∠C=∠BED;

(2)若AB=12,tan∠BED=,求CF的长.

12.已知,点A为⊙O外一点,过A作⊙O的切线与⊙O相切于点P,连接PO并延长至圆上一点B连接AB交⊙O于点C,连接OA交⊙O于点D连接DP且∠OAP=∠DPA.

(1)求证:PO=PD;

(2)若AC=,求⊙O的半径.

13.如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.

(2)当E是的中点时,

①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;

②若=,且AB=30,则OP=.

相关文档
最新文档