中考复习之——胡不归问题

合集下载

中考数学专题复习38几何最值之胡不归问题(全国通用解析版)

中考数学专题复习38几何最值之胡不归问题(全国通用解析版)

问题分析从前有个少年外出求学.某天不幸得知老父亲病危的消息.便立即赶路回家.根据“两点之间线段最短”.虽然从他此刻位置A 到家B 之间是一片砂石地.但他义无反顾踏上归途.当赶到家时.老人刚咽了气.小伙子追悔莫及失声痛哭.邻居告诉小伙子说.老人弥留之际不断念叨着“胡不归?胡不归?看到这里很多人都会有一个疑问.少年究竟能不能提前到家呢?假设可以提早到家.那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题. 模型展示:如图.一动点P 在直线MN 外的运动速度为V 1.在直线MN 上运动的速度为V 2.且V 1<V 2.A 、B 为定点.点C 在直线MN 上.确定点C 的位置使21AC BCV V +的值最小.121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭.记12V k V =. 即求BC +kAC 的最小值.构造射线AD 使得sin∠DAN =k .CH /AC =k .CH =kAC .V 1V 2V 1驿道砂石地ABCV 2V 1MNCBA几何最值之胡不归问题方法技巧将问题转化为求BC +CH 最小值.过B 点作BH ∠AD 交MN 于点C .交AD 于H 点.此时BC +CH 取到最小值.即BC +kAC 最小.最值解法:在求形如“P A +kPB ”的式子的最值问题中.关键是构造与kPB 相等的线段.将“P A +kPB ”型问题转化为“P A +PC ”型.【例1】如图.平行四边形ABCD 中.∠DAB =60°.AB =6.BC =2.P 为边CD 上的一动点.则32PB PD的最小值等于________.【解析】已知∠A =60°.且sin60°=32.故延长AD .作PH ∠AD 延长线于H 点. ABCDPMHP DCBAABCDPH M 题型精讲即可得3PH =.∠3PB =PB +PH . 当B 、P 、H 三点共线时.可得PB +PH 取到最小值.即BH 的长.解直角∠ABH 即可得BH 长.【例2】(2021·重庆中考真题)在等边ABC 中.6AB =.BD AC ⊥ .垂足为D .点E 为AB 边上一点.点F 为直线BD 上一点.连接EF .图1 图2图3(1)将线段EF 绕点E 逆时针旋转60°得到线段EG .连接FG .∠如图1.当点E 与点B 重合.且GF 的延长线过点C 时.连接DG .求线段DG 的长; ∠如图2.点E 不与点A .B 重合.GF 的延长线交BC 边于点H .连接EH .求证:3BE BH BF +=;(2)如图3.当点E 为AB 中点时.点M 为BE 中点.点N 在边AC 上.且2DN NC =.点F 从BD 中点Q 沿射线QD 运动.将线段EF 绕点E 顺时针旋转60°得到线段EP .连接FP .当12NP MP +最小时.直接写出DPN △的面积. 【答案】(1)21;∠见解析;(243【分析】(1)∠连接AG .根据题意得出∠ABC 和∠GEF 均为等边三角形.从而可证明∠GBC ∠∠GAC .进一步求出AD =3.AG =BG =23然后利用勾股定理求解即可;∠以点F 为圆心.FB 的长为半径画弧.与BH 的延长线交于点K .连接KF .先证明出∠BFK 是顶角为120°的等腰三角形.然后推出∠FEB ∠∠FHK .从而得出结论即可;(2)利用“胡不归”模型构造出含有30°角的直角三角形.构造出12NP MP NP PJ +=+.当N 、P 、J 三点共线的时候满足条件.然后利用相似三角形的判定与性质分别计算出PN 与DN 的长度.即可得出结论. 【详解】(1)解:∠如图所示.连接AG .由题意可知.∠ABC 和∠GEF 均为等边三角形. ∠∠GFB =60°. ∠BD ∠AC . ∠∠FBC =30°.∠∠FCB =30°.∠ACG =30°. ∠AC =BC .GC =GC . ∠∠GBC ∠∠GAC (SAS ). ∠∠GAC =∠GBC =90°.AG =BG . ∠AB =6.∠AD =3.AG =BG =3 ∠在Rt ∠ADG 中.()222223321DG AD AG =+=+=∠21DG =∠证明:以点F 为圆心.FB 的长为半径画弧.与BH 的延长线交于点K .连接KF .如图. ∠∠ABC 和∠GEF 均为等边三角形. ∠∠ABC =60°.∠EFH =120°. ∠∠BEF +∠BHF =180°. ∠∠BHF +∠KHF =180°. ∠∠BEF =∠KHF .由辅助线作法可知.FB =FK .则∠K =∠FBE . ∠BD 是等边∠ABC 的高. ∠∠K =∠DBC =∠DBA =30°. ∠∠BFK =120°. 在∠FEB 与∠FHK 中.FEB FHK FBE KFB FK ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠FEB ∠∠FHK (AAS ). ∠BE =KH .∠BE +BH =KH +BH =BK . ∠FB =FK .∠BFK =120°. ∠BK 3BF .即:3BE BH BF +=;(2)如图1所示.以MP 为边构造∠PMJ =30°.∠PJM =90°.则PJ =12MP . ∠求12NP MP +的最小值.即为求NP PJ +的最小值.如图2所示.当运动至N、P、J三点共线时.满足NP PJ+最小.此时.连接EQ.则根据题意可得EQ∠AD.且EQ=12 AD.∠∠MEQ=∠A=60°.∠EQF=90°.∠∠PEF=60°.∠∠MEP=∠QEF.由题意.EF=EP.∠∠MEP∠∠QEF(SAS).∠∠EMP=∠EQF=90°.又∠∠PMJ=30°.∠∠BMJ=60°.∠MJ∠AC.∠∠PMJ=∠DNP=90°.∠∠BDC=90°.∠四边形ODNJ为矩形.NJ=OD.由题.AD=3.BD=33∠MJ∠AC.∠∠BMO∠∠BAD.∠14 BM BO MOBA BD AD===.∠OD=34BD93OM=34AD=94.设PJ=x.则MJ3.OJ3-9 4 .由题意可知.DN =23CD =2. 9324x -=. 解得:113x =. 即:PJ =11312. ∠93113434123PN =-=. ∠11434322233DPNSDN PN ==⨯⨯=. 【例3】已知抛物线2(0)y ax bx c a =++≠过点(1,0)A .(3,0)B 两点.与y 轴交于点C .=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥.垂足为M .求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点.当PBC ∆面积最大时.求点P 的坐标; (4)若点Q 为线段OC 上的一动点.问:12AQ QC +是否存在最小值?若存在.求岀这个最小值;若不存在.请说明理由.【答案】(1)抛物线的表达式为:243y x x =-+.顶点(2,1)D -;(2)证明见解析;(3)点33,24P ⎛⎫- ⎪⎝⎭;(4)存在.12AQ QC +的最小值为233+. 【详解】(1)函数的表达式为:()()()2y a x 1x 3a x 4x 3=--=-+.即:3a=3.解得:a=1.故抛物线的表达式为:2y x 4x 3=-+. 则顶点D(2,1)-; (2)OB OC 3==.OBC OCB 45∠∠︒∴==.∠A(1,0).B(3,0).∠ OB=3.OA=1. ∠AB=2.∠AM MB ABsin452︒=== 又∠D(2.-1). ()()2221102-+--=∠AM=MB=AD=BD. ∠四边形ADBM 为菱形. 又∠AMB 90∠︒=.∴菱形ADBM 为正方形;(3)设直线BC 的解析式为y=mx+n.将点B 、C 的坐标代入得:303m n n +=⎧⎨=⎩. 解得:13m n =-⎧⎨=⎩.所以直线BC 的表达式为:y=-x+3. 过点P 作y 轴的平行线交BC 于点N.设点()2P x,x 4x 3-+.则点N (x,x+3)-.则()()22ΔPBC 133S PN OB x 3x 4x 3x 3x 222=⨯=-+-+-=--. 302-<.故ΔPBC S 有最大值.此时3x 2=. 故点33P ,24⎛⎫- ⎪⎝⎭; (4)存在.理由:如图.过点C 作与y 轴夹角为30︒的直线CF 交x 轴于点F.过点A 作AH CF ⊥.垂足为H.交y 轴于点Q. 此时1HQ CQ 2=.则1AQ QC2+最小值=AQ+HQ=AH.在Rt∠COF中.∠COF=90°.∠FOC=30°.OC=3.tan∠FCO=FO CO.3.∠F(3利用待定系数法可求得直线HC的表达式为:y3x3=+…∠.∠∠COF=90°.∠FOC=30°.∠∠CFO=90°-30°=60°.∠∠AHF=90°.∠∠FAH=90°-60°=30°.3∠Q(0,3 ).利用待定系数法可求得直线AH的表达式为:33 y x=+联立∠∠并解得:133 x4-=.故点13333H-+⎝⎭.而点A(1,0).则233+=AH.即1AQ QC2+的最小值为233+.1.如图.△ABC中.AB=AC=10.tanA=2.BE∠AC于点E.D是线段BE上的一个动点.则55CD BD的最小值是______.【答案】B【详解】如图.作DH∠AB于H.CM∠AB于M.提分作业∠BE∠AC. ∠∠AEB=90°. ∠tanA=BEAE=2.设AE=a.BE=2a. 则有:100=a 2+4a 2. ∠a 2=20.5-25. 5∠AB=AC.BE∠AC.CM∠AB.5 ∠∠DBH=∠ABE.∠BHD=∠BEA. ∠5sin DH AE DBH BD AB ∠===. 55BD=CD+DH. ∠CD+DH≥CM. 55 5BD 的最小值为5 故选B .2.在平面直角坐标系中.将二次函数()20y ax a =>的图象向右平移1个单位.再向下平移2个单位.得到如图所示的抛物线.该抛物线与x 轴交于点A 、B (点A 在点B 的左侧).1OA =.经过点A 的一次函数()0y kx b k =+≠的图象与y 轴正半轴交于点C .且与抛物线的另一个交点为D .ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方.求ACE ∆面积的最大值.并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点.在(2)的结论下.求35PE PA +的最小值. 【答案】(1)21322y x x =--;1122y x =+;(2)ACE ∆的面积最大值是2516.此时E 点坐标为315,28⎛⎫- ⎪⎝⎭;(3)35PE PA +的最小值是3. 【详解】解:(1)将二次函数()20y ax a =>的图象向右平移1个单位.再向下平移2个单位.得到的抛物线解析式为()212y a x =--. ∠1OA =.∠点A 的坐标为()1,0-. 代入抛物线的解析式得.420a -=.∠12a =. ∠抛物线的解析式为()21122y x =--.即21322y x x =--. 令0y =.解得11x =-.23x =.∠()3,0B . ∠4AB OA OB =+=. ∠ABD ∆的面积为5.∠152ABD D S AB y ∆=⋅=.∠52D y =. 代入抛物线解析式得.2513222x x =--.解得12x =-.24x =.∠54,2D ⎛⎫⎪⎝⎭. 设直线AD 的解析式为y kx b =+.∠5420k b k b ⎧+=⎪⎨⎪-+=⎩.解得:1212k b ⎧=⎪⎪⎨⎪=⎪⎩. ∠直线AD 的解析式为1122y x =+. (2)过点E 作EM y 轴交AD 于M .如图.设213,22E a a a ⎛⎫-- ⎪⎝⎭.则11,22M a a ⎛⎫+ ⎪⎝⎭.∠221113132222222EM a a a a a =+-++=-++. ∠112ACE AME CME S S S EM ∆∆∆=-=⨯⋅()22113121342224a a a a ⎛⎫=-++⨯=--- ⎪⎝⎭.213254216a ⎛⎫=--+⎪⎝⎭. ∠当32a =时.ACE ∆的面积有最大值.最大值是2516.此时E 点坐标为315,28⎛⎫- ⎪⎝⎭.(3)作E 关于x 轴的对称点F .连接EF 交x 轴于点G .过点F 作FH AE ⊥于点H .交x 轴于点P . ∠315,28E ⎛⎫-⎪⎝⎭.1OA =. ∠35122AG =+=.158EG =.∠5421538AG EG ==. ∠90AGE AHP ∠=∠=. ∠3sin 5PH EG EAG AP AE ∠===.∠35PH AP =. ∠E 、F 关于x 轴对称.∠PE PF =.∠35PE AP FP HP FH +=+=.此时FH 最小. ∠1515284EF =⨯=.AEG HEF ∠=∠. ∠4sin sin 5AG FH AEG HEF AE EF ∠=∠===. ∠415354FH =⨯=. ∠35PE PA +的最小值是3.3.已知抛物线2y x bx c =-+(b c ,为常数.0b >)经过点(1,0)A -.点(,0)M m 是x 轴正半轴上的动点.(∠)当2b =时.求抛物线的顶点坐标;(∠)点(,)D D b y 在抛物线上.当AM AD =.5m =时.求b 的值; (∠)点1(,)2Q Q b y +在抛物线上.22AM QM +332.求b 的值. 【答案】(∠)(1,4)-;(∠)321b =-;(∠)4b =. 【详解】解:(∠)∠抛物线2y x bx c =-+经过点(1,0)A -.∠10b c ++=.即1c b =--.当2b =时.2223(1)4y x x x =--=--.∠抛物线的顶点坐标为(1,4)-.(∠)由(∠)知.抛物线的解析式为21y x bx b =---. ∠点(,)D D b y 在抛物线21y x bx b =---上.∠211D y b b b b b =-⋅--=--.由0b >.得02bb >>.10b --<. ∠点(,1)D b b --在第四象限.且在抛物线对称轴2bx =的右侧. 如图.过点D 作DE x ⊥轴.垂足为E .则点(,0)E b . ∠1AE b =+.1DE b =+.得AE DE =. ∠在Rt ADE ∆中.45ADE DAE ︒∠=∠=. ∠2AD AE =. 由已知AM AD =.5m =. ∠5(1)2(1)b --=+. ∠321b =.(∠)∠点1(,)2Q Q b y +在抛物线21y x bx b =---上. ∠2113()()12224Q b y b b b b =+-+--=--. 可知点13(,)224b Q b +--在第四象限.且在直线x b =的右侧. 2222()QM AM QM +=+.可取点(0,1)N . 如图.过点Q 作直线AN 的垂线.垂足为G .QG 与x 轴相交于点M . 有45GAM ︒∠=.2AM GM =. 则此时点M 满足题意. 过点Q 作QHx ⊥轴于点H .则点1(,0)2H b +.在Rt MQH ∆中.可知45QMH MQH ︒∠=∠=.∠QH MH =.2QM MH =. ∠点(,0)M m . ∠310()()242b b m ---=+-.解得124b m =-. 332224AM QM +=. 1113322[()(1)]22[()()]242244b b b ---++--=. ∠4b =.4.如图.已知抛物线y x +2)(x ﹣4)(k 为常数.且k >0)与x 轴从左至右依次交于A.B 两点.与y 轴交于点C.经过点B 的直线y x +b 与抛物线的另一交点为D .(1)若点D 的横坐标为﹣5.求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P.使得以A.B.P 为顶点的三角形与∠ABC 相似.求k 的值;(3)在(1)的条件下.设F 为线段BD 上一点(不含端点).连接AF.一动点M 从点A 出发.沿线段AF 以每秒1个单位的速度运动到F.再沿线段FD 以每秒2个单位的速度运动到D 后停止.当点F 的坐标是多少时.点M 在整个运动过程中用时最少?【答案】(1);(2)或;(3)当点F 坐标为(﹣)时.点M在整个运动过程中用时最少.【解析】(1)抛物线y=(x+2)(x﹣4).令y=0.解得x=﹣2或x=4.∠A(﹣2.0).B (4.0).∠直线经过点B(4.0).∠×4+b=0.解得b=.∠直线BD解析式为:当x=﹣5时.y=.∠D(﹣).∠点D(﹣)在抛物线y=x+2)(x﹣4)上.∠5+2)(﹣5﹣4)=.∠.∠抛物线的函数表达式为:(x+2)(x﹣4).即.(2)由抛物线解析式.令x=0.得y=﹣k.∠C(0.﹣k).OC=k.因为点P在第一象限内的抛物线上.所以∠ABP为钝角.因此若两个三角形相似.只可能是∠ABC∠∠APB或∠ABC∠∠PAB.∠若∠ABC∠∠APB.则有∠BAC=∠PAB.如答图2﹣1所示.设P(x.y).过点P作PN∠x轴于点N.则ON=x.PN=y.tan∠BAC=tan∠PAB.即:.∠.∠P(+k).代入抛物线解析式y=x+2)(x﹣4).得x+2)(x﹣4x+k.整理得:x2﹣6x﹣16=0.解得:x=8或x=﹣2(与点A重合.舍去).∠P(8.5k).∠∠ABC∠∠APB.∠...∠若∠ABC∠∠PAB.则有∠ABC=∠PAB.如答图2﹣2所示.设P(x.y).过点P作PN∠x轴于点N.则ON=x.PN=y.tan∠ABC=tan∠PAB.即:.∠.∠P(x.x+).代入抛物线解析式y(x+2)(x﹣4).得x+2)(x﹣4x.整理得:x2﹣4x﹣12=0.解得:x=6或x=﹣2(与点A重合.舍去).∠P(6.2k).∠∠ABC∠∠PAB..∠.解得.∠k>0.∠.综上所述.或.(3)作DK∠AB.AH∠DK.AH交直线BD于点F.∠∠DBA=30°.∠∠BDH=30°.∠FH=DF×sin30°.∠当且仅当AH∠DK时.AF+FH 最小.点M在整个运动中用时为:.∠l BD:.∠F X=A X=﹣2.∠F(﹣).。

中考数学压轴题复习之胡不归

中考数学压轴题复习之胡不归

胡不归整理基本解法:构造直角三角形胡不归问题解法通法:第一步:在速度快的线段与起点相异的一侧,过终点作一射线,使之与该线段构成的角满足:1 sinVα=;第二步:过起点作该射线的垂线;第三步:该垂线与线段的交点即为所求.例题解析:例1、(2016•宜兴市一模)如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,过B的直线交抛物线于E,且tan∠EBA=,有一只蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点处觅食,则蚂蚁从A到E的最短时间是s.【解答】解:过点E作y轴的平行线,再过D点作y轴的平行线,两线相交于点H,如图,∵EH∥AB,∴∠HEB=∠ABE,∴tan∠HED=tan∠EBA==,设DH=4m,EH=3m,则DE=5m,∴蚂蚁从D爬到E点的时间==4(s)若设蚂蚁从D爬到H点的速度为1单位/s,则蚂蚁从D爬到H点的时间==4(s),∴蚂蚁从D爬到E点所用的时间等于从D爬到H点所用的时间相等,∴蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点所用时间等于它从A以1单位/s的速度爬到D点,再从D点以1单位/s 速度爬到H点的时间,作AG⊥EH于G,则AD+DH≥AH≥AG,∴AD+DH的最小值为AQ的长,当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),直线BE交y轴于C点,如图,在Rt△OBC中,∵tan∠CBO==,∴OC=4,则C (0,4),设直线BE 的解析式为y=kx +b ,把B (3,0),C (0,4)代入得,解得,∴直线BE 的解析式为y=﹣x +4, 解方程组得或,则E 点坐标为(﹣,),∴AQ=,∴蚂蚁从A 爬到G 点的时间==(s ),即蚂蚁从A 到E 的最短时间为s . 故答案为.例2、(2014成都)如图,已知抛物线)4)(2(8-+=x x k y (k 为常数,且0>k )与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线b x y +-=33与抛物线的另一交点为D .(1)若点D 的横坐标为-5,求抛物线的函数表达式; (2)若在第一象限的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与△ABC 相似,求k 的值;(3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止。

2024年中考数学 --“胡不归”模型拓展

2024年中考数学 --“胡不归”模型拓展

“胡不归”模型拓展趣味故事从前,有个少年外出求学,某天他不幸得知老父亲病危的消息,便立即启程赶路.因为思乡心切,他只考虑了“两点之间,线段最短”的原理,所以选择了路径AB回家,但他忽略了走砂砾地带速度会变慢这个问题.当他赶到家时,老人刚刚咽气.邻居告诉他说,老人在弥留之际不断念叨着:“胡不归?胡不归?”如果他先沿着驿道AC走一段,再走砂砾地带,会不会更早些到家?在这个问题中,由于这个少年在驿道和砂砾地带上前行的速度不同,那么这个少年有没有可能先在驿道上行走一段路程,再走砂砾地带,总用时会变少?如果真有这种情况,那么在驿道和砂砾地带之间的拐点就尤为重要了,请问如何确定这个拐点呢.1模型多维讲解讲解一模型特征1.模型建立:如图11-62-1,A为直线l上一定点,B为直线l外一定点,点P在直线l上运动,试确定点P 的位置,使kAP+BP(0<k<1)的值最小.2.问题分析:求这类带有系数的折线最值问题,通常都是将折线转化成为线段,再利用“两点之间,线段最短”或“垂线段最短”求解.3.模型总结:该模型就是利用了垂线段最短的性质,具体解题步骤如下:如图11-62-2.一找:找带有系数k的线段kAP.二构:在点 B 的异侧,构造以线段AP 为斜边的直角三角形.Rt△PAC的作法:②以定点A为顶点作∠CAP,使sin∠PAC=k;②过动点 P 作垂线构造 Rt△PAC.三转化:化折为直,将kAP 转化为PC.四求解:使kAP+BP=PC+BP,利用“垂线段最短”转化为求 BD的长.若k>1,则k4P+BP=k(AD+1BD),即构造以BP为斜边的直角三角形.k2模型典例应用例1 (母题)如图11-62-3,△ABC为等边三角形,BD平分∠ABC,AB=2,E为BD上的动点,连接AE,则AE+1BE的2最小值为 ( )A.1B. √2C. √3D.2“3步”秒懂思路【解析】如图11-62-4,过点E作EM⊥BC于点 M,过点 A作AH⊥BC于点H,交 BD 于点 E'.∵△ABC 为等边三角形,∴∠ABH=60°.∵ BD 平分∠ABC,∴∠EBM=30∘,∴EM=12BE,∴AE+12BE=AE+EM.当AE+12BE的值最小时,AE+EM 的值最小,此时点 E 与点 E'重合,点 M 与点 H重合, AE+12BE的最小值即为AH 的长.在 Rt△ABH中,AH=AB⋅sin∠ABH=2sin60∘=√3,∴AE+12BE的最小值为√3.故选 C.【答案】C.一题多变式变式1-1(改编角度:改变已知条件,将“角平分线”改为“垂直”)如图11-62-5,在等边三角形ABC中,AD⊥BC 于点 D,且AD=4,P是AD上一点,则BP+35AP的最小值为 .变式1-2(改编角度:改变图形,将“等边三角形”改为“菱形”)如图11-62-6,在菱形ABCD中,∠BAD=60°,AB=2,P是AC上的动点,则BP+12AP的最小值为 .变式1-3(改编角度:改变图形,将“等边三角形”改为“矩形”)如图11-62-7,在矩形ABCD中,AB=4,对角线AC,BD相交于点 O,∠AOB=60°.(1)如图(1),若P 是BC边上一动点,求DP+12BP的最小值;(2)如图(2),E 是AO 的中点,若P是对角线BD上一点,求EP+√32DP的最小值;(3)如图(3),若P 是对角线BD上一点,求2AP+PD的最小值.例2如图11-62-8,在△ABC中, AB=AC=10,tanA=2,BE⊥AC于点 E,D 是线段BE 上的一个动点,则CD+√55BD的最小值是 .【解析】如图11-62-9,过点D作DH⊥AB于点H,过点C作( CM⊥AB于点 M.∵ BE⊥根据“胡不归”模型作辅助线.AC,∴∠AEB=90∘.:tanA=BEAE=2,设AE=a,则BE=2a.由勾股定理,得10²=a²+4a2,∴a2=20,∴a=2√5或a=−2√5(舍去),. ∴BE=2a=4√5.:AB=AC,,【链知识】等腰三角形两腰上的高相等.DH≥CM,∴CD+√55BD≥4√5,∴CD+√55BD的最小值为4 √5.【答案】4√5.3模型巩固练习1.如图11-62-10,在△ABC中,∠B=45°,AB=4,P为直线BC上一点.当BP+2AP 有最小值时,∠BAP的度数为 .BP+2.如图11-62-11,在△ABC 中,AB=AC=10,∠A=30°,BD是△ABC的边AC上的高,P是BD 上的动点,则√32CP的最小值是 .3.如图11-62-12,在平行四边形 ABCD 中,∠A=60°,AB=6,AD=2,P 为边CD上一点,则√3PD+2PB的最小值为 .x−√3的图像分别交x轴、y轴于点A,B.若 C 为 x轴4.如图11-62-13,在平面直角坐标系中,一次函数y=√33上的一个动点,则2BC+AC 的最小值为 .5.模型迁移如图11-62-14,在平面直角坐标系中,抛物线y=ax²+bx+4与x轴交于A(-4,0),B(2,0)两点,与y轴交于点C,连接AC.(1)求抛物线的解析式.(2)P 是线段AC 上方抛物线上的一个动点,E是x轴上的一个动点,连接PA,PC,PE,当△PAC的面积最大时,求BE的最小值.PE+√22。

中考复习之——胡不归问题-胡不归原理

中考复习之——胡不归问题-胡不归原理

中考复习之——胡不归问题-胡不归原理胡不归问题是中考复习中常见的一个难点,许多考生在面对这个问题时感到困惑。

本文将探讨胡不归问题的本质及其解决方法,帮助考生更好地应对中考复习中的挑战。

一、胡不归问题的本质胡不归问题,又称作胡教育问题,是指在课堂学习中,学生对所学知识的了解不够深入,无法准确地掌握归纳总结的规律,从而无法运用知识解决问题或应对考试。

这种问题常见于记忆型的知识学科,如语文、数学、历史等。

主要表现为对于复杂题目的理解不透彻,解题思路混乱,答案无法准确推导等。

胡不归问题的本质源于学习方法的问题。

许多学生在学习过程中注重记忆和机械式的应用,而忽视了对知识的理解和归纳总结。

当遇到稍微复杂一点的问题时,由于缺乏深入理解,学生往往无法抓住关键点,从而产生迷惑和困惑。

二、胡不归原理及应对方法为了解决胡不归问题,我们需要明确胡不归原理。

胡不归原理主要包括以下几个方面:1. 学习方法的优化:解决胡不归问题的首要任务是改善学习方法。

学生应该注重理解知识的内涵和外延,强调归纳和总结的能力。

在学习过程中,可以采用思维导图、提问法等有效的学习方法,帮助加深对知识的理解和掌握。

2. 多练习、多思考:胡不归问题的产生往往和练习不足、思考不深有关。

学生应该加强对知识的练习,通过大量的例题和习题的解答,逐渐熟悉知识点的应用和运用规律。

同时,要注重思考,通过分析解题方法和思路,总结解题的一般规律,提高解题的能力。

3. 请教和交流:在面对胡不归问题时,学生可以主动请教老师或同学,寻求帮助和解答。

与他人的交流可以促进思维的碰撞和触发,帮助学生开阔思路,减少对问题的迷惑。

4. 坚持和耐心:解决胡不归问题需要时间和耐心。

学生应保持良好的学习习惯,坚持每天定时复习,逐步提高自己的学习效率和能力。

同时,要有耐心,不要因一时困难而放弃,相信坚持下去一定能够取得好的成绩。

三、结语胡不归问题在中考复习中是一个常见的难点,但通过合理的学习方法和坚持不懈的努力,我们完全可以克服这个问题。

中考复习之——胡不归问题.docx

中考复习之——胡不归问题.docx

中考复习之——胡不归问题从前,有一个小伙子在外地学徒,当他悉在家的老父病危的消息后,便立即启程赶路。

由于思心切,他只考了两点之段最短的原理,所以了全是沙地的直路径 A→ B(如所示),而忽了走折然路程多但速度快的情况,当他气喘吁吁地赶到家,老人咽了气,小伙子失声痛哭。

居慰小伙子告,老人弥留之不断念叨着“胡不胡不⋯” 。

个古老的,引起了人的思索,小伙子能否提前到家倘若可以,他一条怎的路呢就是靡千百年的“胡不”。

B沙地A D C例 1. ( 2012 崇安模),如,ABC 在平面直角坐系中,AB=AC, A(0 ,2 2 ),C(1,0),D射AO上一点,一点P 从 A 出,运路径A→ D→ C,点 P 在 AD上的运速度是在CD上的 3 倍,要使整个程运最少,点 D 的坐 -------------------------------------------------()A(.0,2)B.(,2) C.(0,2)D.(0,2)342例 2. ( 2016 徐州)如,在平面直角坐系中,二次函数y=ax 2+bx+c 的像点A( -1 , 0), B( 0,- 3 )、C(2,0),其中称与x交于点D。

( 1)求二次函数的表达式及其点坐;( 2)若P y 上的一个点,接PD,1 PBPD的最小。

2( 3) M( s,t )抛物称上的一个点。

①若平面内存在点N,使得 A、 B、 M、N 点的四形菱形,的点②接 MA、 MB,若∠ AMB不小于 60°,求 t 的取范。

N 共有个;练习巩固:1. ( 2015 无锡二模)如图,菱形ABCD的对角线 AC上有一动点P, BC=6,ABC=150° , 则 PA+PB+PD的最小值为。

2. ( 2015 内江)如图,在ACE 中,CA=CE,CAE=30°,⊙ O经过点( 1)试说明CE是⊙ O的切线。

( 2)若ACE 中AE边上的高为h, 试用含 h 的代数式表示⊙O的直径C,且圆的直径 AB;AB在线段AE 上。

2024年中考数学复习 胡不归最值问题(原卷版+答案解析)

2024年中考数学复习 胡不归最值问题(原卷版+答案解析)

胡不归最值问题【专题说明】胡不归模型问题解题步骤如下;1、将所求线段和改写为“PA +b a PB ”的形式b a <1 ,若b a>1,提取系数,转化为小于1的形式解决。

2、在PB 的一侧,PA 的异侧,构造一个角度α,使得sin α=b a 3、最后利用两点之间线段最短及垂线段最短解题【模型展示】如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使AC V 2+BC V 1的值最小.ACV 2+BC V 1=1V 1BC +V 1V 2AC ,记k =V 1V 2,即求BC +kAC 的最小值.构造射线AD 使得sin ∠DAN =k ,CH /AC =k ,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.【模型总结】在求形如“PA +kPB ”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA +kPB ”型问题转化为“PA +PC ”型.而这里的PB 必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB 的等线段.【练习】1.如图,AC是圆O的直径,AC=4,弧BA=120°,点D是弦AB上的一个动点,那么OD+12BD的最小值为( )A.32B.3C.1+32D.1+32.如图,在ΔABC中,∠A=15°,AB=10,P为AC边上的一个动点(不与A、C重合),连接BP,则22AP+PB的最小值是( )A.52B.53C.1033 D.83.ΔABC中,∠A=90°,∠B=60°,AB=2,若点D是BC边上的动点,则2AD+DC的最小值为( )A.4B.3+3C.6D.23+34.如图所示,菱形ABCO的边长为5,对角线OB的长为45,P为OB上一动点,则AP+55OP的最小值为( )A.4B.5C.25D.355.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,AB=16,∠ABC=60°,D为弧AC的中点,M是弦AC上任意一点(不与端点A、C重合),连接DM,则12CM+DM的最小值是( )A.43B.33C.23D.46.在ΔABC中,∠ACB=90°,P为AC上一动点,若BC=4,AC=6,则2BP+AP的最小值为(  )A.5B.10C.52D.1027.【问题探究】在等边三角形ABC中,AD⊥BC于点D,AB=2.(1)如图1.E为AD的中点,则点E到AB的距离为 34 ;(2)如图2,M为AD上一动点.则12AM+MC的最小值为 ;【问题解决】如图3,A,B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路,点B到AC的距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍,那么为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,中转站M应修在距A地 km处.8.如图,在菱形ABCD中,AB=AC=10,对角线AC、BD相交于点O,点M在线段AC上,且AM=3,点P为线段BD上的一个动点,则MP+12PB的最小值是 .9.如图,直角三角形ABC中,∠A=30°,BC=1,AC=3,BD是∠ABC的平分线,点P是线段BD上的动点,求CP+12BP的最小值 .10.如图,已知RtΔABC中,∠ACB=90°,∠BAC=30°,延长BC至D使CD=BC,连接AD,且AD=4,点P为线段AC上一动点,连接BP.则2BP+AP的最小值为 .11.如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB+32PD的最小值等于 .12.如图,在平面直角坐标系中,直线y=-x+4的图象分别与y轴和x轴交于点A和点B.若定点P的坐标为(0,63),点Q是y轴上任意一点,则12PQ+QB的最小值为 .13.如图,在ΔABC 中,AB =5,AC =4,sin A =45,BD ⊥AC 交AC 于点D .点P 为线段BD 上的动点,则PC +35PB 的最小值为 .14.如图,在ΔABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,那么:(1)AE = 25 ;(2)CD +55BD 的最小值是 .15.如图,在ΔABC 中,∠A =90°,∠B =60°,AB =2,若D 是BC 边上的动点,则2AD +DC 的最小值为 .16.如图,在平面直角坐标系中,二次函数y =ax 2+bx +c 的图象交x 轴于A 、B 两点,交y 轴于C 点,P 为y 轴上的一个动点,已知A (-2,0)、C (0,-23),且抛物线的对称轴是直线x =1.(1)求此二次函数的解析式;(2)连接PB ,则12PC +PB 的最小值是 ;17.已知:如图1,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点D(0,-6),直线y=-13x+2交x轴于点B,与y轴交于点C.(1)求抛物线的函数解析式;(2)在线段OB上有一动点P,直接写出10DP+BP的最小值和此时点P的坐标.18.如图,已知抛物线y=k8(x+2)(x-4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=-33x+b与抛物线的另一交点为D.(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)在(1)条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止.当点F的坐标是多少时,点M在整个运动过程中用时最少?19.抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,且B(-1,0),C(0,3).(1)求抛物线的解析式;(2)如图,点D是抛物线的顶点,将抛物线沿CD方向平移,使点D落在点D 处,且DD =2CD,点M是平移后所得抛物线上位于D 左侧的一点,MN⎳y轴交直线OD 于点N,连结CN.当55D N+CN的值最小时,求MN的长.20.如图,矩形ABCD的对角线AC,BD相交于点O,ΔCOD关于CD的对称图形为ΔCED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=5cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.胡不归最值问题【专题说明】胡不归模型问题解题步骤如下;1、将所求线段和改写为“PA +b a PB ”的形式b a <1 ,若b a>1,提取系数,转化为小于1的形式解决。

人教版九年级数学下册中考复习《胡不归问题》PPT

人教版九年级数学下册中考复习《胡不归问题》PPT

射线AO上一点,一动点P从A出发,运
动路径为A→D→C,点P在AD上的运动
速度是在CD上的3倍,要使整个过程运
动时间最少,则点D的坐标应为
0,
2 4
.
2、二次函数y=ax2-2x+c图象与x轴交于A、C两
点,点C(3,0),与y轴交于点B(0,-3)。
(1)a= 1 ,c= -3 ;
(2)如图①,P是x轴上一动点,点D(0,1)
中考复习 胡不归问题
问题引入
如图,在△ABC中,BA=BC=4,∠A=30°, D是AC上一动点,求
(1)AC的长;
(2)BD+
1 2
DC的最小值.
“PA+k·PB”(胡不归问题)型的最 值问题是近几年中考考查的热点更是 难点。当 k 值为 1时,即可转化为 “PA+PB”之和最短问题,就可用我 们常见的“将军饮马问题”模型来处 理,即可以转化为轴对称问题来处理。 而当 k 取任意不为 1 的正数时,若再 以常规的轴对称思想来解决问题,则 无法进行,因此必须转换思路。
的直线路径A→B(如图所示),而忽视了走折线虽然路
程多但速度快的实际情况,当他气喘吁吁地赶到家时,老
人刚刚咽了气,小伙子失声痛哭。邻居劝慰小伙子时告诉
说,老人弥留之际不断念叨着“胡不归?胡不归?…”。
这个古老的传说,引起了人们的思索,小伙子能否提前到
家?倘若可以,他应该选择一条怎样的路线呢?这就是风
知识储备
线段最值问题常用原理: ①三角形的三边关系:两边之和大于第三边, 两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段 中,垂线段最短.
问题溯源
从前,有一个小伙子在外地学徒,当他获悉在家的老父亲

中考数学专题复习之二——胡不归问题

中考数学专题复习之二——胡不归问题

中考数学专题复习之二——胡不归问题从前,有一个小伙子在外地学徒。

当他得知老父亲病危的消息后,便立即启程赶回家。

他只考虑了两点之间线段最短的原理,选择了直线路径A→B(XXX所示),而忽视了走折线虽然路程多但速度快的实际情况。

当他气喘吁吁地赶到家时,老人已经去世了。

邻居告诉他,老人在弥留之际不断念叨着“胡不归?XXX不归?…”。

这个古老的传说引起了人们的思索,小伙子是否能提前到家?如果可以,他应该选择哪条路线?这就是风靡千百年的“XXX不归问题”。

例1.(2012崇安模拟)如图,平面直角坐标系中,$\triangle ABC$中,$AB=AC$,$A(0,22)$,$C(1,0)$,$D$为射线$AO$上一点。

一动点$P$从$A$出发,运动路径为$A→D→C$,点$P$在$AD$上的运动速度是在$CD$上的3倍。

为使整个过程运动时间最少,则点$D$的坐标应为(。

2)(。

)(。

)(。

)$A$、$B$、$C$、$D$。

例2.(2016徐州)如图,在平面直角坐标系中,二次函数$y=ax^2+bx+c$的图像经过点$A(-1,2)$,$B(0,-3)$,$C(2,4)$,其中对称轴与$x$轴交于点$D$。

1)求二次函数的表达式及其顶点坐标;2)若$P$为$y$轴上的一个动点,连接$PD$,则$PB+PD$的最小值为()。

3)$M(s,t)$为抛物线对称轴上的一个动点。

①若平面内存在点$N$,使得$A$、$B$、$M$、$N$为顶点的四边形为菱形,则这样的点$N$共有()个;②连接$MA$、$MB$,若$\angle AMB$不小于$60^\circ$,求$t$的取值范围。

练巩固:1.(2015无锡二模)如图,菱形$ABCD$的对角线$AC$上有一动点$P$,$BC=6$,$\angle ABC=150^\circ$,则$PA+PB+PD$的最小值为()。

2.(2019长沙中考)在$\triangle ABC$中,$AB=AC=10$,$\tan A=2$,$BE\perp AC$于点$E$,$D$是线段$BE$上的一个动点,则$CD+5$的最小值为()。

中考数学专题复习之二——胡不归问题

中考数学专题复习之二——胡不归问题

中考数学专题复习之二——胡不归问题从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。

由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A→B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。

邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?…”。

这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”。

例1.(2012崇安模拟),如图,ABC∆在平面直角坐标系中,AB=AC,A(0,22),C(1,0),D为射线AO上一点,一动点P从A出发,运动路径为A→D→C,点P在AD上的运动速度是在CD上的3倍,要使整个过程运动时间最少,则点D的坐标应为-------------------------------------------------()A.),(20 B. ),(220 C. ),(320 D. ),(42例2.(2016徐州)如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图像经过点A(-1,0),B(0,-3)、C(2,0),其中对称轴与x轴交于点D。

(1)求二次函数的表达式及其顶点坐标;(2)若P为y轴上的一个动点,连接PD,则PDPB+21的最小值为。

(3)M(s,t)为抛物线对称轴上的一个动点。

①若平面内存在点N,使得A、B、M、N为顶点的四边形为菱形,则这样的点N共有个;②连接MA、MB,若∠AMB不小于60°,求t的取值范围。

A DBC沙砾地带练习巩固:1.(2015无锡二模)如图,菱形ABCD 的对角线AC 上有一动点P ,BC=6,∠ABC=150°,则PA+PB+PD 的最小值为 。

2.(2019长沙中考)在△ABC 中,AB=AC=10,tanA=2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD+√55BD 的最小值为------------------------------------------------------------------------( ) A.2√5 B.4√5 C.5√5 D.163.(2015内江)如图,在ACE ∆中,CA=CE ,∠CAE=30°,⊙O 经过点C ,且圆的直径AB 在线段AE 上。

中考数学最值—胡不归问题(解析+例题)

中考数学最值—胡不归问题(解析+例题)

中考数学最值——胡不归问题(点在直线上运动)(PA+k·PB型最值)【历史典故】从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。

由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A→B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。

邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?…”。

这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”。

【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。

②两点之间线段最短。

③连接直线外一点和直线上各点的所有线段中,垂线段最短。

【模型分析】①条件:已知A、B为定点,P为射线AC上一动点。

②问题:P在何处时,BP+nm AP最短(nm<1)。

③方法:第一步在AC的一侧,PB的异侧构造∠CAE=α,使得sinα=nm 第二步做BH⊥AE,交AC于P,点P就是所求位置,BH就是其最小值。

【模型分析】【问题提出】如图①,已知海岛A到海岸公路BD的距离为AB的长度,C为公路BD上的酒店,从海岛A到酒店C,先乘船到登陆点D,船速为a,再乘汽车,车速为船速的n倍,点D 选在何处时,所用时间最短?个运动过程中用时最少,请求出最少时间和此时点F的坐标。

【巩固训练】练习1:如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,M为对角线BD(不含B点)上BM的最小值为_____。

任意一点,则AM+12练习2:如图,等腰ΔABC中,AB=AC=3,BC=2,BC边上的高为A0,点D为射线A0上一点,一动点P从点A出发,沿AD-DC运动,动点P在AD上运动速度3个单位每秒,动点P在CD上运动的速度为1个单位每秒,则当 AD= 时,运动时间最短为秒。

中考复习之――胡不归问题(优选.)

中考复习之――胡不归问题(优选.)

中考复习之——胡不归问题从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。

由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A→B(如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。

邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?…”。

这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”。

例1.(2012崇安模拟),如图,ABC∆在平面直角坐标系中,AB=AC,A(0,22),C(1,0),D为射线AO上一点,一动点P从A出发,运动路径为A→D→C,点P在AD上的运动速度是在CD上的3倍,要使整个过程运动时间最少,则点D的坐标应为-------------------------------------------------()A.),(20 B. ),(220 C. ),(320 D. ),(42例2.(2016徐州)如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图像经过点A(-1,0),B(0,-3)、C(2,0),其中对称轴与x轴交于点D。

(1)求二次函数的表达式及其顶点坐标;(2)若P为y轴上的一个动点,连接PD,则PDPB+21的最小值为。

(3)M(s,t)为抛物线对称轴上的一个动点。

①若平面内存在点N,使得A、B、M、N为顶点的四边形为菱形,则这样的点N共有个;②连接MA、MB,若∠AMB不小于60°,求t的取值范围。

A DBC沙砾地带练习巩固:1.(2015无锡二模)如图,菱形ABCD 的对角线AC 上有一动点P ,BC=6,∠ABC=150°,则PA+PB+PD 的最小值为 。

2.(2015内江)如图,在ACE ∆中,CA=CE ,∠CAE=30°,⊙O 经过点C ,且圆的直径AB 在线段AE 上。

胡不归模型精讲——冲刺2024年中考几何专项复习(全国通用)(解析版)

胡不归模型精讲——冲刺2024年中考几何专项复习(全国通用)(解析版)

胡不归模型知识精讲【知识梳理】1.特殊角的三角函数值:2.点到线间垂线段最短如图所示,点P到直线l的所有连线中,PA的长度最短(直角三角形中,斜边永远大于直角边).【模型讲解】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家。

由于着急只考虑到了"两点之间线段最短",虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭邻居告诉小伙子说,老人弥留之际不断念叨着"胡不归?胡不归?"看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.将这个问题数学化,我们不妨设总时间为由可得,提取一个得,若想总的时间最少,就要使得最小,如图,过定点A在驿道下方作射线AE,夹角为,且,作DG⊥AE于点G,则,将转化为DG+DB,再过点B作BH⊥AE于点H,交驿道所在直线于点DG+DB的最小值为BH,,综上,所需时间的最小值为,路线回家,或许还能见到父亲的最后一面.【胡不归模型通解】1.第一步:将所求的线段和改写成的形式;第二步:构造一个角,使得;第三步:过目的地作所构造的角的一边的垂线,该垂线段的长度就是所求的最小值;第四步:计算.2. 型如“”的两定一动型最值问题的解法,:(其中A 、B 为定点,P 为动点,m 、n 为常数);① 若m 、n 均不为1,则提取较大系数,将其中一个系数先化为1;② 借助三角函数,构造锐角α,将另一个系数也化为1;③ 利用“垂线段最短”原理即可解题.【经典例题】例1:如图,在△ABC 中,AB =AC =4,∠CAB =30°,AD ⊥BC ,垂足为D ,P 为线段AD 上的一个动点,连接PB ,则12PA +PB 的最小值为 .解:如图,过点A 作直线AE ,使∠CAE =15°,作PQ ⊥AE 于点Q ,作BQ '⊥AE 于点Q ',∵AB =AC ,∠CAB =30°,AD ⊥BC ,∴∠CAD =∠BAD =15°,∵∠CAE =15°,∴∠P AQ =∠CAD +∠CAE =30°,∠BAQ '=∠BAC +∠CAE =45°,又∵PQ ⊥AE ,BQ '⊥AE ,AB =4,∴PQ =12P A ,BQ '=√22AB =√22×4=2√2, ∵PB +PQ ≥BQ ',∴当PB +PQ =BQ '时值最小,即12P A +PB 的最小值为2√2. 故答案为:2√2.例2:在矩形ABCD 中,AD =5,AB =8,点M 从点D 运动到点C ,运动速度为5个单位长度每秒,同时点N 从B 出发向点A 运动,运动速度为3个单位长度每秒,当一个点到达终点时,另一个点也停止运动,则DN +35AM 的最小值 .解:延长CB 到E ,使BE =3,连接NE ,DE ,∵AD =5,∴BE AD =35, 设点M ,点N 运动时间为t 秒,由题意,得DM =5t ,BN =3t ,∴BN DM =3t 5t =35, ∴BE AD =BN DM ,∵四边形ABCD 是矩形,∴∠ABC =∠C =∠ADM =90°,∴∠EBN =∠ADM ,∴△EBN ∽△ADM ,∴EN AM =BE AD =35, ∴EN =35AM ,∴DN +35AM =DN +EN ≥DE ,而DE =√EC 2+DC 2=√(3+5)2+82=8√2,∴DN +35AM ≥8√2,故答案为:8√2.。

中考数学复习之胡不归问题

中考数学复习之胡不归问题

中考数学复习之胡不归问题中考数学复习之胡不归问题中考数学复习是一个关键的阶段,学生需要将过去几年的数学知识进行梳理和复习,以便在中考中取得好成绩。

在复习过程中,有一种问题被称为“胡不归问题”,这类问题通常涉及了速度、时间和距离等概念,需要学生掌握一定的解题技巧和方法。

“胡不归问题”是一种经典的数学问题,通常涉及到运动学中的速度、时间和距离等概念。

这类问题的基本思路是通过已知的速度、时间和距离等量之间的关系,来求解未知量。

在求解过程中,需要学生掌握一定的代数知识和方程构建能力。

针对“胡不归问题”,学生需要掌握以下解题步骤和方法:1、仔细审题,理解题意。

在理解题意的过程中,需要明确已知量和未知量,以及它们之间的关系。

2、根据题意构建方程。

通过分析题意,确定方程的形式和内容,并列出方程。

3、解方程。

通过代数方法或计算工具,解出未知量。

4、验证答案。

根据题意和已知条件,验证所得答案是否合理。

在复习过程中,学生可以通过做一些相关的练习题来加深对“胡不归问题”的理解和掌握。

也可以通过向老师或同学请教,解决自己在解题过程中遇到的问题和困难。

总之,“胡不归问题”是中考数学复习中的一个重要问题,学生需要认真掌握其解题技巧和方法。

在解题过程中,需要审题仔细、构建方程准确、解方程无误、验证答案严谨。

通过不断的练习和思考,相信学生一定可以在中考数学中取得好成绩。

中考数学最值—胡不归问题中考数学最值问题一直是同学们关注的焦点,而胡不归问题又是其中的一种常见类型。

本文将结合实例,详细解析胡不归问题的解决方法,帮助大家更好地掌握这一难点。

首先,需要明确胡不归问题的基本形式。

一般情况下,胡不归问题可以转化为以下形式:在一条直线上有若干个点,求这些点关于某一点对称的点中最远(或最近)的点的距离。

解决这类问题的关键在于如何找到对称点,以及如何运用勾股定理等数学知识进行计算。

下面,我们通过具体例子来解析胡不归问题的解决方法。

例如,在中考数学最值问题中,经常会出现求正六边形内一点到六边形的六条边的距离之和的最小值。

中考数学几何复习---最值系列之胡不归问题

中考数学几何复习---最值系列之胡不归问题

中考数学几何复习--最值系列之“胡不归”问题在前面的最值问题中往往都是求某个线段最值或者形如P A +PB 最值,除此之外我们还可能会遇上形如“P A +kPB ”这样的式子的最值,此类式子一般可以分为两类问题:(1)胡不归问题;(2)阿氏圆.本文简单介绍“胡不归”模型.【故事介绍】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)而如果先沿着驿道AC 先走一段,再走砂石地,会不会更早些到家?2驿道【模型建立】如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BCV V +的值最小.2M【问题分析】121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =, 即求BC +kAC 的最小值.【问题解决】构造射线AD使得sin∠DAN=k,CH/AC=k,CH=kAC.M将问题转化为求BC+CH最小值,过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.M【模型总结】在求形如“P A+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“P A+kPB”型问题转化为“P A+PC”型.而这里的PB必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB的等线段.【长沙中考】如图,△ABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD 的最小值是_______.ABCDE【分析】本题关键在于处理”,考虑tan A =2,△ABE三边之比为1:2sin ∠,故作DH ⊥AB 交AB 于H点,则DH =. HEDCBAABCDEH问题转化为CD +DH 最小值,故C 、D 、H共线时值最小,此时CD DH CH BE +===.【小结】本题简单在于题目已经将BA 线作出来,只需分析角度的三角函数值,作出垂线DH ,即可解决问题,若稍作改变,将图形改造如下:EDCB则需自行构造α,如下图,这一步正是解决“胡不归”问题关键所在.αsin α5HEDC BAEDCB【南通中考】如图,平行四边形ABCD 中,∠DAB =60°,AB =6,BC =2,P 为边CD 上的一动点,则PB 的最小值等于________.ABCDP【分析】考虑如何构造”,已知∠A =60°,且sin60°,故延长AD ,作PH ⊥AD 延长线于H 点,即可得PH =,将问题转化为:求PB +PH 最小值. M HPDCBA当B 、P 、H 三点共线时,可得PB +PH 取到最小值,即BH 的长,解直角△ABH 即可得BH 长.ABCDPH M【成都中考】如图,已知抛物线()()248ky x x =+-(k 为常数,且k >0)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B的直线y b =+与抛物线的另一交点为D . (1)若点D 的横坐标为-5,求抛物线的函数表达式;(2)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止,当点F 的坐标是多少时,点M 在整个运动过程中用时最少?【分析】第一小问代点坐标,求解析式即可,此处我们直接写答案:A (y =+,D 点坐标为(-,故抛物线解析式为)()24y x x +-,化简为:2y =点M 运动的时间为12AF DF ⎛⎫+ ⎪⎝⎭,即求12AF DF ⎛⎫+ ⎪⎝⎭的最小值.接下来问题便是如何构造2DF,考虑BD 与x 轴夹角为30°,且DF 方向不变,故过点D 作DM ∥x 轴,过点F 作FH ⊥DM 交DM 于H 点,则任意位置均有FH =2DF. 当A 、F 、H 共线时取到最小值,根据A 、D 两点坐标可得结果.【重庆中考】抛物线2y x =x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C .点P 是直线AC 上方抛物线上一点,PF ⊥x 轴于点F ,PF 与线段AC 交于点E ;将线段OB 沿x 轴左右平移,线段OB 的对应线段是O 1B 1,当12PE EC +的值最大时,求四边形PO 1B 1C 周长的最小值,并求出对应的点O 1的坐标.(为突出问题,删去了两个小问)【分析】根据抛物线解析式得A ()-、B )、C (,直线AC的解析式为:y =+知AC 与x 轴夹角为30°. 根据题意考虑,P 在何处时,PE +2EC取到最大值.过点E 作EH ⊥y 轴交y 轴于H 点,则∠CEH =30°,故CH =2EC,问题转化为PE +CH 何时取到最小值.考虑到PE 于CH并无公共端点,故用代数法计算,设2,P m ⎛- ⎝,则E m ⎛+ ⎝,H ⎛ ⎝,2PE =-,CH =,22=PE CH m +=+sin ABE ∠=当P点坐标为(-时,取到最小值,故确定P 、C 、求四边形面积最小值,运用将军饮马模型解题即可.。

中考数学几何最值模型第2讲胡不归问题

中考数学几何最值模型第2讲胡不归问题

A
G
P
H
B
H
C
课堂练习
4.等边三角形ABC的边长为6,将其放置在如图所示的平面直角坐标系中,其中BC边
在X轴上,BC边的高OA在y轴上,一只电子虫从A出发,先沿y轴到达G点,再沿GC到
达C点,已知电子虫在y轴上运动的速度是在GC上运动速度的2倍。若电子虫走完全程
_x001A_0, −_x001A__x001B_3_x001B__x001B_
一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,
小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念
叨着“胡不归? 胡不归? …”(“胡”同“何”)而如果先沿着驿道AC先
走一段,再走砂石地,会不会更早些到家?
故事介绍
从前有个少年外出求学,某天不幸得知老父亲
病危的消息,便立即赶路回家.根据“两点之
H
∵AE⊥CD于点G,∴∠AGC=90°
Q
∵O为AC中点, ∴OA=OC=OG=_x001A_1_x001B_2_x001B_AC
P
∴A,C, G三点共圆, 圆心为O,即点G在圆O上运动,
课堂练习
1.如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,点M为对角线BD(不含点B)上的
一动点,则AM+_x001A_1_x001B_2_x001B_的最小值为_______.
BN=_x001A_1_x001B_2_x001B_=1,=_x001A__x001B
_3_x001B_,CN=2−_x001A__x001B_3_x001B_,
∴BC=_x001A__x001B__x001A__x001B_2_x001B_+_x00
1A_C_x001B_2_x001B__x001B_=_x001A__x001B__x001

中考复习之——胡不归问题

中考复习之——胡不归问题

中考复习之——胡不归问题从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。

由于思乡心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径A →B (如图所示),而忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声痛哭。

邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归?…”。

这个古老的传说,引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年的“胡不归问题”。

例1.(2012崇安模拟),如图,ABC ∆在平面直角坐标系中,AB=AC ,A(0,22),C (1,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A →D →C ,点P 在AD 上的运动速度是在CD 上的3倍,要使整个过程运动时间最少,则点D 的坐标应为-------------------------------------------------( )A.),(20B. ),(220C. ),(320D. ),(420例2.(2016徐州)如图,在平面直角坐标系中,二次函数y=ax 2+bx+c 的图像经过点A (-1,0),B (0,-3)、C (2,0),其中对称轴与x 轴交于点D 。

(1)求二次函数的表达式及其顶点坐标;(2)若P 为y 轴上的一个动点,连接PD ,则PD PB +21的最小值为 。

(3)M (s ,t )为抛物线对称轴上的一个动点。

① 若平面内存在点N ,使得A 、B 、M 、N 为顶点的四边形为菱形,则这样的点N 共有 个; ② 连接MA 、MB ,若∠AMB 不小于60°,求t 的取值范围。

A D BC沙 砾 地 带练习巩固:1.(2015无锡二模)如图,菱形ABCD 的对角线AC 上有一动点P ,BC=6,∠ABC=150°,则PA+PB+PD 的最小值为 。

胡不归问题归纳知识讲解

胡不归问题归纳知识讲解

胡不归问题归纳中考数学压轴热点问题“胡不归模型近几年中考题中,常出现带系数的两线段和的最值问题,这类问题基本都要用到“阿氏圆”和“胡不归”模型.下面着重讲解“胡不归模型”的应用.【背景】从前,有一个小伙子在外地当学徒,当他获悉在家乡的年老父亲病危的消息后,便立即启程日夜赶路。

由于思念心切,他选择了全是沙砾地带的直线路径A--B (如图1所示:A 是出发地,B 是目的地,AC 是一条驿道,而驿道靠目的地的一侧全是沙砾地带),当他气喘吁吁地赶到父亲眼前时,老人刚刚咽了气,小伙子不觉失声痛哭,邻舍劝慰小伙子时告诉说,老人在弥留之际还不断喃喃地叨念:胡不归?胡不归?这个古老的传说,引起了人们的思索,小伙子要提前到家是否有可能呢?倘有可能,他应该选择条怎样的路线呢?这就是风靡千年的“胡不归问题”.由于在驿道和沙砾地的行走速度不一样,那么,小伙子有没有可能先在驿道上走一程后,再走沙砾地,虽然多走了路,但反而总用时更短呢?如果存在这种可能,那么要在驿道上行走多远才最省时?设在沙砾地行驶速度为1v ,在驿道行驶速度为2v ,显然1v <2v .不妨假设从C 处进入砂砾地.设总共用时为t,则 t=1v BC +2v AC =1v 1(BC+21v v AC).因为1v ,2v 是确定的,所以只要(BC+21v v AC)最小,用时就最少.问题就转化为求(BC+21v v AC)的最小值. 我们可以作出一条以C 为端点的线段,使其等于21v v AC.并且与线段CB 位于AM 的两侧,然后,根据两点之间线段最短,不难找到最小值点.怎么作呢?由三角函数的定义,过A 点,在AM 的另一侧以A 为顶点,以AM 为一边作∠MAN=∠α,sin α=21v v .然后,作CE ⊥AN ,则CE=21v v AC.最后,当点B 、C 、E 在一条直线上时,BC+CE 最小,即(BC+21v v AC)的值最小,即用时最小.例1.如图,AC 是圆O 的直径,AC=4,弧BA=120°,点D 是弦AB 上的一个动点,那么OD+21BD 的最小值为______.方法总结:“胡不归”问题中涉及到三个点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AO上一点,一动点 P 从 A 出发,运动路径为 A→ D→ C,点 P 在 AD上的运动速度是在 CD上的 3 倍,要使整
个过程运动时间最少,则点 D 的坐标应为 -------------------------------------------------
()
A(. 0, 2) B.
(0, 2 )
( 3)设点 D是线段 AC上任意一点 (不含端点) ,连接 OD,当 CD+OD的最小值为 6 时,求⊙ O的 AB的长。
2
3. ( 2015 日照)如图,抛物线 y 1 x 2 mx n 与直线 y 2
点,连接 AC、 BC,已知 A( 0,3), C( 3, 0)。
1 x

3 交于 A、 B 两点,交 x 轴于 D、 C 两
度运动到 E 点,再沿线段 EA 以每秒 2 个单位的速度运动到点 A 后停止,当点 E 的坐标是多少时,点 M
在整个运动过程中用时最少?
2
4. ( 2014 成都)如图,已知抛物线 y k (x 2)( x 4)( k为常数, k>0)与 x 轴从左至右依次交于点 A、 8
B,与 y 轴交于点 C,经过点 B 的直线 y
ABC=150° , 则 PA+PB+PD的最小
2. ( 2015 内江)如图,在 ACE 中, CA=CE, CAE=30°,⊙ O经过点 C,且圆的直径 AB在线段 AE 上。
( 1)试说明 CE是⊙ O的切线。
( 2)若 ACE 中 AE边上的高为 h, 试用含 h 的代数式表示⊙ O的直径 AB; 1

2
( 3) M( s,t )为抛物线对称轴上的一个动点。
① 若平面内存在点 N,使得 A、 B、 M、N 为顶点的四边形为菱形,则这样的点 N 共有
② 连接 MA、 MB,若∠ AMB不小于 60°,求 t 的取值范围。
个;
1
练习巩固:
1. ( 2015 无锡二模)如图,菱形
值为

ABCD的对角线 AC上有一动点 P, BC=6,
3 x b 与抛物线的另一个交点为 D。 3
( 1)若点 D 的横坐标为 -5 ,求抛物线的函数关系式。 ( 2)在( 1)的条件下,设 F 为线段 BD上一点(不含端点) ,连接 AF,一动点 M从点 A 出发,沿线段 AF 以每秒 1 个单位的速度运动到 F,再沿线段 FD 以每秒 2 个单位的速度运动到 D 后停止, 当点 F 的坐标为多 少时,点 M在整个运动过程中用时最少? ( 3)若在第一象限内的抛物线上有点 P,使得以 A、 B、P 为顶点的三角形与△ ABC相似,求 k 的值。
( 3)在( 1)的条件下,设点 E 是线段 AD上一点(不含端点) ,连接 BE,一动点 Q 从点 B 出发,沿线段
BE以每秒 1 个单位的速度运动到点 为多少时,点 Q运动的时间最少?
E,再沿线段 ED以每秒 2 3 个单位运动到点 D 停止,问当点 E 的坐标 3
4
5. ( 2017 徐州二模)二次函数 y ax 2 2x c 图象与 x 轴交于 A、 C 两点,点 C( 3, 0),与 y 轴交于点
B( 0, -3 )。
( 1) a
,c

( 2)如图①, P 是 x 轴上一动点,点 D( 0, 1)在 y 轴上,连接 PD,求
y
( 3)如图②,点 M在抛物线上,若 S△ MBC 3 ,求点 M的坐标。
痛哭。邻居劝慰小伙子时告诉说,老人弥留之际不断念叨着“胡不归?胡不归? , ” 。这个古老的传说,
引起了人们的思索,小伙子能否提前到家?倘若可以,他应该选择一条怎样的路线呢?这就是风靡千百年
的“胡不归问题” 。 B
沙砾 地 带
A
D
C
例 1. ( 2012 崇安模拟),如图, ABC 在平面直角坐标系中, AB=AC, A(0 , 2 2 ), C(1, 0),D 为射线
2
( 1)抛物线的函数关系式为
, tan ∠BAC=

( 2) P为 y 轴右侧抛物线上一动点,连接 PA,过点 P 作 PQ⊥ PA 交 y 轴于点 Q,问:是否存在点 P 使以 A、
P、 Q为顶点的三角形与△ ABC相似?若存在,求出所有符合条件的 P 点坐标,若不存在,请说明理由。
( 3)设 E 为线段 AC上一点(不含端点) ,连接 DE,一动点 M从点 D出发,沿线段 DE以每秒一个单位的速
C.
2
(0, 2 )
D.
3
(0, 2 ) 4
例 2. ( 2016 徐州)如图,在平面直角坐标系中,二次函数
y=ax 2+bx+c 的图像经过点 A( -1 , 0), B( 0,
- 3 )、 C( 2,0),其中对称轴与 x 轴交于点 D。
( 1)求二次函数的表达式及其顶点坐标;
( 2)若 P 为 y 轴上的一个动点,连接 PD,则 1 PB PD 的最小值为
中考复习之——胡不归问题
从前,有一个小伙子在外地学徒,当他获悉在家的老父亲病危的消息后,便立即启程赶路。由于思乡
心切,他只考虑了两点之间线段最短的原理,所以选择了全是沙砾地带的直线路径
A→ B(如图所示) ,而
忽视了走折线虽然路程多但速度快的实际情况,当他气喘吁吁地赶到家时,老人刚刚咽了气,小伙子失声
y
2PD
PC 的最小值。
x
x
M
3
6. ( 2016 随州)已知抛物线 y a(x 3)( x 1)( a 0),与 x 轴从左至右依次相交于 A、 B 两点,与 y 轴
交于点 C,经过点 A 的直线 y
3x b与抛物线的另一个交点为 D。
( 1)若点 D 的横坐标为 2,则抛物线的函数关系式为

( 2)若在第三象限内的抛物线上有一点 P,使得以 A、B、P 为顶点的三角形与△ ABC相似, 求点 P 的坐标。
相关文档
最新文档