数学物理方程作业汇总
数学物理方程作业
![数学物理方程作业](https://img.taocdn.com/s3/m/a27ba840854769eae009581b6bd97f192279bfa4.png)
习题2.12. 长为L ,均匀细杆,x=0端固定,另一端沿杆的轴线方向被拉长b 静止后(在弹性限度内)突然放手,细杆做自由振动。
试写出方程的定解条件。
解:边界条件:u(x,t)|0=x =0自由端x=L ,u x |L x ==0初始条件:u(x,t)|0=t =x Lbu t |0=t =0 习题2.21. 一根半径为r ,密度为ρ,比热为c ,热传导系数为k 的匀质圆杆,如同截面上的温度相同,其侧面与温度为1u 的介质发生热交换,且热交换的系数为1k 。
试导出杆上温度u 满足的方程。
解:热传导的热量=温度升高吸收的热量+侧面热交换的热量rdxdtu u k t x u dt t x u dx r c dt t x u t dx x u r k x x πρππ2)()],(),([)],(),([1122-+-+=-+即为:rdxdtu u k dt dxu r c dxdt u r k t xx πρππ2)(1122-+=)(211u u k ru c kru t xx -+=ρ所以温度u 满足的方程为r c u u k u c ku xx t ρρ)(211--=-习题2.34. 由静电场Gauss 定理⎰⎰⎰⎰⎰=•VdV dS E ρε1,求证:ερ=•∇E ,并由此导出静电势u 所满足的Poisson 方程。
证明:⎰⎰•S dS E =⎰⎰⎰⎰⎰⎰=•∇VVdV EdV ρε 1所以ερ=•∇E 又因为ερϕϕϕ=-∇=-∇•∇=•∇⇒•-∇=2)(E E 习题2.4 2.(2)032=-+yy xy xx u u u 解: 特征方程:032)(2=--dx dy dx dy ,则有1-3或=dxdy即为 13c x y += 2c x y +-= 令x y +=η x y 3-=ξ 则由:ηηξηξξu u u u xx +-=69 ηηξηξξu u u u xy +--=23 ηηξηξξu u u u yy ++=2 推得 0=ξηu则解得 )()3()()(x y g x y f g f u ++-=+=ηξ (5)031616=++yy xy xx u u u 解:由特征方程:0316)(162=+-dxdydxdy解得4143或=dx dy 则可令 x y -=4ξ x y 34-=η所以⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=4431y x y x Q ηηξξ 因此=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T Q a a a a Q a a a a 2212121122121211⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡03232022121211a a a a 即032=-ξηu所以)34()4(x y g x y f u -+-= 习题2.6 1.(3).证明)0(||)()(≠=a a x ax δδ证明:当0>a 时a dx x a ax d ax a dx ax 1)(1)()(1)(===⎰⎰⎰+∞∞-+∞∞-+∞∞-δδδ所以)0()()(≠=a ax ax δδ当0<a 时adx x a ax d ax adx ax dx ax 1)(1)()(1)()(-=-=---=-=⎰⎰⎰⎰∞+∞-+∞∞-+∞∞-+∞∞-δδδδ所以)0()()(≠-=a ax ax δδ综上:)0(||)()(≠=a a x ax δδ习题3.13.(4)求解边值问题的固有值和固有函数⎩⎨⎧=+'==+''==0][,0|002L x x hX X X X X β解:当0=β时,B Ax x X +=)(代入边值条件得:B X x ===0|00100)(][=+=⇒=+=+'=hL A AL h A hX X L x 或 所以当010=+≠hL A 且时Ax x X =)(当010≠+=hL A 且时0)(=x X 当0>β时,)sin()cos()(x B x A x X ββ+= 代入边值条件得:A X x ===0|00)sin()cos(][=+=+'=L hB L B hX X L x βββ 解得:L hn βββtan -=为的正根所以)sin()(x x X n n β= 当0<β时,无解。
数学物理方程答案(全)
![数学物理方程答案(全)](https://img.taocdn.com/s3/m/6439d9fd9e31433239689351.png)
利用微分中值定理可得
T
(
x)ux
x
utt
将T (x) 的表达式代入可得
utt g(l x)uxx gux
2.长为 L,均匀细杆,x=0 端固定,另一端沿杆的轴线方向拉长 b 静止后(在弹性限 度内)突然放手,细杆做自由振动。试写出振动方程的定解条件。
T(x,t) T(x+dx,t)
界条件之一:
(1)一端(x=0)绝热,另一端(x=L)保持常温 0
解:边界条件 ux x0 0, u xL u0
(2)两端分别有热流密度 q1 和 q2 进入
解:边界条件 ux
x0
g1 k
,ux
xL
g2 k
(3)一端(x=0)温度为 1(t) ,另一端(x=L)与温度为 (t) 的介质有热交换
F ( x,
t)dtdxS
u x
cSdtdx
k
2u x2
F (x,t)
u x
c
ut
k c
uxx
F ( x, t ) c
ut
k c
uxx
(
j)2 c
习题 2.3
1.半径为
r0
的球面,在的 0
2
半球面上电势为
0
,在
2
的半球面上
电势为 0 。求空间各点应满足的泛定方程与定解条件。
解:泛定方程
4.
由静电场
Gauss
定理
s
E
dS
1 0
V
dV
,求证:
E
0
,并由此导出
静电势 u 所满足的 Poisson 方程。
数理方程30题
![数理方程30题](https://img.taocdn.com/s3/m/ec2b673f52d380eb62946d6b.png)
u(x,t) = cos at sin x
注记:如果用系数计算公式
∫ ∫ Cn
=
2 L
L sin(ξ ) sin(nξ )dξ
0
, Dn
=
2 nπa
L 0 × sin(nξ )dξ ,(n=1,2,……)
0
会得出同样结论。
例 8.用分离变量法求解双曲型方程初边值问题
⎧u ⎪⎪⎨u
[Cn
n=1
cos
nπ L
t
+
Dn
sin
nπ L
t]sin
nπ L
x
利用初值条件,得
∑ ∑ ∞ Cn
n=0
sin
nπ L
x
=
x(L −
x) , π L
∞
nDn
n=0
sin
nπ L
x
=
0
为计算系数,首先令ϕ(x) = x(L − x) ,显然ϕ(0) = 0,ϕ(L) = 0 ,且
ϕ′(x) = L − 2x ,ϕ′′(x) = −2
x x
+ +
C1 C2
⎡ ∂ξ
构造变换:
⎧ξ ⎩⎨η
= =
2 sin 4 sin
x x
+ +
cos cos
y y
,
⎢ ⎢ ⎢
∂x ∂η
⎢⎣ ∂x
∂ξ ⎤
∂y ∂η
⎥ ⎥ ⎥
=
⎡2 ⎢⎣4
cos cos
x x
∂y ⎥⎦
− sin y⎤ − sin y⎥⎦
所以, a12 = 8sin 2 y cos2 x − 18cos2 x sin 2 y + 8cos2 x sin 2 y = −2 cos2 x sin 2 y
数学物理方程第二版答案(平时课后习题作业)
![数学物理方程第二版答案(平时课后习题作业)](https://img.taocdn.com/s3/m/2533aef610a6f524cdbf85cd.png)
数学物理方程第二版答案第一章.颠簸方程§ 1 方程的导出。
定解条件4. 绝对柔嫩逐条而平均的弦线有一端固定,在它自己重力作用下,此线处于铅垂均衡地点,试导出此线的细小横振动方程。
解:如图 2,设弦长为l ,弦的线密度为,则 x 点处的张力 T ( x) 为T ( x)g(lx)且 T( x) 的方向老是沿着弦在 x 点处的切线方向。
仍以 u( x, t) 表示弦上各点在时辰 t 沿垂直于 x 轴方向的位移,取弦段 ( x, xx), 则弦段两头张力在 u 轴方向的投影分别为g(l x) sin ( x); g (l( xx)) sin (xx)此中 (x) 表示 T (x) 方向与 x 轴的夹角又sintgux.于是得运动方程x2u[l( xx)]u∣xxg [lx]u∣x gt 2xx利用微分中值定理,消去x ,再令 x0 得2ug[( l x) ut 2] 。
x x5. 考证u( x, y,t )t 21在锥 t 2 x 2 y 2 >0 中都知足颠簸方程x 2 y 22u2u2u证:函数 u( x, y,t )1在锥 t 2x 2 2内对变量 t 2x 2 y 2t 2 x 2y >0y 2x, y, t 有u3二阶连续偏导数。
且(t2x 2 y 2) 2 tt2u35(t2x2y 2) 23(t2x2y2) 2 t2t23(t 2x 2y 2) 2 (2t 2x2y 2)u3x2 y 2)2 x(t2x2u35t2x2y223 t2x2y22 x 2x25 t2x2y22 t22 x2y22 u5同理t2x2y22 t2x22y2y22 u 2u52u .所以t 2 x 2y 2 2 22x 2 y 2x2y2tt2即得所证。
§2 达朗贝尔公式、波的传抪3.利用流传波法,求解颠簸方程的特点问题(又称古尔沙问题)2ua 22ut 2x 2u x at 0(x) (0)(0)u x at( x).解: u(x,t)=F(x-at)+G(x+at)令 x-at=0得 ( x) =F ( 0) +G ( 2x )令 x+at=0得( x) =F (2x ) +G(0)所以F(x)=( x) -G(0).2G ( x ) = ( x) -F(0).2且F ( 0) +G(0)= (0) (0).所以u(x,t)=(xat) + ( x at ) - (0).22即为古尔沙问题的解。
数学物理方程复习
![数学物理方程复习](https://img.taocdn.com/s3/m/65f79138b5daa58da0116c175f0e7cd1842518bd.png)
一、填空题1、物理规律反映同一类物理现象的共同规律,称为___________。
2、在给定条件下求解数学物理方程,叫作____________________。
3、方程20tt xx u a u -=称为_________方程4、方程20t xx u a u -=称为_________方程5、静电场的电场强度E是无旋的,可用数学表示为_____________。
6、方程0j Ñ×=称为_____________的连续性方程。
7、第二类边界条件,就是______________________________________。
8、第一类边界条件,就是______________________________________。
9、00(0,)(0,)x x u x t u x t -=+称为所研究物理量u 的_____________。
10、00(0,)(0,)u x t u x t -=+称为所研究物理量u 的_____________。
11、对于两个自变量的偏微分方程,可分为双曲型、________和椭圆型。
12、对于两个自变量的偏微分方程,可分为双曲型、抛物线型和________。
13、分离变数过程中所引入的常数l 不能为_____________。
14、方程中,特定的数值l 叫作本征值,相应的解叫作_____________。
15、分离变数法的关键是________________________代入微分方程。
16、非齐次振动方程可采用______________和冲量定理法求解。
17、处理非齐次边界条件时,处理非齐次边界条件时,可利用叠加原理,可利用叠加原理,可利用叠加原理,把非齐次边界条件问题转化另一把非齐次边界条件问题转化另一_________的齐次边界条件问题。
18、处理非齐次边界条件时,处理非齐次边界条件时,可利用叠加原理,可利用叠加原理,可利用叠加原理,把非齐次边界条件问题转化另一把非齐次边界条件问题转化另一_________的齐次边界条件问题。
数学物理方程与特殊函数老师给题答案汇总
![数学物理方程与特殊函数老师给题答案汇总](https://img.taocdn.com/s3/m/9b96ec1514791711cc791782.png)
1.证明二维laplace 方程 在极坐标下 证:2.长为l 的均匀杆,侧面绝缘,一端温度为零,另一端有恒定热流q 进入(即单位时间内通过单位截面积流入的热量为q ), 杆的初始温度分布为x (l-x ) / 2 ,试写出相应的定解问题。
解:对于杆上的一个微元d x ,流入的热量为:温度变化所需的热量为:两式相等:定解问题为:02222=∂∂+∂∂y u x u 22,arctan y x x y+==ρθθρθρρθθρθθsin ,cos 221cos ,sin /1122222=∂∂=⋅+=∂∂=∂∂-=-⋅+=∂∂y x y x x y x y x y x 2222222222222sin cos cos 2sin sin ρθθρθρρθθρθρθθρ∂∂-∂∂+∂∂+∂∂∂+∂∂=∂∂u u u u u y u x u x u x u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2222222222222sin sin sin 2sin cos ρθθρθρρθθρθρθθρ∂∂+∂∂+∂∂+∂∂∂-∂∂=∂∂u u u u u x u ρρθρρ∂∂+∂∂+∂∂=∂∂+∂∂u u u y u x u 11222222222ρθθθρθθρρcos sin ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u u y u y u y u 011222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=θρρρρρu u ρθθθρsin cos ∂∂-∂∂=u u 02222=∂∂+∂∂y ux u 011222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂θρρρρρu u3.设弦的两端固定于x=0及x=l,弦的初始位移如图所示,初速度为零,又没有外力作用,求弦作横向振动时的位移函数u(x,t)。
解如果琴弦像上图的方法来放置,是不是边界条件将不再是齐次的。
4.解下列问题解:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤=>=∂∂=∂∂><<∂∂=∂∂lxxxutxt luxtut lxxuatu),()0,(,0),(,0),0(,,222ϕ)()(),(tTxXtxu=XTaXT''='2XXTaT''='22=+'=+''TaTXXλλ⎩⎨⎧='='<<=+'')(,0)0(lXXlxXXλ)()(),()()0(),0(='=∂∂='=∂∂tTlXxt lutTXxtu)(,0)0(='='lXX,3,2,1,22=⎪⎭⎫⎝⎛==nlnnnπβλsin)(=-='lBlXββ)0(=='βAXxlnBXnnπcos=lnnπβ=xBxAXββcossin+=2=+''XXβ2>=βλBX=BAxX+==''X=λ==BAll eBeAlXββββ--=')()0(=-='ββBAXxx BeAeXββ-+=2=-''XXβ2<-=βλ2=+'TaTλ=λ0='T00T A=>λ02222=+'nnTlnaTπtlnanneAT2222π-=nnnTXu=xlneC tlnanππcos2222-=CAB==∑∑∞=-∞=+==1cos2222ntlnannnxlneCCuuππTXu=xlneBA tlnannππcos2222-=001()d2l lC x xlϕ==⎰022()cos d2(1)1()lnnnC x x xl llnπϕπ=⎡⎤=--⎣⎦⎰xx=)(ϕ5.达朗贝尔公式推导 解:做如下代换得:所以 因为所以所以 又因为 因为 所以所以得:即因此⎪⎪⎩⎪⎪⎨⎧+∞<<∞-=∂∂=>+∞<<∞-∂∂=∂∂x x t x u x x u t x x u a t u ),()0,(),()0,(0,,22222ψϕ⎪⎭⎫ ⎝⎛∂∂⋅-∂∂=t a x 121⎪⎭⎫ ⎝⎛∂∂⋅+∂∂=t a x 121)()(21at x f at x f u -++=ηηη∂∂∂∂+∂∂∂∂=∂∂t t x x ξξξ∂∂∂∂+∂∂∂∂=∂∂t t x x a t 2ηξ-=2ηξ+=x at x -=ηat x +=ξ)()(21ηξf f u +=)(ξξf u =∂∂02=⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂ηξηξu u t a x ∂∂⋅-∂∂=∂∂1ηt a x ∂∂⋅+∂∂=∂∂1ξ011=⎥⎦⎤⎢⎣⎡∂∂⋅-∂∂⎥⎦⎤⎢⎣⎡∂∂⋅+∂∂u t a x t a x 0122=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂⋅-⎪⎭⎫ ⎝⎛∂∂u t a x 0122222=⎪⎪⎭⎫ ⎝⎛∂∂⋅-∂∂u t a x 0122222=∂∂⋅-∂∂t u a x u )()()()0,(21x x f x f x u ϕ=+=)()()()0,(21x x f a x f a t x u ψ='-'=∂∂C a x f x f x +=-⎰021d )(1)()(ξξψ2d )(21)(21)(01C a x x f x ++=⎰ξξψϕ2d )(21)(21)(02Ca x x f x --=⎰ξξψϕ2d )(21)(212d )(21)(2100C a at x C a at x u at x at x ---++++=⎰⎰-+ξξψϕξξψϕ[]11()()()d 22x atx at u x at x at a ϕϕψξξ+-=++-+⎰6.解定解问题解:令所以因为 所以得7.P81T1求方程0,1,22>>=∂∂∂y x y x yx u满足边界条件y y u x x u cos ),1(,)0,(2==的解解:用积分法求解:对y 进行积分)(2122x g y x x u ==∂∂,再对x 积分)()(612123y f x f y x u ++=利用边界条件得 ,再用一次边界条件用积分变换法求解:对y 取拉普拉斯变换利用边界条件 得22d 2d d 3d y x y x --x y +=η2=∂∂∂ηξu )()3()0,(21x f x f x x u +-==)()3(0)0,(21x f x f y x u '+-'==∂∂Cx f x f =+--)()3(3121Cx x f 4343)3(1-=-C x x f 4341)(21-=C x x f 4343)(2+=()2222343)(4343341y x C y x C y x u +=+++--=(d 3d )(d d )0y x y x =-+=)()3(21x y f x y f ++-=x y 3-=ξ)()(21ηξf f u +=y y f f y y u x f x f x u cos )()1(61),1(,)0()()0,(212221=++=+=⎪⎪⎩⎪⎪⎨⎧+∞<<∞-=∂∂=+∞<<-∞>=∂∂-∂∂∂+∂∂x y x u x x u x y y u y x u x u ,0)0,(,)0,(,0,032222228.推导空间格林公式由高斯公式⎰⎰⎰⎰⎰ΓΩ++=∂∂+∂∂+∂∂dS x n R y n Q x n P dV z R y Q x P )],cos(),cos(),cos([)(推导 证:设函数u(x,y,z)和υ(x,y,z)在Γ+Ω上具有一阶连续偏导数,在Ω内具有连续的所有二阶偏导数。
吴小庆-数学物理方程习题解答案全
![吴小庆-数学物理方程习题解答案全](https://img.taocdn.com/s3/m/88637b86ac51f01dc281e53a580216fc700a5335.png)
数学物理方程习题解习题一1,验证下面两个函数:(,)(,)sin x u x y u x y e y ==都是方程0xx yy u u +=的解。
证明:(1)(,)lnu x y =因为32222222222222223222222222222222222222222211()22()2()()11()22()2()()0()()x xx y yy xx yy x u x x y x y x y x x x y u x y x y yu y x y x y x y y y y x u x y x y x y y x u u x y x y =−⋅⋅=−+++−⋅−=−=++=−⋅⋅=−+++−⋅−=−=++−−+=+=++所以(,)u x y =0xx yy u u +=的解。
(2)(,)sin xu x y e y = 因为sin ,sin cos ,sin x x x xx xxy yy u y e u y e u e y u e y=⋅=⋅=⋅=−⋅所以sin sin 0xxxx yy u u e y e y +=−=(,)sin x u x y e y =是方程0xx yy u u +=的解。
2,证明:()()u f x g y =满足方程0xy x y uu u u −=其中f 和g 都是任意的二次可微函数。
证明:因为()()u f x g y =所以()(),()()()()()()()()()()()()0x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=⋅=⋅''=⋅''''−=⋅−⋅⋅=得证。
3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u −+= 的通解。
数学物理方程作业
![数学物理方程作业](https://img.taocdn.com/s3/m/5f207a77f242336c1eb95e09.png)
习题2.12. 长为L ,均匀细杆,x=0端固定,另一端沿杆的轴线方向被拉长b 静止后(在弹性限度内)突然放手,细杆做自由振动。
试写出方程的定解条件。
解:边界条件:u(x,t)|0=x =0自由端x=L ,u x |L x ==0初始条件:u(x,t)|0=t =x Lbu t |0=t =0 习题2.21. 一根半径为r ,密度为ρ,比热为c ,热传导系数为k 的匀质圆杆,如同截面上的温度相同,其侧面与温度为1u 的介质发生热交换,且热交换的系数为1k 。
试导出杆上温度u 满足的方程。
解:热传导的热量=温度升高吸收的热量+侧面热交换的热量rdxdtu u k t x u dt t x u dx r c dt t x u t dx x u r k x x πρππ2)()],(),([)],(),([1122-+-+=-+即为:rdxdt u u k dt dxu r c dxdt u r k t xx πρππ2)(1122-+=)(211u u k ru c kru t xx -+=ρ所以温度u 满足的方程为r c u u k u c ku xx t ρρ)(211--=-习题2.34. 由静电场Gauss 定理⎰⎰⎰⎰⎰=∙VdV dS E ρε1,求证:ερ=∙∇E ,并由此导出静电势u 所满足的Poisson 方程。
证明:⎰⎰∙S dS E =⎰⎰⎰⎰⎰⎰=∙∇VVdV EdV ρε 1所以ερ=∙∇E 又因为ερϕϕϕ=-∇=-∇∙∇=∙∇⇒∙-∇=2)(E E 习题2.4 2.(2)032=-+yy xy xx u u u 解: 特征方程:032)(2=--dx dy dx dy ,则有1-3或=dxdy即为 13c x y += 2c x y +-= 令x y +=η x y 3-=ξ 则由:ηηξηξξu u u u xx +-=69 ηηξηξξu u u u xy +--=23 ηηξηξξu u u u yy ++=2 推得 0=ξηu则解得 )()3()()(x y g x y f g f u ++-=+=ηξ (5)031616=++yy xy xx u u u 解:由特征方程:0316)(162=+-dxdydxdy解得4143或=dx dy 则可令 x y -=4ξ x y 34-=η所以⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=4431y x y x Q ηηξξ 因此=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T Q a a a a Q a a a a 2212121122121211⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡03232022121211a a a a 即032=-ξηu所以)34()4(x y g x y f u -+-= 习题2.6 1.(3).证明)0(||)()(≠=a a x ax δδ证明:当0>a 时a dx x a ax d ax a dx ax 1)(1)()(1)(===⎰⎰⎰+∞∞-+∞∞-+∞∞-δδδ所以)0()()(≠=a ax ax δδ 当0<a 时adx x a ax d ax adx ax dx ax 1)(1)()(1)()(-=-=---=-=⎰⎰⎰⎰∞+∞-+∞∞-+∞∞-+∞∞-δδδδ所以)0()()(≠-=a ax ax δδ 综上:)0(||)()(≠=a a x ax δδ习题3.13.(4)求解边值问题的固有值和固有函数⎩⎨⎧=+'==+''==0][,0|002L x x hX X X X X β解:当0=β时,B Ax x X +=)(代入边值条件得:B X x ===0|00100)(][=+=⇒=+=+'=hL A AL h A hX X L x 或 所以当010=+≠hL A 且时Ax x X =)(当010≠+=hL A 且时0)(=x X 当0>β时,)sin()cos()(x B x A x X ββ+= 代入边值条件得:A X x ===0|00)sin()cos(][=+=+'=L hB L B hX X L x βββ 解得:L hn βββtan -=为的正根所以)sin()(x x X n n β= 当0<β时,无解。
数学物理方程-习题讲解汇总
![数学物理方程-习题讲解汇总](https://img.taocdn.com/s3/m/3bd9fac30b1c59eef9c7b491.png)
又杆的初始温度分布为
u
t=0 =
x(l − 2
x) .
2
,所以
湖南大学数学院朱郁森
故相应的定解问题为
ut = a2uxx , 0 < x < l, t > 0.
u x=0 = 0,
ux x=l = q . k
u
t=0 =
x(l − 2
x) .
习题一、2
湖南大学数学院朱郁森
长为 l 的弦两端固定,开始时在 x = c 处受到冲
)
=
Bk
sin
kπ α
θ
,
kπ
Rk (ρ) = ck ρ α k = 1, 2,L.
1 ρ
∂
∂ρ
ρ
∂u
∂ρ
+
1
ρ2
∂2u
∂θ 2
=
0,
(1)
u θ =0 = u θ =α = 0, u ρ=a = f (θ) u(0,θ) < +∞,
(2) (3) (4)
于是得方程(1)适合条件(2)(4)的一组特解
∞
u(x,t) = ∑uk (x,t)
k =0
∑ =
∞
Ck
e−
akπ l
2 t
cos
kπ
x
k =0
l
仍满足方程(1)与条件(2)。
湖南大学数学院朱郁森
又由条件(3),得
∑∞ Ck cos kπ x = x, ⇒
k =0
l
l , k = 0,
Ck
2
= ∫2 l x cos kπ xdx,
l0
l
故原定解问题的解为
情况。
方程题100道带答案大全
![方程题100道带答案大全](https://img.taocdn.com/s3/m/056c81a6c9d376eeaeaad1f34693daef5ef713e5.png)
方程题100道带答案大全一、一元一次方程1. 3x 7 = 11答案:x = 62. 5 2x = 1答案:x = 23. 4x + 8 = 24答案:x = 44. 9 3x = 0答案:x = 35. 7x 14 = 0答案:x = 2二、一元二次方程6. x^2 5x + 6 = 07. x^2 + 3x 4 = 08. 2x^2 4x 6 = 09. 3x^2 + 12x + 9 = 010. x^2 8x + 16 = 0三、二元一次方程组11.x + y = 5x y = 312.2x + 3y = 83x 2y = 713.4x + y = 92x 3y = 514.3x 2y = 105x + y = 1615.2x + 5y = 12x 3y = 4四、不等式16. 3x 7 > 217. 2x + 5 < 1518. 4x 9 ≥ 119. 5x + 6 ≤ 2420. 7 3x > 2x + 1(文档第一部分完成,后续题目及答案将依次列出)五、分式方程21. 1/x + 2/(x+1) = 3答案:x = 1 或 x = 322. (2x+1)/(x2) = 3答案:x = 7/223. (3x2)/(x+3) + 4/(x1) = 024. (x+4)/(x3) (x2)/(x+2) = 2答案:x = 11/325. (2x+3)/(3x1) = (x+2)/(x1)答案:x = 1 或 x = 5/3六、绝对值方程26. |2x 5| = 3答案:x = 4 或 x = 127. |3x + 2| 4 = 7答案:x = 3 或 x = 5/328. |x 2| + |x + 3| = 8答案:x = 5 或 x = 129. |2x + 1| = |3x 4|答案:x = 1 或 x = 11/5 30. |x 4| |x + 1| = 3答案:x = 5 或 x = 1/2七、根式方程31. √(x 1) = 2答案:x = 532. √(3x + 4) + √(2x 1) = 5答案:x = 433. √(x + 2) √(x 3) = 1答案:x = 434. √(2x 5) = √(3x + 2) 135. √(4 x) + √(x + 3) = 5答案:x = 4八、指数方程36. 2^x = 16答案:x = 437. 3^(2x) = 9答案:x = 138. 4^(x1) = 1/2答案:x = 1/239. 5^(x+2) = 25答案:x = 140. (1/2)^x = 8答案:x = 3(文档内容持续更新,敬请期待剩余题目及答案)九、对数方程41. log₂(x 1) = 3答案:x = 942. log₃(2x + 3) = 2答案:x = 343. log₅(x) log₅(x + 2) = 1答案:x = 544. log₁₀(3x 1) + log₁₀(x + 4) = 1答案:x ≈ 0.645. log(x 2) log(x + 1) = log₂3答案:x ≈ 5.4十、三角方程46. sin(x) = 1/2, 0 ≤ x ≤ 2π答案:x = π/6 或5π/647. cos(x) = 0, 0 ≤ x ≤ 2π答案:x = π/2 或3π/248. tan(2x) = 1, 0 ≤ x ≤ π答案:x = π/8 或5π/849. 2sin²(x) sin(x) 1 = 0答案:x = π/6, 5π/6 或7π/6, 11π/650. cos²(x) + cos(x) 2 = 0答案:x = 2π/3, 4π/3十一、综合应用题51. 一辆汽车以60km/h的速度行驶,另一辆汽车以80km/h的速度行驶,两车相距100km,多久后两车相遇?答案:1小时后两车相遇。
数学物理方程练习题第九版(学生用)
![数学物理方程练习题第九版(学生用)](https://img.taocdn.com/s3/m/a0ffd62baf1ffc4fff47ac0d.png)
u(r, π=) 2
0,
0 < r < 1,
u(1,θ )=
θ (π −θ ), 2
0<θ < π . 2
练习六
3
1.求解如下定解问题:
ut = uxx + cosπ x, (0 < x < 1, t > 0), u= x (0,t) u= x (1,t) 0, u(x,0) = 0.
2.求解如下定解问题:
《数学物理方程与特殊函数》习题
练习一
1.写出长为 L 的弦振动的边界条件和初始条件:
(1)端点 x = 0, x = L 是固定的;
(2)初始状态为 f (x) ;
(3)初始速度为 g(x) ; (4)在任何一点上,在时刻 t 时位移是有界的. 2.写出弦振动的边界条件:(1)在端点 x = 0 处,弦是移动的,由 g(t) 给出;(2) 在端点 x = L 处,弦不固定地自由移动. 3. 验证函数 u = f (xy) 是方程 xux − yu y = 0 的解,其中 f 是任意连续可微函数.
保持零度,而外圆温度保持 u0 (u0 > 0) 度,试求稳恒状态下该导热版的温度分布
规律 u(r,θ ) . 问题归结为在稳恒状态下,求解拉普拉斯方程 ∆u= uxx + uy问题:
u1r (∂r∂1r,θ= )r
∂u ∂r
0,
+ 1 ∂2=u r 2 ∂θ 2 u(r2 ,θ=)
= u(0, t) s= in t, ux (π ,t) 0,
u(x,0) = 0.
4
3. 求解以下定解问题:
= uu= (t0,tu) xx
+2ux , u= (1, t )
数学物理方程习题答案(李明齐 田太心)
![数学物理方程习题答案(李明齐 田太心)](https://img.taocdn.com/s3/m/bd43046c561252d380eb6eb5.png)
282数学物理方程习题选做习题 1.11. 密度为ρ均匀柔软的细弦线x =0端固定,垂直悬挂,在重力作用下,横向拉它一下,使之作微小的横振动。
试导出振动方程。
解:考虑垂直悬挂的细弦线上一段微元ds ,该微元在坐标轴上投影为区间[x ,x+d x ],在微元的上端点处有张力:)(1x L g T -=ρ,在下端点处有张力:)(2dx x L g T --=ρ考虑张力在位移方向的分解,应用牛顿第三定律,有tt u m T T =-1122sin sin αα 由于细弦作微小振动,所以有近似)(tan sin 22dx x u x +=≈αα )(tan sin 11x u x =≈αα代入牛顿第三定律的表达式,有tt x x u ds t x u x L g t dx x u dx x L g ρρρ≈--+--),()(),()(上式两端同除以ds ρ,得tt x x u dsx u x L dx x u dx x L g≈--++-)()()())((由于dx ds ≈,而x x x x x u x L dxx u x L dx x u dx x L )]()[()()()())((-≈--++-所以,细弦振动的方程为tt x x u u x L g =-])[(4. 一根长为L 、截面面积为1的均匀细杆,其x =0端固定,以槌水平击其x =L 端,使之获得冲量I 。
试写出定解问题。
解:由牛顿定律tt x x Sdxu t x YSu t dx x YSu ρ=-+),(),(其中,x u S Y ,,的意义与3题定义一样283∴ 20000,0,()0,0,(0)tt xx xxx x x L t t t Y u u a uu u I L x L u u x L ρεερε====⎧⎪⎪==⎪⎪==⎨⎪⎧⎪-<<⎪⎪==⎨⎪⎪<<-⎩⎩5. 定解问题:2000,(0,0),011(),()tt xx x x L t t t x u a u x L t u E u u x u i x c c ψϕ====⎧⎪=<<>⎪==⎨⎪⎪'==-=-⎩其中,u 为电压函数,i 为电流函数,c 为分布电容。
数学物理方程作业题及解答
![数学物理方程作业题及解答](https://img.taocdn.com/s3/m/131cd3dcba4cf7ec4afe04a1b0717fd5360cb219.png)
)22y2t-x-22y2t-x-35ïïîïïíì=¶¶==¶¶-¶¶==x t u u xt x ut ut t sin |,0sin 002222解:根据叠加原理,问题可以分解为以下两类问题的叠加: (I )ïîïïíì=¶¶==¶¶-¶¶==xt u ux u tu tt sin |,0011212212(II) ïïîïïíì=¶¶==¶¶-¶¶==0|,0sin 020222222t t t u u x t x u t u 根据达朗贝尔方程,问题(I )的解为:)的解为: a a d t x u tx tx ò+-=sin21),(1=)]cos()[cos(21t x t x --+-=t x sin sin根据齐次化原理,问题(II )的解为)的解为t x x tt t d d t x u t t x t x òò-+--=0)()(2sin 21),(=ò----+-td t x t x 0))](cos())([cos(21t t t t=ò-td t x 0)sin(sin t t t=))cos()cos((sin 0ò---tt d t t x t t t t=))sin((sin 0tt t x t -+=)sin (sin t t x - =t x x t sin sin sin - 所以,x t t x u t x u t x u sin ),(),(),(21=+=第2次作业:(分离变量法)p22 1. 用分离变量法求下列问题的解:(1) ïïïîïïïíì==<<-=¶¶=¶¶=¶¶==0),(),0()0()1(,3sin 022222t l u t u l x x x t u l x u x ua t u ot t p解:采用分离变量法,令解:采用分离变量法,令)()(),(t T x X t x u =带入偏微分方程,得到带入偏微分方程,得到0)()(")(")(2=-t T x X a t T x X (1)将上式分离变量,有将上式分离变量,有 )()(")()("2x X x X t T a t T =(2)上式只有在两边均等于常数时才成立。
数学物理方程第5章习题及答案
![数学物理方程第5章习题及答案](https://img.taocdn.com/s3/m/9d6d1137f56527d3240c844769eae009581ba295.png)
11.设 {(x, y) | x2 y2 R2, y 0}, 考虑半圆域狄利克雷问题
u 0, x
u(x, y) (x, y),(x, y)
应用对称法求区域 上的格林函数。
解:该问题所求格林函数应满足
G (P, P0 ), P
G(P, P0 ) 0, P B(圆周) G(P, P0 ) 0, P L(x轴上的边界)
C1
1
4
解为 u 1
4 r
方法二: 本题中u只与r有关,则
所以
uxx
u yy
+uzz
=
1 r
(2ur
rurr )
2ur rurr 0 2rur r 2urr 0 (r 2ur )r 0 r 2ur C
ur
C r2
u
C1
1 r
C2
随后求解过程与方法一相同。
注:在球面坐标系中
uxx
记 G \ B ,则 G B ,在格林第二公式
(uv vu)d
(u
v n
v
u )ds n
中,令 v (P, P0 ),注意到 0 ,则有
ud
G
(u
G
n
u )ds n
或
ud (u u )ds (u u )ds
G
n n
B n n
在圆周B 上有
( 1
随后求解过程与方法一相同。
(3)uxx uyy +uzz =0,r 0
解:方法一: 三维拉普拉斯方程的基本解表示通解
1 u C1 r C2
lim u(r)=0
r
C2
0
u n |B(0, )
u n
B(0, )
数学物理方程全部答案
![数学物理方程全部答案](https://img.taocdn.com/s3/m/d36c36ea4afe04a1b071de22.png)
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力xu x E t l T ∂∂=)(),(|l x =等于零,因此相应的边界条件为xu ∂∂|l x ==0同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x(3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
由虎克定律有xuE ∂∂∣)](),([t v t l u k l x --==其中k 为支承的刚度系数。
由此得边界条件)(u x u σ+∂∂∣)(t f l x == 其中Ek =σ 特别地,若支承固定于一定点上,则,0)(=t v 得边界条件)(u xu σ+∂∂∣0==l x 。
同理,若0=x 端固定在弹性支承上,则得边界条件 x uE ∂∂∣)](),0([0t v t u k x -==即 )(u xu σ-∂∂∣).(0t f x -=8.求解波动方程的初值问题⎪⎪⎩⎪⎪⎨⎧=∂∂==∂∂-∂∂==xt u u x t x ut u t t s i n |,0s i n 002222 解:由非齐次方程初值问题解的公式得 τξξτααττd d d t x u t t x t x tx tx ⎰⎰⎰-+--+-+=0)()(s i n 21s i n 21),(=⎰----+---+-td t x t x t x t x 0))](cos())([cos(21)]cos()[cos(21ττττ=⎰-+td t x t x 0)sin(sin sin sin τττ=t t t x t x 0)]sin()cos([sin sin sin τττ-+-+ =x t sin 即 x t t x u sin ),(= 为所求的解。
数学物理方程练习题第九版(学生用)汇编
![数学物理方程练习题第九版(学生用)汇编](https://img.taocdn.com/s3/m/ca339ebc25c52cc58ad6be26.png)
8
= ∆u 0, (x, y, z) ∈ KR \ Kr ,
= u Γr 1,= u ΓR 2, 证明:在 KR \ Kr 内, 1 < u < 2.
3. 用积分变换法求解定解问题:
7
= ut a2u xx +ku, -∞<x < +∞, t > 0, u(x,0) = ϕ(x).
练习十四
1.证明二维调和函数的积分表达式:
u(M 0 )
=
−
1 2π
∫ C u
∂ ∂n
ln
1 r
− ln
1 r
∂u ∂n
ds.
2.在下半平面 y < 0 内求解拉普拉斯方程的边值问
《数学物理方程与特殊函数》习题
练习一
1.写出长为 L 的弦振动的边界条件和初始条件:
(1)端点 x = 0, x = L 是固定的;
(2)初始状态为 f (x) ;
(3)初始速度为 g(x) ; (4)在任何一点上,在时刻 t 时位移是有界的. 2.写出弦振动的边界条件:(1)在端点 x = 0 处,弦是移动的,由 g(t) 给出;(2) 在端点 x = L 处,弦不固定地自由移动. 3. 验证函数 u = f (xy) 是方程 xux − yu y = 0 的解,其中 f 是任意连续可微函数.
= u t a2u xx ,
x > 0, t > 0,
= u(0,t) u= 0 , u(x,0) 0, u(x,t)有界.
数学物理方程题库
![数学物理方程题库](https://img.taocdn.com/s3/m/c62b662dcfc789eb172dc836.png)
1
2) x 2 u xx + 2 xy u xy + y 2 u yy = 0 解 : 方 程 的 判 别 式 ∆ = a12 2 − a11 a 22 = ( xy ) − x 2 y 2 = 0. 所以方程为抛物型。 该方程的一组特征微分方程为 dy a12 y = = ,解 这 个 微 分 方 程 得 到 : dx a11 x
x
' 对上式积分得,a ⎡ f x − f x = − a ϕ ⎤ ( ) ( ) 1 2 ⎣ ⎦ ∫ ( x) dξ + c
x0
⎧ ϕ ( x) 1 x ' c − ∫ ϕ ( x) dξ + ⎪ f1 ( x) = 2 2 x0 2a ⎪ 于是得到, ⎨ x ⎪ f x = ϕ ( x) + 1 ϕ' x dξ − c ( ) ∫ ⎪ 2( ) 2 2 2a x0 ⎩ ⎧ ϕ ( x + at ) 1 x+at ' c f x + at = − ϕ x d ξ + ) ( ) ⎪ 1( ∫ 2 2 2a x0 ⎪ ⇒⎨ x0 c ⎪ f x − at = ϕ ( x − at ) + 1 ' ϕ x d ξ − ( ) ( ) ∫at ⎪ 2 2 2 2a x − ( ) ⎩ ⇒ u ( x,t) = f1 ( x + at ) + f2 ( x − at ) 1 1 = ⎡ ϕ x + at + ϕ x − at ⎤ − ϕ ' (ξ ) dξ ( ) ( ) ⎣ ⎦ ∫ 2 2 x−at = ϕ ( x − at )
2 ⎧ ⎪utt = a uxx ( −∞ < x < ∞) ⎨ ' u x ,0 = ϕ x , u x ,0 = − a ϕ ( ) ( ) ( ) ( x) ⎪ t ⎩ 根据题意,令u( x,t) = f1 ( x + at ) + f2 ( x − at )
数学物理方程课后作业答案
![数学物理方程课后作业答案](https://img.taocdn.com/s3/m/e9964b1859eef8c75fbfb3fc.png)
L
L
=
( nπ )
3
⎡ ⎣1 − cos ( nπ ) ⎤ ⎦ 16h ⎡ nπ a nπ x n ⎤ 1 − − 1 ⋅ cos t ⋅ sin ( ) 3 ⎣ ⎦ L L n =0 ( nπ )
+∞
∴ u ( x, t ) = ∑
+∞
=∑
32h 1 ( 2n + 1) π a t ⋅ sin ( 2n + 1) π x ⋅ ⋅ cos 3 3 L L n =0 π ( 2n + 1)
8
X ( x ) T / ( t ) = a 2 X // ( x ) T ( t ) − bX ( x ) T ( t ) T / ( t ) a 2 X // ( x ) = − b = −λ T (t ) X ( x)
由上式得到 T 与 X 所满足的常微分方程:
T / ( t ) + λT ( t ) = 0 X // ( x ) +
∴ (5)
b′2 = Lη − cη = 0
c′ = f ′ = 0
16u εη = 0,, ⇒ ,, u = f (ε ) + g (η ) = f (3 x − y ) + g ( x + y )
16u xx + 16u xy + 3u yy = 0
解:由题意可知: △=16 -4×16×3=64﹥0
′ a12 ′ ⎤ ⎡a11 ⎡a11 a12 ⎤ T ⎡3 − 1⎤ ⎡1 1⎤ ⎡3 1⎤ ⎡0 ⎢a′ a′ ⎥ = Q ⎢a a ⎥Q = ⎢1 1⎥ ⎢1 − 3⎥ ⎢− 1 1⎥ = ⎢8 ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎣ 12 22 ⎦ ⎣ 12 22 ⎦ 8⎤ 0⎥ ⎦
数学物理方程答案作业
![数学物理方程答案作业](https://img.taocdn.com/s3/m/199d007f28ea81c758f578c1.png)
因为w满足齐次方程,故u满足
齐次化原理得证。由齐次方程柯西问题解的泊松公式知
所以
即为所求的解。
所以
§2混合问题的分离变量法
1.用分离变量法求下列定解问题的解:
解:设 代入方程及边值得
求非零解 得
对应T为
因此得
由初始值得
因此
故解为
2.用分离变量法求解热传导方程的混合问题
解:设 代入方程及边值得
求非零解 得 n=1,2,……
对应T为
故解为
由始值得
因此
所以
1.证明拉普拉斯算子在球面坐标 下,可以写成
证:球坐标 与直角坐标 的关系:
, , (1)
为作变量的置换,首先令 ,则变换(1)可分作两步进行
, (2)
, (3)
由(2)
由此解出
(4)
再微分一次,并利用以上关系,得
所以
(5)
再用(3)式,变换 。这又可以直接利用(5)式,得
再利用(4)式,得所以Fra bibliotek即6.用分离变量法求解由下述调和方程的第一边界问题所描述的矩形平板 上的稳定温度分布:
解:令 代入方程,得
再由一对齐次边界条件 得
由此得边值问题
由第一章讨论知,当 时,以上问题有零解
又
求出通解,得
所以
由另一对边值,得
由此得,
解得
代入 的表达式得
9.求解波动方程的初值问题。
解:
=
=
=
=
+
=
+
所以
§3混合问题的分离变量法
1.用分离变量法求下列问题的解:
(1)
解:边界条件齐次的且是第一类的,令
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2次数学物理方程习题答案第七章6、一根杆由截面相同的两段连接而,两段的材料不同,弹性模量分别是EⅠ和EⅡ,密度分别是ρ1、ρ2.试写出衔接条件。
解:两段杆的接点设为x=0。
其波动方程分别为:011211111111>=-<=-x u Eu x u E u xx tt xx ttρρ在连接处,由于该波的振幅是连续的 ,于是有: )1(01101+-===x x u u在交接处的应力应该相等,这是由于相互作用力相等而得由于 xu n u xu n u ∂∂-=∂∂∂∂=∂∂111111 所以有:)2(01111011+-==∂∂=∂∂x x xu SE xu SE第3次第4次1、求解无限长弦的自由振动。
设弦的初始位移为)(x ϕ,初始速度为)(x a ϕ'-。
解: 泛定方程: ∞<<∞-=-x u a u xx tt 02初始条件:⎪⎩⎪⎨⎧'-====)()(00x a u x u t t t ϕϕ对于一维无界的弦振动,其解可用达朗贝尔公式:⎰+-+-++=atx atx d a at x at x t x u ξξψϕϕ)(21)]()([21),(其中:)()(x a x ϕψ'-= 对于积分项,有:)]()([21)(21)]([21at x at x d d a a at x at x at x at x +--=='-⎰⎰-++-ϕϕξϕξξϕ 所以,其解为: )()]()([21)]()([21),(at x at x at x at x at x t x u -=+--+-++=ϕϕϕϕϕ则只有右行波,是一行波,不是驻波。
8、半无限长的弦,初始位移和速度都是0,端点作微小振动t A u x ωsin 0==。
求解弦的振动。
解:将半无限长的弦拓展为无界空间的弦。
则其泛定方程为:∞<<∞-=-x u a u xx tt 02初始条件为:⎩⎨⎧<≥=⎩⎨⎧<≥===0)(00)(0000x x x u x x x u t tt ψϕ 其中)(x ϕ、)(x ψ为待定,(因为该两等于0时,方程只有0解) 边界条件:t A u x ωsin 0== 该泛定方程的达朗贝尔解为:⎰+-+-++=atx at x d aat x at x t x u ξξψϕϕ)(21)]()([21),( 将边界条件代入达朗贝尔解,得:⎰-+-+=atatd a at at t A ξξψϕϕω)(21)]()([21sin注意到:当0≥x 时,有0)(,0)(==x x ψϕ。
则有: 0)(,0)(0==⎰+atx d at ξξψϕ所以边界条件的方程变为: ⎰-+-=)(21)(21sin atd a at t A ξξψϕω 为了方便求)(x ϕ,不妨令at y -=,则有:⎰+=-0)(21)(21)(sin yd a y a y A ξξψϕω若取)(sin 2)(ayA y -=ωϕ,则0)(=x ψ。
于是有:0),(sin 2)(>-=x a xA x 其中ωϕ, 则:ax t at x a xt A a at x A at x >>--=--=-即其中,0),(sin 2)(sin 2)(ωωϕ 于是方程的解为:axt axt A at x t x u >-=-=),(sin )(21),(ωϕ第5 次《数学物理方程》第5次作业 参考答案1、长为l 的弦,两端固定。
弦中张力为T ,在距一端为0x 的一点以力F 0把弦拉开,然后突然撤除这力,求解弦的振动。
解:泛定方程为:2(1)tt xx u a u -=边界条件、初始条件为:000000(0,)(,)0(2),(0)(,0)(3)(),()(,0)0(4)t u t u l t F l x x x x T lu x F x l x x x l T lu x ==-⎧⋅<<⎪⎪=⎨⎪⋅-<<⎪⎩=令(,)()()1u x t X x T t =代入泛定方程(),得:222221+00(0)()0X T X a TT a T X X X X l λλλ''''==-''⎧=⎪⎨''+=⎪⎩==于是方程()变为:边界条件为:X 的解形式为:()cos sin 0(0,1,2,3,X x A x B x A n n lλλπλ=+===由边界条件可知:…)000001()cossin()(cos sin )n n n n n n T t T C D tn at n atT C D l ln at n atT t C D t C D l l ππππ∞==+=+=+++∑解的形式为:001(,)(,)(cos sin )sinn n n u x t n at n at n x u x t C D t C D l l l πππ∞==+++∑可写成:由初始条件(4),可知:00,0n D B ==。
由边界条件可知,00C =。
1(,)cos sinn n n at n x u x t C l l ππ∞==∑其解的形式可简化为:由边界条件(3),可得0000000()2()[sin sin ]x l n x F l x F l C d x d l T l T lξξξξξξ--=⋅+⋅⎰⎰利用分部积分,可求得:200002222221sin sin n F n x F l n x l C l T n l T n lππππ=⋅⋅=⋅所以,解为:00002222112211(,)sin cos sin sin cos sin n n F l n x F l n x n at n x n at n xu x t T n l l l T n l l l ππππππππ∞∞===⋅=∑∑4、长为l 的均匀杆,两端受压从而长度缩为(12)l ε-,放手后自由振动。
求解杆的纵振动。
解:泛定方程为:20(0)tt xx u a u x l -=<<边界条件是第二类边界条件:0,0xxx x lu u ====对于初始条件,我们认为当压缩时,两端的压缩量是一样的,均为ε,中点处的压缩为0。
这样,整个杆各截面的压缩量、初始速度可表示为:002(),02tt t lu x u ε===-=采用分离变数法求解,设(,)()()u x t X x T t =222221+0(0)()0X T X a TT a T X X X X l λλλ''''==-''⎧=⎪⎨''+=⎪⎩''==于是方程()变为:边界条件为:X 的解形式为:()cos sin 0(0,1,2,3,X x A x B x n n lλλπλ=+===由边界条件可知:B …)于是方程的解可以写成:001(,)(cossin )cos n n n n at n at n xu x t C D t C D l l lπππ∞==+++∑ 由初始条件:002(),02tt t lu x u ε===-=可得:0101(,0)cos2()2(,0)cos 0n n t nn n x lu x C C x l n n x u x D D l lπεππ∞=∞==+=-=+=∑∑即有:0,(0,1,2,3,n D n ==…)000002002212()022222()cos 2cos 2cos 22412[sin ]()[sin cos ]821,0,1,2,3,(21)2,0,1,2,3,l l l l n l l lC x dx l l n x l n x n x C dx dx x dxl l l l l ll n x n x n x n x n l l n l l l l n k k k n k k επππεεεεππππεππεπ=-==-=-=-+⎧=+=⎪+=⎨⎪==⎩⎰⎰⎰⎰…0? 于是方程的解为:22081(21)(21)(,)cos cos (21)k lk at k xu x t k l lεπππ∞=++=+∑11、在矩形区域0<x<a ,0<y<b 上求解拉普拉斯方程Δu=0,使满足如下边界条件,其中A 、B 为常数。
00(),0;sin,x x a y y b u Ay b y u u B u aπ=====-===解:先将方程的边界条件变为齐次的,作如下变换:(,)(,)(,)u x y v x y w x y =+0;0xx yy xx yy v v w w +=+=其边界条件分别如下所示:(0,)0(,0)sin(,)0(,)0(0,)()(,0)0(,)0(,)0x v y v x B a v a y v x b w y Ay b y w x w a y w x b π⎧==⎧⎪⎨⎨=⎩⎪=⎩=-=⎧⎧⎨⎨==⎩⎩ 这样,就可以分别对v 、w 进行分离变数求解。
2(,)()()0cos sin ,(0)0,()00,sin 0()sin y yn nv x y X x Y y X Y X Y XY X YX A x B x Y Ce De X X a A B a n x a n X X x B aλλλλλλλπλπ-=''''''''+=⇒=-=-''+=+==''='==设,代入拉普拉斯方程,得:于是,可解得:=由于:所以,有:=则有:。
于是,的本征表达式写为:111111()(,)()sin(,0)()sinsin(,)()sin0,0(1)n y n y a an n n n y n y aan n n n n n n b n b aan n n n n n b n b a an n Y y C eD en x v x y C eD ean xx v x C D B aa n x v xb C eD eaC D B C D n C eD eBeC ππππππππππππ-∞-=∞=∞-=-=+=+=+==+=+=+=≠+=-=∑∑∑对于Y,其本征函数可写成:于是,于是,有:求得:1()(),2()2()()0(1)()[](,)[]sinsin2()()b b b a aabb a an n b b y b y aaaBe BeD bbsh sh e eaaC D n b y Bsh Bexx a v x y e ebb aash sh aaπππππππππππππππ---------==-==≠-=-=所以:对于w(x,y)的求解,方法同上,其解形式可设为:1(,)()sinn xn xbannn n yw x y C e D e bπππ∞-=''=+∑ 由边界条件确定其待定常数。