激光原理与技术总结共34页
激光原理与技术
激光的光化学效应与光生物效应
光化学效应
激光能够激发化学反应,改变物质的化学性 质。光化学效应在光催化、光合成等领域具 有重要应用,如利用激光诱导化学反应合成 新材料。
光生物效应
激光对生物组织的作用,包括光热作用、光 化学作用和光机械作用等。光生物效应可用 于激光治疗、光遗传学等领域,如利用激光 进行视网膜修复、神经刺激等。
激光的特性
激光具有一系列独特的特性,如方向性好、亮度高、单色性好和相干性好等。这些特性使得激光在科学研 究、工业生产、医疗诊断等领域具有广泛的应用价值。
02
激光器类型与技术
固体激光器
01
02
03
晶体激光器
使用掺杂有激活离子的晶 体作为工作物质,如 Nd:YAG激光器。
玻璃激光器
以玻璃为基质,掺入激活 离子制成的激光器,如钕 玻璃激光器。
变换特性
利用光学系统,如透镜组、反射镜、波片等,可以对激光束进 行变换,如扩束、缩束、旋转、偏振状态改变等。
激光束的聚焦与整形
聚焦特性
通过透镜或反射镜等聚焦元件,可以将激光束聚焦到极小的焦点上,实现高能量密 度的集中。聚焦后的激光束可用于切割、焊接、打孔等高精度加工。
整形特性
利用特定的光学元件或算法,可以对激光束进行整形,如生成特定形状的光斑、实 现均匀照明等。整形后的激光束可应用于光刻、显示等领域。
激光治疗
利用激光的生物刺激效应,对病 变组织进行照射,以达到治疗目
的。
激光手术
使用激光代替传统手术刀进行手 术,具有精度高、出血少、恢复
快等优点。
激光美容
通过激光照射肌肤,改善皮肤质 地、去除色斑、减少皱纹等。
激光通信技术
光纤通信
激光原理与激光技术完整演示文稿
第5页,共48页。
对参考标准频率的要求: (1)谱线中心频率的稳定性和复现性要好。 (2)线宽要窄。 (3)有足够的信噪比。 (4)谱线频率与受控激光器频率要匹配。
兰姆凹陷稳频利用激光本身的原子跃迁中心频率作为参考点,而原子跃 迁的中心频率易受放电条件等影响而发生变化,所以频率稳定性和复现性受 到局限。
饱和吸收稳频:采用外界参考频率标准进行稳频,如在谐振腔中放入一 个低气压的原子(分子)吸收管,气压很低,碰撞加宽很小,吸收线中心频率 的压力位移也很小,吸收管无放电作用,故谱线中心频率比较稳定,谱线宽度 较窄,所以在吸收线中心处形成一个位置稳定且宽度很窄的凹陷,以此作为频 率的参考点,频率稳定性和复现性得到很大提高。
激光原理与激光技术完整演示 文稿
第1页,共48页。
激光原理与激光技术完整
第2页,共48页。
二、影响激光频率稳定的因素
激光振荡频率决定于原子跃迁中心频率 m 谐振频率 c ,谐
,谱线宽度 m ,谐振腔
通常情况下有: m c ,上式可简化为:
第11页,共48页。
基本思想:将传播方向相反而路径基本重合的两束泵浦光(或饱和光)与 探测光、穿过气体样品,当激光频率扫描到原子或分子的超精细能级的共振频 率时,根据多普勒效应,只有在探测光路径上速度分量为零的那部分原子或分 子由于其多普勒频移为零,才能同时与泵浦光和探测光发生共振相互作用,由 于较强的泵浦光使这部分原子在基态的数目减少,所以对探测光的吸收减少, 因而谱线呈吸收减弱的尖峰即超精细跃迁峰。
若激光器1相对于激光器2的稳定性很高,可以认为 1 0 (参考
激光原理及应用ppt课件
激光调制前
激光调制后
4.机械运动系统
• 基片送入后,高精度伺服电机在微机的控制下转动振镜的角度;
• 激光束通过扫描镜的反射,由f-θ场镜聚焦到基片的边缘位置上;
• 在微机上通过专用的控制软件输入总的清边面积、激光束的行走速度 和需要重复的次数;
E2
E2
E1
E1
自发辐射跃迁
自发辐射光子
c. 受激辐射(激光): 当频率为=ν(E2-E1)/h的光子入射时,会引发粒子以一定的概率,迅 速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都 相同的光子。
E2
E2
入射光子
E1
E1
受激辐射光子 入射光子
受激辐射跃迁 3-2 粒子数反转
(Top flat)
高斯
多元高斯
• 减少脉冲时间,高的峰值能量,更多的能量密度
Less pulse time, high peak power more energy density
能量密度=功率/频率/光斑面积
pulse
1.1uW/um=220W/20KHz/900um2
Hz
4.重叠率计算——Overlap
全反光镜
反光镜: (越75%
)
Shutter
激光器外形 接光纤
Q-Switch
晶体腔
功率计
激光器内部分解图(P4)
Q-Switch 半反镜
晶体腔 光纤耦合器
镜头聚焦原理——凸透镜
激光刻划原理——以P1为例
光斑
1.Beam Shaping (激光束形状)
• 一般的激光都为高斯分布的波形,即高斯光束,为实现特殊的制程需求,需要转变 成为扁平式波形的平顶光束,即Top Hat,通过透镜组改变光束质量和形状产生。
激光原理与技术
(1.1.10)
上述相空间体积元称为相格。相格是相空间中用任何实验所能分辨的最小尺度。
光子的某一运动状态只能定域在一个相格中,但不能确定它在相格内部的对应位置。
于是我们看到,微观粒子和宏观质点不同,它的运动状态在相空间中不是对应一点而是
对应一个相格。这表明微观粒子运动的不连续性。仅当所考虑的运动物体的能量和动量
ε=hv
(1.1.1)
式中 h=6.626×10-34J.s,称为普朗克常数。
(2)光子具有运动质量m,并可表示为
(1.1.2)
光子的静止质量为零。
整理ppt
7
(3)光子的动量P与单色平面光波的波矢k对应
(1
式中
n。为光子运动方向(平面光波传播方向)上的单位矢量。 4.光于具有两种可能的独立偏振状态,对应于光波场的两个独立偏振方向。 5.光于具有自旋,并且自旋量子数为整数。因此大量光于的集合, 服从玻色—爱因斯坦统计规律。处于同一状态的光子数目是没有限制的, 这是光子与其它服从费米统计分布的 粒子(电子、质子、中子等)的重要区别。 上述基本关系式(1.1.1)相(1.1.3)后来为康普顿(Arthur Compton)散射实验所证实 (1923年),并在现代量子电动力学中得到理论解释。量子电动力学从理论上把光的电磁 (波动)理论和光子(微粒)理论在电磁场的量子化描述的基础上统一起来,从而在理论上 阐明了光的波粒二象性。在这种描述中,
远远大于由普朗克常数h所标志的l量hv9和hk,以致量子化效应可以忽略不计时,
量子力学运动才过渡到经典力学运动。
从式(1.1.10)还可得出,一个相格所占有的坐标空间体积(或称相格空间体积)为
ΔxΔyΔz︾h3/(ΔPxΔPyΔPz)
(1.1.11)
激光原理总结
激光原理总结⼀共四章§Chapter 1爱因斯坦系数/激光产⽣条件/激光结构/激光优点1. ⾃发辐射: 上能级粒⼦,⾃发地从E2能级跃迁到E1能级,并辐射出光⼦2. 受激辐射: 上能级粒⼦,遇到能量等于能级差的光⼦,在光⼦激励下,粒⼦从E2能级跃迁到E1能级,并辐射出⼀个与⼊射光⼦完全相同的光⼦3. 受激吸收: 下能级粒⼦,遇到能量等于能级差的光⼦,在光⼦激励下,粒⼦从E1能级跃迁到E2能级,并吸收⼀个⼊射光⼦三个爱因斯坦系数:dn21=A21n2dt(⾃发辐射)dn′21=B21n2ρv dt(受激辐射)dn12=B12n1ρv dt(受激吸收)三个爱因斯坦系数的关系:A21 B21=8πhν3 c3B12g1=B21g2粒⼦数反转分布状态:dn′21 dn12=g1n2g2n1>1受激辐射⼤于受激吸收,打破波尔兹曼分布。
此时可称“得到增益”。
⽽普通情况下,受激辐射/⾃发辐射较⼩(计算参看讲义)。
总结:产⽣激光的基本条件是“粒⼦数反转分布和增⼤⼀⽅向上的光能密度”激光器的基本结构:1. ⼯作物质:增益介质/粒⼦数反转/上能级为亚稳态2. 激励装置:能源/光/电3. 谐振腔:反馈/光强/模式三能级系统:亚稳态寿命长,阈值⾼,转换效率低。
如红宝⽯激光器四能级系统:阈值低,连续运转,⼤功率。
如He-Ne激光器的优点:1. 相⼲性好:受激辐射的光具有相⼲性,相⼲长度L c=λ2Δλ,相⼲时间τ=L cc2. ⽅向性好:谐振腔3. 单⾊性好4. 亮度⾼:受激辐射的光强⼤§Chapter 2稳定性/模式分析/⾼斯光束腔的分类参考Ch2-P1光腔的稳定性条件:傍轴模在腔内往返⽆限多次不逸出腔外,数学形式如下g 1=1−L R 1,g 2=1−L R 20≤g 1g 2≤1按照稳定性得到三种腔♥0<g 1g 2<1稳定腔♥g 1g 2=0org 1g 2=1临界腔♥g 1g 2<0org 1g 2>1⾮稳腔 ♥ ♥ ♥ ♥♥ ♥ bbx ♥ nnx 图解法判断腔的稳定条件Ch2-P2⽤上述条件判断各种腔的稳定性,注意曲率R 的⽅向"凹⾯向着腔内时(凹⾯镜),R >0;凸⾯向着腔内时(凸⾯镜),R <0"。
2024版激光原理与技术PPT(很全面)
•激光基本原理•激光器类型及技术•激光束特性及控制技术目录•激光与物质相互作用•激光测量与检测技术•激光通信与信息处理技术•激光安全与防护技术光的自发辐射与受激辐射自发辐射原子或分子在没有外界作用下,由于自身能级的不稳定性而自发地从高能级向低能级跃迁,同时发射出一个光子的过程。
受激辐射原子或分子在外界光子的作用下,从高能级向低能级跃迁,同时发射出一个与入射光子完全相同的光子的过程。
区别与联系自发辐射是随机的,而受激辐射是确定的;自发辐射产生的光是非相干的,而受激辐射产生的光是相干的。
光放大当外来光信号通过激光工作物质时,受激辐射产生的光子与入射光子具有相同的频率、相位、传播方向和偏振状态,从而实现光信号的放大。
粒子数反转在激光工作物质中,高能级上的粒子数多于低能级上的粒子数,形成粒子数反转分布。
实现方法通过泵浦源提供能量,使激光工作物质中的粒子被激发到高能级,形成粒子数反转分布。
粒子数反转与光放大产生条件特性应用领域030201激光的产生与特性晶体激光器玻璃激光器光纤激光器He-Ne 激光器CO2激光器以氦气和氖气作为工作气体,产生红色可见光激光,常用于精密测量和准直。
Ar+激光器染料激光器液体激光核聚变半导体激光器边发射半导体激光器面发射半导体激光器采用垂直腔面发射结构,具有低阈值电流、圆形光束和易于集成等特点,适用于光通信和光互连等领域。
激光束的传输与聚焦激光束的传输特性01激光束的聚焦原理02激光束的聚焦技术03介绍评价激光束质量的常用参数,如光束直径、发散角、光强分布等。
激光束质量评价参数阐述实验测量和数值模拟等方法在激光束质量评价中的应用。
激光束质量评价方法分析激光束质量对激光加工、光通信、激光雷达等应用的影响。
激光束质量对应用的影响激光束的质量评价激光束的控制与整形激光束控制技术激光束整形技术激光束控制与整形的应用激光与物质相互作用的基本过程激光束在物质中的传播激光与物质相互作用的机理激光与物质相互作用的特点1 2 3激光加工的基本原理激光加工的应用领域激光加工的优势激光加工原理及应用利用激光的高能量密度和生物效应,对生物组织进行照射,以达到治疗疾病的目的。
激光的原理及技术基础
激光技术的发展趋势
高效化
提高激光器的输出功率 和能量转换效率,以满
足各种应用需求。
微型化
减小激光器的体积和重 量,使其更加便携和易
于集成。
智能化
结合人工智能和机器学 习技术,实现激光器的
智能控制和优化。
多波段化
开发多波段激光器,以 满足不同应用领域的特
殊需求。
未来激光技术的应用前景
01
02
03
04
在激光中,受激辐射通过共振腔的作 用得到放大,使得某一特定波长的光 得到增强,最终形成激光。
激光器的基本组成
激光器由工作物质、共振腔和泵浦源三部分组成。工作物质 是产生激光的物质,共振腔是维持和放大激光的装置,泵浦 源则提供能量使工作物质发生受激辐射。
通过调整共振腔的反射镜间距和角度,可以控制激光的波长 、模式和输出功率等参数。同时,通过改变泵浦源的功率, 可以调节激光的输出功率和模式。
激光武器
激光雷达侦查
利用高能激光束对目标进行打击,具有快速、 灵活、低成本等优点,可应用于反导、反卫 星等领域。
利用激光雷达对敌方目标进行高精度侦查和 定位,获取情报信息,为军事行动提供决策 支持。
04 激光的特性与优势
激光的特性
单色性
方向性
激光的波长范围非常窄,因此具有极高的 单色性。这使得激光在光谱分析、干涉测 量等领域具有广泛的应用。
02 激光技术基础
激光调制技术
直接调制
通过改变注入电流的大小来改变 激光的输出功率,适用于低频信 号的调制。
外部调制
使用一个外部装置来改变激光的 参数,如偏振态或相位,适用于 高速信号的调制。
激光放大技术
半导体激光放大器
激光原理与技术总结PPT课件
为常数,即 dn2 / dt dn1 / dt 0 (VI)变为:
n1W13 S32 A31
S32
B12 (n1
n2
)
n2
(
A21
S21 )
0
第30页/共32页
该式应该对于任意大小 的均成立,
所以只有
B12(n1 n2,) 即0 时才
可以。这样由上式可得: n1 n2
T MN
(M:原子质量;MN:原子量)
第12页/共32页
四、增益系数
增益系数: G u1 Nu1
受激辐射截面积: u1
c2
8
2
Au1
g( )
粒子数之差:
N u1
Nu
gu g1
N1
第13页/共32页
五、速率方程
1.三能级系统(1,2能级产生激光)
⑴跃迁图
第14页/共32页
⑵速率方程
S32
B12(n1 n2 ) n2 ( A21 S21)
第28页/共32页
由于: dn2 dn1 dt dt
所以:
dn2 dt
dn1 dt
2
n1W13 S32 A31
S32
B12 (n1
n2 ) n2 ( A21
S21)
(VI)
第29页/共32页
而要使入射光的能量密度等于出
dNl dt
(n2
f2 f1
n1) 21( , 0 )vNl
Nl
Rl
(IV)
第27页/共32页
其中(II)式可以改写为
dn2 dt
n3S32
B12(n1 n2 ) n2 ( A21 S21)
激光原理与技术PPT课件
激光手术
阐述激光手术在眼科、神 经外科等领域的应用及优 势,如精度高、创伤小等 。
05
CATALOGUE
激光测量与检测技术
激光干涉测量技术
1 2
干涉测量原理
利用激光的相干性,通过干涉条纹的变化来测量 长度、角度等物理量。
干涉测量系统组成
包括激光器、分束器、反射镜、探测器等部分。
3
干涉测量技术应用
时间特性
激光束的时间特性包括脉冲宽度、重复频率和稳定性等。其中,脉冲宽度决定 了激光的峰值功率和能量,重复频率则影响了激光的平均功率。稳定性则是确 保激光束在长时间内保持一致性的关键因素。
激光束的调制与偏转技术
调制技术
通过对激光束进行幅度、频率或相位等调制,可以实现信息 的加载和传输。常见的调制方式包括振幅调制、频率调制和 相位调制等。这些调制技术使得激光束能够携带更多的信息 ,并在通信、传感等领域得到广泛应用。
对皮肤的危害
长时间或高强度激光照射皮肤, 可能导致皮肤烧伤、色素沉着、 皮肤癌等严重后果。
激光安全标准与防护措施
激光安全标准
国际电工委员会(IEC)和美国激光产品安全标准(ANSI)等制定了激光产品的 安全标准,包括激光等级分类、安全警示标识、使用说明等。
防护措施
使用激光产品时,应佩戴合适的防护眼镜或面罩,避免直接照射眼睛或皮肤;同 时,应在激光工作区域内设置明显的安全警示标识,提醒他人注意安全。
偏转技术
激光束的偏转技术主要是通过改变激光束的传播方向来实现 。常见的偏转方式包括机械偏转、电光偏转和声光偏转等。 这些偏转技术使得激光束能够灵活地指向目标,并在激光雷 达、光学扫描等领域发挥重要作用。
激光束的聚焦与整形技术
2024年激光原理与技术课件课件
激光原理与技术课件课件激光原理与技术课件一、引言激光作为一种独特的人造光,自20世纪60年代问世以来,已经在众多领域取得了举世瞩目的成果。
激光原理与技术已经成为现代科学技术的重要组成部分,并在光学、通信、医疗、工业加工等领域发挥着重要作用。
本课件旨在阐述激光的基本原理、特性以及应用技术,使读者对激光有更深入的了解。
二、激光的基本原理1.光的粒子性与波动性光既具有粒子性,也具有波动性。
在量子力学中,光被视为由一系列光子组成的粒子流,光子的能量与频率成正比。
而在波动光学中,光被视为一种电磁波,具有频率、波长、振幅等波动特性。
2.光的受激辐射受激辐射是指处于激发态的原子或分子在受到外来光子作用后,返回基态并释放出一个与外来光子具有相同频率、相位、传播方向和偏振状态的光子。
这个过程是激光产生的核心原理。
3.光的放大与谐振在激光器中,通过光学增益介质实现光的放大。
当光在增益介质中往返传播时,不断与激发态原子或分子发生受激辐射,使光子数不断增加。
同时,通过谐振腔的选择性反馈,使特定频率的光得到进一步放大,最终形成激光。
三、激光的特性1.单色性激光具有极高的单色性,即频率单一。
这是由于激光器中的谐振腔对光的频率具有高度选择性,只有满足特定频率的光才能在谐振腔内稳定传播。
2.相干性激光具有高度的相干性,即光波的相位关系保持稳定。
相干光在传播过程中能形成稳定的干涉图样,广泛应用于光学检测、全息成像等领域。
3.方向性激光具有极高的方向性,即光束的发散角很小。
这是由于激光器中的谐振腔对光的传播方向具有高度选择性,只有沿特定方向传播的光才能在谐振腔内稳定传播。
4.高亮度激光具有高亮度,即单位面积上的光功率较高。
这是由于激光的单色性、相干性和方向性使其在空间上高度集中,从而具有较高的亮度。
四、激光的应用技术1.光通信激光在光通信领域具有广泛应用,如光纤通信、自由空间光通信等。
激光的高单色性、相干性和方向性使其在传输过程中具有较低的信号衰减和干扰,从而实现高速、长距离的数据传输。
激光原理与技术
第3章:激光纵模:每一个q值对应有正反两列沿相反方向传播的同频率光波两列光波的结果,将在腔内形成驻波。
谐振腔形成的每一列驻波称为一个纵模。
激光谐振腔的谐振频率主要决定于纵模序数Vmnq=qc/2μL.腔内两个相邻纵模频率之差为纵模的频率间隔:△Vq=Vq+1-Vq=c/2μL.激光纵模:激光的模式也常采用微波中标志模式的符号来标记,极为TEMmnq,其中TEMoo是基横模。
激光横模:在激光谐振腔存在的稳定的横向分布,就是自再现模,通常称为横模。
m、n的值正好分别等于光强在x,y方向上的节线(光强为0的线)数目,而且由Fm (X)和Fn(Y)函数的机制分布看出,m、内的值越大,光场也越向外扩展。
基横模行波输出在与光束前进方向的垂直平面上的强度呈高斯型分布,通常称为高斯光束。
高斯光束与普通光束有很大区别,它的传播方向性好很好,同时也会不断的发散,其发散的规律不同于球面波,在传播过程中她的波面曲率一直在变化,但是永远不会变成0,除光束中心外,高斯光束并不沿直线传播。
高斯光束的强度分布:在z处基膜的有效截面半径w (z)=根号下λL[1+(2z/L) ²]/2π。
在共焦腔中心(z=0)的截面内光斑有极小值束腰半径:Wo=Ws/根号2=根号下λL/π除以根号2;在共焦腔的焦平面上,束腰半径Wo最小。
该处称为高斯光束的“光腰”或“束腰”。
基膜光斑尺寸:Ws=根号下Xs ²+Ys²=根号下λL/π。
高斯光束共焦场的相位分布由相位函数φ(x,y,z)描述,φ(x,y,z)随坐标而变化,与腔的轴线相交于Zo的等相位面的方程为:φ(x,y,z)=φ(0,0,Zo),则偏离实际广州的程度Z-Zo=(根号下Ro²-(x²+y²))-Ro。
当zo>0时,Z-Zo<0;当Zo<0时,Z-Zo>0.这就表示,共焦场的等相位面都是凹面向着腔的中心(z=0)的球面。
激光原理与技术ppt课件2024新版
激光束的传输与变换
激光束的传输特性
探讨激光束在自由空间和光学系统中 的传输特性,包括光束的发散、聚焦 和像差等。
激光束的质量控制
阐述激光束质量评价的标准和方法, 以及提高激光束质量的措施和技术。
激光束的变换方法
介绍常见的激光束变换方法,如透镜 变换、反射镜变换和光纤传输等,并 分析它们的应用场景和优缺点。
激光原理与技术 ppt课件
目录
• 激光原理概述 • 激光技术基础 • 固体激光器 • 气体激光器 • 液体激光器与光纤激光器 • 激光技术的应用与发展趋势
01
激光原理概述
激光的产生与发展
01
1917年,爱因斯坦提出 “受激辐射”理论
02
03
1954年,美国物理学家 汤斯和肖洛提出激光原 理
1960年,梅曼制成世界 上第一台红宝石激光器
03
固体激光器
固体激光器的结构与工作原理
固体激光器的组成
工作物质、泵浦源、光学谐振腔
工作原理
通过泵浦源提供能量,使工作物 质中的粒子实现粒子数反转,然 后在光学谐振腔的作用下产生激
光振荡,输出激光。
光学谐振腔的作用
提供正反馈,使受激辐射光不断 放大,同时控制激光输出的方向
和质量。
固体激光器的性能特点
液体激光器与光纤激光器的性能特点及应用
液体激光器
主要应用于可调谐激光光谱学、生物 医学成像等领域。
光纤激光器
广泛应用于工业加工、通信、医疗等 领域,如激光切割、焊接、打标等。
06
激光技术的应用与发 展趋势
激光加工技术的应用与发展
激光切割
高精度、高效率的切割方法,广泛应用于金 属、非金属材料的加工。
激光原理与技术期末知识点总结
辐射跃迁和非辐射跃迁
1. 辐射跃迁:发射或吸收光子从而使原子造成能级间跃迁的现象。它必须
满足辐射跃迁选择定则。
如果原子的两个能级满足辐射跃迁选择定则,则有可能出现下述情况:
1) 一个处于高能级E2的原子,发射一个能量为 = h = E2 − E1
的光子,结果这个原子回到低能级E1。
2)一个处于低能级E1原子,从外界吸收一个能量为 = h = E2 − E1
➢当 ⋅ = 或 ⋅ = 时,共轴球面谐振腔为临界腔
三能级系统和四能级系统的受激发光过程
1. 三能级系统:如图(2-4a),下能级E1是基态能级,上能级E2 是
亚稳态能级,E3为抽运高能级。其主要特征是激光的下能级为基
态,发光过程中下能级的粒子数一直保存有相当的数量。
=
h
2
h
=
mc
c2
h
h
h 2
h
n0 = n0 =
n0 =
k
c
2
2
式(1-17)和式(1-18)把表征粒子性的能量ε和动量P与表征波动性的
频率ν和波长λ联系起来,体现了光的波粒二象性的内在联系。
原子能级示意图
原子能级和简并度
En
微观粒子(电子)只能处于一系列本征状态
E2
每一状态具有分立的能量值——能级
2 kT ν0
1/2
2 ln 2
f D (v0 ) =
vD
0.939
vD
ν − ν0
2 ln 2 1 2 −[4ln 2( νD ) ]
f D (ν ) =
( ) e
激光原理与技术-各章内容整理
9.【掌握】高斯光束的自再现变换条件及其求解.
2、3、6、7、8、9
(2.1.2)、(2.1.3)、(2.1.2.1.7)、(2.1.31)、(2.2.18)、(2.2.19)、(2.2.20)、(2.2.24)、(2.5.20)、(2.5.28)、(2.6.13)、(2.6.22或2.8.1)、(2.8.4)、(2.9.2)、(2.10.12)、(2.11.10)、(2.12.1)、(2.12.5)、(2.12.8)
5.【理解】自再现模的概念;方形镜共焦腔中基模――镜面和行波场的基模自再现模在镜面和空间的等相位面分布,并能根据基模表达式求出光斑尺寸,腰斑尺寸,了解纵模间隔和横模间隔的关系;了解模体积的概念。
6.【掌握】一般稳定球面腔和共焦腔的等价性、等价性求解和画图.
7.【掌握】给出高斯光束q参数表示,q参数的变换规律,用q参数分析已知高斯光束经过透镜或其他光学系统后的变换.
4.【掌握】损耗系数、光的自激振荡条件
5.【理解】激光四性,横模和纵模分别对应激光的哪些参数
.3.3)、(1.3.7)、(1.3.9)、
(1.4.1)、(1.4.4)、(1.4.5)
(1.5.1)
第一章激光的基本原理
第二章开放式光腔和高斯光束
主要内容
重点
公式
1.【理解】光腔的构成、作用、什么是光腔的模、腔和模的关系
2.【掌握】求解腔的驻波条件、谐振频率(波长)、纵模间隔;光腔损耗的种类,倾斜损耗和衍射损耗的计算,菲涅耳数及其对损耗的影响平均单程损耗因子。
3.【掌握】光线的往返矩阵求解(注意曲率半径的正负)、常见传输矩阵(自由空间、透镜、球面镜等)、球面腔(稳定、非稳腔、临界腔)判断依据
激光原理与技术各章重点(基本补全)
激光原理与技术期末总复习第1章1.激光产生的必要条件(粒子数反转分布)2.激光产生的充分条件(在增益介质的有效长度内光强可以从微小信号增长到饱和光强)3.饱和光强定义:使激光上能级粒子数减小为小信号值的1/2时的光强为饱和光强4.谱线加宽的分类:均匀加宽和非均匀加宽两种加宽的本质区别?5激光器泵谱技术的分类:直接泵谱缺点:首先从基态E1到激光上能级E3往往缺乏有效途径,即B13(对光泵浦)或σ13(对粒子泵浦)太小,难以产生足够的增益;其次即使存在E1 E3的有效途径,但同一过程可能存在由E1到激光下能级E2的有效途径,结果是W12/W13太大难以形成粒子反转分布。
这些缺点是直接泵浦方式对很多激光器来说是不适用的。
间接泵谱:分为自上而下、自下而上和横向转移三中方式)间接泵谱的优点:首先,中间能级具有远大于激光上能级的寿命,且可以是很多能级形成的能带,因而,Ei 上很容易积累大量的粒子;其次,在有些情况下,将粒子从基态激发到Ei 的几率要比激发到Eu 的几率大得多,这就降低了对泵浦的要求;最后,依据选择定则,可以使Ei 向Eu 的弛豫过程比Ei 向激光下能级Ei 的弛豫过程快得多6..频率牵引有源腔中的纵模频率总是比无源腔中同序数频率更接近工作物质的中心频率7.能画出激光工作物质三能级系统能级图,说明能级间粒子跃迁的动态过程?8.当粒子反转数大于零时,在激光谐振腔中能够自激振荡吗?为什么?9. 激光的特性(单色性、方向性、相干性和高亮度)10. 证明光谱线型函数满足归一化条件证明: ⎰⎰⎰+∞∞-+∞∞-+∞∞-====1)()()(ννννννd g I d Ig d I I则 11.激光器的输出特性。
(43页)???第2章1.光学谐振腔的分类和作用分类:能否忽略侧面边界,可将其分为开腔,闭腔以及气体波导腔按照腔镜的形状和结构,可分为球面腔和非球面腔是否插入透镜之类的光学元件,或者是否考虑腔镜以外的反射表面,可以分为简单腔和符合腔 u u u u S h A c h I τσντνπν11228==)211(2121111τττπν++++=∆∑∑u jj i ui H A A N D M T Mc kT 072/120)1016.7(])2(ln 2[2ννν-⨯==∆⎰+∞∞-=1)(ννd g根据腔中辐射场的特点,可分为驻波腔和行波腔从反馈机理的不同,可分端面反馈腔和分布反馈腔根据构成谐振腔反射镜的个数,可分为两镜腔和多镜腔作用:①提供轴向光波模的光学反馈;②控制振荡模式的特性2.光学谐振腔的损耗分类:几何损耗、衍射损耗、输出腔镜的透射损耗和非激活吸收、散射等其他损耗计算:单程损耗:12m βδ==D 为平平腔镜面的横向尺寸(反射镜的直接)β两镜面直接的小角度L 两镜面直接的距离(腔长))单程衍射p59开始带图3.推导平平腔的两个相邻纵模的频率间隔证明:4.以平-平腔为例理解光学谐振腔横模的形成过程5. 用g 参数表示的谐振腔稳定性条件6..高斯光束高斯光束既不是平面波、也不是一般的球面波,在其传播轴线附近可以近似看作是一种非均匀高斯球面波。