D类音频功放设计

合集下载

D类功放原理与设计

D类功放原理与设计

D类功放原理与设计D类功放是一种利用数字技术来增强音频信号的功率的放大器。

它是一种以数字方式来放大音频信号的功放,以取代传统的A、B、AB类功放。

相较于传统的类A、B、AB功放,D类功放具有更高的效能和更小的体积。

它的设计原理基于PWM(脉宽调制)技术和一个能将模拟信号转换为数字信号的模拟-数字转换器(ADC)。

D类功放工作在开关状态,将输入的模拟音频信号转换为数字信号。

这个数字信号经过时钟和滤波器的处理,输出的是一个PWM波形。

PWM波形有两个状态,即高电平和低电平。

这两个状态之间的切换频率即为PWM频率。

高电平和低电平的占空比(高电平的时间占总周期的比例)根据输入音频信号的幅度进行调整。

PWM波形输出通过一个低通滤波器进行平滑处理,得到放大后的音频信号。

在这个过程中,由于D类功放开关状态的工作,功率损耗很小,效率非常高,达到了90%以上,远高于传统功放的30%~60%。

D类功放的优势不仅体现在效率上,还包括尺寸小、重量轻、发热量少等。

这使得D类功放非常适合应用在便携式电子设备、汽车音响和家庭影院等领域。

另外,由于D类功放的输出波形是PWM波形,因此它对输出的音频信号几乎没有非线性失真,能够提供高保真的音质。

在设计D类功放时,需要考虑以下几个方面:首先,要选择合适的ADC和PWM控制器。

ADC应具有高精度和高采样率,能够准确地将模拟信号转换为数字信号。

PWM控制器应具有稳定的时钟频率,能够产生高质量的PWM波形。

其次,要设计合适的滤波器。

滤波器的作用是平滑PWM波形,去除其中的高频成分。

设计滤波器时需要考虑的参数有截止频率、阶数和选择合适的滤波器类型(如二阶有源滤波器)。

另外,还需要设计适当的保护电路。

因为D类功放工作在高频开关状态,过电流、过压和过热都可能对电路造成严重损害。

因此,需要设计过电流保护电路、过压保护电路和过热保护电路来确保功放的稳定运行和安全性能。

最后,输出级的功率管选取也是设计D类功放时需要考虑的关键问题。

毕业设计D类音频功率放大器设计

毕业设计D类音频功率放大器设计

摘要本项目涉及高效节能、数字化、体积小、重量轻等特点的D类功率音频放大器。

适应便携设备高效及节能的客观要求。

顺应了市场的客观要求。

从而在音频集成领域具有很大的优势。

随着设计技术不断进步D类功率放大器的要求也在不断提高,本文通过基于CMOS工艺的D类功率音频放大器构成、驱动实现、失真度等方面的特性来进行电路的设计。

本课题的目标是设计一个D类音频功率放大器,能对音频信号进行放大,放大器的通频带达到300~3400HZ,输出功率1W,输出信号无明显失真。

根据D类功放的原理分别设计了前置放大模块、三角波产生模块、比较器模块、驱动模块、H 桥互补对称输出及低通滤波模块等。

其中三角波产生器及比较器共同组成脉宽调制(PWM)模块,H 桥互补对称输出电路采用驱动电流小、低导通电阻及良好开关特性的VMOSFET 管,滤波器采用两个相同的四阶 Butterworth 低通滤波器。

关键词 : D类功率放大器 H桥驱动脉宽调制AbstractThis project involves a high efficiency and energy saving, digitization, small volume, light weight and other characteristics of the class D audio power amplifier. Adapt to the portable device and the objective requirements of high efficiency energy saving. Comply with the objective requirements of the market. Thus in the audio integrated field has a great advantage. With the continuous progress of design technology of D type power amplifier requirements are also rising, based on CMOS technology class D audio power amplifier structure, drive, distortion and other aspects of the characteristics of circuit design. The purpose of this paper is to design a class D audio power amplifier, can amplify the audio signal, the amplifier pass band to achieve 300 ~ 3400HZ, 1W output power, output signal without significant distortion. According to the principle of class D power amplifier are respectively designed preamplifier module, triangle wave generating module, comparator module, drive module, H bridge complementary symmetry output and low pass filter module. The triangle wave generator and comparator is composed of pulse width modulation ( PWM ) module, H bridge complementary symmetry output circuit adopts the drive current is small, low resistance and good switching characteristics of VMOSFET tube, filter using two identical four order Butterworth low pass filter.Key words: class D power amplifier H bridge driver pulse width modulation目录摘要 (I)第1章任务与要求 (1)1.1课题概述 (1)1.2 设计内容与要求 (1)1.3 参数要求 (1)第2章绪论 (2)2.1 研究背景 (2)2.2 论文研究目标和意义 (2)2.3 论文章节安排 (3)第3章方案论证与设计 (4)3.1 总体设计分析 (4)3.2 原理分析 (4)3.2.1 D类放大器的原理 (4)3.3 系统设计 (5)3.4 方案的设计与选择 (5)3.4.1 三角波模块方案的设计 (5)3.4.2 高速开关电路 (5)3.4.3 滤波器的选择 (6)3.4.4 信号变换电路 (6)3.4.5 功率测量电路 (6)第4章硬件电路设计 (8)4.1硬件电路 (8)4.1.1 三角波发生器 (8)4.1.2 放大电路 (8)4.1.3 脉宽调制比较器 (9)4.1.4 驱动电路、H桥及低通滤波电路 (10)4.1.5 保护电路 (11)4.1.6 信号变换电路 (12)4.1.7 真有效值转换电路 (12)第5章电路调试 (14)5.1 调试的设备 (14)5.2 硬件电路调试步骤 (14)5.2.1 不通电检查 (14)5.2.2 通电检查 (14)5.2.3 测试和调整 (14)5.2.4 整机联调 (15)5.3 实际测试的参数 (15)5.3.1 三角波发生器电路 (15)5.3.2 脉宽调制比较器 (16)第6章使用说明与总结 (17)6.1 使用方法 (17)6.1.2 注意事项 (17)6.2 故障分析 (17)6.3 总结 (17)6.2.1 原理图设计中要注意的事项 (17)6.2.2 安装过程总结 (17)6.2.3 单元电路调试总结 (17)6.2.4 PCB设计应注意的问题 (18)6.2.4 整机指标测试总结 (18)参考文献 (19)致谢 (20)附件A:总原理图 (21)附件B:PCB图 (22)附录C:元件清单 (23)第1章任务与要求1.1课题概述设计并制作一个高效率音频功率放大器及其参数的测量、显示装置。

D类音频功率放大器的设计方案与测试

D类音频功率放大器的设计方案与测试

D 类音频功率放大器的设计与测试本系统由咼效率功率放大器(D 类音频功率放大器)、信号变换 电路、外接测试仪表组成,系统框图如图 1所示。

b ・ OluFf; *! ] W Yn.r -?.-.-击去vn g n图1系统方框图1. D 类功放的设计D 类放大器的架构有对称与非对称两大类, 在此讨论的D 类功 放针对的是对功率、体积都非常敏感的便携式应用,因此采用全电桥 的对称型放大器,以充分利用其单一电源、系统小型化的特点。

D 类 功率放大器由PWM 电路、开关功放电路及输出滤波器组成,原理框 图如图2所示。

采用了由比较器和三角波发生器组成的固定频率的 PWM fe 路,用 输入的音频信号幅度对三角波进行调制,得到占空比随音频输入信号 幅度储号变挟电路变化的方波,并以相反的相位驱动上下桥臂的功率管,使功率管一个导通时另一个截止,再经输出滤波器将方波转变为音频信号,推动扬声器发声。

采用全桥的D类放大器可以实现平衡输出,易于改善放大器的输出滤波特性,并可减少干扰。

全桥电路负载上的电压峰峰值接近电源电压的2倍,可采用单电源供电。

实现时,通常采取2路输出脉冲相位相反的方法。

图2 D类音频功率放大器组成框图D类功率放大器的工作过程是:当输入模拟音频信号时,模拟音频信号经过PWM调制器变成与其幅度相对应脉宽的高频率PWM脉冲信号,控制开关单元的开/关,经脉冲推动器驱动脉冲功率放大器工作,然后经过功率低通滤波器带动扬声器工作。

2.比较器比较器电路米用低功耗、单电源工作的双路比较器芯片 LM311构 成。

此处为提高系统效率,减少后级 H 桥中CMOS 管不必要的开合, 用两路偏置不同的三角波分别与音频信号的上半部和下半部进行比 较,当正端上的电位高于负端的电位时,比较器输出为高电平,反之 则输出低电平。

这样产生两路相互对应的PWM 波信号给后级驱动电路 进行处理,双路比较电路如图3所示。

图3比较器电路此处值得注意的是将上半部比较处理为音频信号接比较器的负 向端、三角波信号接正向端;下半部比较则相反,这样形成相互对应, 在音频信号的半部形成相应 PWM 波时,另半部为低电平,可保征后 级H 桥中的CMOS 管没有不必要的开合,以减少系统功率损耗。

D类功放的设计原理

D类功放的设计原理

D类功放的设计原理D类功放,全称为“数字功率放大器”,是一种电子功率放大器的类型,它的设计原理基于数字信号的处理和模拟功率放大电路的协同工作。

相比于传统的A类、B类、AB类功放,D类功放具有更高的功率效率,更小的尺寸和重量,更好的线性度,以及更低的功率损耗。

下面将详细介绍D类功放的设计原理。

1.PWM调制原理D类功放的核心设计原理是采用脉宽调制(PWM)技术。

PWM是一种通过调整信号的脉冲宽度来控制平均输出功率的方法。

D类功放通过将原始的模拟音频信号转换为数字信号,并通过比较器产生一个与模拟信号频率相同的矩形波,然后根据输入音频信号的幅值调整矩形波的脉宽,最后通过滤波器将调制后的PWM信号转换为模拟音频信号输出。

2.数字信号处理D类功放的设计中需要进行数字信号处理。

首先,输入的模拟音频信号需要经过模数转换器(ADC)转换为数字信号,然后通过数字信号处理器(DSP)进行数字信号的滤波、均衡、增益控制等处理,最后再经过数字模数转换器(DAC)转换回模拟信号。

3.比较器比较器是D类功放中的一个关键组件,用于将模拟音频信号与产生的PWM矩形波进行比较。

比较器的作用是根据输入信号的幅值调整PWM信号的脉宽,从而控制输出功率。

比较器通常由操作放大器和参考电压产生器组成。

4.滤波器在PWM调制之后,需要通过滤波器将调制后的PWM信号转换为模拟音频信号输出。

滤波器的作用是去除PWM信号中的高频分量,保留音频信号的低频成分。

常见的滤波器类型包括低通滤波器和带通滤波器。

5.输出级D类功放的输出级通常采用开关管(如MOSFET)构成。

开关管的特点是具有较低的开通电阻和较高的关断电阻,从而实现更小的功率损耗和更高的功率效率。

输出级通常由多个开关管组成,根据功率需求可以并联或串联排列。

输出级的设计需要考虑电压和电流的控制,包括过电压和过电流的保护。

6.反馈控制为了提高D类功放的线性度和稳定性,通常需要采用反馈控制。

通过对输出信号与输入信号进行比较,调整PWM信号的脉宽和幅值,以使输出信号尽可能接近输入信号。

D类音频功率放大器设计

D类音频功率放大器设计

滤波拓扑概况用于D类功率放大器的滤波器拓扑共有三种:(1) F B-C,铁氧体磁珠和电容;(2) LC,电感和电容;以及(3) “无滤波器”。

某个特定设计应该选择哪种滤波技术,取决于应用的扬声器电缆长度和PCB布局。

下面是这三种滤波器拓扑的优缺点:FB-C滤波如果扬声器电缆长度适中,FB-C滤波足以满足EMI限制。

与LC滤波相比,F B-C滤波方案更为精简,成本效益更高。

但是,由于只能在频率大于10MHz的情况下生效,F B-C滤波的应用范围受到很大的限制。

而且,在频率低于10MHz的情况下,如果扬声器电缆走线不合理,也会导致传导辐射超标。

LC滤波相比之下,LC滤波可以在频率大约为30kHz的情况下即开始起到抑制作用。

当某设计中所用的电缆线较长,而PCB布局又不是很好时,LC滤波无疑是一个“保险的”选择。

但是,LC滤波需要昂贵而庞大的外部元件,这显然不适合便携式设备。

而且,当频率大于30MHz,主电感会自谐振,还会需要额外的元件来抑制电磁干扰。

“无滤波器”滤波“无滤波器”放大器拓扑是最具成本效益的方案,因为它省去了额外的滤波元件。

采用较短的双绞线扬声器电缆时,D类放大器完全可以满足电磁兼容性标准。

但是,和F B-C滤波一样,如果扬声器电缆走线不合理,可能出现传导辐射超标。

还需注意,Maxim的D 类放大器也可以实现“无滤波”工作,只要在放大器的开关频率下扬声器是感性负载。

在输出电压进行转换时,转换频率下的大电感值可使过载电流保持相对恒定。

/disp_art/1010010/13444.html输出级数模转换机制所有D类系统的共同特点及其超群的功率效率的奥秘就在于输出级(通常是MOSFET)的电源器件总是要么全通要么全关。

这与线性放大器形成对比,线性放大器输出晶体管的导通状态随时间变化。

晶体管消耗的功率是其压降与流过电流之积(P=IV),通常占到线性放大器消耗的总功率的50%或更多。

在D类系统中不是这样。

D类功率音频放大器的设计

D类功率音频放大器的设计

D 类放大器的基本结构D 类放大器的电路共分为三级:输入开关级、功率放大级及输出滤波级。

D 类放大器工作在开关状态下可以采用脉宽调制(PWM)模式。

利用PWM 能将音频输入信号转换为高频开关信号。

通过一个比较器将音频信号与高频三角波进行比较,当反相端电压高于同相端电压时,输出为低电平;当反相端电压低于同相端电压时,输出为高电平。

在D 类放大器中,比较器的输出与功率放大电路相连,功放电路采用金属氧化物场效应管(MOSFET)替代双极型晶体管(BJT),这是因为:(1)功率MOSFET 是一种高输入阻抗、电压控制型器件,BJT 则是一种低阻抗、电流控制型器件。

(2)从二者的驱动电路来看,功率MOSFET 的驱动电路相对简单,BJT 可能需要多达20%的额定集电极电流以保证饱和度,而MOSFET 需要的驱动电流则小得多,而且通常可以直接由CMOS 或者集电极开路TTL 驱动电路驱动。

(3)MOSFET 的开关速度比较迅速,他是一种多数载流子器件,没有电荷存储效应,能够以较高速度工作。

(4)MOSFET 没有二次击穿失效机理,他在温度越高时往往耐力越强,发生热击穿的可能性越低。

他还可以在较宽的温度范围内提供较好的性能。

(5)MOSFET 具有并行工作能力,具有正的电阻温度系数。

温度较高的器件往往把电流导向其他MOSFET ,允许并行电路配置。

而且,MOSFET 的漏极和源极之间形成的寄生二极管可以充当箝位二极管,在电感性负载开关中特别有用。

场效应管有两种工作模式,即开关模式或线性模式。

所谓开关模式,就是器件充当一个简单的开关,在开与关两个状态之间切换。

线性工作模式是指器件工作在某个特性曲线中的线性部分,但也未必如此。

此处的"线性"是指MOSFET 保持连续性的工作状态,此时漏电流是所施加在栅极和源极之间电压的函数。

他的线性工作模式与开关工作模式之间的区别是,在开关电路中,MOSFET 的漏电流是由外部元件确定的,而在线性电路设计中却并非如此。

工程师参考手册(一):D类功放设计须知

工程师参考手册(一):D类功放设计须知

工程师参考手册(一):D类功放设计须知一、D类音频功率放大器设计基础 D功放是基于脉冲宽度调制技术的开关放大器,包括脉冲宽度调制器(几百千赫兹开关频率),功率桥电路,低通滤波器。

本文从构成、拓扑结构对比、MOSFET的选择与功率损耗、失真和噪音产生、音频性能等D类音频功率放大器设计有关的基础问题作分析,并例举D类功率放大器参考设计。

1、 D类功放基本构成 目前有很多种不同种类的功放,如:A类、B类、AB类等。

但D类功放与其不同的是基本是一个开关功放或者是脉宽调制功放。

为此,主要将对说明这类D类功放作以说明。

在这种D类功放中,器件要么完全导通,要么完全关闭,大幅度减少了输出器件的功耗,效率达90-95%都是可能的。

音频信号是用来调制PWM载波信号,其载波信号可以驱动输出器件,用最后的低通滤波器去除高频PWM载波频率。

众所周知, A类、B类和AB类功放均是线形功放,那么D类功放与它们究竟有什么不同?我们首先应作讨论。

图1是D功放原理框图,在一个线性功放中信号总是停留在模拟区,输出晶体管(器件)担当线性调整器来调整输出电压。

这样在输出器件上存在着电压降,其结果降低了效率。

D功放原理框图 而D类功放采用了很多种不同的形式,一些是数字输入,还有一些是模拟输入,在这里我们将集中讨论一下模拟输入。

上面图1显示的是半桥D类功放的基本功能图,其中给出了每级的波形。

电路运用从半桥输出的反馈来补偿母线电压的变化。

那末D类功放是如何工作的呢?D类功放的工作原理和PWM的电源是相同的,我们假设输入信号是一个标准的音频信号,而这个音频信号是正弦波,典型频率从20Hz到20kHz范围。

这个信号和高频三角或锯齿波形相比可以产生PWM信号,见图2a中所示。

这个PWM信号被用来驱动功率级,产生放大的数字信号,最后一个低通过滤波器被用在这个信号上来滤掉PWM载波频率,重新得到正弦波音频信号,见图2b中所示。

2、从拓扑结构对比-看线性和D类不同 值此将讨论线性功放(A类和AB类)和D类数字功放的不同之处。

音频D类放大器的研究与设计毕设

音频D类放大器的研究与设计毕设
多声道
音质要求
特别高
较高
较高
一般
不高
较高
一般
较高
极高
功率要求
几百毫瓦
小于1W
几瓦
几瓦
几瓦
十几瓦
几瓦
几瓦
大于 20W
D类放大器的全球市场前景
2003年增长200%,至$84Million 2006年达到$350M 2010将达$1080M 终将完全取代AB类
结论
D 类放大器在音频放大领域的应用现状以及前景都是非常乐观的,它所独具的高效的优势(理论上可达100%)大大的满足了低功耗便携式应用如手机、MP3、对讲机和笔记本电脑等等对电池寿命、电路板空间以及 EMI 兼容性的苛刻要求;对 D 类放大器的基本设计原理及其最新的技术发展有一个基本理解,将有助于设计者为具体应用选择合适的放大器,并正确权衡某些功能特性的优势和劣势。
B类放大器-失真较大,静点工作电流最小,效率较高
D类放大器-不是工作点的不同,而是工作原理完全不同的新型放大器,也有人称之为数字放大器
各类放大器的简单比较
电路一:由两个N沟道MOS管组成的半桥推挽互补功率放大电路
电路二:D类功放设计
本文的主要工作
电路一:推挽功放原理及设计
电路正面
电路反面
实验电路
功放正面
功放反面
D类放大器的应用汇总
产品要求
Mp3MP4播放机
手机PDA
便携式DVDTV
PC
对讲机
汽车音响
台式机音箱
电视机
音响功放
电池寿命
十分短
很短







空间大小
十分有限

PWM型D类音频功率放大器的设计

PWM型D类音频功率放大器的设计

引言D 类放大器是一种具有极高工作效率的开关功率放大器,被放大的信号并非为直接输入信号,而是经采样变换为脉宽变化的开关信号,使功率开关管均处于开关状态。

理想状态下,功率开关管导通没有电压降,关断时没有电流流过,效率可达100%.但实际中,由于受器件限制(如开关速度、漏电流、导通电阻不为零等)和设计上的不完善,其实际效率通常可达到90% 以上,同线性放大器相比,具有较大的优势,目前已经在一些高档产品中得到应用并投放市场。

本文设计的D 类音频功率放大器主要基于以下三个方面考虑:保证高保真度、提高效率和减小体积。

1 D 类音频功放的系统设计本文所设计的D 类音频功率放大器的系统结构如图1 所示。

该放大器结构是基于双边自然采样技术方案实现的,在任一时刻输出所包含的信息量都是单边采样方案的两倍,通过双边自然采样还可以把输出音频信号中大量的失真成分移除到人耳所能感应到的音频带宽范围之外,达到去除D 类音频功率放大器输出端低通滤波器的目的。

图1 D 类音频功率放大器结构系统采用单电源供电,脉冲信号“out1”和“out2”的高低电平分别为VDD 和GND,输入放大级由运算放大器OTA 的闭环结构实现,误差放大器则由运算放大器OTA 与电容Cs 构成。

系统工作时,音频输入信号Vin 首先经过输入放大级后输出两路差分信号,再与反馈信号求和送到误差放大器中产生误差信号VE1、VE2,对三角波载波信号VT 进行调制,输出两路脉冲信号“out1”和“out2”以驱动扬声器发声。

系统包含两个反馈环路,第一个由R1、Rf1 和OTA 组成,用来设置输入放大级和整个D 类音频功率放大器的增益,第二个由R2、Rf2 和后端音频信号处理电路组成,用来减小系统的THD 指数。

在图1 中,对电容Cs 充放电的电流I1、I2 由Vout1、Vout2、Vin、R1、Rf1、R2 和Rf2 共同决定,其中电阻和电容必须具有良好的线性度和匹配性,以获得良好的闭环性能。

d类功放的原理及电路设计

d类功放的原理及电路设计

d类功放的原理及电路设计
D类功放是一种数字功放,采用全数字化的技术来放大音频信号。

它的工作原理是将输入的模拟音频信号转换为数字信号,然后利用PWM(脉宽调制)技术将数字信号转换为高频的数字脉冲信号,接着利用低通滤波器将高频信号滤除,得到放大后的模拟音频信号。

D类功放的电路设计包含以下主要组成部分:
1. 输入级:负责将模拟音频信号输入功放电路,通常采用差分输入,以提高抗干扰能力和动态范围。

2. ADC(模数转换器):将输入的模拟音频信号转换为数字信号。

通常采用高速的Σ-Δ调制器,将音频信号转换为高速脉冲流。

3. PWM(脉宽调制器):接收ADC输出的数字信号,并将其转换为一系列高频的数字脉冲信号。

脉宽的宽度根据输入信号的幅度来调节。

4. 输出级:将PWM输出的高频脉冲信号进行滤波处理,恢复为模拟音频信号。

一般采用低通滤波器,滤除高频信号,保留放大后的音频信号。

5. 功率放大器:将输出级的模拟音频信号放大到足够的电平,以驱动扬声器。

D类功放相比于传统的A类、B类功放具有高效率、低热量、小尺寸等优势,适用于各种音频放大应用,如音响系统、汽车音响、无线通信等。

D类功放原理与设计

D类功放原理与设计

D类功放原理与设计D类功放(Class-D Amplifier)是一种高效率的功放设计,它通过将输入信号转换为数字形式,然后使用PWM(脉宽调制)技术将数字信号转换为模拟音频信号,以驱动扬声器。

相比传统的A类、AB类功放,D类功放无论从效率、体积还是发热量都有着显著的优势。

下面将详细介绍D 类功放的工作原理与设计。

D类功放的工作原理主要有两个关键步骤:数字调制和输出滤波。

首先,输入音频信号经过采样、量化和编码等过程,转换为数字信号。

接下来,这个数字信号经过PWM调制,通过高频的开关器件(例如MOSFET)产生PWM信号。

PWM信号的占空比由输入信号的幅度决定,即信号越大,占空比越大。

PWM信号经过滤波器后,得到模拟音频信号。

滤波器主要起到去除PWM信号中的高频成分和输出重建滤波的作用。

滤波器采用带通滤波器,其截止频率一般设置在音频范围内。

在滤波器的设计中,为了保持D类功放的高效率,需注意滤波器的带宽不能太宽,否则会引起部分高频PWM成分通过滤波器,导致功放的效率下降。

D类功放的设计中,一般会用到两种反馈:输出滤波器反馈和比较器反馈。

输出滤波器反馈是将滤波器的输出信号与输入信号进行比较,从而实现在输出负载变化时的自动控制。

比较器反馈则是将滤波器输出的模拟信号与一个参考电压进行比较,并产生PWM信号。

这两种反馈的作用是保证输出信号的准确性和稳定性。

在D类功放的设计中,要考虑音频信号的失真问题。

由于PWM信号的存在,会引起PWM谐波失真。

这种失真一般通过PWM的频率设置和滤波器的设计进行抑制。

此外,功放电路中还需考虑开关器件的驱动问题,对于MOSFET等器件,要确保其能够快速地开关。

总的来说,D类功放通过将输入信号进行数字调制,并通过PWM技术转化为模拟音频信号,以驱动扬声器。

它具有高效率、小体积、低发热量等优势,在音频应用中广泛使用。

然而,D类功放的设计也面临一些挑战,如PWM谐波失真、滤波器选择等,需要借助合适的设计技巧和辅助电路来解决。

D类音频功率放大器的设计方案与测试

D类音频功率放大器的设计方案与测试

D 类音频功率放大器的设计与测试本系统由咼效率功率放大器(D 类音频功率放大器)、信号变换 电路、外接测试仪表组成,系统框图如图 1所示。

b ・ OluFf; *! ] W Yn.r -?.-.-击去vn g n图1系统方框图1. D 类功放的设计D 类放大器的架构有对称与非对称两大类, 在此讨论的D 类功 放针对的是对功率、体积都非常敏感的便携式应用,因此采用全电桥 的对称型放大器,以充分利用其单一电源、系统小型化的特点。

D 类 功率放大器由PWM 电路、开关功放电路及输出滤波器组成,原理框 图如图2所示。

采用了由比较器和三角波发生器组成的固定频率的 PWM fe 路,用 输入的音频信号幅度对三角波进行调制,得到占空比随音频输入信号 幅度储号变挟电路变化的方波,并以相反的相位驱动上下桥臂的功率管,使功率管一个导通时另一个截止,再经输出滤波器将方波转变为音频信号,推动扬声器发声。

采用全桥的D类放大器可以实现平衡输出,易于改善放大器的输出滤波特性,并可减少干扰。

全桥电路负载上的电压峰峰值接近电源电压的2倍,可采用单电源供电。

实现时,通常采取2路输出脉冲相位相反的方法。

图2 D类音频功率放大器组成框图D类功率放大器的工作过程是:当输入模拟音频信号时,模拟音频信号经过PWM调制器变成与其幅度相对应脉宽的高频率PWM脉冲信号,控制开关单元的开/关,经脉冲推动器驱动脉冲功率放大器工作,然后经过功率低通滤波器带动扬声器工作。

2.比较器比较器电路米用低功耗、单电源工作的双路比较器芯片 LM311构 成。

此处为提高系统效率,减少后级 H 桥中CMOS 管不必要的开合, 用两路偏置不同的三角波分别与音频信号的上半部和下半部进行比 较,当正端上的电位高于负端的电位时,比较器输出为高电平,反之 则输出低电平。

这样产生两路相互对应的PWM 波信号给后级驱动电路 进行处理,双路比较电路如图3所示。

图3比较器电路此处值得注意的是将上半部比较处理为音频信号接比较器的负 向端、三角波信号接正向端;下半部比较则相反,这样形成相互对应, 在音频信号的半部形成相应 PWM 波时,另半部为低电平,可保征后 级H 桥中的CMOS 管没有不必要的开合,以减少系统功率损耗。

D类音频功放设计

D类音频功放设计

D类音频功放设计D类音频功放是一种数字化放大技术,其设计基于PWM(脉宽调制)模块。

它以高效能的方式将模拟音频信号转化为数字形式,并通过快速切换音频信号的输出级来近似模拟音频信号。

这种设计异于传统的A类、B 类和AB类功放设计,在功率效率上有着显著的优势。

D类音频功放由输入级、PWM模块、滤波器以及输出级组成。

输入级主要负责将输入的音频信号转化为数字表示形式。

这可以通过使用采样器和模数转换器(ADC)来实现。

ADC将输入音频信号转换为离散的数位形式,通过采样和量化的过程实现。

然后,进一步的数字处理可以应用于信号,以改善音频质量。

PWM模块接收数字信号,并将其转换为脉冲宽度。

脉宽调制技术可以通过改变电平的脉冲宽度来近似模拟输入信号。

PWM模块根据输入信号的幅度,产生相应脉冲宽度调制的输出信号。

滤波器用于平滑输出信号,以去除PWM调制过程中产生的高频噪音。

通常采用低通滤波器用于过滤高频成分。

滤波器必须具有足够的带宽,以确保在不损失音频质量的情况下滤除尽可能多的高频噪音。

最后,输出级通过将PWM信号转换为模拟信号,从而得到放大后的音频信号。

它可以使用滤波器和放大器来实现这一转换。

滤波器用于去除PWM信号中的高频噪音,而放大器用于将信号放大到适当的水平。

在D类音频功放设计中,需要考虑以下几个关键因素:1.输出功率:根据设计需求,选择合适的输出功率。

这涉及到放大器的电源,散热系统等设计。

2.音质:在设计中要考虑到音频质量的损失问题。

在PWM调制过程中,可能会产生失真和噪音。

因此,需要仔细选择PWM调制方法和滤波器设计,以减少音频质量损失。

3.功率效率:D类功放以其高效能而闻名。

设计中需要考虑如何提高功率效率,降低功耗和热量产生。

4.保护电路:由于D类功放通常用于高功率应用,因此需要考虑到保护电路的设计。

这可以包括过热保护、过电压保护和过流保护等。

5.PCB设计:确保电路布局合理,减少干扰和噪音。

同时,需要考虑散热和电源线等布线问题。

D类音频功放设计

D类音频功放设计

D类音频功放设计 Revised by Petrel at 2021D类音频放大器的设计与制作摘要:本项目涉及高效节能、数字化、体积小、重量轻等特点的D类功率音频放大器。

适应便携设备高效及节能的客观要求。

顺应了市场的客观要求。

从而在音频集成领域具有很大的优势。

随着设计技术不断进步D类功率放大器的要求也在不断提高本文通过基于CMOS工艺的D类功率音频放大器构成,驱动实现、失真度等方面的特性来进行电路的设计。

本课题的目标是设计一个D类音频功率放大器,能对音频信号进行放大,放大器的通频带达到300~10000Hz,输出功率IW,输出信号无明显失真。

根据D类功放的原理分别设计了前置放大模块、三角波产生模块、比较器模块、驱动模块、H桥互补对称输出及低通滤波模块等。

其中三角波产生器及比较器共同组成脉宽调制(PWM)模块,H桥互补对称输出电路采用驱动电流小、低导通电阻及良好开关特性的VMOSFET管,滤波器采用Butterworth低通滤波器。

关键词:D类功率放大器H桥驱动脉宽调制目录1.引言...................................................................................................... 错误!未指定书签。

2.系统方案.............................................................................................. 错误!未指定书签。

2.1总体方案设计................................................................................... 错误!未指定书签。

2.2三角波模块设计方案....................................................................... 错误!未指定书签。

d类音频放大器介绍及设计

d类音频放大器介绍及设计
结合人工智能技术,实现语音识别和音频处理功能,为用户 提供更加智能化的音频体验。
07
结论
D类音频放大器的优势与不足
效率高
D类音频放大器具有很高的能量转换效率,能够有效地减少能源浪费。
动态范围大
D类音频放大器具有较大的动态范围,能够在较大的音量范围内保持音频质量。
D类音频放大器的优势与不足
• 体积小、重量轻:D类音频放大器通常采用集成电路设计, 体积小、重量轻,便于携带和安装。
电磁兼容性设计
电磁兼容性
电磁兼容性是指电子设备在电磁环境中正常工作的能力。在D类音频放大器设 计中,需要考虑电磁干扰、电磁辐射、静电等电磁兼容性问题,以确保放大器 的稳定性和可靠性。
电磁兼容性措施
为了提高电磁兼容性,可以采取多种措施,如合理布局布线、增加屏蔽、使用 滤波器等。这些措施可以有效降低电磁干扰和电磁辐射,提高放大器的性能和 可靠性。
03
D类音频放大器的特点
效率高
效率高
D类音频放大器采用开关模式工作,理论上效率可以达到100%,相比传统线性放大器,能够显著减少能量损失 和热量产生。
节能
高效率意味着低能耗,有助于减少能源浪费和设备运行成本。
体积小
体积小
由于D类音频放大器内部结构相对简单,不需要像线性放大器那样使用庞大的滤波器和散热器,因此 体积相对较小。
采样率与分辨率
输入的模拟信号需进行采样,转换为数字信号,采样率和分辨率决定了音频的 质量和还原度。
脉冲宽度调制
脉冲宽度调制
将数字信号转换为模拟信号的一种方式,通过调节脉冲宽度 来控制输出电压,实现音频信号的放大。
调制精度与失真
脉冲宽度调制过程中需保持高精度,以降低失真,提高音频 质量。

D类音频功率放大器设计

D类音频功率放大器设计

D类音频功率放大器设计本文首先就D类音频放大器的基本概念进行了一定的分析,然后简要的阐述了其系统结构,最后根据这些概念综合性的给出D类音频功率放大器的设计要素及解决方案,供相关人士做参考。

标签:功率放大器;调制器;拓扑结构1 引言从整体上对音频放大器进行划分可以分为四种,其中D类放大器占据的优势性比較大,是比较理想的应用型音频放大器。

D类功率放大器主要优势在于其功耗较小,在器件的组合上D类放大器绝大多数情况下只是充当一个开关的作用,其最主要的额外功耗在于晶体管的阻抗所致,由于其对散热装置的需求很低,因此D类放大器能够在很大程度上增加电池的使用寿命。

2 D类音频功率放大器的分析(1)D类音频功放和其他音频功放的比较。

1)AB类放大器。

AB类放大器的主要特点可以从两个方面出发,一个是B 类放大器的交越失真,另外一个是AB类放大器消除交越失真的情况,二者主要形成一个对比的作用。

由于AB类放大器在其晶体管的导通时间上有一定的特殊性,这段导通时间通常情况下会比半周期持续的时间要长,因此在两管推挽的特点之下AB类放大器交替失真的特性能够在很大程度上消除交越失真的影响。

2)D类放大器。

D类放大器在性能上和AB类放大器有着明显的区别,在PWM和PDM的作用之下D类放大器能够将输入进来的模拟音频信号通过一定的转换作用而形成相应的脉冲信号。

由于D类放大器在作用上大部分是充当一个开关的作用,因此也被称之为开关放大器。

相比较其他放大器而言,D类放大器的效率非常高,除此之外,其体积小的特点能够为设备提供更大的空间,而在失真方面其概率低的特点使得D类放大器在调试和应用上都能够保持很大的稳定性。

(2)D类音频功放的工作原理。

D类音频放大器在工作中主要的功能是在于将输入的部分信号进行一定的转换,经过相关的滤波处理之后能够有效的使得电平进行转移。

振荡器在D类音频放大器中的作用至关重要,其振荡周期在发生变化的情况下对整个采样周期的影响都是非常大的。

D类音频功率放大器设计报告

D类音频功率放大器设计报告

D类音频功率放大器设计报告设计报告:D类音频功率放大器1.引言2.设计目标本次设计的目标是设计一个能够输出15W功率的D类音频功放。

其特点是高效率、低功耗和优质的音质。

3.设计原理D类音频功率放大器的工作原理是将音频信号进行脉冲宽度调制(PWM),并通过一个输出滤波电路转换为模拟音频信号。

具体来说,音频信号首先经过一个比较器,将其与一个高频三角波进行比较,然后产生一个脉冲宽度与音频信号幅度相关的脉冲序列。

这个脉冲序列经过一个电源级输出滤波器,将其转换为模拟音频信号。

4.设计步骤(1)根据设计目标和所选用的功放IC,确定所需的电源电压和电流。

(2)根据音频信号的功率要求,计算所需的输出功率和负载阻抗。

(3)选择合适的比较器和三角波发生器。

(4)设计输出滤波器,使其能够满足所需的频率响应和阻抗匹配。

(5)进行仿真和调试,验证设计的正确性。

(6)根据实际的电路布局和元件参数,进行实际的电路实现。

(7)测试和优化电路性能,确保其能够满足设计要求。

5.设计结果根据上述的设计步骤,设计了一个D类音频功率放大器。

采用了TDA7498E功放IC,输入电压为20V,输出功率为15W,负载阻抗为8Ω。

比较器和三角波发生器选用LM311和LM555、输出滤波器采用LC型,频率响应为20Hz-20kHz。

经过实际制作和测试,该D类音频功率放大器满足了设计要求。

输出功率稳定在15W,失真度低于1%,频率响应平坦度高于±0.5dB。

同时,该功放具有高效率和低功耗的特点,整体性能优良。

6.结论本次设计成功地实现了一个输出功率为15W的D类音频功率放大器。

其设计思路清晰,步骤明确,且实际测试结果良好。

该功放具有高效率、低功耗和优质的音质,适用于各种音频放大场景。

然而,设计中的元件选型、电路布局和参数调整等方面还有待进一步优化和改进。

同时,考虑到市场需求和技术发展,未来的设计可以进一步加入保护电路和调音控制等功能,以提高产品竞争力和用户体验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D类音频放大器的设计与制作
摘要:本项目涉及高效节能、数字化、体积小、重量轻等特点的D类功率音频放大器。

适应便携设备高效及节能的客观要求。

顺应了市场的客观要求。

从而在音频集成领域具有很大的优势。

随着设计技术不断进步D类功率放大器的要求也在不断提高本文通过基于CMOS工艺的D类功率音频放大器构成,驱动实现、失真度等方面的特性来进行电路的设计。

本课题的目标是设计一个D类音频功率放大器,能对音频信号进行放大,放大器的通频带达到300~10000Hz,输出功率IW,输出信号无明显失真。

根据D类功放的原理分别设计了前置放大模块、三角波产生模块、比较器模块、驱动模块、H桥互补对称输出及低通滤波模块等。

其中三角波产生器及比较器共同组成脉宽调制(PWM)模块,H桥互补对称输出电路采用驱动电流小、低导通电阻及良好开关特性的VMOSFET管,滤波器采用Butterworth低通滤波器。

关键词:D类功率放大器H桥驱动脉宽调制
目录
1. 引言 (1)
2. 系统方案 (1)
2.1 总体方案设计 (1)
2.2 三角波模块设计方案 (2)
2.3高速开关电路设计方案 (3)
3. 硬件电路设计 (4)
3.1 三角波发生器 (4)
3.2 放大电路 (5)
3.3脉宽调制比较器 (5)
3.4驱动电路、H桥 (6)
4. 测试方案与测试结果: (7)
(1)列出主要的测试仪器、仪表; (7)
(2)系统测试: (7)
(3)测试结果分析: (7)
5. 设计总结: (7)
参考文献: (7)
附录: (8)
系统原理图; (8)
1.引言
近几年,国际上加进了对D类音频功率放大器的研究与开发,并取得了一定的进展,各项实用性指标和可靠性指标都有很大改善,并不断在向更大的输出功率,更小的体积,更轻的重量,更多的功能和智能化方向发展。

20世纪80年代初,欧洲有些专业公司开始研究晶体管功放与电子管功放之间的性能差异及解决办法。

电子管是一种电压控制器件,需要的控制功率极微,开关速率很快。

晶体管是一种电流控制器件,需有较大的控制电流,转换速率较慢,这是最基本的差别。

数字功放的概念早在20 世纪60年代就有人提出了,由于当时技术条件的限制,进展一直较慢。

这一技术一经问世立即显示出其高效,节能,数字化的显著特点,引起了科研,教学,电子工业,商业界的特别关注。

不久的将来,D类音频功率放大器必然取代传统的模拟音频功率放大器。

2.系统方案
2.1总体方案设计
D类功放是放大元件处于开关状态时的一种放大模式。

无信号输入时放大器处于截止状态,不耗电。

工作时,靠输入信号让晶体管进入饱和状体,晶体管相当于一个接通的开关,把电源与负载直接接通。

D类音频功放按其结构可以分为三个部分。

2.1.1调制器
最简单的只需要用一个运放构成的比较器即可完成。

把原始的音频信号加上一定的直流偏置后放在运放的正输入端,在将一个有自激震荡生成的三角波添加到运放的负输入端。

当正向输入端上的电位高于负端三角波的电位时比较器输出为高电平,反之则输出低电平,当音频输入信号输入时,正半轴期间,比较器输出高电平的时间比低电平的时间长,方波的占空比大于1山负半轴期间,由于还有直流偏置,所以比较器正输入端的电平还是大于零,但音频信号幅度高于三角波幅度的时间却大为减少,方波的占空比小于1:10这样,比较器输出的波形就是一个脉冲宽度被音频信号輻度调制后的波形,成为PWM (Pulse Width Modulation脉宽调制)或者(I)M (Pulse Duration Modulation脉冲持续时间调制)波形。

音频信号被调制到脉冲波形中
2.1.2 D类功放
D类功放,这是一个脉冲控制的大电流开关放大器,把比较器输出的PWM信号变成高电压、大电流的大功率PWM信号。

能够输出的最大功率有负载、电源和晶体管允许流过的电流来决定。

2.1.3信号还原
需要把大功率PIM波形中的声音信息还原出来。

其方法也很简单,只需要用一个低通滤波器。

由于此时电流很大,RC结构的低通滤波器电阻会有很大损耗,所以采用LC低通滤波器。

当占空比大于1:1的脉冲到来时,电容c的充电时间大于放电时间,输出电平上升;在小于脉冲到来时,放电时间长,输出电平下降正好与原音频信号的幅度变化相一致,所以原音频信号被回复出来。

图2-1-1D类功放波形原理图
2.2三角波模块设计方案
方案一:用普通555芯片作为三角波发生器。

虽然此类芯片可直接产生脉宽调制信号,但芯片中振荡发生的是锯齿波,不符合D类功放所要求的三角波,且振荡发生器是充放电电路产生波形,波形线性不好,难以达到要求。

所以此方案不行。

图2-2-1 555定时电路产生三角波
方案二:根据要求,因为D类放大器要求三角波频率高、线性好,这是一般积分微分电路难以达到的,因此我们选用模拟的波形芯片ICL8038来产生三角波,它的内部有恒流源,故线性效果好。

此方案的优点在于可产生合乎要求的脉宽调制信号,且全部期间可由+5V电源直接供电,各项指标也都符合要求。

2.3高速开关电路设计方案
方案一:采用推挽单端输出方式,如图2-2所示,电路输出信号的峰峰值不可能超过电源电压,输出功率难以提高。

图2-2-2高速开关电路
方案二:选用H桥输出方式(如图2-3所示)。

此方式浮动输出载波的峰峰值可达2Vcc,充放利用了电源电压有效提高了输出功率。

图2-2-3H桥
3.硬件电路设计
3.1三角波发生器
本设计采用ICL8038配置的三角波发生器,该芯片的适用频率为
0.001H~300kHz,满足设计要求。

图3-1-1ICL8038波形发生器

A B
R R R
==,
10.33
(1)
0.662
A B
A B
f
R C R RC
R R
==
+
-
,取18.3
R k
=Ω,120
C pF
=可
以得到频率为150kHz的三角波,故取13
A B
R R k
==Ω,10
p
R k
=Ω,120
C pF
=,如图3-2所示。

图3-1-2150kHz 三角波发生器
按图中值我们可以得到一个线性很好、频率约为150KHz ,峰峰值约为2.8V 的三角波。

3.2放大电路
图3-2-1信号发大电路
该部分的作用是将输入信号按比例放大以便于三角波进行比较,R3、R4共同分压将2脚的电压调制2.5V 左右,这样可使得放大后的波形中点在2.5V 左右,且上下对称无明显失真。

放大比例系数由R5、R6决定,即A=R6/R5, C 起隔直的作用。

3.3脉宽调制比较器
脉宽调制比较器电路主要芯片是LM311,此处要注意的是三角波与音频信号的电压线重合。

即正向端、反向端的电压相等。

其电压平衡我们通过使用相同大小的电阻来实现。

实际电路中,可用滑变来调。

音频输入
图3-3-1脉宽调制比较器
3.4驱动电路、H 桥
H 桥互补对称输出电路对VMOSFET 的要求是导通电阻小,开关速度快,开启电小。

因输出功率稍大于属小功率输出,可选用功率相对较小、输入电容较小、容易快速驱动的对管,IRFD540和IRFD9540 CMOS 对管的参数能够满足上述要求,故采用之。

实际电路如下图所示。

互补PWM 开关驱动信号交替开启Q3和Q6或Q4和Q5, 分别经两个Butterworth 滤波器滤波后推动喇叭工作
图3-5脉宽调制比较器
三角波音频信号
调制信号
4.测试方案与测试结果:
(1)列出主要的测试仪器、仪表;
(2)系统测试:
①说明测试方法;
②要求有完整的测试参数记录表及测试数据;
③系统功能测试:测试或说明系统能实现的功能。

有些数据最好能画出实测曲线。

要求数据、曲线必须真实。

(如示波器上的曲线图)
(3)测试结果分析:
对测试的系统指标参数及实现的功能分析(与设计要求对比进行),指出指标参数及实现的功能的整体完成情况,重点分析指标及功能达不到要求的原因(或功能、指标较优是如何实现的)。

5.设计总结:
现阶段完成了系统的初步设计,对D类的音频功放原理有了深刻的理解。

只是还未投入实际焊接,具体的结果还需要看最终的测试结果,需要进一步的调试。

仿真软件在实际设计制作时只是有指导作用,不是所有的电路都可以仿真出结果的,不应过多的投入,设计主要靠的是理论原理和实际调试。

除了扎实的理论基础,电子设计还需要大量的练习,多接触些功能模块,基本电路,可以增加自己的见识和解决问题的经验。

参考文献:
[1]邓木生周红兵模拟电子电路分析与应用[M].北京:高等教育出版社, 2008.
[2]张友汉、数字电子技术基础[M].北京:高等教育出版社,2004年.
[3]徐治东,王伟军音响设备原理与维护[M].北京:高等教育出版社, 2002.
[4]王卫平、电子产品制造工艺[M].北京:高等教育出版社.2005.
附录:
系统原理图;
分输出
输出。

相关文档
最新文档