系统抽样

合集下载

系统抽样》课件

系统抽样》课件
减小抽样误差的方法
采用更科学的抽样方法、增加样本量、提高样本代表性等。
非抽样误差
非抽样误差的定义
01
由于非随机因素引起的误差,如调查员的主观偏见、调查方法
的缺陷等。
非抽样误差的来源
02
调查员的主观偏见、调查方法的缺陷、数据处理的错误等。
减小非抽样误差的方法
03
加强调查员的培训和监督、采用更科学的调查方法、加强数据
的质量控制等。
05
CHAPTER
系统抽样的应用案例
某品牌的市场调研系统抽样应用
总结词:高效准确
详细描述:某品牌在进行市场调研时,采用系统抽样方法,按照一定的间隔从总 体中抽取样本,大大提高了调研效率和准确性,为品牌的市场策略制定提供了有 力支持。
某大学的学生满意度调查系统抽样应用
总结词:覆盖全面
详细描述
起始样本的选择可以采用随机方式或指定方式。随机方式可以借助随机数生成器 等工具进行,而指定方式则需要根据研究目的和实际情况进行合理设定。
进行样本抽取
总结词
在确定总体、样本、抽样间隔和起始样本后,即可按照系统 抽样的规则进行样本抽取。
详细描述
按照设定的抽样间隔和起始样本,依次进行样本抽取,直至 达到所需的样本量。在抽取过程中,应保持随机性和代表性 原则,确保样本的有效性。
详细描述:某大学采用系统抽样方法进行学生满意度调查,确保了样本的代表性和广泛性,调查结果能够全面反映学生的需 求和意见,为学校改进教学质量和管理提供了重要依据。
某城市的居民消费水平调查系统抽样应用
总结词:科学合理
详细描述:某城市进行居民消费水平调查时,采用系统抽样方法,按照居民分布和人口比例进行抽样 ,确保了样本的科学性和合理性,为城市经济发展规划和政策制定提供了有力支持。

系统抽样

系统抽样

一、知识概述1、系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样.2、系统抽样的步骤:①采用随机的方式将总体中的个体编号.为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等.②为将整个的编号分段(即分成几个部分),要确定分段的间隔k.当(N为总体中的个体的个数,n为样本容量)是整数时,k=;当不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数能被n整除,这时k=.③在第一段用简单随机抽样确定起始的个体编号.④按照事先确定的规则抽取样本(通常是将加上间隔k,得到第2个编号+k,第3个编号+2k,这样继续下去,直到获取整个样本).说明:①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的;③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除再进行系统抽样.3、系统抽样与简单随机抽样的区别与联系系统抽样与简单随机抽样相比,有如下区别:(1)系统抽样比简单随机抽样更容易实施,可节约成本.(2)系统抽样所得到的样本的代表性和个体的编号有关;而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的特征随编号的变化呈现一定的周期性,可能会使系统抽样的代表性很差.如,如果学号按照男生单号女生双号的方法编排,那么,用系统抽样的方法抽取样本就可能会是全部为男生或全部为女生.(3)系统抽样比简单随机抽样的应用范围更广.联系是:(1)系统抽样适用于总体中的个体较多的情况,因为这时应用简单随机抽样就显得很不方便;(2)系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段进行抽样时,采用的是简单随机抽样;(3)与简单随机抽样一样,系统抽样也属于等概率抽样.二、例题讲解例1、在10000个有机会中奖的号码(编号为0000~9999)中,有关部门按照随机抽样的方式确定后两位是68的号码为中奖号码,这是运用哪种抽样方式来确定号码的()A.抽签法B.系统抽样C.随机数表法D.其他抽样方法解:由题意可知抽出的号码分别为0068,0168,0268,……,9968,显然这是将10000个中奖号码平均分成100组,从第一组抽取了0068号,其余号码在此基础上加上100的倍数得到的,可见这是采用系统抽样法.答案:B例2、一个总体中有100个个体,随机编号0,1,2,……,99.依编号顺序平均分成10个小组,组号依次为1,2,3,……,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第一组随机抽取的号码为t,则在第k组中抽取的号码个位数字与t +k的个位数字相同,若t=7,则在第8组中抽取的号码应是________.答案:75例3、为了了解参加某种知识竞赛的1000名学生的成绩,应采用什么抽样方法恰当?简述抽样过程.解:假设抽取50名学生.适宜选用系统抽样,抽样过程如下:(1)随机地将这1000名学生编号为1,2,3, (1000)(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如是18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.例4、为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本.解:(1)随机地将这1003个个体编号为1,2,3,…,1003.利用简单随机抽样,先从总体中剔除3个个体.(2)再按系统抽样的方法抽取.例5、某制罐厂每小时生产易拉罐10000个,每天生产时间为12小时,为了保证产品的合格率,每隔一段时间要抽取一个易拉罐送检,工厂规定每天共抽取1200个进行检测,请你设计一个抽样方案.若工厂规定每天共抽取980个进行检测呢?解:每天共生产易拉罐120000个,共抽取1200个,所以分1200组,每组100个,然后采用简单随机抽样法从001~100中随机选出1个,再每隔100个,拿出1个送检,或者根据每小时生产10000个,每隔×3600=36秒拿出1个易拉罐送检.若共要抽取980个进行检测,则要分980组,但980不能整除120000,则先计算出120000除以980的整数部分是122,所以先要剔除120000-980×122=440个,剩下119560个平均分为980组,每组122个,然后采用简单随机抽样法从001~122中随机选出1个编号,例如选出的是108号,可以从第108个易拉罐开始,每隔122个,拿出1个送检,或者根据每小时生产10000个,每隔×3600=43.92秒拿出一个易拉罐送检.例6、下面给出某村委会调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:;确定随机数字,取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委会采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:,其他步骤相应改为确定随机数字;取一张人民币,编码的后两位数为12,确定第一样本户:编号为12的户为第一样本户;确定第二样本户:12+10=22,22号为第二样本户.(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的后两位数为12.。

系统抽样

系统抽样

(三)根据各单元原有的自然 位置进行排序


例如:学生按学号抽样,入户调查根据 街道门牌号按一定间隔抽取等。 这种自然状态的排列有时与调查标志有 一定的联系,但又不完完一致,这主要 是为了抽样方便。
四、系统抽样的特点


优点: 1.简便易行,容易确定样本单元


等距抽样简单明了,快速经济,操作灵活方便,使用面广, 是单阶段抽样中变化最多的一种抽样技术。 在某些场合下甚至可以不用抽样框。例如若要对公路旁的树 木进行病虫害调查,确定每 20 棵数检查一棵,只要在初始被 检树确定后,每隔 20 棵检查一棵即行,根本不需要在事先对 公路旁的所有树木进行编号,或者不需要知道抽样框即所有 树木的棵数。 在我国,等距抽样已成了最主要、最基本的抽样方式,一些 大规模的抽样调查,如农产量抽样调查、城乡住户调查、人 口抽样调查、产品质量抽样检查中都普遍采用了等距抽样。
三、排序标志

等距抽样需要有作为排序依据的辅助标志。 排序标志各式各样,可自由选择,但归纳起 来,可分为两类,即无关标志和有关标志, 它们对等距抽样的作用和相应的估计精度各 有不同的影响。
(一)按无关标志排队 (无序系统抽样)


即各单元的排列顺序与所研究的内容无关. 如研究人口的收入状况时,按身份证号码、按 门牌号码排序非常方便,一般说来,这些号码 与调查项目没有关系,因此可以认为总体单元 的次序排列是随机的 无关标志排序的等距抽样也称无序等距抽样。
k 1 2 2 V ( ysy ) E ( ysy Y ) ( yr Y ) k r 1
性质2 用样本(群)内方差 S 2 表示系统抽 wsy 样估计量的方差: ( N 1) 2 k (n 1) 2 V ( ysy ) S S wsy N N

2.1.2系统抽样

2.1.2系统抽样
2.1.2
系统抽样
一、系统抽样的概念 将总体分成 均衡的 几部分,然后按 照预先定出的规则,从每一部分抽取 一个 个体,得到所需样本的抽样方
法叫做系统抽样.
由于抽样的距离相等,因此系统抽 样也被称作等距抽样.
二、系统抽样的步骤
一般地,假设要从容量为 N的总体中抽取容量
为n的样本,可以按下列步骤进行系统抽样:
要从某校3002名学生中抽取100名学生
进行健康检查,请设计合理的抽样方法.
[解析] S2
S1 先将该校学生编号,号码为 1~3002.
Hale Waihona Puke 用随机数表法从 0001~3002 的号码中随机抽取 2
3002 个号码(3002-[ ]×100=2)剔除. 100 S3 S4 S5 将剩余的 3000 个学生重新编号为 1~3000. 将总体分成 100 个部分, 每个部分含有 30 个个体. 用简单随机抽样方法从 1~30 的号码中,抽取一
4.从已编号为 1~50 的 50 枚最新研制的某种型号的 导弹中随机抽取 5 枚来进行发射实验,若采用每部 分选取的号码间隔一样的系统抽样方法, 则所选取 5 枚导弹的编号可能是( B ) A.5,10,15,20,25 B、3,13,23,33,43 C.1,2,3,4,5 D、2,4,6,16,32
吗?为什么?
某批产品共有1564件,产品按出厂顺序 编号,号码为从1到1564.检测员要从中抽取
15件产品作检测,请你给出一个系统抽样方
案.
[解析] 将其剔除.
(1)先从 1564 件产品中, 随机抽取 4 件产品,
(2)将余下的 1560 件产品编号:1,2,3,…,1560. 1560 (3)取 k= =104,将总体均匀分为 15 组,每组 15 含 104 个个体. (4)从第一段把 1 号到 104 号中随机抽取一个号 s. (5)按编号把 s,104+s,208+s,…,1456+s 共 15 个 号选出.这 15 个号所对应的产品组成样本.

系统抽样

系统抽样

例5:采用系统抽样从个体数为83的总体中 抽取一个样本容量为10的样本,那么每个个体
10 人样的可能性为 _________. 83
例6:从2004名学生中选取50名组成参观 团,若采用下面的方法选取:先用简单随机抽 样从2004人中剔除4人,剩下的2000个再按系 统抽样的方法进行,则每人入选的机会( C) A.不全相等 C.都相等 B.均不相等 D.无法确定
二、从容量为N的总体中抽取容量为n的样本,用系统抽 样的一般步骤为: (1)将总体中的N个个体编号.有时可直接利用个体自 身所带的号码,如学号、准考证号、门牌号等; (2)将整体按编号进行分段,确定分段间隔k(k∈N). (3)在第一段用简单随机抽样确定起始个体的编号L (L≤k)。 (4)按照一定的规则抽取样本,通常是将起始编号L 加上间隔k得到第2个个体编号L+K,再加上K得到第3个 个体编号L+2K,这样继续下去,直到获取整个样本.
5、什么叫随机数表法?
利用随机数表、随机数骰子或 计算机产生的随机数进行抽样,叫 随机数法;课本P56页给出的方法 叫随机数表法。
温故知新 1.为了了解一批零件的长度,抽测了其中200个零件的 长度,在这个问题中,200个零件的长度是( A.总体 C.总体的一个样本
[答案] C
)
B.个体 D.样本容量
A.①②③ C.①③④
[答案] D
B.①②④ D.①②③④
3.福利彩票的中奖号码是从1~36个号码中,选出7个 号码来按规则确定中奖情况,这种从36个号码中选7个号的 抽样方法是________.
[答案] 抽签法
4.下面的抽样方法是否是简单随机抽样? (1)某班45名同学,指定个子最高的5名同学参加学校组 织的某项活动; (2)从20个零件中一次性抽出3个进行质量检验; (3)一儿童从玩具箱的20件玩具中随意拿出一件来玩,玩 后放回,再拿一件,连续拿了5件.

系统抽样

系统抽样

例2某车间工人加工一种轴100件,为了了解这种 某车间工人加工一种轴100件 100 轴的直径,要从中抽取10件轴在同一条件下测量, 10件轴在同一条件下测量 轴的直径,要从中抽取10件轴在同一条件下测量, 如何采用简单随机抽样的方法抽取样本? 如何采用简单随机抽样的方法抽取样本? 解法1:(抽签法) 解法1:(抽签法) 1: 第一步: 100件轴编号为1,2,…,100; 件轴编号为1,2, 第一步:将100件轴编号为1,2, ,100; 第二步:做好大小、形状相同的号签, 第二步:做好大小、形状相同的号签,分别写 上这100个数; 100个数 上这100个数; 第三步: 第三步:将这些号签放在一个容器中进行均 匀搅拌,接着连续不放回地抽取10个号签, 10个号签 匀搅拌,接着连续不放回地抽取10个号签,就 得到一个容量为10的样本. 10的样本 得到一个容量为10的样本.
1:抽样调查和普查的比较表 抽样调查和普查的比较表: 抽样调查和普查的比较表
抽样调查 节省人力、 节省人力、物力和财力 可以用于带有破坏性的检查 结果与实际情况之间有误差 普查 需要大量的人力、 需要大量的人力、物力和财力 不能用于带有破坏性的检查 在操作正确情况下, 在操作正确情况下,能得到准 确结果
【说明】简单随机抽样必须具备下列特点: 说明】简单随机抽样必须具备下列特点:
(1)总体个数 有限。 (1)总体个数 N有限。 (2)样本容量 (2)样本容量n≤N . (3)简单随机抽样是从总体中逐个抽取的 简单随机抽样是从总体中逐个抽取 (3)简单随机抽样是从总体中逐个抽取的。 (4)简单随机抽样是一种不放回抽样。 简单随机抽样是一种不放回抽样 (4)简单随机抽样是一种不放回抽样。 (5)简单随机抽样的每个个体入样的可能性相等, 简单随机抽样的每个个体入样的可能性相等 (5)简单随机抽样的每个个体入样的可能性相等, 均为n/N n/N. 均为n/N.

系统抽样

系统抽样

系统抽样的方差估计
1 1 N 1 ˆ 2 k n 1 ˆ 2 1 f 2 2 k ˆ V ( ysy ) S Swsy s s N N n n
系统抽样与简单随机抽样的精度比较
N 1 2 k n 1 2 1 f 2 V ( ysy ) V ( ysrs ) S Swsy S N N n N 1 2 N n 2 k n 1 2 S S S wsy N Nn N N N / n 2 k n 1 2 S S wsy N N nk k 2 k n 1 2 S S wsy N N k (n 1) 2 k n 1 2 S S wsy N N k n 1 2 2 ( S S wsy ) N 2 V ( ysy ) V ( ysrs ) 0 的条件是 S 2 Swsy
方差估计及其改进
随机排列情形方差估计
对于来自随机排列总体的等概率系统样本,通常视 为简单随机样本,因而等概率系统抽样的方差可用简单 随机抽样方式的抽样方差的无偏估计量来近似估计
2 1 f 2 N n 1 n v1 s yi ysy n nN n 1 i 1
趋势排列情形方差估计


定义3 (N=nk的情形)假设总体单元数为N,样本容量为n, N=nk,且总体中的N个单元已按某种顺序编号为1, 2,…,N。如抽样程序是先从前k个单元编号中随机 抽出一个单元编号,然后每隔k个单元编号抽出一个 单元编号,直到抽出n个单元编号为止,则这种等距 抽样为直线等距抽样。 定义4 (N≠nk的情形)假设总体单元数为N,样本容量为n, N≠nk ,总体中的N个单元已按某种顺序编号为1, 2,…,N。如将这些编号看成首尾相接的一个环,并 从1到N中按简单随机抽样方式抽取一个单元编号作为 随机起点r,然后每隔k个单元编号抽出一个单元编号, 直到抽满n个单元为止,则这种等距抽样为圆形等距 抽样。

《系统抽样》课件

《系统抽样》课件

详细描述
例如,在心理学研究中,研究者可能会选择 一部分被试进行实验或调查,并采用系统抽 样方法确保样本的代表性和可靠性。这种抽 样方法能够为研究者提供较为准确和可靠的 实验结果或数据,从而支持其学术观点或理 论。
需要精确估计的场景
在某些需要精确估计的场景中,例如 预测市场趋势、评估产品性能等,需 要采用系统抽样来保证样本的代表性 和准确性。
系统抽样适用于需要精确估计的场景 ,例如市场预测、产品质量评估等。
04
系统抽样的优缺点
优点
样本代表性
系统抽样能够保证样本的代表性,因为它在总体中均匀地选取样 本,避免了由于主观判断或随机性导致的偏差。
详细描述
全国人口普查通常采用系统抽样方法,按照地理位置、行政区域或人口分布等标准,将全国划分为若干个样本小 区,然后按照固定的间隔或比例从每个小区中抽取一定数量的样本进行调查。这种抽样方法能够保证样本的代表 性和广泛性,从而得到较为准确和全面的数据。
实例二:市场调查
总结词
市场调查中经常采用系统抽样方法,从 目标市场中按照一定的规则和标准抽取 具有代表性的样本进行调查。
系统抽样适用于大规模的普查或市场调查,例如全国人口普查、消费者调查等。
长期跟踪研究
在长期跟踪研究中,例如研究某一群体的健康状况、行为 习惯等,需要定期对研究对象进行抽样调查。系统抽样可 以按照固定的时间间隔对研究对象进行抽取,便于长期跟 踪研究。
系统抽样适用于长期跟踪研究,例如流行病学研究、社会 学研究等。
与分层抽样相比,系统抽样不需要对总体进行分层,操作相 对简单,但分层抽样可以根据不同层的特点进行有针对性的 调查,因此在实际应用中需要根据具体情况选择合适的抽样 方法。
02

系统抽样课件

系统抽样课件
系统抽样
1.系统抽样的概念 一般地,要从容量为N的总体中抽取容量为n的样本,可 将总体分成均衡的若干部分,然后按照预先制定的规则, 从每一部分抽取一个个体,得到所需要的样本,这种抽 样的方法就是系统抽样.
【思考】 系统抽样有什么特征?与简单随机抽样有什么区别?
提示:(1)系统抽样的主要特征有三个:①总体已知且数 量较大;②抽样必须等距;③每个个体入样的机会均等. 不满足任何一条就不是系统抽样. (2)系统抽样有别于简单随机抽样的一个显著特点是总 体中的个体的数量,一般来说,简单随机抽样,总体中个 体较少;系统抽样,总体中个体较多.
第三步,在第一段001,002,003,…,010中用简单随机 抽样方法抽出一个号码(如006)作为起始号码; 第四步,起始号+间隔的整数倍,确定各个个体,将编号为 006,016,026,…,486,496的个体抽出组成样本.
【内化·悟】 系统抽样中剔除部分个体时需要注意什么问题?
提示:(1)当总体容量不能被样本容量整除时,可以先从 总体中随机地剔除几个个体,使得总体中剩余的个体数 能被样本容量整除. (2)被剔除的部分个体可采用简单随机抽样法抽取. (3)剔除部分个体后应重新分段. (4)每个个体被抽到的机会均等,被剔除的机会也均等.
2.系统抽样应用的解题依据 (1)等可能性:由于整个抽样过程中每个个体被抽到的 机会相等,故可依此确定某范围上的要抽取的样本容量.
(2)编号的等间隔性: ①常见的系统抽样的样本号码特征较为明显:将号码从 小到大排列,任意相邻两项之间的差是一个定值(间隔 数); ②按照题设规定的规则抽取样本.
【思考】 系统抽样如何提高样本的代表性? 提示:系统抽样所得样本的代表性和具体的分段有关, 因此在系统抽样中就要提高分段的质量.例如,不要让 分段呈现周期性.

系统抽样_精品文档

系统抽样_精品文档

系统抽样一、引言在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择部分样本进行观察和分析,从而推断总体的特征和属性。

系统抽样是抽样方法中的一种重要方式,它基于一个系统性的策略,按照一定的规则从总体中选择样本,以确保样本能够代表整体。

本文将深入探讨系统抽样的原理、应用、优缺点以及如何进行样本量确定等相关内容。

二、系统抽样的原理系统抽样的原理是基于总体的有序结构,通过选择一个起始点,然后按照固定的间隔选取样本。

这个间隔通常用总体容量除以样本容量来计算,以保证选取的样本能够均匀地分布在总体中。

例如,若总体容量为N,样本容量为n,则每隔N/n个元素选取一个样本。

三、系统抽样的应用系统抽样广泛应用于各个领域,特别适用于大规模的调查和研究。

以下是系统抽样的几个典型应用:1. 民意调查:在政治选举、市场调研等方面,使用系统抽样可以有效地代表总体,从而推断出人们对候选人或产品的态度和偏好。

2. 质量控制:在生产过程中,可以使用系统抽样来检验产品质量是否符合标准,通过取样检查可以发现潜在的问题并进行修正。

3. 教育评估:在教育领域中,使用系统抽样可以评估学生对知识和技能的掌握程度,从而改进教学方法和提供个性化的教育支持。

4. 医学研究:在医学研究中,系统抽样可以帮助研究人员选择适当的样本,以研究特定疾病或治疗方法的有效性。

四、系统抽样的优缺点1. 优点:(1)代表性:系统抽样可以确保样本从总体中均匀地抽取,从而更好地代表总体的特征。

(2)效率高:相对于简单随机抽样,系统抽样在样本容量相同时,能够提供更精确的结果。

(3)容易实施:系统抽样是一种简单易行的抽样方法,不需要复杂的随机数生成过程。

2. 缺点:(1)陷入周期性误差:如果总体的有序结构与取样规则之间存在某种周期性关系,系统抽样可能导致样本集中在某些特定的区域,从而影响结果的准确性。

(2)对总体结构要求较高:系统抽样通常要求总体具有明确的有序结构,否则可能无法正确执行。

系统抽样

系统抽样

63
解析:依编号顺序平均分成的10个小组分 别为0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,70~79,80~89,90~99.因第 7组抽取的号码个位数字应是3,所以抽取的号码 是63.这个样本的号码依次是 6,18,29,30,41,52,63,74,85,96这10个号.
(1)总体与样本容量确定抽取的比例。 ( 2 )由分层情况,确定各层抽取的样本数。 (3)各层的抽取数之和应等于样本容量。 (4)对于不能取整的数,求其近似值。
4.三种抽样方法的比较
练习 :
一个电视台在因特网上就观众对其 某一节目的喜爱程度进行调查,参加调查 的总人数为12000人,其中持各种态度的人 数如下所示: 很喜爱 喜爱 一般 不喜爱
(1)分层抽样是等概率抽样,它也是公平的。用分 层抽样从个体为N的总体中抽取一个容量为n的样本 时,在整个抽样过程中每个个体被抽到的概率相等 为n/N。 (2)分层抽样是建立在简单随机抽样或系统抽样 的基础上的,由于它充分利用了已知信息,因此它 获取的样本更了解1200名学生对学校某项教改试验的 意见,打算从中抽取一个容量为30的样本, 考虑采用系统抽样,则分段的间隔k为( A ) A、40 B、30 C、20 D、12 4、为了了解参加一次知识竞赛的1252名学生 的成绩,决定采用系统抽样的方法抽取一个 容量为50的样本,那么总体中应随机剔除的 个体数目( A ) A、 2 B、4 C、 5 D、 6
编号、选数、取号、抽取.
例.从30个灯泡中抽取10个进行质量检测,说 明利用随机数表法抽取这个样本的步骤。 (随机 数表见本章末第103页附表) 解: S1 将30个灯泡编号:00,01,02, 03,……,30; S2 在随机数表中任取一组数作为开始。 如从第4 行第1组的数12开始; S3 从12开始向右读,依次选出12,26,27,05, 03,15,10,14,21,22这10个编号的灯泡。

系统抽样

系统抽样
注意以下四点: 注意以下四点: (1)它要求被抽取样本的总体的个体数有限; )它要求被抽取样本的总体的个体数有限; (2)它是从总体中逐个进行抽取; )它是从总体中逐个进行抽取; 它是一种等概率抽样。 (3)它是一种不放回抽样; (4)它是一种等概率抽样。 )它是一种不放回抽样; 它是一种等概率抽样
系统抽样
1、简单随机抽样
一般地,设一个总体的个体数为N, 一般地 ,设一个总体的个体数为 ,如果通过逐个 不放回地抽取的方法从中抽取一个样本 抽取的方法从中抽取一个样本, 不放回地抽取的方法从中抽取一个样本,且每次抽取时 各个个体被抽到的概率相等, 各个个体被抽到的概率相等,就称这样的抽样为简单随 机抽样。 机抽样。
步骤: 步骤:
第一步:先将总体的N个个体编号; 第一步:先将总体的 个个体编号; 个个体编号 N 是样本容量)是整数时, 第二步:将编号按一定的间隔k分段 分段, 第二步:将编号按一定的间隔 分段,当 n(n是样本容量)是整数时, 是样本容量
取 k = N,若 N 不是整数,则可从总体中剔除部分个体,使 n 不是整数,则可从总体中剔除部分个体, n ' 能被n整除 整除,这时 得剩下的总体个数 N ' 能被 整除 这时 k = N ,并将剩下的 n 总体重新编号; 总体重新编号;
N
随机抽样的方法: 随机抽样的方法: 抽签法 总体中的所有个体(共N个)编号(号码可以从 先将总体中的所有个体( 先将总体中的所有个体 个 编号(号码可以从0 ),② 到N-1),②并把号码写在形状、大小相同的号签上(号签 ), 并把号码写在形状、大小相同的号签上( 可以用小球、卡片、纸条等制作), ),然后将这些号签放在同 可以用小球、卡片、纸条等制作),然后将这些号签放在同 一个箱子里,进行均匀搅拌。 抽签时,每次从中抽出1个号 一个箱子里,进行均匀搅拌。③抽签时,每次从中抽出 个号 连续抽取n次 就得到一个容量为n的样本 的样本。 签,连续抽取 次,就得到一个容量为 的样本。对个体编号 也可以利用已有的编号。例如学生的学号,座位号等。 时,也可以利用已有的编号。例如学生的学号,座位号等。

系统抽样课件ppt

系统抽样课件ppt

认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
课后作业
同步训练冊:随堂练习巩固,课后作业提升( 第8题做作业本上,第9题不做,其他的都做书,设一个总体的个体数为N,如果通过 逐个不放回抽取的方法从中抽取n个个体作为样本, 且每个体被抽到的概率相等,就称这样的抽样方 法为简单随机抽样。
特点是:有限性,逐个性,不回性,等率性
2.简单随机抽样的方法:
抽签法 随机数法
3.适用范围:总体中个体数较少的情 况,抽取的样本容量也较小时。
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
思考:
当N/n不是整数时,如何进行 系统抽样?
从总体中随机剔除N除以n的余数个个体后再 分段.
如果总体中个体数N被样本容量n整除,则每 个个体被入样的可能性是n/N,若N不能被n 整除,需要剔除m时每个个体入样的可能性仍 是n/N,而不是n/N-m.
例如抽到的是6号,每次增加10,得到6, 16,26,36,…,496.
这样我们就得到了一个容量为50的样本,这种 抽样方法是一种系统抽样
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
系统抽样:
1.定义:
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
系统抽样与简单随机抽样比较, 有何优、缺点?

系统抽样和分层抽样的区别

系统抽样和分层抽样的区别

系统抽样和分层抽样的区别系统抽样和分层抽样是常用的两种概率抽样方法。

在统计学中,抽样是一种从总体中选择个体的方法,以便进行数据分析和推断。

系统抽样和分层抽样都有其独特的特点和应用场景。

本文将阐述系统抽样和分层抽样的区别,并探讨其在实际应用中的优缺点。

一、系统抽样系统抽样是指按照一定的规则从总体中选择个体的抽样方法。

具体而言,系统抽样是通过在总体中选择一个起点,然后根据事先确定的间隔规则依次选取个体,直到达到所需的样本量。

系统抽样的步骤包括:确定总体大小、计算间隔、选择起始个体、按照间隔选取个体。

系统抽样的优点在于简单易行,抽样过程便于操作和管理。

此外,系统抽样可以较好地保留总体的特征,适用于总体中个体分布规律较为均衡的情况。

系统抽样使得样本具有一定的随机性,从而提高了推断的精度和可靠性。

然而,系统抽样也存在一些缺点。

首先,如果总体中某些个体的特征呈现周期性或有规律的变化,可能会引入系统偏差。

其次,如果总体中存在某些特殊或异常个体,系统抽样可能无法很好地反映总体的全貌。

因此,在进行系统抽样时,需要事先对总体进行充分的了解和分析,避免因特殊因素导致的偏差。

二、分层抽样分层抽样是将总体划分为若干个层次,并从每个层次中选取样本,形成一个复合样本的抽样方法。

分层抽样的步骤包括:确定总体大小、划分层次、确定每层样本量、选择样本。

分层抽样的优点在于能够更好地反映总体的特征,保证了样本的代表性。

通过在不同的层次中选取样本,可以考虑到总体的异质性,缩小样本与总体之间的差异。

此外,分层抽样可以提高估计的精度,并且可以针对不同层次进行分析,获取更多层次的信息。

然而,分层抽样也存在一些限制和缺点。

首先,分层抽样需要对总体进行合理的划分,这需要对总体的特征有较为准确的了解。

如果划分不当或划分粒度过细,可能会导致样本的不均衡。

其次,分层抽样需要在每个层次中选择样本,增加了抽样的工作量和时间成本。

三、系统抽样和分层抽样的区别1. 定义和步骤:系统抽样是通过事先确定的间隔规则从总体中选择个体,抽取样本。

系统抽样

系统抽样

系统抽样(Systematic sampling)一、概述1、什么系统抽样设计总体中的N 个单元按某种顺序(通常是依照有关标志排队,即按某个在比估计和回归速记中提到的辅助变量的顺序排列,但也可以是依照无关标志排列,即按不完全满足辅助变量定义的某个已知变量排列,这种排列近似于随机排列),编号为1,2,…,N 。

抽取程序是首先抽取一个或一组起始单元的编号,然后按某种确定的规则(例如等距抽样:按照固定的间隔选取)选取其他单元的编号,直到满n 个为止,则这种抽样称为系统随机抽样,简称系统抽样。

2、直线等距抽样假设总体单元数为N ,样本容量为n ,N=nk,且总体中的N 个单元已按某种确定顺序编号为1,2,…,N 。

抽取程序是先从头k 个单元编号中随机抽出一个单元编号,然后每隔k 个单元编号抽取一个单元编号,直到抽出n 个单元编号为止,则这种等距抽样称为直线等距抽样。

3、圆形等距抽样假设总体单元数为N ,样本容量为n ,N ≠nk ,且总体中的N 个单元已按某种确定顺序编号为1,2,…,N 。

如将这些编号看成首尾相接的一个环,并从1到N 中按简单随机抽取方式抽取一个单元编号作为随机起点r ,然后每隔k 抽取一个单元编号,直到抽满n 个单元为止,则这种等距抽样称为圆形等距抽样。

4、直线等距抽样的实施方法 (1)首先计算抽样间接k=N/n ;(2)将N 个单元按某种顺序依次编号为1,2,…,N ;(3)从1~k 个单元编号中随机抽取一个单元编号,假设为r ; (4)每隔k 个单元编号抽出一个单元编号,直到抽出n 个单元。

例如:随机起点,k i i ≤≤1,,入选单元,,....2,,k i k i i ++i k 2k 3k (n-1)k nk 5、圆形等距抽样的实施方法编号不是直线排列而是环状(圆形)排列,是随机起点的选择范围由1到k 扩展到1到N 。

入样编号可以表示为:),,2,1(0)1(0)1(},)1(,)1(min{,)1(n j N k j r N k j r N k j r k j r i k j r i =⎩⎨⎧>--+≤--+--+-+=-+=当当二、不等概率系统抽样对总体N 个初级单元的某种确定排列顺序,设第i 个初级单元所包含的次级或基本单元数为i M ,令∑==Ni i M M 10表示总体所包含的全部级或基本单元数。

系统抽样

系统抽样

1、某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员 每隔3分钟从传送带上的特定位置取一件产品进行检测,这种抽样方法( ) A、简单随机抽样 B、系统抽样 C、随机数抽样 D、抽签法
B
2、为了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30 的样本,考虑采用系统抽样,则分段的间隔k为( ) A、40 B、30 C、20 D、12
分层抽样
问题 一个单位的职工500人,其中不到35岁的有125人,35到49岁的有280 人,50岁以上的有95人。为了了解这个单位职工与身体状况有关的某项指标, 要从中抽取一个容量为100的样本。由于职工年龄与这项指标有关,试问:应 用什么方法抽取?能在500人中任意取100个吗?能将100个份额均分到这三部 分中吗?
四、总结回顾----系统抽样的步骤:
(1)先将总体的N个个体编号;
(2)确定分段间隔k,对编号进行分段,当N/n(n是样本容量) 是整数时,取k=N/n;当N/n不是整数时,通过从总体中剔除一 些个体使剩下的总体中的个体数能被n整除; (3)在第1段用简单随机抽样确定起始的个体编号l;
(4)按照事先确定的规则(常将l加上间隔k)抽取样本。
系统抽样
例1 为了解参加某种知识竞赛的1000名学生的成绩, 打算抽取容量为50的一个样本进行了解。过程如下:
(1)随机将这1000名学生编号为1,2,3,……,1000; (2)确定分段间隔 K=1000/50=20 (3)在第一部分的个体编号1,2,……,20中,利用简单随机抽样 抽取一个号码,比如13; (4)以13为起始号,每间隔20抽取一个号码,这样就得到一 个容量为50的样本:13,33,53,……,973,993。
1.(06年陕西)某商场有四类食品,其中粮食类、植物油类、动物性 食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个 容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样 本,则抽取的植物油类与果蔬类食品种数之和是 (A)4 (B)5 (C)6 (D)7

系统抽样

系统抽样

(二)新课讲授
1、系统抽样的概念: 、系统抽样的概念 概念: 当总体中的个体数比较多时,将总体分成均衡 当总体中的个体数比较多时,将总体分成均衡 的若干部分,然后按照预先制定的规则, 的若干部分,然后按照预先制定的规则,从每一部 分抽取一个个体,得到所需的样本,这种抽样的方 分抽取一个个体,得到所需的样本, 法叫做系统抽样 由于系统抽样的间隔相等, 系统抽样, 法叫做系统抽样,由于系统抽样的间隔相等,因此 间隔相等 系统抽样也称为等距抽样。 系统抽样也称为等距抽样 等距抽样。
2、系统抽样的步骤 、
一般地, 假设从容量为N的总体中抽取容量为 的样本, 的总体中抽取容量为n的样本 一般地 , 假设从容量为 的总体中抽取容量为 的样本 , 可以按下列步骤进行系统抽样: 可以按下列步骤进行系统抽样: 个个体编号; (1)编号:先将总体的 个个体编号; )编号:先将总体的N个个体编号 (2)分段:确定分段间隔 ,对编号进行分段,当N/n(n )分段:确定分段间隔k,对编号进行分段, ( 是样本容量)是整数时,取k=N/n;当 N/n不为整数时,先 是样本容量)是整数时, ; 不为整数时, 不为整数时 用随机数表法把多出的剔除; 用随机数表法把多出的剔除; (3)确定起始个体编号:在第 段用简单随机抽样确定第一 )确定起始个体编号:在第1段用简单随机抽样确定第一 个个体编号l( ) 个个体编号 (l≤k); 加上间隔k (4)按照事先确定的规则抽取样本:通常是将 加上间隔 )按照事先确定的规则抽取样本:通常是将l加上间隔 得到第2个个体编号( ),再加k得到第 ),再加 得到第3个个体编号 得到第 个个体编号(l+k),再加 得到第 个个体编号 个个体编号 ),依次进行下去 (l+2k),依次进行下去,直到获得整个样本。 ),依次进行下去,直到获得整个样本。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一个号码,就得到一个容量为60的样本.
(如8,18,28,…,598)
精选课件
7
思考5:上述抽样方法称为系统抽样, 一般地,怎样理解系统抽样的含义?
系统抽样:
当总体的个体数较多时,采用简单随机抽样 太麻烦,这时将总体平均分成几个部分,然 后按照预先定出的规则,从每个部分中抽取 一个个体,得到所需的样本,这样的抽样方 法称为系统抽样(等距抽样)。
5
思考4:如果从600件产品中抽取60件进 行质量检查,按照上述思路抽样应如何 操作?
精选课件
6
第一步,将这600件产品编号为1,2, 3,…,600.
第二步,将总体平均分成60部分,每 一部分含10个个体.
第三步,在第1部分中用简单随机抽样 抽取一个号码(如8号).
第四步,从该号码起,每隔10个号码取
精选课件
4
知识探究(一):简单随机抽样的基本思想
思考1:某中学高一年级有12个班,每 班50人,为了了解高一年级学生对老师 教学的意见,教务处打算从年级600名 学生中抽取60名进行问卷调查,那么年 级每个同学被抽到的概率是多少?
思考2:你能用简单随机抽样对上述问题 进行抽样吗?具体如何操作?
精选课件
(2)将整个的编号按一定的间隔(设为K)分段,当
N n
(N为总体中的个体数,n为样本容量)是整数
时,k N ;当 N 不是整数时,从总体中剔除一些
n
n
个体,使剩下的总体中个体的个数 N ' 能被n整除,这
时, k
N
'
,并将剩下的总体重新编号;
n
l (3)在第一段中用简单随机抽样确定起始的个体编号 ;
用简单随机抽样抽取第1段的个体编 号.在抽取第1段的号码之前,自定义规 则确定以后各段的个体编号,通常是将 第1段抽取的号码依次累加间隔k.
精选课件
13
思考7:一般地,用系统抽样从含有N个 个体的总体中抽取一个容量为n的样本, 其操作步骤如何?
精选课件
14
系统抽样的步骤:
(1)采用随机的方式将总体中的个体编号;
A.抽签法
B.随机数表法
C.系统抽样
D.其他
2、采用系统抽样的方法,从个体数为1003的
将总体中的所有个体编号.
思考2:如果用系统抽样从605件产品中 抽取60件进行质量检查,由于605件产品 不能均衡分成60部分,对此应如何处理?
先从总体中随机剔除5个个体,再均衡
分成60部分.
精选课件
10
思考3:用系统抽样从含有N个个体的总 体中抽取一个容量为n的样本,要平均 分成多少段,每段各有多少个号码?
“……美丽润肤膏,含有多种中药成分, 可以彻底清除脸部色斑,只需10天,就 能让你的肌肤得到改善.”
精选课件
18
理论迁移
例1 某中学有高一学生322名,为 了了解学生的身体状况,要抽取一个容 量为40的样本,用系统抽样法如何抽样?
精选课件
19
第一步,随机剔除2名学生,把余下的 320名学生编号为1,2,3,…320.
精选课件
8
系统抽样的特点:
(1)用系统抽样抽取样本时,每个个体被抽到 的可能性是相等的,个体被抽取的概率等于 n
N
(2)系统抽样适用于总体中个体数较多,抽取 样本容量也较大时; (3)系统抽样是不放回抽样。
精选课件
9
知识探究(二):系统抽样的操作步骤
思考1:用系统抽样从总体中抽取样本 时,首先要做的工作是什么?
思考4:如果N不能被n整除怎么办?
从总体中随机剔除N除以n的余数个个体 后再分段.
精选课件
11
思考5:将含有N个个体的总体平均分成 n段,每段的号码个数称为分段间隔, 那么分段间隔k的值如何确定?
总体中的个体数N除以样本容量n所得 的商.
精选课件
12
思考6:用系统抽样抽取样本时,每段 各取一个号码,其中第1段的个体编号 怎样抽取?以后各段的个体编号怎样 抽取?
第二步,把总体分成40个部分,每个 部分有8个个体.
第三步,在第1部分用抽签法确定起始 编号.
第四步,从该号码起,每间隔8个号码 抽取1个号码,就可得到一个容量为40 的样本.
精选课件
20
பைடு நூலகம்
练习:
1、某工厂生产产品,用传送带将产品送放下一
道工序,质检人员每隔十分钟在传送带的某一个
位置取一件检验,则这种抽样方法是( C )。
(4)将编号为 l,l k ,l 2 k ,...,l (n 1 )k的个体抽出。
简记为:编号;分段;在第一段确定起始号;加
间隔获取样本。
精选课件
15
思考8:系统抽样与简单随机抽样比较,有何优、缺点?
点评:(1)系统抽样比简单随机抽样更容易实施, 可节约抽样成本;
(2)系统抽样的效果会受个体编号的影响,而简单 随机抽样的效果不受个体编号的影响;系统抽样所得 样本的代表性和具体的编号有关,而简单随机抽样所得 样本的代表性与个体的编号无关.如果编号的个体特征 随编号的变化呈现一定的周期性,可能会使系统抽样的 代表性很差.例如学号按照男生单号女生双号的方法编 排,那么,用系统抽样的方法抽取的样本就可能会是全 部男生或全部女生.
(3)系统抽样比简单随机抽样的应用范围更广.
精选课件
16
思考9:在数字化时代,各种各样的统 计数字和图表充斥着媒体,由于数字给 人的印象直观、具体,所以让数据说话 是许多广告的常用手法.下列广告中的 数据可靠吗?
精选课件
17
“……瘦体减肥灵真的灵,其减肥的有 效率为75%.”
“现代研究证明,99%以上的人皮肤感 染有螨虫…….”
简记为:编号;制签;搅匀;抽签;取个体。
用随机数表法抽取样本的步骤:
简记为:编号;选数;读数;取个体。
精选课件
3
知识回顾
1、简单随机抽样包括__抽__签__法__和__随__机__数__表__法__.
2、在简单随机抽样中,某一个个体被抽到的可
能性是( C )。
A.与第几次抽样有关,第一次抽的可能性最大 B.与第几次抽样有关,第一次抽的可能性最小 C.与第几次抽样无关,每次抽到的可能性相等 D.与第几次抽样无关,与抽取几个样本无关
系统抽样
精选课件
1
复习回顾:
简单随机抽样的概念
一般地,设一个总体的个体数为N, 如果通过逐个不放回地抽取的方法从中 抽取一个样本,且每次抽取时各个个体 被抽到的概率相等,就称这样的抽样为 简单随机抽样。
适用范围:总体中个体数较少的情况, 抽取的样本容量也较小时。
精选课件
2
用抽签法抽取样本的步骤:
相关文档
最新文档