流体力学中的三大基本方程

合集下载

流体力学三大方程的推导

流体力学三大方程的推导

微分形式的连续性方程连续方程是流体力学的基本方程之一,流体运动的连续方程,反映流体运动和流体质量分布的关系,它是在质量守恒定律在流体力学中的应用。

重点讨论不同表现形式的流体连续方程。

用一个微六面体元控制体建立微分形式的连续性方程。

设在流场中取一固定不动的微平行六面体(控制体),在直角坐标系oxyz 中,六面体的边长取为dx ,dy ,dz 。

先看x 轴方向的流动,流体从ABCD 面流入六面体,从EFGH 面流出。

在x 轴方向流出与流入质量之差()()[]x x x x u u u dx dydzdt u dydzdt dxdydzdt x xρρρρ∂∂+-=∂∂用同样的方法,可得在y 轴方向和z 轴方向的流出与流入质量之差分别为()y u dxdydzdt y ρ∂∂()z u dxdydzdt z ρ∂∂这样,在dt 时间内通过六面体的全部六个面净流出的质量为:()()()[]y x z u u udxdydzdt x x x ρρρ∂∂∂++∂∂∂在dt 的时间内,六面体内的质量减少了 , 根据质量守恒定律,净流出六面体的质量必等于六面体内所减少的质量()dxdydzdt t ρ∂-∂()()()[]y x z u u u dxdydzdt dxdydzdt x y z tρρρρ∂∂∂∂++=-∂∂∂∂()()()0y x z u u u x y z tρρρρ∂∂∂∂+++=∂∂∂∂这就是直角坐标系中流体运动的微分形式的连续性方程。

这就是直角坐标系中流体运动的微分形式的连续性方程。

代表单位时间内,单位体积的质量变化代表单位时间内,单位体积内质量的净流出利用散度公式:得到利用矢量场基本运算公式和随体导数公式:得到 )()()()div(z y x u z u y u x u ρρρρ∂∂+∂∂+∂∂= 0)div(=+∂∂u tρρ()()()0y x z u u u x y z tρρρρ∂∂∂∂+++=∂∂∂∂在连续方程中 div()div u u u ρρρ=+⋅∇ρρρ∇⋅+∂∂=u tDt D 0div =+u Dt D ρρdiv 0u u tρρρ∂++⋅∇=∂讨论*表明对不可压流体,体积在随体运动中保持不变。

流体动力学三大方程

流体动力学三大方程

流体动力学三大方程流体动力学是研究流体运动和流体力学性质的学科,它以三大方程为基础,这三大方程分别是连续性方程、动量方程和能量方程。

在本文中,将对这三大方程进行详细的介绍和解释。

1. 连续性方程连续性方程是描述流体质点的质量守恒的基本方程。

它表明在流体运动中,质量是守恒的,即单位时间内流入某一区域的质量等于单位时间内流出该区域的质量。

连续性方程的数学表达式是通过流体的速度场和流体密度来描述的。

在一维情况下,连续性方程可以表示为流体密度乘以速度的横向梯度等于零。

2. 动量方程动量方程描述了流体力学中质点的动量变化。

根据牛顿第二定律,动量方程可以表达为流体质点的质量乘以加速度等于质点所受到的合力。

在流体动力学中,动量方程的数学表达式是通过流体的速度场、压力场和粘性力来描述的。

动量方程是解决流体力学问题的基础方程之一,它可以用来计算和预测流体的速度和压力分布。

3. 能量方程能量方程描述了流体质点的能量变化。

在流体动力学中,能量方程的数学表达式是通过流体的速度场、压力场、密度和温度来描述的。

能量方程包括了流体的动能、压力能和内能的变化。

能量方程在研究流体的热力学性质和能量转化过程中起着重要的作用。

通过能量方程,可以计算和预测流体的温度分布和能量转化效率。

这三大方程是流体动力学研究中的核心内容,它们相互联系、相互依赖,共同构成了流体运动的基本规律。

连续性方程保证了质量守恒,动量方程描述了力学平衡,能量方程描述了能量转化。

在实际应用中,这些方程可以用来解决各种流体力学问题,如流体的流动特性、压力分布、速度场、能量转化等。

流体动力学三大方程——连续性方程、动量方程和能量方程是研究流体运动和流体力学性质的基础。

它们通过数学表达式描述了质量守恒、力学平衡和能量转化的规律。

这些方程的应用广泛,能够帮助我们理解和预测流体的运动和性质,对于工程设计、自然灾害和环境保护等领域都具有重要意义。

通过研究和应用这些方程,我们可以更好地掌握和利用流体动力学知识,为社会发展和人类福祉做出贡献。

流体力学三大基本方程公式

流体力学三大基本方程公式

流体力学三大基本方程公式流体力学是研究流体(液体和气体)行为的一门学科,而其中的三大基本方程就像是流体世界里的三位“大神”,每一个都有自己的风格和特点。

今天我们就来轻松聊聊这三大基本方程,看看它们是如何影响我们日常生活的。

1. 连续方程1.1 理论基础连续方程说的就是流体在流动时质量是守恒的,也就是说流体不会凭空消失或者出现。

这就好比你在喝饮料,吸管里的液体不管你怎么吸,它的总量始终不变。

你想,假如你吸得太快,吸管里液体都没了,那饮料可就喝不到了,真是要命!1.2 实际应用在现实生活中,这个方程的应用可广泛了。

比如,水管里流动的水,流量是一定的。

如果管道变窄,水速就会变快,简直就像是高速公路上的汽车,车道窄了,车速得加快才能不堵车。

你可以想象一下,如果这条“水路”被堵了,后果可就不堪设想,真是“水深火热”啊。

2. 纳维斯托克斯方程2.1 理论基础说到纳维斯托克斯方程,这可是流体力学里的“超级英雄”。

它描述了流体的运动,考虑了粘性、压力、速度等多个因素,就像一位全能运动员,无论是短跑、游泳,还是足球,样样精通!这个方程让我们能够预测流体的流动,简直就像是给流体穿上了“预测未来”的眼镜。

2.2 实际应用说到实际应用,纳维斯托克斯方程可是在天气预报、飞机设计等领域大显身手。

在气象学中,气象学家利用这个方程来模拟风暴、降雨等自然现象,真的是“未雨绸缪”,让我们提前做好准备。

想象一下,若是没有它,我们可能在大雨来临时还在悠哉悠哉地喝着茶,结果被“浇”了个透心凉。

3. 伯努利方程3.1 理论基础最后我们得提提伯努利方程,它可是流体动力学的明星。

简单来说,伯努利方程告诉我们,流体的压力和速度之间有着“爱恨交织”的关系。

流速快的地方,压力就低;流速慢的地方,压力就高。

这就像是你在一个热闹的派对上,越往外挤,周围的人越少,反而显得格外“安静”。

3.2 实际应用伯努利方程的应用那可是多得数不胜数,尤其是在飞行器设计上。

流体力学中的理论模型

流体力学中的理论模型

流体力学中的理论模型引言流体力学是研究流体运动规律和性质的学科,是物理学的一个重要分支。

在流体力学中,理论模型是研究和解决流体问题的基础。

理论模型的建立可以帮助我们理解和预测流体行为,对于解决实际问题具有重要意义。

本文将介绍流体力学中常用的一些理论模型及其应用。

一、欧拉方程欧拉方程是描述不可压缩流体力学的基本方程之一。

它是从质量守恒和动量守恒的原理出发推导而来。

欧拉方程可以用来描述流体的运动速度和压力分布。

其基本形式如下:$$\\frac{\\partial \\mathbf{v}}{\\partial t} + (\\mathbf{v} \\cdot \abla)\\mathbf{v} = -\\frac{1}{\\rho}\ abla p + \\mathbf{g}$$其中,$\\mathbf{v}$表示速度矢量,t表示时间,$\\rho$表示流体密度,p表示压力,$\\mathbf{g}$表示重力加速度。

欧拉方程的应用非常广泛,例如在航空航天领域中用于计算飞行器的气动力、在水力工程中用于设计水电站的水轮机等。

二、雷诺方程与欧拉方程相对应的是雷诺方程,它是描述可压缩流体力学的基本方程之一。

雷诺方程是通过在欧拉方程中引入粘性效应而得到的。

其基本形式如下:$$\\frac{\\partial \\mathbf{v}}{\\partial t} + (\\mathbf{v} \\cdot \abla)\\mathbf{v} = -\\frac{1}{\\rho}\ abla p + \\mu \ abla^2 \\mathbf{v} +\\mathbf{g}$$其中,$\\mu$表示动力粘度。

雷诺方程可以用于研究流体的湍流行为和边界层分离等问题。

它在航空航天、汽车工程、海洋工程等领域中都有重要应用。

三、纳维-斯托克斯方程纳维-斯托克斯方程是描述不可压缩流体力学的基本方程。

它是通过在欧拉方程中引入粘性效应并考虑不可压缩条件得到的。

流体力学中的三大基本方程

流体力学中的三大基本方程

dx
dt
p x
fx
单位质量流体的运动微分方程:
dx
dt
1
p x
fx
16
同理可得y,z方向上的:
dx
dt
x
t
x
x
x
y
x
y
z
x
z
1
p x
fx
dy
dt
y
t
x
y
x
y
y
y
z
y
z
1
p y
fy
dz
dt
z
t
x
z
x
y
z
y
z
z
z
1
p z
fz
17
向量形式:
dr
r f
1
gradp
dt
——理想流体欧拉运动微分方程
式中:
2x
z 2
)
y
t
x
y
x
y
y
y
z
y
z
fy
1
p y
( 2 y
x2
2 y
y 2
2 y )
z 2
19
z
t
x
z
x
y
z
y
z
z
z
fz
1
p z
( 2z
x 2
2z
y 2
2z )
z 2
1.
含有四个未知量(

x
y,完 z整, P的)方程组。
2. 描述了各种量间的依赖关系。
3. 通解、单值条件(几何条件、物理条件、边界条件、初始 条件)→特解。

流体力学基本方程

流体力学基本方程

流体的本构关系
流体均匀各向同性 流体可承受正应力 静止流体不能承受剪切 运动流体不同速度层之间存在剪切力(粘性) 静止流体表面应力为
p ij
ij p ij dij
流体的本构关系
Resistentian, quae oritur ex defectu lubricitatis partuim fluidi, caeteris paribus, proportionalem esse velocitati, qua partes fluidi separantur ab invicem. Isaac Newton, 1687, From Section IX of Book II of his Principia
流体的输运系数
粘性系数(动量输运): 热传导率(能量输运): k
( p, T ) k ( p, T )
n
幂函数公式:
T 0 T0
k T k0 T0
1.5
n
Sutherland公式:
T T0 Ts 0 T0 T T
0
Du p f Dt
Euler Equation
1 p U 2 C 2
Bernoulli’s Equation
涡量方程
u 0 : Du 2 p f u Dt
0:
Du p f Dt
Skk u
1 v u ( ) 2 x y v y 1 w v ( ) 2 y z
1 w u ( ) 2 x z 1 w v ( ) 2 y z w z
单位体积变化率(描述流体均匀膨胀,压缩)

流体力学三大方程公式及符号含义

流体力学三大方程公式及符号含义

流体力学是研究流体运动和力学的学科,涉及流体的运动规律、压力、密度等物理性质。

在流体力学的研究中,三大方程公式是非常重要的理论基础,它们分别是连续方程、动量方程和能量方程。

本文将对这三大方程公式及其符号含义进行详细介绍。

一、连续方程连续方程是描述流体连续性的重要方程,它表达了流体在运动过程中质点的连续性。

连续方程的数学表达式为:\[ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \]其中,符号和含义说明如下:1.1 ∂ρ/∂t:表示密度随时间的变化率,ρ为流体密度。

1.2 ∇·(ρv):表示流体质量流动率的散度,∇为Nabla算子,ρv为流体的质量流速矢量。

这一方程表明了在运动的流体中,质量是守恒的,即单位体积内的质量永远不会减少,这也是连续方程的基本原理。

二、动量方程动量方程描述了流体运动过程中动量的变化和传递,是流体力学中的核心方程之一。

其数学表达式为:\[ \frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = -\nabla p + \nabla \cdot \mathbf{\tau} + \mathbf{f} \]其中,符号和含义说明如下:2.1 ∂(ρv)/∂t:表示动量随时间的变化率。

2.2 ∇·(ρv⃗v):表示动量流动率的散度。

2.3 -∇p⃗:表示流体受到的压力梯度力。

2.4 ∇·τ⃗:表示应力张量的散度,τ为流体的粘性应力张量。

2.5 f⃗:表示单位体积内流体受到的外力。

动量方程描述了流体内部和外部力之间的平衡关系,它是研究流体运动规律和动力学行为的重要方程。

三、能量方程能量方程描述了流体在运动过程中的能量变化规律,包括内能、压力能和动能等能量形式。

流体力学基本方程

流体力学基本方程

∂t
∂t
单位时段内控制体内流体质量的增量为:
∂ρ dtdxdydz / dt = ∂ρ dxdydz
(2)
∂t
∂t
− [∂(ρ vx ) + ∂(ρ vy ) + ∂(ρ vz )]dxdydz
(1)∂x∂y Nhomakorabea∂z
∂ρ + ∂(ρ vx ) + ∂(ρ vy ) + ∂(ρ vz ) = 0
∂t ∂x
系统:一团流体的集合,在运动过程中,系统始终包含着确定的这些流体 质点。有确定的质量,而这一团流体的表面常常是不断变形的。 控制体:控制体是流场中某一确定的空间区域,即相对于坐标系是固定不 变的。控制体的表面是控制面,控制体的形状是根据流体运动情况和边界 情况选定的。
7
第二节 流体运动的基本概念
一、定常流、非定常流
∂v = 2 ∂y
∂w = 4 ∂z
∂u + ∂v + ∂w = 6 + 2 + 4 = 12 ≠ 0 ∂x ∂y ∂z
对不可压缩流体,以上流动不存在。对可压缩流体,因密度的变化未给 出,故无法判断。
例题3:假定流管形状不随时间变化,设A为流管的横断面积,且在A断面 上流动物理量是均匀的,试证明连续性方程具有下述形式:
20
江苏大学
Jiangsu University
对于定常流动:控制体内的质量增量 ,所以流入 = 流出
单位时间内流入控制体的质量: ρ v1 A1 单位时间内流出控制体的质量: ρ v2 A2
v1 A1 = v2 A2 Q1 = Q2
例1:如上图所示,有二块平 行平板,上板以匀速v向下平 移,间隙中的油向左右挤出 ,前后油液无流动。间隙宽b ,高h(t),求油的平均流速 随位置变化的关系u(x)。

流体力学第四章

流体力学第四章

1.渐变流及其特性
渐变流过水断面近似为平面,即渐变流是流线接近于
平行直线的流动。均匀流是渐变流的极限。
动压强特性:在渐变流同一过水断面上,各点动压强
按静压强的规律式分布,即
注:上述结论只适用于渐变流或均匀流的同一过水断面上 的 各点,对不同过水断面,其单位势能往往不同。
选取:控制断面一般取在渐变流过水断面或其极限情况均匀 流断面上。
即J=JP。 5.总水头线和测压管水头线之间的距离为相应段
的流速水头。
6.如果测压管水头线在总流中心线以上,压强就 是正职;如相反,则压强为负值,则有真空。
4.总流能量方程在推导过程中的限制条件
(1)不可压缩流体;
(2)恒定流;
(3)质量力只有重力,所研究的流体边界是静止 的(或处于平衡状态);
取管轴0-0为基准面,测压管所在断面
1,2为计算断面(符合渐变流),断面的形
心点为计算点,对断面1,2写能量方程(4-
15),由于断面1,2间的水头损失很小,
可视
,取α1=α2=1,得
由此得:
故可解得:
式中,K对给定管径是常量,称为文丘里流 量计常数。
实际流量 : μ——文丘里流量计系数,随流动情况和管
流体力学
第四章 流体动力学基础
本章是工程流体力学课程中最重要的一 章。本章建立了控制流体运动的微分方程, 即理想流体运动微分方程和实际流体的运 动微分方程;并介绍了求解理想流体运动 微分方程的伯努利积分形式;构建了工程 流体力学中应用最广的恒定总流运动的三 大基本方程:连续性方程、伯努利方程 (即能量方程)和动量方程。通过本章的 学习要培养综合运用三大基本方程分析、 计算实际总流运动问题的能力。
道收缩的几何形状而不同。

流体力学方程各项的意义 知乎

流体力学方程各项的意义 知乎

流体力学方程各项的意义知乎全文共四篇示例,供读者参考第一篇示例:流体力学方程是描述流体运动规律的基本方程,它包括连续性方程、动量方程和能量方程。

这三个方程分别对应了流体运动中质量守恒、动量守恒和能量守恒的基本原理,通过这些方程我们可以推导出流体在不同情况下的运动规律和流态特性。

下面将分别介绍各项方程的意义。

连续性方程是描述流体在空间内不同位置和不同时间的质量变化关系。

其数学表示形式为质量守恒方程:∂ρ/∂t + ∇·(ρv) = 0ρ表示流体的密度,v表示流体的流速,t表示时间。

这个方程实际上是描述了在流体流动过程中,质量不能被“创造”或“消失”,而只能在空间内不同位置之间转移。

连续性方程可以帮助我们理解和描述流体在不同位置之间的质量变化关系,对于研究流体运动的整体特性和稳定性具有重要意义。

动量方程是描述流体运动过程中力的作用和运动状态变化的方程。

其数学表示形式为牛顿第二定律:p表示压力,τ表示应力张量,F表示外力。

这个方程可以描述流体在外力作用下产生的加速度和流速的变化情况,进而帮助我们理解和分析流体运动中各种复杂的现象和特性。

通过动量方程,我们可以研究流体在不同条件下的运动规律和动力学特性,为流体力学的应用和实践提供理论基础。

ρ[∂(e + v^2/2)/∂t + ∇·[(e + p)v]] = ∇·(k∇T) + φe表示单位质量的内能,k表示热传导系数,T表示温度,φ表示能量来源。

能量方程可以描述流体的内能和动能随着时间和空间的变化情况,进而帮助我们研究和分析流体的温度、热量传递和能量转换过程。

通过能量方程,我们可以深入理解流体在不同环境下的能量交换和转化机制,为热力学和热传导等领域的研究提供依据和支持。

流体力学方程是研究流体运动规律和性质的基本工具,每一个方程都有其独特的物理意义和数学含义。

通过对这些方程的建立和求解,我们可以深入探讨流体在宏观尺度下的行为和特性,为工程应用和科学研究提供理论支持和指导。

《流体力学》Ⅰ主要公式及方程式

《流体力学》Ⅰ主要公式及方程式

《流体力学》Ⅰ主要公式及方程式流体力学是研究流动的力学学科,它使用了一系列的公式和方程式来描述和解释流体的运动和性质。

以下是流体力学中的一些主要公式和方程式:1.连续性方程式:连续性方程式描述了质量守恒定律,即在一个封闭的流体系统中,质量的流入量等于流出量。

连续性方程式的公式如下:∇·(ρV)=0其中,∇表示向量的散度操作符,ρ表示流体的密度,V表示流体的速度矢量。

2.动量方程式:动量方程式描述了物体所受到的力和加速度之间的关系。

对于流体力学,动量方程式可以分为欧拉方程和纳维尔-斯托克斯方程两种形式。

欧拉方程描述了无粘性流体的动量方程,其公式如下:∂V/∂t+(V·∇)V=-(1/ρ)∇p+F其中,∂V/∂t表示速度V对时间t的偏导数,·表示向量点乘,p表示压力,F表示外力。

纳维尔-斯托克斯方程描述了粘性流体的动量方程,其公式如下:∂V/∂t+(V·∇)V=-(1/ρ)∇p+μ∇²V+F其中,μ表示流体的动力黏度,∇²表示向量的拉普拉斯算子。

3.质量守恒方程:质量守恒方程描述了流体的质量守恒定律,其公式如下:∂ρ/∂t+∇·(ρV)=0其中,ρ表示流体的密度,V表示流体的速度矢量。

4.能量守恒方程:能量守恒方程描述了流体的能量守恒定律,其公式如下:∂(ρe)/∂t+∇·(ρeV)=∇·(k∇T)+Q其中,e表示流体的单位质量内部能量,T表示流体的温度,k表示热传导系数,Q表示热源。

5.状态方程:状态方程描述了流体的状态,在流体力学中常用的状态方程有理想气体状态方程和液体状态方程。

理想气体状态方程公式如下:p=ρRT其中,p表示压力,ρ表示密度,R表示气体常数,T表示温度。

以上是流体力学中的一些主要公式和方程式。

这些方程式通过数学描述和解析,可以帮助我们理解和预测流体的运动和行为,对于各种工程和科学应用都具有重要的意义。

流体力学的三个基本方程

流体力学的三个基本方程

流体力学的三个基本方程
1. 质量守恒方程:
质量守恒方程是基于质量守恒定律的表达式,描述了流体中质量的变化。

它可以表示为:
∂ρ/∂t + ∇·(ρv) = 0。

其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∂/∂t表示对时间的偏导数,∇·表示散度运算符。

2. 动量守恒方程:
动量守恒方程是基于牛顿第二定律的表达式,描述了流体中动量的变化。

它可以表示为:
ρ(∂v/∂t + v·∇v) = -∇p + ∇·τ + ρg.
其中,p是流体的压力,τ是应力张量,g是重力加速度。

∂v/∂t表示对时间的速度偏导数,v·∇v表示速度矢量的梯度运
算,∇·τ表示应力张量的散度。

3. 能量守恒方程:
能量守恒方程描述了流体中能量的变化。

它可以表示为:
∂(ρe)/∂t + ∇·(ρev) = -p∇·v + ∇·(k∇T) +
ρv·g + Q.
其中,e是单位质量的内能,T是流体的温度,k是热传导系数,Q是单位质量的热源或耗散。

∂(ρe)/∂t表示对时间的内能偏导数,∇·(ρev)表示内能流的散度,p∇·v表示压力功的散度,
∇·(k∇T)表示热传导的散度,ρv·g表示重力功的散度。

这三个基本方程是流体力学的核心方程,通过它们可以描述流
体在各种条件下的运动、变形和能量转换。

它们是流体力学研究和
工程应用的基础。

流体力学中三大基本方程

流体力学中三大基本方程

理想流体稳定流动的伯努利微分方程
由理想流体欧拉运动微分方程
fx
1
p x
d x
dt
fy
1
p y
d y
dt
是稳定流动,vx,vy,vz,p都只是坐标函数,及时间 无关,方程转换去除t项
fz
1
p z
d
z
dt
推导得: d 1 dpgdz
Or
gdz 1 dpd0
——伯努利方程微分形式。
x ( x) y ( y) z( z) dxdydz
⑵控制体内质量变化:
因控制体是固定的,质量变化是因密度变化引起的,dt时间内:
( d t) d x d y d zd x d y d z d td x d y d z
t
t
单位时间内,微元体质量增量:
dtdxd/dyt dzdxdydz
当)
2 : 单位重量流体具有的动压头or速度水头,速度压头。 2g
物理中:质量为m以速度v垂直向上抛能达到的最高高度为v2/2g
三者之和为单位重量流体的总水头。
几何意义:
理想、不可压缩流体在重力场中作稳态流动时,沿一根 流线(微小流束)的总水头是守恒的,同时可互相转换。
3.2 伯努利方程的应用
说明: 流体质点在微小控制体dxdydz范围内,沿任意方向流线流动时的能量平衡关
系式。
①适用范围:理想流体、稳定流体、质量 力只有重力且在微小控制体dxdydz范围内 沿某一根流线;
②物理意义:揭示了沿某一根流线运动着 的流体质点速度,位移和压强、密度四者 之间的微分关系。
3.1 伯努利方程积分形式
⑶分析受力: ① 质量力:
dxdyfdz
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⑶稳定流动时:所有流体物性参数均不随时间而变, 0 t
(x) (y) (z) 0 x y z div( ) 0
⑷二维平面流动: x
x

y y
0
2.理想流体的运动方程
3.4.1---欧拉运动微分方程

理论依据:是牛顿第二定律在流体力学上的具体应用,它建 立了理想流体的密度、速度、压力与外力之间的关系。 1775年由欧拉推出流体力学中心问题是流速问题,流体流速 与其所受到外力间的关系式即是运动方程。
1 v x vx dx 2 x
因所取控制体无限小,故认为在其各表面上的流速均匀分布。 所以单位时间内沿x轴方向 流入控制体的质量为 1 vx vx dxdydz 2 x 流出控制体的质量为 v 1 vx dxdydz x 2 x
③ 流体质点加速度 a

的计算方法:
(x,y,z,t)x f(t) y f( ' t)y f ( ' ' t)
流速的全导数应是:
Hale Waihona Puke d a x y z dt t x y z





当地加速度:流场中某处流体运动速度对时间 的偏导数,反映了流体速度在固定位置处的时 间变化特性 迁移加速度:流场由于流出、流进某一微小区 域而表现出的速度变化率。
dxdydz f
f x dxdydz
② 表面力: 理想流体,没有粘性,所以表面力只有压力 X方向上作用于垂直x轴方向两个面的压力分别为:
p dx pM p x 2
p dx pN p x 2
X方向上质点所受表面力合力: p (pM pN)dydz dxdydz x
流体力学中的三大基本方程
刘颖杰
1 连续性微分方程

理论依据:质量守恒定律在微元体中的应用 数学描述:
[单位时间流出的质量]-[单位时间流入的质量]+[单位时间 质量的累积or增量]=0
•公式推导: (1)单位时间内流入、流出微元体流体总质量变化
假定流体连续地 充满整个流场,从中 任取出以 o x,y,z 点为中心的微小六面 体空间作为控制体如 右图。控制体的边长 为dx,dy,dz,分别 平行于直角坐标轴x,
a
在三个坐标轴上的分量表示成:
⑷代入牛顿第二定律求得运动方程: 得x方向上的运动微分方程:
d x p dxdydz dxdydz f x dxdydz dt x
单位体积流体的运动微分方程:
d x p fx dt x
单位质量流体的运动微分方程:
v y y
dxdydz

v z dxdydz z
故单位时间内流出与流入微元体流体质量总变化为:
(x) ( y) ( z) dxdydz x y z
⑵控制体内质量变化:
因控制体是固定的,质量变化是因密度变化引起的,dt时间内:
( dt)dxdydz dxdydz dtdxdydz t t
单位时间内,微元体质量增量:
dtdxdydz / dt dxdydz t t
(微团密度在单位时间内的变率与微团体积的乘积)
⑶根据连续性条件:
(x) (y) (z) 0 t x y z
流体质点加速度
d x x x x x ax x y z dt t x y z d y y y y y ay x y z dt t x y z d z z z z z az x y z dt t x y z
矢量形式:
0 t
——三维连续性微分方程
⑴适用条件: 不可压缩和可压缩流体 理想和实际流体 稳态及非稳态流动 ⑵不可压缩性流体的连续性微分方程:
x z 0 x y z
y
or
div 0

说明流体体变形率为零,即流体不可压缩。或流入 体积流量与流出体积流量相等。

推导过程:
⑴取微小六面控制体
⑵推导依据:
牛顿第二定律or动量定理:
d d(m ) F ma m dt dt
即作用力之合力=动量随时间的变化速率
⑶分析受力:
① 质量力:
单位质量力: f f i f j f k x y z
X方向上所受质量力为:
d x 1 p fx dt x
同理可得y,z方向上的:
d x x x x x 1 p x y z fx dt t x y z x d y y y y y 1 p x y z fy dt t x y z y d z z z z z 1 p x y z fz dt t x y z z
于是,单位时间内在x方向流出与流入控制体的质量差为
1 vx 1 vx vx vx dxdydz vx dxdydz dxdydz 2 x 2 x x
同理可得在单位时间内沿 y , z 方向流出与流入控制体的质 量差为


vz y,z。设控制体中心点处流速的三个分量为 vx,v y, ,液体密 度为 。将各流速分量按泰勒级数展开,并略去高阶微量 ,可得到该时刻通过控制体六个表面中心点的流体质点 的运动速度。例如:通过控制体前表面中心点 M 的质点 在x方向的分速度为
1 v x vx dx 2 x
通过控制体后表面中心点N的质点在x方向的分速度为
相关文档
最新文档