旋转复习学案
2021九年级数学中考一轮复习教学案课时22图形的对称、平移与旋转
课时22.图形的对称、平移与旋转【课前热身】1.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长2.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)3.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C 落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A.B.2C.3 D.24.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD =10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B 的()A.内部B.外部C.边上D.以上都有可能【知识梳理】1.轴对称(1)轴对称和轴对称图形:①轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.②轴对称:对于两个图形,如果沿一条直线对折后,它们能完全重合,那么称这两个图形成轴对称,这条直线就是对称轴,折叠后重合的点是对应点,叫做对称称点.(2)轴对称的性质①对应线段__ ___,对应角__ ___.②对应点所连的线段被对称轴___ ______.③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.2.中心对称(1)中心对称与中心对称图形①中心对称:在平面内,一个图形绕某一个点旋转180°后能与另一个图形重合,则这两个图形关于这个点成中心对称,这个点叫做这两个图形的对称中心.②中心对称图形:在平面内,一个图形绕某个点旋转 __ ___,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.(2)中心对称图形的性质中心对称图形上的每一对对应点所连成的线段都被对称中心平分.3.图形的平移(1)定义:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动称为平移.(2)平移的性质①平移不改变图形的____________,即平移前后两图形是全等的.②经过平移,对应线段____________,对应角相等,对应点所连接的线段____________.③平移的条件:平移的方向、平移的距离.4.图形的旋转(1)定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为_________,转动的角称为_______.(2)旋转的性质①旋转不改变图形的____________,即平移前后两图形是全等的.②经过旋转,图形上的每一点都绕__________沿相同方向转动了____________.任意一对对应点与旋转中心的连线所成的角都是_______,对应点到旋转中心的距离_____.③旋转的三要素:旋转中心、旋转方向、旋转角度.【例题讲解】例1 如图,方格纸中有三个点A、B、C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.例2如图,在直角坐标系中,A(-l,5),B(-3,0),C(-4,3).(1)在直角坐标系中作出△ABC关于y轴对称的△A′B′C′,并相应写出△A′B′C′三个顶点的坐标.(2)在直角坐标系中作出△ABC关于原点对称的△DEF,并相应写出△DEF三个顶点的坐标.(3)如果△ABC中任意一点M的坐标为(x,y),那么它在△A′B′C′的对应点M′的坐标是________;在△DEF的对应点N的坐标是________.例3如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC = a,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a =150°时,试判断△AOD的形状,并说明理由;(3)探究:当a为多少度时,△AOD是等腰三角形?【中考演练】1.如图,半圆A和半圆B均与y轴相切于点O,其直径CD、EF均和x轴垂直,以O为顶点的两条抛物线分别经过点C、E和点D、F,则图中阴影部分的面积是____.2.如图,梯形纸片ABCD,∠B=60°,AD∥BC,AB=AD=2,BC=6.将纸片折叠,使点B与点D 重合,折痕为AE,则CE=__ __.第1题第2题第4题3.如图是三种化合物的结构式及分子式,则按其规律第5个化合物的分子式为___ ___.4.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有_ ___个.5.如图,在平面直角坐标系中,对△ABC进行循环反复的轴对称或中心对称变换,若原来点A坐标是(a,b),则经过第2020次变换后所得的A点坐标是____ ___.6.将正六边形绕其对称中心旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是_ ____.7.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为_ ___cm2.8.如图,阴影部分为2m宽的道路,则余下的部分面积为__ __m2.第7题第8题9.如图,两个全等的正六边形ABCDEF,PQRSTU,其中点P位于正六边形ABCDEF的中心,如果它们的面积均为3,那么阴影部分的面积是__ __.10.如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为____cm. 11.如图,将正方形ABCD中的△ABP绕点B顺时针旋转90°,使得AB与CB重合,若BP=4,则点P所走过的路径长为__ __.第9题第10题第11题12.下列图形中既是轴对称图形又是中心对称图形的是( )13.如图,在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是( )A.6B.12C.24D.3014.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )15.下列图案中,不能由一个图形通过旋转而构成的是( )16.如图,在平行四边形ABCD中,AE⊥BC,垂足是E,现将△ABE进行平移,平移方向为射线AD的方向,平移的距离为线段BC的长,则平移后得到的图形为( )17.如图所示,在7×6的正方形网格中,选取14个格点,以其中三个格点为顶点画出△ABC,请你以选取的格点为顶点再画出一个三角形,且分别满足下列条件:(1)图①中所画的三角形与△ABC组成的图形是轴对称图形;(2)图②中所画的三角形与△ABC组成的图形是中心对称图形;(3)图③中所画的三角形与△ABC的面积相等,但不全等.18.△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向右平移6个单位得到△A1B1C1,请画出△A1B1C1,并写出点C1的坐标;(2)将△ABC绕点C顺时针旋转90°得到△A2B2C,请画出△A2B2C,并写出点A2的坐标.。
第23章 旋转 导学案.
人教版九年级上册第23章《旋转》学案龙脑桥初级中学导学案班级_______组别姓名_ _____课题:23.1图形的旋转(1)1.了解旋转及其旋转中心和旋转角的概念.2. 了解旋转对应点的概念及应用它们解决一些实际问题.重点:旋转及对应点的有关概念及其应用.难点:从生活中抽象出数学概念.(2分钟) 请同学们完成下面各题.(1)将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.,第(1)小题图),第(2)小题图)(2)如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.(3)①圆是轴对称图形吗?②等腰三角形呢?③你还能指出其他的吗?一、自学指导.(10分钟)观察:让学生看转动的钟表和风车等.(1)上面情景中的转动现象,有什么共同的特征?(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?问题:(1)从3时到5时,时针转动了多少度?(2)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(3)以上现象有什么共同特点?思考:在数学中如何定义旋转?归纳:二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.下列现象中属于旋转的有__ _个.①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头的转动;⑤钟摆的运动;⑥荡秋千运动.3.如图,如果把钟表的指针看成四边形AOBC,它绕着O点旋转到四边形DOEF位置,在这个旋转过程中:旋转中心是点____,旋转角是__ ,经过旋转,点A转到____点,点C转到____点,点B转到____点,线段OA,OB,BC,AC分别转到,,,,∠A,∠B,∠C分别与,,是对应角.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角;(3)经过旋转,点A ,B ,C ,D 分别移到什么位置?解:2.如图,△ABC 与△ADE 都是等腰直角三角形,∠C 和∠AED 都是直角,点E 在AB 上,如果△ABC 经旋转后能与△ADE 重合,那么旋转中心是点____;旋转的度数是__ __.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.学生总结本堂课的收获与困惑.(2分钟)旋转及其旋转中心、旋转角的概念. 2.旋转的对应点及其它们的应用.学习至此,请使用本课时的(课本、练习册)对应训练部分.(10分钟)学习目标完成情况反思: 错题记录及原因分析:23.1 图形的旋转(2)1.通过观察具体实例认识旋转,探索它的基本性质.2.了解图形旋转的特征,并能根据这些特征绘制出旋转后的几何图形.重点:图形的旋转的基本性质及其应用.难点:利用旋转的性质解决相关问题.一、自学指导.(10分钟)动手操作:在硬纸板上挖下一个三角形的洞,再挖一个点O 作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O 转动硬纸板,在黑板上再描出这个挖掉的三角形(△A ′B ′C ′),移去硬纸板.(分组讨论)根据图回答下面问题:(一组推荐一人上台说明)1.线段OA 与OA′,OB 与OB′,OC 与OC′有什么关系?2.∠AOA ′,∠BOB ′,∠COC ′有什么关系?3.△ABC 与△A′B′C′的形状和大小有什么关系?二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)如图,四边形ABCD 是边长为1的正方形,且DE =14,△ABF 是△ADE 的旋转图形.(1)旋转中心是哪一点? (2)旋转了多少度?(3)AF 的长度是多少? (4)如果连接EF ,那么△AEF 是怎样的三角形?解:一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°, 画出旋转后的图形.2.已知线段AB 和点O ,画出AB 绕点O 逆时针旋转100°后的图形.作法:1.2.3.4.5.∴二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.如图,AD =DC =BC ,∠ADC =∠DCB =90°,BP =BQ ,∠PBQ =90°.(1)此图能否旋转某一部分得到一个正方形?(2)若能,指出由哪一部分旋转而得到的?并说明理由.(3)它的旋转角多大?并指出它们的对应点.解:2.如图,△ABC 绕C 点旋转后,顶点A 的对应点为点D ,试确定顶点B 对应点的位置,以及旋转后的三角形.解:(1)(2)(3)(4)3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M在AK的同旁,连接BK 和DM,试用旋转的思想说明线段BK与DM的关系.解:学生总结本堂课的收获与困惑.(2分钟)1.问题:对比平移、轴对称两种变换,旋转变换与另两种变换有哪些共性与区别?2.本节课要掌握:(1)旋转的基本性质.(2)旋转变换与平移、轴对称两种变换有哪些共性与区别.学习至此,请使用本课时的(课本、练习册)对应训练部分.(10分钟)学习目标完成情况反思:错题记录及原因分析:龙脑桥初级中学导学案班级_______组别姓名_ _____课题:23.1图形的旋转(3)1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.2. 掌握根据需要用旋转的知识设计出美丽的图案.重点:用旋转的有关知识画图.难点:根据需要设计美丽图案.一、自学指导.(15分钟)1.学生独立完成作图题.如图,△ABC绕B点旋转后,O点是A点的对应点,作出△ABC旋转后的三角形.探究:从上面的作图题中,知道作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.把一个图案以O点为中心进行旋转,选择不同的旋转中心,不同的旋转角,会出现不同的效果图形.1.旋转中心不变,改变旋转角.2.旋转角不变,改变旋转中心.我们可以设计成如下图美丽的图案.归纳:旋转中心不变、改变旋转角与旋转角不变、改变旋转中心会产生不同的效果,所以可以经过旋转设计出美丽的图案.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)如图所示是日本三菱汽车公司的标志,它可以看作是由一个菱形经过__ __次旋转,每次旋转__ __得到的.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.如图所示,图①沿逆时针方向旋转90°可得到图____.图①按顺时针方向至少旋转____度可得图③.2.如图所示,在△ABC中,∠BAC=90°,AB=AC,点P是△ABC内的一点,且AP=3,将△ABP绕点A旋转后与△ACP′重合,求PP′的长.解:二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)如图所示,点C是线段AB上任意一点,分别以AC,BC为边在同侧作等边三角形ACD和等边三角形BCE,连接AE,BD,试找出图中能通过旋转完全重合的一对三角形,并指明旋转中心、旋转角及旋转方向.解:学生总结本堂课的收获与困惑.(3分钟)1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案.2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点——线的端点、角的顶点、圆的圆心等.学习至此,请使用本课时的(课本、练习册)对应训练部分.(10分钟)学习目标完成情况反思:错题记录及原因分析:23. 2. 1中心对称1. 了解中心对称、对称中心、关于中心的对称点等概念.2. 掌握中心对称的基本性质.重点:中心对称的性质及初步应用.难点:中心对称与旋转之间的关系.一、自学指导.(10分钟)自学1:中心对称,对称中心,对称点等概念:把一个图形绕某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry);这个点叫做对称中心;这两个图形中的对应点叫做关于对称中心的对称点.自学2:中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过,而且被对称中心所;(2)关于中心对称的两个图形是.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是,对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A,B,C,D关于中心对称的对称点是哪些点.解:2.如图,已知AD是△ABC的中线,作出以点D为对称中心,与△ABD成中心对称的三角形.解:一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD 关于点O成中心对称.(只保留作图痕迹,不要求写出作法)二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.如图,等边△ABC内有一点O,试说明:OA+OB>OC.解:1.教材第66页练习.学生总结本堂课的收获与困惑.(2分钟)1.中心对称及对称中心的概念;2.关于中心对称的两个图形的性质.学习至此,请使用本课时的(课本、练习册)对应训练部分.(10分钟)学习目标完成情况反思:错题记录及原因分析:龙脑桥初级中学导学案班级_______组别姓名_ _____课题:23.2.2中心对称图形1. 掌握中心对称图形的定义.2. 准确判断某图形是否为中心对称图形.重点:中心对称图形的判断.难点:两个图形成中心对称和中心对称图形的关系,以及中心对称图形的判定.一、自学指导.(7分钟)自学:自学课本P66~67的内容.探究:中心对称图形的定义:把一个图形绕着某一个点旋转,如果旋转后的图形能够与原来的图形.那么这个图形叫做,这个点就是它的.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(3分钟)将下面左图的四张扑克牌中的一张旋转180°后,得到右图,你知道旋转了哪一张扑克吗?议一议.解:一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.我们已学过许多几何图形,下列几何图形中,哪些是中心对称图形?对称中心是什么?(出示课件图片)(1)平行四边形(2)矩形(3)菱形(4)正方形(5)正三角形(6)线段(7)角(8)等腰梯形解:常见的中心对称图形:2.中心对称图形与中心对称有哪些区别与联系.解:区别:联系:二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(15分钟)1.英文大写字母中有哪些中心对称图形?答:2.说一说:在生活中你还见过哪些中心对称图形?3.想一想:你学过的几何图形具有怎样的对称性?4.课本第67页小练习2.5.如果公园里的草坪是下面的形状,你能否只修一条笔直的小路就将这块草坪分成面积相等的两部分?学生总结本堂课的收获与困惑.(2分钟)1.中心对称图形的定义.2.怎样准确判断某图形是否为中心对称图形.学习至此,请使用本课时的(课本、练习册)对应训练部分.(10分钟)学习目标完成情况反思:错题记录及原因分析:23.2.3关于原点对称的点的坐标掌握两个点关于原点对称时的坐标特征,能够运用特征解决相关问题.重点:关于原点对称的点的坐标的关系及初步应用.难点:关于原点对称的点的坐标的性质及其运用它解决实际问题.一、自学指导.(10分钟)自学:自学课本P68的内容.思考:关于原点作中心对称时,(1)它们的横坐标与横坐标的绝对值有什么关系?纵坐标与纵坐标的绝对值又有什么关系?(2)坐标与坐标之间符号又有什么特点?二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.如图,在直角坐标系中,已知A(-3,1),B(-4,0),C(0,3),D(2,2),E(3,-2),F(-2,-2),作出A,B,C,D,E,F点关于原点O的中心对称点,写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?解:2.如图,利用关于原点对称的点的坐标的特点,作出与△ABC关于原点对称的图形.解:一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)如图,直线AB与x轴、y轴分别相交于A,B两点,将直线AB绕点O顺时针旋转90°得到直线A1B1.(1)在图中画出直线A1B1.(2)求出过线段A1B1中点的反比例函数解析式.(3)是否存在另一条与直线A1B1平行的直线y=kx+b(我们发现互相平行的两条直线斜率k值相等),它与双曲线只有一个交点,若存在,求此直线的函数解析式,若不存在,请说明理由.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.已知△ABC,A(1,2),B(-1,3),C(-2,4),利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.2.教材P69的第1,2,3题.学生总结本堂课的收获与困惑.(2分钟)本节课应掌握:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y),及利用这些特点解决一些实际问题.学习至此,请使用本课时的(课本、练习册)对应训练部分.(10分钟)学习目标完成情况反思:错题记录及原因分析:11。
八年级数学学案图形平移与旋转知识点考点
第三讲:图形的平移与旋转【知识精讲】知识点1 平移、旋转和轴对称的区别和联系(1)区别。
①三者概念的区别:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移;在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转;在平面内,将一个图形沿着某条直线折叠。
如果它能够与另一个图形重合,则这两个图形成轴对称。
②三者运动方式不同:平移是将图形沿某个方向移动一定的距离。
旋转是将一个图形绕一个定点沿某个方向转动一个角度;轴对称是将图形沿着某一条直线折叠。
③对应线段、对应角之间的关系不同:平移变换前后图形的对应线段平行(或共线)且相等;对应点所连的线段平行且相等;对应角的两边分别平行且对应角的方向一致。
轴对称的对应线段或延长线相交,交点在对称轴上:对应点的连线被对称轴垂直平分。
旋转变换前后图形的任意一对对应点与旋转中心的距离相等、与旋转中心的连线所成的角是旋转角。
④三者作图所需的条件不同:平移要有平移的方向和平移的距离,旋转要有旋转中心、旋转方向和旋转角:轴对称要有对称轴。
(2)联系。
①它们都在平面内进行图形变换②它们都只改变图形的位置不改变图形的形状和大小,因此变换前后的两个图形全等。
③都要借助尺规作图及全等三角形的知识作图。
知识点2 组合图案的形成(1)确定图案中的“基本图案”。
(2)发现该图案各组成部分之间的内在联系。
(3)探索该图案的形成过程:运用平移、旋转、轴对称分析各个组成部分如何通过“基本图案”演变成“形”的。
要用运动的观点、整体的思想分析“组合图案”的形成过程。
运动的观点就是要求我们不能静止地挖掘“基本图案”与“组合图案”的内在联系,头脑中应想象、再现图案形成的过程,做到心中有数,特别是有的图案含有不同的“基本图案”其形成的方式也多种多样,可以通过平移、旋转、轴对称变换中的一种或两种变换方式来实现,也可以通过同一种变换方式的重复使用来实现。
整体的思想包括整体的构思和“基本图案”的组合。
人教版初三数学旋转模型教学案
知识结构1-1-b)中的一个【例题】如图:(1-1):设P是等边ABC∆内的一点,PA=3,PB=4,PC=5,APB∠的度数是________.1509060.3,'''''''=+=+∠=∠∴≅==∠=∠PBPAPPAPBRTPBPAPPCAPBAPBPAPAPCAPBAPABC△为为正三角形,△。
易证△△则△,连结且的外侧,作简解:在△‘(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ABP∆绕B点按顺时针方向旋转90,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的'CPP∆中,此时'CPP∆为等腰直角三角形。
【例题】如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。
求此正方形ABCD。
面.8292132324422180909090,23,21,,,=++=++=∴====+=++=∴∴=+=∠+∠+∠=∠∴=∠+∠∠=∠∠=∠==∴=≅≅=∠=∠SSSS PFCRTEPARTEPFRTABCDRTEPFFPEPEFEPFDFDFEDEFFDEADCFDCEDAEDFPBCPBAPBCFDCPBAEDAPFPEAPEAPBPCDFCDFCABPADEEPAPAEBAPDAEAED△△△正方形△为可知△由勾股定理的逆定理,,,中,在△,在一条直线上、、点又同理,为等腰三角形,又易证△。
△且有△同样方法,作△△则△连结使作△简解:(三)等腰直角三角形类型在等腰直角三角形ABC∆中,90C∠=,P为ABC∆内一点,将APC∆绕C点按逆时针方向旋转90,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个'PCP∆为等腰直角三角形。
【例题】如图,在ABC∆中,∠ACB =900,BC=AC,P为ABC∆内一点,且PA=3,PB=1,PC=2。
湘教版七年级下《轴对称与旋转》学案
第5章轴对称图形课时1 轴反射与轴对称图形一、自学导航1. 轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相,那么这个图形叫做。
这条直线叫做它的。
2. 如果一个图形关于一条直线做,能够与另一个图形,那么就说这两个图形关于这条直线,也称这两个图形。
这条直线也叫做,互相重合的两个点,其中一点叫作另一个点关于这条直线的。
3. 轴反射不改变。
二、问题探究问题一:了解轴对称和轴对称图形的概念,判断轴对称图形。
例1. 如图所示的标志中,是轴对称图形的有()A. 1个B. 2个C. 3个D. 4个例2. 下列图形中是.轴对称图形的为()ABCD问题二:根据轴对称的知识补充或设计图案等操作。
例3. 已知:在下面两个方格中有△ABC.操作:(1)(左图)平移..△ABC,使点A移到点M处.(2)(右图)作△ABC的轴对称...图形..△DEF,以图中虚线为对称轴.1.下列图形中,不是..轴对称图形的是()A B C D2. 在下列四个图案中,属于轴对称图形的有()个A. 1B. 2C. 3D. 43. 在下列图案中,有且只有三条对称轴的是( )4. 仔细观察下图中的图案,并按规则在横线上画出合适的图形.5. 下列轴对称图形中,对称轴条数最少的图形是()A. 等边三角形B. 正方形C. 正五边形D. 正六边形6. 如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其它对应线段(•或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流。
ABCDCABmC'A'B'课时2 线段的垂直平分线一、自学导航1.定义:我们把 的直线,叫做这条线段的垂直平分线。
2. 线段垂直平分线的性质:线段的垂直平分线上的点 。
3. 逆定理: 的点在线段的垂直平分线上。
3.1图形的旋转的学案、巩固案
3.1图形的旋转学案、巩固案命题人:李芳 审核:徐红石 时间:2009年10月23日班级: 学号: 姓名:【预习导学】预习课本P 74 ——P 75,完成:1.度量图3-2中线段OA= ,OA ¢= OB= OB ¢ =AOA ¢Ð= °;BOB ¢Ð= °;COC ¢Ð= ° 通过度量与比较你发现了什么?2.你是怎样理解“图形的旋转”的概念的?图形的旋转是由什么决定的?3.图形旋转前后,哪些发生了改变,哪些没有发生改变,你能总结出图形旋转的性质吗?(1)(2)(3)【精讲点拨】1.如图,正方形ABCD 中,E 是AD 上一点,将△CDE 逆时针旋转后得到△CBM.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如连接EM,那么△CEM 是怎样的三角形?2.操作:前面我们已经知道了图形的旋转的定义及其性质,那么我们如何画出一个图形绕某一个点旋转一定角度后的图形?(1)已知点A 和点O ,画出点A 绕点O 逆时针旋转90°后的图形。
作法:①②③A D C MB(2)已知线段AB 和点O ,画出AB 绕点O 逆时针旋转90°后的图形。
(不写作法)(3)画出△ABC 绕点O 按逆时针方向旋转90°后的图形。
(不写作法)【反馈矫正】 练习书1、2【迁移引申】画出△ABC 按顺时针方向绕点C 旋转120度后对应的三角形。
(不写作法)O CBA C B随 堂 练 习班级: 学号: 姓名:1.下列现象中属于旋转的有( )个①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.A 2B 3C 4D 53.如图,如果正方形CDEF 旋转后能与正方形ABCD 重合,那么图形所在的平面上可以作为旋转中心的点共有______个。
4.如图,将点阵中的图形绕点O 按逆时针方向旋转90°,画出旋转后的图形.5.在等腰直角△ABC 中,∠C=90°,BC=2cm ,如果以AC 的中点O 为旋转中心,将这个三角形旋转180°,点B 落在点B ′处,求BB ′的长度.6.已知:如图,在△ABC 中,∠BAC=120°,以BC 为边向形外作等边三角形△BCD ,把△ABD 绕着点D 按顺时针方向旋转60°后得到△ECD ,若AB=3,AC=2,求∠BAD 的度数与AD 的长.B。
旋转学案
旋转学案姓名:日期:知识点一:旋转的定义旋转:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角度叫做旋转角。
例1:我们在生活中可以看到不少图形绕着某一点旋转一定的角度后重合,如下图所示,这四个图形都是旋转对称图形。
⑴⑵⑶⑷请大家观察上面的图形,然后说一说它们在旋转多少度后能与自身重合?解:图(1)绕着一点旋转180°后能与自身重合。
图(2)绕着一点旋转120°或240°后能与自身重合。
图(3)绕着一点旋转90°或180°或270°后能与自身重合。
图(4)绕着一点旋转72°划144°或216°或288°后能与自身重合。
练习(一)1、下列现象中属于旋转的有( )个.①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头的转动;⑤钟摆的运动;⑥荡秋千.A.2B.3C.4D.52、时钟的时针在不停地转动,从上午6时到上午9时,时针旋转的旋转角是多少度?从上午9时到上午10时呢?3、如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?4、正三角形绕其中心旋转度就能与本身重合;5、进行旋转变换时,旋转角为度时,就可以画出中心对称图形;(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
(3)旋转前、后的图形全等例2:如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OEF ,在这个旋转过程中: (1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A 、B 分别移动到什么位置? 解:(1)旋转中心是O ,∠AOE 、∠BOF 等都是旋转角. (2)经过旋转,点A 和点B 分别移动到点E 和点F 的位置. 练习(二)1、 如图,它可以看作是由一个菱形绕某一点旋转一个角度后,顺次按这个角度同 向旋转而得的, ①请你在图中用字母O 标注出这一点; ②每次旋转了_______度;2、如右图,△ABC 绕点B 逆时针方向旋转到△EBD 的位置,若∠A=150, ∠C=100,E ,B ,C 在同一直线上,则∠ABC=________,旋转角度是__________。
八年级数学下册112图形的旋转学案版
11.2 图形的旋转课前准备回顾旧知:回顾平移的概念和性质。
预习新知(预习课本P173-P174内容):什么是旋转?它的三要素是什么?【学习目标】1.通过具体实欣赏生活中的旋转现象,感受数学中的旋转美,养成善于发现美的意识。
2.通过观察图形旋转的动画演示,知道旋转的三要素,了解旋转的概念;探索并能简单应用旋转的基本性质。
3. 通过具体的动手操作感受旋转过程中的不变量,能运用性质进行简单的旋转作图,养成细致认真、善于观察敢于尝试的良好习惯。
课内探究【旋转----概念篇】观察与思考:①观察先后两次旋转,旋转后图形的位置与___________有关。
②观察先后两次旋转,旋转后图形的位置与___________有关。
③观察先后两次旋转,旋转后图形的位置与___________有关。
总结:旋转及旋转三要素实例:△ABC绕点B沿顺时针方向旋转600得到△ A´B´C´(1)指出这个旋转过程中旋转中心、旋转方向、旋转角分别是什么?(2)指出△ABC与△A´B´C´的对应边?(3)旋转前后图形的形状、大小改变了没有?【旋转----性质篇】探究与发现:①OA与OA´的长有什么关系?OB与OB´或OC与OC´呢?②比较∠AOA´与∠BOB´,∠COC´的大小?你有什么发现?性质总结:一个图形和它经过旋转所得到的图形中:①___________________________________________②___________________________________________1、如图,将△AOB绕点O按逆时针方向旋转45°后得到△A’OB’,若∠AOB=15°,则∠AOB’的度数是()A.25°B.30°C.35°D.40°2、如图, AD是△ABC的高, ∠ABC=45°, DE=DC,延长BE交AC于点F. 则△BDE可以看作是由________绕点______按_________方向旋转_______度得到的。
初三期末统测复习学案(旋转)
初三期末统测复习学案(4)——旋转一. 复习回顾1.把△OAB 绕O 点顺时针方向旋转得到△OEF ,旋转角是_________ 2.将△ABC 绕着顶点C 逆时针旋转90°得到△DEC ,若AB=10,BC=6,则线线段DE= ,EC=,CD=3.六边形可看作是一个正三角形旋转若干次面形成的,请问每次旋转的最小角度是4.下列图形是中心对称图形的是(4)(1)(2)(6)(5)(3)5.点A (3,-1)关于原点对称的点的坐标是 二. 典型例题例1. 如图,正方形的边长为22,DE=1,△ABF 是由△ADE 绕点A 顺时针方向旋转得到的图形(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF 的长度是多少?(4)连接EF ,判断△AEF 的形状例2.如图,△ABC 三个顶点坐标分别是A (-3,2),B (-2,1),C (0,3),按要求画出下列图形: (1) 将△ABC 向下平移4个单位得到△C B A 111(2) 将△ABC 绕C 点逆时针方向旋转90°得到△C B A 222(3) 画出△ABC 关于原点O 中心对称的△C B A 333例3.已知△OAB如图所示(1)将△OAB绕O点逆时针旋转90°得到△OA’B’(2)求出BB’的长度。
(3)求出B点在旋转过程中所经的路径的长度三.课堂检测1.如图,△ABC按逆时针方向转动一个角度后成为△ADE∠CAD=28°,则旋转角的度数为____________2.下列图形,即是中心对称图形又是轴对称图形的是(A. B. C. D.3.点A(a,3)与点B(-1,b)是关于原点O的对称点,则a+b=_______4.已知△ABC如图所示,请画出:(1)将△ABC绕A点顺时针旋转90°得到△AB’C’(2)求出C点在旋转进程中所经过的路径的长度。
四.课后作业1.如图,△ACD是△ABC绕C转角的度数为_______2.画出下列图形的中心对称图形(1)以O为对称中心,画出△ABC的中心对称图形(2)以D为对称中心,画出四边形ABCD的中心对称图形3.如图,已知Rt△ABC与Rt△A’B’C’中心对称,(1)找出它们的对称中心O;(2)若AB=3,A’C’=4,求BC的长度4.已知△ABC如图所示,则(1)画出△ABC关于原点O中心对称的△***(2)将△ABC绕A点顺时针旋转90°得△AB’C’(3)求CC’的长度(4)求点C在旋转过程中所经的路径的长度5.如图,△ABE旋转一个角度后得到△ADC,且△ABD,△AEC都是等边三角形。
第三章-图形的平移与旋转复习学案
第三章《图形的平移与旋转》复习学案学习目标:1.能判断实例中的平移和旋转。
2.能根据平移、旋转的基本性质解决实际问题。
3.能作出简单的平面图形平移、旋转后的图形。
4.能够运用平移、旋转、轴对称及其组合进行图案设计。
【知识整理】1. 平移的定义:在平面内将一个图形沿某个方向移动一定的距离,这种图形变换称为平移.平移变换的两个要素:________________、________________.2. 平移变换的性质:(1)平移前、后的图形_____,即:平移只改变图形的_____,不改变图形的_____________;(2)对应线段平行(或共线)且相等;(3)对应点所连的线段平行(或共线)且相等.3. 旋转的定义:在平面内,将一个图形绕一个定点沿某个方向(逆时针或顺时针)转动一定的角度,这样的图形变换叫做旋转.这个定点叫做_________,转动的角称为_________.旋转变换的三个要素:_________,_________,_________.4. 旋转变换的性质:(1)旋转前、后的图形_____;(2)对应点到旋转中心的距离_____,即:旋转中心在对应点所连线段的_____________上;(3)对应点与旋转中心所连线段的夹角等于_________.例题解析例1如图,在平面直角坐标系内有一个△ABC.(1) 在平面直角坐标系内画出△ABC向下平移4个单位得到的△A1B1C1;(2) 在平面直角坐标系内画出△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3) 分别写出△A1B1C1与△A2B2C2各顶点的坐标.例2 如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD的形状,并说明理由;例3 如图,两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1,固定△ABC不动,将△DEF进行如下操作:(1) 如图(a),△DEF沿AB向右平移,连接DC、CF、FB,四边形CDBF的形状在不断的变化,问:四边形CDBF的面积是否发生变化,若有变化,请举例说明;若不变化,请求出它的面积.(注:D点在AB内,不包括A、B两点)(2) 如图(b)当D点移动到AB得中点时,请你猜想四边形CDBF的形状,并说明理由.(3) 如图(c)△DEF的D点固定在AB的中点时然后绕D点按顺时针方向旋转△DEF,使DF落在AB上,此时F点恰好与B点重合,连接AE,求AE的值.测试题1.将线段AB=2cm向右平移1cm,得到线段DE,则对应点A与D的距离为_____cm. 2. 将正六边形绕其对称中心旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是______.3.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为______cm2.4. 如图,阴影部分为2m宽的道路,则余下的部分面积为______m2.第3题第4题第5题5. 如图,△ACE,△ABF均为等腰直角三角形,∠BAF=∠EAC=90°,那么△AFC以点A为旋转中心逆时针旋转90°之后与________重合,其中点F与点____对应,点C与点____对应.6. 如图,在直角坐标系中,AO=AB,点A的坐标是(2,2),点O的坐标是(0,0),将△AOB平移得到△A′O′B′,使得点A′在y轴上,点O′、B′在x轴上. 则点B′的坐标是_______.第6题第7题第8题7. 如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为___cm.8. 如图,将正方形ABCD中的△ABP绕点B顺时针旋转90°,使得AB与CB重合,若BP=4,则点P所走过的路径长为_____.9. 下列图案中,不能由一个图形通过旋转而构成的是( )A. B. C. D.10. 下列各组图形,可经过平移变换由一个图形得到另一个图形的是( )A. B. C. D.11. 在下列现象中,是平移现象的是( )①方向盘的转动②电梯的上下移动③保持一定姿势滑行④钟摆的运动A. ①②B. ②③C. ③④D. ①④12. 在5×5方格纸中,将图1中的图形N平移后的位置如图2中所示,那么正确的平移方法是( )A. 先向下移动1格,再向左移动1格B. 先向下移动1格,再向左移动2格C. 先向下移动2格,再向左移动1格D. 先向下移动2格,再向左移动2格13.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度α到A1BC1的位置,使得点A、B、C1在同一条直线上,那么这个角度α等于( )A.120° B.90° C.60° D.30°14.在13题中,若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为( )A. 10πcmB. 103πcmC. 303cmD. 20πcm15.△ABC在平面直角坐标系中的位置如图所示.(1) 将△ABC向右平移6个单位得到△A1B1C1,请画出△A1B1C1,并写出点C1的坐标;(2) 将△ABC绕点C顺时针旋转90°得到△A2B2C,请画出△A2B2C,并写出点A2的坐标.16.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),这时AB 与CD1相交于点O,与D1E1相交于点F.(1) 求∠OFE1的度数;(2) 求线段AD1的长;(3) 若把三角板D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.。
(完整版)图形的平移与旋转复习课教学设计与学案
《图形的平移与旋转复习课》教课方案一、教课目的(一)知识与技术1.知道旋转和平移都不过改变图形的地点,而不改变图形的形状和大小,并能举例说明。
2.掌握平移、旋转的基天性质,并能举例说明。
3.掌握在平面直角坐标系中,平移后的图形与原图形对应点之间的关系,并能举例说明。
4.掌握两个成中心对称图形的特征。
5.梳理本章内容,用适合的方式体现全章知识构造,并与伙伴沟通。
(二)过程与方法经历建立本章知识的网络图,培育梳理知识的能力,核心知识的理解是要点。
(三)感情、态度与价值观1.经历对生活中的典型图案进行察看、剖析、赏识等过程,进一步发展空间观点、加强审盛情识 .2.经过学生之间的沟通、议论、培育学生的合作精神.教课要点:理解平移、旋转与中心对称的观点和性质 . 掌握坐标系中平移、对称的坐标特点。
教课难点:灵巧运用平移、旋转与中心对称的观点和性质解决有关图形问题。
二、教课过程教课过程分为以下几个环节:回首知识、建立网络图、稳固练习、总结概括。
(一)回首知识依据以下问题,回首本章知识。
1.平移能否改变图形的地点、形状和大小?旋转呢?请举例说明.2.平移、旋转各有哪些基天性质?请举例说明.3.在平面直角坐标系中,平移后的图形与原图形对应点的坐标之间有如何的关系?请举例说明.4.两个成中心对称的图形有哪些特征?中心对称图形有哪些特征?知识点概括:( 1)平移平移的观点:在平面内,将一个图形沿着某个方向挪动必定的距离,这样的图形运动叫做图形的平移。
平移的性质:平移不改变图形的形状和大小;图形经过平移,连结各组对应点所得的线段相互平行且相等。
(2)旋转旋转的观点:把一个图形绕一个定点转动必定的角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,旋转的角度叫做旋转角。
旋转的性质:旋转前、后的图形全等;对应点到旋转中心的距离相等;每一对对应点与旋转中心的连线所成的角相互相等。
(3)轴对称:假如一个图形沿一条直线折叠后,直线两旁的部分可以重合,那么这个图形叫做轴对称图形。
三年级下册数学平移和旋转教学设计
三年级下册数学平移和旋转教学设计三年级下册数学平移和旋转教学设计1教学目标:1.知识与技能:通过生活事例,使学生初步认识物体或图形的平移和旋转,能正确判断简单图形在方格纸上平移的方向和距离,初步建立图形的位置关系及其变化的表象。
2.过程与方法:通过观察、操作等活动,使学生能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
3.情感、态度与价值观:使学生体会到生活中处处有数学,运用数学知识可以解决生活中的简单数学问题。
教学重点:能判断方格纸上图形平移的方向和格数。
教学难点:学生在方格纸上正确画出平移后的简单图形。
教学准备:微视频、微练习。
课前准备:1、将《平移与旋转》微视屏发布到班级QQ群,请家长督促孩子观看学习。
2、根据微视频内容进行学习,并完成微视频练习题。
课堂教学过程教学过程。
一、导入。
1、根据微练习1、2、3小题的讲评复习图形的运动—平移。
2、导入语:图形的运动除了前面学的平移,还有一种图形的运动—旋转3、出示课题:旋转二、新课学习。
1、在观看微视频,观察图中的物体运动。
2、小组探究:和昨天的知识对比,物体的运动有什么不同3、小组讨论。
三、提升训练1、寻找身边的平移和旋转。
孩子们,我们的身边还有那些物体的运动方式是平移?生说。
哪些物体的运动方式是旋转?。
2、孩子们找到的可真多呀,老师也找到了一些,你能准确地判断出下列物体的运动方式是平移还是旋转吗?(课件展示)3、孩子们判断得可真准确,现在想请一个孩子到黑板上来平移小汽车的卡片。
老师先贴在黑板上,听老师的口令,平移这张卡片,如果上面的孩子平移正确了,请你送给他掌声,明白吗?指任1名同学发口令,1名同学平移卡片。
小结:细心的学生仔细观察,我们每次平移后,物体的什么有变化吗?什么没变?想一想旋转时呢?4、课间小活动。
让学生当小小设计师。
拿出准备的学具,线和纽扣。
小组合作,设计纽扣的运动方式。
二、课堂作业。
通过学习,谈谈收获。
三、课后作业。
初三旋转教案
初三旋转教案教学目标:1.了解旋转的概念和基本特性。
2.学会计算围绕不同轴进行的旋转。
3.能够应用旋转概念解决实际问题。
教学准备:1.教学PPT和投影仪。
2.学生练习册和作业本。
3.白板和黑板笔。
4.计算器。
教学过程:一、导入教师出示一幅旋转体的图形,向学生提问:“你们知道什么是旋转吗?”请学生发表自己的看法。
再通过导入旋转的一些常见例子,引发学生的兴趣。
二、概念讲解1.教师简要介绍旋转的概念和基本特性,包括旋转中心、旋转轴、旋转角度等。
通过图示和实际例子进行讲解,确保学生理解旋转的基本概念。
2.教师展示示意图,并引导学生探讨旋转图形的性质。
通过问题引导,让学生思考旋转前后,图形的面积、周长等性质是否发生变化,以及变化的规律。
三、计算旋转1.教师通过示例演示围绕不同轴进行旋转的计算方法。
引导学生分析旋转公式的构成和计算步骤,深入了解旋转的数学运算。
2.教师与学生一起进行练习,提供一些简单的旋转计算题目,帮助学生巩固知识点。
学生在练习册上完成相关题目,教师逐一点评,纠正错误。
四、实际应用1.教师出示一幅实际生活中的图形,例如建筑物的平面图或电器的外观图,帮助学生分析并计算该图形的旋转后形态。
引导学生将数学知识应用于实际场景,培养他们的实际问题解决能力。
2.学生分组进行小练习,每组选择一个实际问题并通过旋转计算方法解决。
教师给予指导和反馈,鼓励学生探索不同的解决方案。
五、拓展延伸1.教师介绍一些与旋转相关的实际应用,如建筑设计中的旋转体、机械加工中的旋转操作等。
激发学生对旋转知识的兴趣,拓宽他们的认知领域。
2.教师邀请学生分享自己对旋转的理解和应用经验,鼓励他们主动思考和交流。
引导学生形成合作学习和互动交流的氛围。
六、总结教师对本节课内容进行总结,复习重点知识点和解决问题的方法。
引导学生总结旋转的基本概念和计算方法,并展示他们的成果。
课后作业:1.完成练习册剩余题目。
2.在生活中寻找更多的旋转实例,并分析其特点和应用。
第23章 旋转复习学案
第23章 旋转复习学案一、学习目标1、通过自主复习,清理本章所学知识,使知识系统化、条理化;2、掌握图形的旋转变换、中心对称(图形)的性质、用坐标表示旋转及在作图、计算上的应用;二、自主复习1、知识点整理复习⎧⎫⎪⎪⎧⎪⎪⎪⎪⎪⎨⎨⎬⎪⎪⎪⎩⎪⎪⎪⎪⎩⎭平移中心对称图形几何变换旋转中心对称图形设计关于原点对称的点的坐标轴对称 3、知识点清理(清理完毕后小声读三遍)(1)在同一平面内,把一个图形绕着_____转动_________的图形变换叫做旋转;________、_____________、____________是它的三要素;其性质有:①对应点到旋转中心的距离__________;②对应点与旋转中心的连线构成的夹角等于__________;③旋转前后的图形_________,对应线段_________,对应角___________。
(2)把一个图形绕着某一点旋转_______,如果它能够与另外一个图形________,那么这两个图形关于这一点成中心对称。
把一个图形绕着某一点旋转_______,如果它能够与自身________,那么这个图形叫做中心对称图形。
中心对称的性质:①关于中心对称的两个图形______;②关于中心对称的两个图形,对称点的连线都经过________,并且被________平分;③关于中心对称的两个图形,对应线段_________,对应角___________。
它们的区别是:中心对称是指_____个图形的关系,而中心对称图形是指_____个图形。
它们的联系是:如果把中心对称的两个图形看成一个整体,那么这个图形的整体就是一个中心对称图形。
(3)关于x 轴对称的两个点坐标关系是:横坐标_______,纵坐标____________;关于y轴对称的两个点的坐标关系:横坐标____________,纵坐标__________;关于原点对称的两个点坐标关系是:横坐标____________,纵坐标_____________。
河北省清河挥公实验中学九年级数学上册 23.1 图形的旋
图形的旋转
学习内容个性笔记【学习目标】
1.能说出旋转、旋转中心、旋转角、对应点的概念和旋转图形的基本性质。
2.能作出简单平面图形旋转后的图形。
【学习过程】
(一)独学
1.在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫
做旋转.这个点O叫做______,转动的角叫做______.因此,图形的旋转是由
______和______决定的.
2.如果图形上的点P经过旋转变为点P′,那么这两点叫做这个旋转的______.
3.如图,△AOB旋转到△A′OB′的位置.若∠AOA′=90°,则旋转中心是点
______.旋转角是______.点A的对应点是______.线段AB的对应线段是
______.∠B的对应角是______.∠BOB′=______.
3题图
(二)对学
4.如图,△ABC绕着点O旋转到△DEF的位置,则旋转中心是______.旋转角
是______.AO=______,AB=______,∠ACB=∠______.
4题图
5.如图,正三角形ABC绕其中心O至少旋转______度,可与其自身重合.
5题图
6.如图所示,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置,
则旋转中心是哪点?旋转方向是什么?旋转角度是多少?点B的对应点是什
么?
(三)群学
总结.:一般地,可以根据定义得出旋转的以下性质:(1)对应点到旋转中心的距离.
(2)对应点与旋转中心所连线段的夹角等于.(3)旋转前、后的图形.
(四)展示
(五)当堂检测
(一课一练第一课时39-40页)。
第23章 旋转 复习学案
第23章 旋转 复习学案一、复习目标:1、理解旋转的意义(三要素)及基本性质,并能运用性质进行计算或证明。
2、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用。
3、理解中心对称(中心对称图形)的意义,掌握它的基本性质,并能运用它的基本性质按要求作出简单图形。
4、灵活运用轴对称、平移和旋转的组合进行图案设计。
二、本章知识结构框图三、知识点与方法(一)旋转的意义:把一个图形 的图形变换,叫做图形的旋转。
叫做旋转中心, 叫做旋转角。
旋转的三要素是: 。
其中① 在旋转过程中保持不动;② 分为 时针和 时针; ③旋转 一般小于360º。
练习:1、(2012广州)将左图所示的图案按顺时针方向旋转90°后可以得到的图案是( )2、(2012年新疆)下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是( )A.B.C.D.3、(2012年梅州市)如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过_________次旋转而得到, 每一次旋转_______度.4、(2012年绵阳)如图是由若干个边长为1的小正方形组成的网格,请在图中作出将“蘑菇”ABCDE 绕A 点逆时针旋转90︒再向右平移2个单位的图形(其中C 、D 为所在小正方形边的中点).5、(2012年娄底)如图所示,每个小方格都是边长为1的正方形,以O 点为坐标原点建立平面直角坐标系.(1)画出四边形OABC 关于y 轴对称的四边形OA 1B 1C 1,并写出点B 1的坐标是 .(2)画出四边形OABC 绕点O 顺时针方向旋转90°后得到的四边形OA 2B 2C 2.(二)旋转的性质:(1) (2) (3)练习:1、(2012无锡)如图,OAB △绕点O 逆时针旋转80到OCD △的位置,已知45AOB ∠= ,则AOD ∠等于( )A.55 B.45 C.40 D.352、(2012年泸州)如图1,P 是正△ABC 内的一点,若将△PBC 绕点B 旋转到△P ’BA ,则∠PBP ’的度数是( )甲乙甲乙A .B .C .D .甲乙甲乙图2ABEC DA .45°B .60°C .90°D .120°3、(2012年陕西省) 如图,∠AOB =90°,∠B =30°,△A ’OB ’可以看作是由△AOB 绕点O 顺时针旋转α角度得到的,若点A ’在AB 上,则旋转角α的大小可以是( ) A .30° B .45° C .60° D .90°4、(2012年桂林市、百色市)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO 绕点O 按顺时针方向旋转90°得A B O ''△ ,则点A '的坐标为( ).A .(3,1)B .(3,2)C .(2,3) D.(1,3) 5、(2011年河南)如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A ’的坐标为( ) A.(2,2) B.(2,4) C.(4,2) D.(1,2)6、(2012年湖北十堰市)在平面直角坐标系中,点A 的坐标为(1,4),将线段OA 绕点O 顺时针旋转90°得到线段OA′,则点A′的坐标是7、(2012年衡阳市)点A 的坐标为(2,0),把点A 绕着坐标原点顺时针旋转135º到点B ,那么点B 的坐标是 _________ .8、(2012年枣庄市)如图,直线与x 轴、y 轴分别交于A 、B 两点,把A O B △绕点A 顺时针旋转90°后得到A OB ''△,则点B '的坐标xy1 2 43 0 -1-2 -3 12 3ABx443y x =-+是 .9、(2012年抚顺市)如图所示,在平面直角坐标系中,OAB △三个顶点的坐标是(00)3452O A B ,、(,)、(,).将OAB △绕原点O 按逆时针方向旋转90°后得到11OA B △,则点1A 的坐标是10、(2012年株洲市)如图,在Rt OAB ∆中,90OAB ∠=︒,6OA AB ==,将O A B ∆绕点O 沿逆时针方向旋转90︒得到11OA B ∆. (1)线段1OA 的长是 ,1AOB ∠的度数是 ;(2)连结1AA ,求证:四边形11OAA B 是平行四边形;(3)求四边形11OAA B 的面积.11、(2012年潍坊)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,ABC △的三个顶点都在格点上(每个小方格的顶点叫格点).画出ABC △绕点O 逆时针旋转90°后的A B C '''△.12、如图11-7,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,其中菱形AEFG 可以看成是把菱形ABCD 以A 为中心( ). A .顺时针旋转60°得到B .顺时针旋转120°得到C .逆时针旋转60°得到D .逆时针旋转120°得到13、如图11-8,C 是线段BD 上一点,分别以BC 、CD 为边在BD 同侧作等边△ABC 和等边△CDE,AD 交CE 于F ,BE 交AC 于G ,则图中可通过旋转而相互得到的三角形对数有( ).A .1对B .2对C .3对D .4对14、下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是().(A)︒30(B)︒45(C)︒60(D)︒9015、下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()(A)︒30(B)︒45(C)︒60(D)︒9016、如图,以左边图案的中心为旋转中心,将图案按时针方向旋转度即可得到右边图案.(三)中心对称和中心对称图形的意义中心对称:举例:中心对称图形:举例:。
【教案】数学-《旋转复习——半角模型的应用》336教学设计
复习旧知检测反馈1.复习旋转概念与性质;2.讲评课前导学情况;3.检测反馈(1)如图,△ABC和△ADE均为正三角形,则图中可看作是旋转关系的三角形是().A.△ABC和△ADEB.△ABC和△ABDC.△ABD和△ACED.△ACE和△ADE(2)如图,△ABC和△ADE都是等腰三角形,AB=AC,AD=AE,且∠DAE= ∠BAC,若∠DBA=25°,则∠ECA=().A.30°B.25°C.20°D.5°(3)如图,△ADN是直角三角形,将△ADN绕点A顺时针旋转90°后,能与△ABE重合,如果AN=4,那么EN=______.教师将第3题图中的EB,DN延长,相交于点C,则得到正方形ABCD,引出“半角模型”。
1.根据图形,复习旋转的概念和性质。
2.让学生进行自我纠正。
3.(1)使用互动课堂的随机挑人功能,检测基本知识点的掌握情况;(2)HiTeachTBL2的IRS即时反馈,检测学生的知识运用情况;(3)使用抢答功能,进一步巩固旧知。
1.电子白板标注。
2.让学生对导学单里的题目进行自我纠正,进一步加深学生对旋转概念、性质的理解。
3.(1)互动课堂的随机挑人功能,可以保证所有学生都有机会被抽到,能较客观地反映学生对基础知识的掌握情况;(2)IRS即时反馈,能及时检测学生的知识运用情况,便于教师及时调整教学策略;(3)使用抢答功能,进一步巩固旧知的同时,也能激发学生的学习兴趣。
第1题图第3题图EB CAD第2题图AM AM '=组织交流 释疑拓展1.如图,在正方形ABCD 中,∠MAN =45°,当∠MAN 绕点A 顺时针旋转到如图的位置时,它的两边分别交CB ,DC 于点M ,N .线段BM ,DN 和MN 之间有怎样的数量关系?写出猜想,并给予证明.几何画板演示旋转动画,并提示学生是否有其他做法?2.将第二种证法设置成选择题,及时 检测学生对“半角模型”解题方法的 理解程度。
高三数学 抛物线平移旋转和翻折复习学案
江苏省苏州市第五中学高三数学 抛物线平移旋转和翻折复习学案一、课前准备:1. 已知坐标平面内点A (a ,b ),那么点A 关于x 轴的对称点坐标为__________, 关于y 轴的对称点坐标为__________,关于原点中心对称的对称点坐标为_________.2. 将点()14A -,向右移4个单位,再向上移6个单位得到点B ,则点B 的坐标为_______________.3. 将抛物线223y x x =--向右移4个单位,向上移6个单位,得到的新抛物线解析式为_______________. 二、典型例题:例1.(1)将抛物线223y x x =--按下列要求翻折变换,求变换后所得抛物线的解析式: ①沿x 轴翻折;②沿y 轴翻折;③沿x 轴翻折再沿y 轴翻折.(2)将抛物线223y x x =--按下列要求进行旋转变换,求变换后所得抛物线的解析式 ①绕顶点旋转1800;②绕原点旋转1800;③绕着点()20,旋转1800.例2.已知二次函数2441y ax ax a =++-的图像是C 1,(1) 求C 1关于点R (1,0)中心对称的图像C 2的函数解析式;(2) 在(1)的条件下,设抛物线C 1、C 2与y 轴的交点分别为A 、B ,当AB =18时,求a 的值三、挑战中考:如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B的左边),点B 的横坐标是1.(1)求P 点坐标及a 的值;(2)如图(1),抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;(3)如图(2),点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.四、课堂小结:五、达标测试:1.把抛物线2y ax bx c =++的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是245y x x =-+,则a +b +c =_______________.2. 在平面直角坐标系中,将抛物线228y x x =+-关于x 轴作轴对称变换,那么变换后所得的新抛物线的析式为 __________________.3. 求抛物线2243y x x =-+绕原点旋转180°后的抛物线的解析式_____.六、拓展提高:将抛物线C 1:2y =x 轴翻折,得抛物线C 2(1) 请直接写出抛物线C 2的函数解析式;(2) 现将抛物线C 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴交点为A 、B (A 左B 右),将抛物线C 2向右平移m 个单位长度,新抛物线顶点为N ,与x 轴交点为D 、E(D 左E 右)y =①当B、D是线段AE的三等分点时,求m值;②平移过程中是否存在以A、N、E、M为顶点的四边形是矩形的情形?若存在,写出m的值,不存在,说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的旋转
一、选择题
1、(2009年泸州)如图1,P 是正△ABC 内的一点,若将△PBC 绕点B 旋转到△P ’
BA ,则∠PBP ’的度数是 ( )
A .45°
B .60°
C .90°
D .120°
2、(2009年陕西省) 如图,∠AOB =90°,∠B =30°,△A ’OB ’可以看作是由△AOB 绕点O 顺时针旋转α角度得到的,若点A ’在AB 上,则旋转角α的大小可以是 ( ) A .30°
B .45°
C .60°
D .90°
3、(2009年桂林市、百色市)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO 绕点O 按顺时针方向旋转90°,得A B O ''△ ,则点A '的坐标为 ( ). A .(3,1) B .(3,2) C .(2,3) D .(1,3)
4、、(2009年甘肃白银)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形
B .平行四边形
C .正三角形
D .矩形
5、(2009年台州市)单词NAME 的四个字母中,是中心对称图形的是 ( ) A .N B .A C.M D .E
6、(2009年广西钦州)某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是( )
A .等腰三角形
B .正三角形
C .等腰梯形
D .菱形
7、(2009年锦州)下列图形中,既是轴对称图形,又是中心对称图形的是 ( )
A B C D
8、 (2009年四川省内江市
)
已知如图1
所示的四张牌,若将其中一张牌旋转180O
后得到图2,则旋转的牌是
(
)
图1
图2
A .
B .
C .
D .
x
y
1 2 4
3 0 -1
-2 -3 1
2 3
A
B
9、(2009成都)在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A′,则点A ′在平面直角坐标系中的位置是在 ( )
(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限 10、(2009年崇左)已知点
A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方
向旋转90°得1OA ,则点1A 的坐标为 ( ). A .()a b -, B .()a b -, C .()b a -, D .()b a -, 11、(2009年河南)如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900
得到月牙②,则点A 的对应点A ’的
坐
标
为
( )
A.(2,2)
B.(2,4)
C.(4,2)
D.(1,2)
12、(2009年新疆)下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是( )
13、(2009年淄博市)如图,点A ,B ,C 的坐标分别为(01)(02)(30)-,,,,,.从下
面四个点(33)M ,
,(33)N -,,(30)P -,,(31)Q -,中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是
( ) A .M B .N C .P
D .Q
二、填空题
1、(2009肇庆)在平面直角坐标系中,点(23)P -,
关于原点对称点P '的坐标是 .
2、(2009年湖北十堰市)如图,在平面直角坐标系中,点A 的坐标为(1,4),将线段OA 绕点O 顺时针旋转90°得到线段OA′,则点A′的坐标是 .
甲
乙
甲
乙
A
. B . C . D . 甲
乙
甲
乙
3、(2009年淄博市)如图,四边形EFGH 是由四边形ABCD 经过旋转得到的.如果用有序数对(2,1)表示方格纸上A 点的位置,用(1,2)表示B 点的位置,那么四边形ABCD 旋转得到四边形EFGH 时的旋转中心用有序数对表示是 .
.4、(2009年梅州市)如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度. 5、(2009年衡阳市)点A 的坐标为(2,0)
,把点A 绕着坐标原点顺时针旋转135º到点B ,那么点B 的坐标是 _________ .
6、 (2009年枣庄市)如图,直线4
43
y x =-+与x 轴、y 轴分别
交于A 、B 两点,把AOB △绕点A 顺时针旋转90°后得到AO B ''△,则点B '的坐标是 .
7、(2009年抚顺市)如图所示,在平面直角坐标系中,OAB △三个顶点的
坐标是(00)3452O A B ,、(,)、(,).将OAB △绕原点O 按逆时针方向旋转90°后得到11OA B △,则点1A 的坐标是 .
8、(2009年云南省)在平面直角坐标系中,已知3个点的坐标分别为
1(11)A ,、2(02)A ,、3(11)A -,
. 一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以1A 为对称中心的对称点1P ,第2次电子蛙由1P 点跳
到以2A 为对称中心的对称点2P ,第3次电子蛙由2P 点跳到以3A 为对称中心的对称点3P ,…,按此规律,电子蛙分别以1A 、2A 、3A 为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是2009P (_______ ,_______). 三、解答题
1、(2009年绵阳)如图是由若干个边长为1的小正方形组成的网格,请在图中作出将“蘑菇”ABCDE 绕A 点逆时针旋转90︒再向右平移2个单位的图形(其中C 、D 为所在小正方形边的中点).
2、(2009年娄底)如图9所示,每个小方格都是边长为1的正方形,以O 点为坐标原点建立平面直角坐标系.
(1)画出四边形OABC 关于y 轴对称的四边形OA 1B 1C 1, 并写出点B 1的坐标是 .
(2)画出四边形OABC 绕点O 顺时针方向旋转90° 后得到的四边形OA 2B 2C 2.
A
B
E
C
D
x
3、(2009年潍坊)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,ABC △的三个顶点都在格点上(每个小方格的顶点叫格点).画出ABC △绕点O 逆时针旋转90°后的A B C '''△.
4、(2009年长春)图①、图②均为76⨯的正方形网格,点A B C 、、在格点上.
(1)在图①中确定格点D ,并画出以A B C D 、、、为顶点的四边形,使其为轴对称图形.(画一个即可)
(3分)
(2)在图②中确定格点E ,并画出以A B C E 、、、为顶点的四边形,使其为中心对称图形.(画一个即可)
(3分)
5、(2009年株洲市)如图,在Rt OAB ∆中,90OAB ∠=︒,6OA AB ==,将OAB ∆绕点O 沿逆时
针方向旋转90︒得到11OA B ∆.
(1)线段1OA 的长是 ,
1AOB ∠的度数是 ;
(2)连结1AA ,求证:四边形11OAA B 是平行四边形; (3)求四边形11OAA B 的面积.
6、(2009年河南)如图,在Rt△ABC 中,∠ACB=90°, ∠B =60°,BC=2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D.过点C 作C E∥A B 交直线l 于点E ,设直线l 的旋转角为α.
(1) ①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为
_________;
②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________;
(2)当α=90°时,
判断四边形EDBC 是否为菱形,并说明理由.
图①
图②。