连续时间LTI系统分析
lti连续系统分析
目录前言 (1)正文 (1)2.1设计目的和思想 (1)2.2数字电子钟基本设计原理及设计方法 (2)2.2.1时间计数单元设计 (4)2.2.2用74LS48和74LS90构成秒和分计数器电路 (8)2.2.3校时单元电路设计 (8)2.3数字电子钟的组装与调试 (9)致谢 (10)参考资料 (11)前言数字电子钟是日常生活中常见的一种工具,大到机场等公共场所的时间屏幕,小到我们的手表、闹钟等,而且其报时功能也给人们提供了方便,因此,了解报时电子钟的工作原理是很有必要的,也很有趣,因此我选择了这个题目—数字电子钟。
数字电路与逻辑设计课程的核心是时序逻辑电路、组合逻辑电路和触发器,这些也是我们学通信的的学生最基本要掌握的知识,通过实践可以加深对课本知识的理解,能够处理一些实际中的情况,因此这次数电课程设计,我选择了数字电子钟这个题目,虽然在日常生活中很常见,看起来也很简单,但是其中包含了很多学问。
在这个项目中,校时是一个很重要的模块,即要可以正常校时,又不能干扰到时间计数显示模块,而时间显示比较简单,用熟悉的芯片就可以做出来了,老师说过,对芯片等元器件的了解程度等于将军手中可以调动的兵力,掌握了芯片功能,也就掌握了主动权。
这次课程设计的选题—数字电子钟,不仅可以加深我对数字电路与逻辑设计课程的理解,也可以提高自己的动手能力以及实际中解决问题的能力,培养对这门课程的兴趣。
正文2.1设计目的和思想设计目的:1培养数字电路的设计能力;2掌握数字电子钟的设计、组装、和调试方法;3、进一步巩固所学的理论知识,提高运用所学知识分析和解决实际问题的能力4、提高电路布局、布线及检查和排除故障的能力。
数字电子钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。
数字电子时钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。
MATLAB与信号实验——连续LTI系统的时域分析
MATLAB与信号实验——连续LTI系统的时域分析连续LTI系统的时域分析是信号与系统学中的重要课题。
MATLAB作为一种强大的科学计算软件,提供了丰富的工具和函数来进行信号与系统的分析。
下面将介绍MATLAB在连续LTI系统时域分析中的应用。
首先,我们需要了解连续LTI系统的基本概念。
一个连续域线性时不变系统(LTI系统)可以由它的冲激响应完全描述。
冲激响应是系统对单位冲激信号的响应。
在MATLAB中,可以使用impulse函数来生成单位冲激信号。
假设我们有一个连续LTI系统的冲激响应h(t),我们可以使用conv 函数来计算系统对任意输入信号x(t)的响应y(t)。
conv函数实现了卷积运算,可以将输入信号与冲激响应进行卷积运算得到输出信号。
例如,我们假设一个连续LTI系统的冲激响应为h(t) = exp(-t)u(t),其中u(t)是单位阶跃函数。
我们可以使用以下代码生成输入信号x(t)和计算输出信号y(t):```matlabt=-10:0.1:10;%时间范围x = sin(t); % 输入信号h = exp(-t).*heaviside(t); % 冲激响应y = conv(x, h, 'same'); % 计算输出信号```这段代码首先定义了时间范围t,然后定义了输入信号x(t)和冲激响应h(t)。
接下来,使用conv函数计算输入信号和冲激响应的卷积,设置参数’same’表示输出信号与输入信号长度相同。
最后,得到了输出信号y(t)。
在得到输出信号后,我们可以使用MATLAB的绘图功能来可视化结果。
例如,使用以下代码可以绘制输入信号和输出信号的图像:```matlabfigure;plot(t, x, 'b', 'LineWidth', 2); % 绘制输入信号hold on;plot(t, y, 'r', 'LineWidth', 2); % 绘制输出信号xlabel('时间');ylabel('幅度');legend('输入信号', '输出信号');```除了卷积运算外,MATLAB还提供了许多其他函数来进行连续LTI系统的时域分析。
第二章LTI系统的时域分析ppt课件
注意:为方便起见,对单一零状态系统进行讨论时常常仅用y(t)代表yf(t)。
y( t ) a0 y当( tf)(t b)0f (t()t )时 h( t ) a0h( t ) b0 ( t )
2、h(t)的求解方法 (1) 利用阶跃响应与冲激响应的关系求解
此方法适用于简单电路,前提是阶跃响应g(t)简单易求。
y( t ) yh( t ) yp( t )
1、齐次解yh(t)
y( n )( t ) an1 y( n1 )( t ) a1 y( t ) a0 y( t ) 0
特征方程
的解
n n1 a1 a0 0
➢ 齐次微分方程的特征根:特征方程的 n 个根λi (i=1,2,…,n) ; ➢ 齐次解yh(t)的函数形式由特征根确定;
零状态 系统
y f ( t ) h( t )
yf(t)= g(t)
➢ 零状态系统:在激励 f(t) 的作用下将产生零状态响应yf(t);
➢ 如果激励是单位冲激信号δ(t),产生的响应称为单位冲激响应,用h(t)表示。 ➢ 如果激励是单位阶跃信号ε(t),产生的响应称为单位阶跃响应,用g(t)表示。
n
m
ai y(k i) bj f (k j)
i0
j0
(an 1, m n)
差分方程的经典解分为齐次解yh(k)和特解yp(k)。
y(k) yh (k) yp (k)
1、差分方程的齐次解
n阶前向齐次差分方程 y(k n) an1y(k n 1) a1y(k 1) a0 y(k) 0
i1
y( t
)
yh( t
)
yp( t
)
C
1e
C2 t
ie
第五章1-连续LTI系统频域分析
连续时间LTI系统的频域分析 离散时间LTI系统的频域分析 信号的幅度调制和解调
时域分析的要点是,以冲激函数为基本信号,
任意输入信号可分解为一系列冲激函数;而系统零 状态响应yzs(t) = x(t)*h(t)。 由单位冲激函数δ (t)所引起的零状态响应称为单位 冲激响应,简称冲激响应,记为h(t)。
解: 利用H(j)与h(t)的关系
H ( j) F[h(t)] 1 1 j 1 j 2
1
( j)2 3( j) 2
只有当连续系统是稳定的LTI系统时,才存在H(j), 且可以由h(t)计算出H(j)。
电路系统的频率响应:
分析电路系统的频率响应,主要有两种方法。
H ( j) Yzs ( j)
( j) 3
X ( j) ( j)2 3( j) 2
在实际应用中, 只有当连续系统是稳定的LTI系统时,
才存在H(j),且频响函数才有意义。
例 已知某LTI系统的冲激响应为
h(t) = (e-t-e-2t) u(t),求系统的频率响应H(j)。
vR (t) RiR (t)
VR ( jw) R IR ( jw)
ZR
VR ( IR(
jw) jw)
R
vL
(t)
L
diL (t) dt
VL ( jw) jwLIL ( jw)
ZL
VL ( jw) IL ( jw)
jwL
iC
(t)
C
d
vC (t) dt
IC ( jw) jwCVC ( jw)
例 已知某LTI系统的动态方程为 y"(t) + 3y'(t) + 2y(t) = x(t),
[精品]连续时间LTI系统的频率特性及频域分析
[精品]连续时间LTI系统的频率特性及频域分析连续时间LTI系统(Linear Time-Invariant System)是指可用于描述各种物理和工程系统运动规律的动态系统。
它们由一对连续时变系统(如模型、结构和控制)和一对线性运算符构成,其具有因变量(响应)和自变量(输入)之间的线性关联性、时间不变性、结构连续的性质,并且在响应上呈现出定义的平稳性,因而它们在描述众多系统运动规律中被广泛应用。
对于连续时间LTI系统的频域特性的研究,则涉及这些系统的相位特性、幅频特性、切趾特性等。
同时,也要探讨系统中不同频率分量的传输特性,因为有不同频率分量的信号既可以幅频分析也可以相位分析,可以衡量系统不同频率下的相应响应。
由于连续时间LTI系统在有限频率通道内传播信号时发生了部分信号丢失,因此我们引入了频域分析得到系统频响阻抗。
这样一来,它就可以用来测量系统频带上的增益,系统的模态表现,以及系统的传播属性和可控特性。
在频域分析过程中,由于信号可以被分解为离散频率分量,所以对于单个频率分量来说,有关连续时间LTI系统的分析可以比较容易地完成。
一般情况下,每一个频率分量的传播特性由一个线性系数连接,称之为频响函数,可以衡量一个系统的频率响应情况。
总的来说,对于连续时间LTI系统,研究其频率特性及频域分析具有重要的意义。
他可以提供一个系统的相位特性、幅频特性、切趾特性等详细的分析,而且由于信号可以分解为离散频率分量,因此可以很容易地实现频域分析,并衡量一个系统的频率响应情况。
此外,还可以利用频域分析来测量系统的增益,模态表现,以及系统的传播属性和可控特性,进而提高系统的性能,实现性能的优化。
实验三连续时间LTI系统的时域分析实验报告
实验三连续时间LTI系统的时域分析实验报告一、实验目的通过实验三的设计和实现,达到如下目的:1、了解连续时间LTI(线性时不变)系统的性质和概念;2、在时域内对连续时间LTI系统进行分析和研究;3、通过实验的设计和实现,了解连续时间LTI系统的传递函数、共轭-对称性质、单位冲激响应等重要性质。
二、实验原理在常见的线性连续时间系统中,我们知道采用差分方程的形式可以很好地表示出该系统的性质和特点。
但是,在本实验中,我们可以采用微分方程的形式来进行相关的研究。
设系统的输入为 x(t),输出为 y(t),系统的微分方程为:其中,a0、a1、…、an、b0、b1、…、bm为系统的系数,diff^n(x(t))和diff^m(y(t))分别是输入信号和输出信号对时间t的n阶和m阶导数,也可以记为x^(n)(t)和y^(m)(t)。
系统的单位冲激响应函数 h(t)=dy/dx| x(t)=δ(t),则有:其中,h^(i)(t)表示h(t)的第i阶导数定义系统的传递函数为:H(s)=Y(s)/X(s)在时域内,系统的输出y(t)可以表示为:其中,Laplace^-1[·]函数表示Laplace逆变换,即进行s域到t域的转化。
三、实验步骤1、在Simulink中,构建连续时间LTI系统模型,其中系统的微分方程为:y(t)=0.1*x(t)-y(t)+10*dx/dt2、对系统进行单位冲激响应测试,绘制出系统的单位冲激响应函数h(t);4、在S函数中实现系统单位冲激响应函数h(t)的微分方程,并使用ODE45框图绘制出系统单位冲激响应函数h(t)在t=0~10s之间的图像;6、利用数据记录栏,记录系统在不同的参数下的变化曲线、阶跃响应函数u(t)和单位冲激响应函数h(t)的变化规律。
四、实验数据分析1、单位冲激响应测试那么,当输入信号为单位冲激函数δ(t)时,根据系统的微分方程,可以得知输出信号的形式为:即单位冲激响应函数h(t)为一个包含了单位冲激函数δ(t)在内的导数项序列。
MATLAB与信号实验——连续LTI系统的时域分析
MATLAB与信号实验-——-连续LTI系统的时域分析在信号处理中,MATLAB是一个强大的工具,它提供了许多功能,使我们能够模拟和分析各种信号系统。
对于连续LTI系统,时域分析是一个重要的方法,它允许我们直接观察系统的输入和输出信号之间的关系。
下面是一个关于连续LTI系统的时域分析的实验。
一、实验目的本实验的目的是验证连续LTI系统的时域响应,通过使用MATLAB模拟系统,我们可以观察到不同的输入信号产生的输出信号,从而了解系统的特性。
二、实验步骤1.定义系统:首先,我们需要定义我们的连续LTI系统。
这可以通过使用MATLAB中的lti函数来完成。
我们需要提供系统的传递函数,它描述了系统的输入和输出之间的关系。
2.设置输入信号:为了观察系统的行为,我们需要设置一个合适的输入信号。
在MATLAB中,我们可以使用square函数来生成一个方波信号,该信号具有固定的频率和幅度。
3.模拟系统:使用MATLAB的lsim函数,我们可以模拟我们的连续LTI系统。
这个函数将输入信号和系统的传递函数作为参数,然后计算出系统的输出信号。
4.分析结果:我们可以使用MATLAB的图形功能来观察输入和输出信号。
这可以帮助我们理解系统的行为,并验证我们的模型是否正确。
三、实验结果与分析在实验中,我们使用了不同的输入信号(如方波、正弦波等)来测试我们的连续LTI系统。
对于每种输入信号,我们都观察了系统的输出信号,并记录了结果。
通过对比不同的输入和输出信号,我们可以得出以下结论:1.对于方波输入,系统的输出信号是带有延迟的方波,这表明系统对突变信号的响应是瞬时的。
2.对于正弦波输入,系统的输出信号是与输入信号同频同相位的正弦波,这表明系统对正弦波的响应是具有稳定性的。
这些结果验证了连续LTI系统的基本特性:即对于单位阶跃函数(突变信号)的输入,系统的响应是瞬时的;而对于周期性输入(如正弦波),系统的响应具有稳定性。
这些结果与我们在理论上学到的知识相符,从而验证了我们的模型是正确的。
实验三 线性时不变(LTI)连续系统的时域分析
执行结果
实验任务 1:LTI系统的微分方程y''(t)+2y'(t)+y(t)=f'(t)+2f(t),激励f (t)=e-2tε(t),
(1) 利用 impulse 函数获得冲激响应; (2) 利用 lsim 函数求取零状态响应; (3) 用卷积分析法计算其零状态响应; 要求:在一个图形窗口里以 3 个子图形式绘制冲激响应和两种方法得到的零状 态响应的波形。 (4)改变系统的 a 系数矩阵,观察冲激响应和零状态响应时域波形的变化情况。 建议 a 系数向量分别如下取值讨论。
用。
一、实验目的
1. 掌握系统时域分析常用函数的使用方法; 2. 理解系统特征根对系统时域特性的影响;
二、实验原理及内容 2.1 连续系统的时域分析 2.1.1 连续系统时域分析的几个常用函数
设 LTI 连续时间系统的微分方程为
a 2 y''(t)+a 1 y'(t)+a 0 y(t)=b 2 f''(t)+b 1 f'(t)+b 0 f(t)
将积分变量离散化即将用n替代d用替代只要时域取样间隔足够小上式可近似为再把观察响应时刻离散化即将t用k替换只要足够小通常将fn简记为fnhkn简记为hknyk简记为yk这样上式便可表示为因此两个连续信号ft和ht的卷积yt可用ft和ht的取样信号f均取整数
实验三 线性时不变(LTI)连续系统的时域分析
2.1.2 连续信号卷积的近似计算
连续系统的零状态响应 y(t)可通过输入信号 f(t)与系统冲激响应 h(t)的卷积求 得;但是计算机只能处理数字信号,不能直接处理模拟信号,因此,卷积积分不 能直接用计算机计算。为了解决这个问题,可以将连续信号用取样信号来近似表 示,利用卷积和近似求得卷积积分。下面就连续信号卷积积分的近似计算进行简 单推导。
信号与系统实验(MATLAB 西电版)实验6 连续LTI系统的时域分析
实验6 连续LTI系统的时域分析 图 6.4 系统的全响应曲线
实验6 连续LTI系统的时域分析
(3) 已知某LTI系统的激励为f1=sintε(t),单位冲激响应为 h(t)=te-2t ε(t), 试给出系统零状态响应yf(t)的数学表达式。 MATLAB clear all; T=0.1 ; t=0:T:10; f=3*t*sin(t); h=t*exp(-2*t)*; Lf=length(f); Lh=length(h) for k=1:Lf+Lh-1
实验6 连续LTI系统的时域分析
2.
根据系统的单位冲激响应,利用卷积计算的方法,也可
以计算任意输入状态下系统的零状态响应。设一个线性零状
态系统,已知系统的单位冲激响应为h(t),当系统的激励信
号为f(t)
yzs(t)=
f(τ)h(t-τ)dτ=
f(t-τ)h(τ) dτ
实验6 连续LTI系统的时域分析
2. (1)
H(s)= 1 .6s4 5 0 .3s 3 3 5 1s 7 2 6 9.6 0 s 19080 s6 0 .9s 9 5 6 4s 6 4 3 9.8 7 s3 12s2 1 8 .3 1s1
(2) 计算下述系统在冲激、阶跃、斜坡和正弦激励下的
y (4)(t)+0.6363y(3)(t)+0.9396y(2)(t)+0.5123y(1)(t)+0.0037y(t) =-0.475f(3)(t)-0.248f(2)(t)-0.1189f(1)(t)-0.0564f(t)
yzs(t)=f(t)*h(t)
也可用离散序列卷积和近似为
yzs(k)= f(n)*h(k-n)T=f(k)*h(k) n
信号与系统连续时间LTI系统的几种响应求解方法及例题
利用信号分解和线性时不变系统的特性求解。
卷积法求解系统零状态响应yf (t)的思路
1) 将任意信号分解为单位冲激信号的线性组合 2) 求出单位冲激信号作用在系统上的响应
—— 冲激响应 3) 利用线性时不变系统的特性,即可求出任意
信号f(t)激励下系统的零状态响应yf (t) 。
解:y f (t) f (t) h(t) f ( ) h(t )d = 3u( ) 2e3(t )u(t )d
= 0t 3 2e 3(t )d
0 2(1 e3t ) = 0 = 2(1 e3t )u(t)
初始条件y(0)=1, y '(0)=2, 输入信号f (t)=et u(t),求 系统的完全响应y(t)。
解:
(3) 求方程的全解
y(t)
yh (t)
yp (t)
Ae 2t
Be 4t
1 et 3
y(0) A B 1 1
y' (0)
2A
3 4B
1
2
解得 A=5/2,B= 11/6
解得 K1= 6,K2= 5
yx (t) 6e2t 5e3t , t 0
[例2] 已知某线性时不变系统的动态方程式为:
y" (t)+4y ' (t) +4y (t) = 2f ' (t )+3f(t), t>0 系统的初始状态为y(0) = 2,y'(0) = 1, 求系统的零输入响应yx(t)。
系统的初始状态为y(0) = 1,y' (0) = 3, 求系统的零输入响应yx(t)。
信号与系统实验报告实验三 连续时间LTI系统的频域分析
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法与特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习与掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续与离散时间系统的频域数学模型与频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波与滤波器的概念,掌握利用MATLAB 计算与绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response),就是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况与响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号与响应信号,h(t)就是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3、1或者: )()()(ωωωj X j Y j H =3、2)(ωj H 为系统的频域数学模型,它实际上就就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()( 3、3由于H(j ω)实际上就是系统单位冲激响应h(t)的傅里叶变换,如果h(t)就是收敛的,或者说就是绝对可积(Absolutly integrabel)的话,那么H(j ω)一定存在,而且H(j ω)通常就是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的就是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3、4上式中,)j (ωH 称为幅度频率相应(Magnitude response),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
MATLAB 3.连续时间LTI系统的时域分析
1
3.连续时间 LTI 系统的时域分析
作业题
2、某连续系统的输入为 e(t),输出为 y(t),系统的微分方程为:y ’’(t)+5y ’(6)+6y(t)=3f ’(t)+2f(t) 绘出该系统的单位冲激响应和单位阶跃响应时域图形 若f t = ������ −2������ ������(������),绘出系统的零状态响应时域图形
将激励信号和单位冲击响应进行卷积,由下图发现结果一致。
6
3.连续时间 LTI 系统的时域分析
作业题
4、如下图所示的电路中,已知 电压 y(t ) 作为系统输出:
R1 R2 R3 4() , L1 L2 1( H ) ,如果以电阻 R3 上
请画出系统的冲击响应 h(t) 请画出系统在激励e(������) = 12������(������)(v)作用下的零状态响应,要求写出系统微分方程的求 解步骤。 对所求结果进行验证。
零输入响应: eq1='D2y+4*Dy+4*y=0'; cond='Dy(-0.01)=1,y(-0.01)=1'; answer=dsolve(eq1,cond) answer = 103/(100*exp(1/50)*exp(2*t))+ (3*t)/(exp(1/50)*exp(2*t)) >> 全响应: eq1='D2y+4*Dy+4*y=Df+3*f'; eq2='f=exp(-t)*heaviside(t)'; cond='Dy(-0.01)=1,y(-0.01)=1'; answer=dsolve(eq1,eq2,cond); simplify(answer.y) ans = (3*t+2*exp(t+1/50)*heaviside(t)-2*exp(1/50)*heaviside(t)-t*exp(1/50)* heaviside(t) + 103/100)/exp(2*t + 1/50)
MATLAB仿真之连续时间LTI系统仿真和时域分析
r=conv(h,e);t=-10:l/a:10;PlOt(I.r);title('零状态响应r(t)'); xlabel('t');ylabel('r');零输入程序及仿真建模当UT系统的输入为零时,其零输入响应为微分方程的其次解(即令微分方程的等号右端为零),其形式为(设特征根均为单根)Mf)=GeR÷Ge网+••••+”'其中PbP2,,∙∙,Pn是特征方程alλn+a2λn-l+∙∙∙+anλ+an=O的根,它们可以用rool(八)语句求得。
各系数IIIy及其各阶导数的初始值来确定。
对此有G+G+•…+G=NOp l C l+p2C2+--+P ll C n=Dy0PFG+〃2”工+•…3Y写成矩阵形式为:PJC+IY1C J+∙∙∙+PJC=D"*PlPi - P nC*-∣C∣t-∣JU-IP∣Pi…P…V为范德蒙矩阵,在matlab的特殊矩阵库中有Vandero以下面式子为例:√(r)+5y(0+4y(r)=2∕(∕)-4∕(r)y(OJ=l,y(OJ=5:MAT1.AB程序:a=input(,输入分母系数a=[al,a2,...]=');n=length(八)-l;YO=inputC输入初始条件向量YO=[yO,DyO,D2yO,.p=roots(八);V=rot90(vander(p));c=V∖Y0';dt=inρut('dt=');te=inpιιt('te-);t=O:dt:te;y=zeros(1,length(t));fork=kny=y÷c(k)*exp(p(k)*t);endplot(t,y);gridon:xlabel(,t');ylabel('y');litle('零输入响应');程序运行结果:用这个通用程序来解一个三阶系统,运行此程序并输入a=[l,5,4]Y0=[l,5]dt=O.Olte=6结果如下列图:依据图可以分析零输入响应,它的起始值与输入函数无关,只与它的初始状态值有关,其起始值等于y(0_)的值。
信号与系统MATLAB仿真——LTI连续系统的时域分析
信号与系统MATLAB仿真——LTI连续系统的时域分析1. 知识回顾(1)经典时域分析⽅法线性时不变(LTI)系统是最常见最有⽤的⼀类系统,描述这类系统的输⼊-输出特性的是常系数线性微分⽅程。
\begin{array}{l} {y^{(n)}}(t) + {a_{n - 1}}{y^{(n - 1)}}(t) + \cdot \cdot \cdot + {a_1}{y^{(1)}}(t) + {a_0}y(t) = \\ {b_m}{f^{(m)}}(t) + {b_{m - 1}}{f^{(m - 1)}}(t) + \cdot \cdot \cdot + {b_1}{f^{(1)}}(t) + {b_0}f(t) \end{array}齐次解:{y^{(n)}}(t) + {a_{n - 1}}{y^{(n - 1)}}(t) + \cdot \cdot \cdot + {a_1}{y^{(1)}}(t) + {a_0}y(t) = 0特征⽅程:{\lambda ^n} + {a_{n - 1}}{\lambda ^{n - 1}} + \cdot \cdot \cdot + {a_1}\lambda + {a_0} = 0均为单根:{y_h}(t) = \sum\limits_{i = 1}^n {{C_i}{e^{{\lambda _i}t}}}有重根(r重根):{y_h}(t) = \sum\limits_{i = 1}^r {{C_i}{t^{i - 1}}{e^{{\lambda _1}t}}}共轭复根({\lambda _{1,2}} = \alpha \pm j\beta ):{e^{\alpha t}}({C_1}\cos \beta t + {C_2}\sin \beta t)r重复根:{e^{\alpha t}}(\sum\limits_{i = 1}^r {{C_{1i}}{t^{i - 1}}} \cos \beta t + \sum\limits_{i = 1}^r {{C_{2i}}{t^{i - 1}}} \sin \beta t)特解:f(t) = {t^m}所有的特征根均不等于0:{y_p}(t) = {P_m}{t^m} + {P_{m - 1}}{t^{m - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}有r重等于0的特征根:{y_p}(t) = {t^r}[{P_m}{t^m} + {P_{m - 1}}{t^{m - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}] f(t) = {e^{\alpha t}}:\alpha 不是特征根:{y_p}(t) = P{e^{\alpha t}}\alpha 是特征单根:{y_p}(t) = {P_1}t{e^{\alpha t}} + {P_0}{e^{\alpha t}}\alpha 是r重特征根:{y_p}(t) = ({P_r}{t^r} + {P_{r - 1}}{t^{r - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}){e^{\alpha t}} f(t) = \cos \beta t或\sin \beta t:所有特征根均不等于 \pm j\beta :{y_p}(t) = {P_1}\cos \beta t + {P_2}\sin \beta t\pm j\beta 是特征单根:{y_p}(t) = t[{P_1}\cos \beta t + {P_2}\sin \beta t]全解:y(t) = {y_h}(t) + {y_p}(t)(2)零输⼊响应与零状态响应y(t) = {y_{zi}}(t) + {y_{zs}}(t)(3)冲激响应和阶跃响应\left\{ \begin{array}{l} \delta (t) = \frac{{{\rm{d}}\varepsilon (t)}}{{{\rm{d}}t}}\\ \varepsilon (t) = \int_{ - \infty }^t {\delta (\tau ){\rm{d}}\tau } \end{array} \right. \left\{ \begin{array}{l} h(t) = \frac{{{\rm{d}}g(t)}}{{{\rm{d}}t}}\\ g(t) = \int_{ - \infty }^t {h(\tau ){\rm{d}}\tau } \end{array} \right.(4)卷积积分y(t) = {f_1}(t) * {f_2}(t) = \int_{ - \infty }^{ + \infty } {{f_1}(\tau ){f_2}(t - } \tau ){\rm{d}}\tau系统的零状态响应:{y_{zs}}(t) = f(t) * h(t)卷积积分的性质:交换律分配率结合律任意函数与单位冲激函数卷积的结果仍是函数本⾝:f(t) * \delta (t) = f(t)2. 利⽤MATLAB求LTI连续系统的响应LTI连续系统以常微分⽅程描述,如果系统的输⼊信号及初始状态已知,便可以求出系统的响应。
连续lti系统的分析课程设计
连续lti系统的分析课程设计一、课程目标知识目标:1. 理解连续线性时不变系统(LTI系统)的基本概念,掌握其数学描述和性质。
2. 学会运用拉普拉斯变换分析连续LTI系统的时域和频域特性。
3. 掌握连续LTI系统的零状态响应和零输入响应的计算方法。
技能目标:1. 能够运用数学工具对连续LTI系统进行建模,并进行稳定性分析。
2. 能够运用拉普拉斯变换解决连续LTI系统的控制问题。
3. 能够运用所学知识对实际电路和信号处理系统进行分析和设计。
情感态度价值观目标:1. 培养学生对连续LTI系统分析的兴趣,激发学生主动探索科学问题的热情。
2. 培养学生严谨的科学态度,提高学生的逻辑思维和分析问题的能力。
3. 培养学生的团队协作精神,提高学生在学术讨论中表达自己观点的能力。
课程性质分析:本课程为电子信息类专业的高年级本科生开设,旨在帮助学生建立连续LTI系统的基本理论体系,提高学生运用理论知识解决实际问题的能力。
学生特点分析:高年级本科生已具备一定的数学基础和专业知识,具有较强的自学能力和逻辑思维能力,但对连续LTI系统的实际应用可能缺乏深入了解。
教学要求:1. 结合实际案例,深入浅出地讲解连续LTI系统的理论知识。
2. 注重培养学生的动手能力,通过课后习题和实验,使学生将所学知识应用于实际问题。
3. 鼓励学生进行课堂讨论,提高学生的思维活跃度和学术交流能力。
二、教学内容1. 连续LTI系统的基本概念:介绍连续LTI系统的定义、特点及其数学描述方法,包括微分方程和传递函数。
教材章节:第一章 连续系统基础2. 拉普拉斯变换:讲解拉普拉斯变换的定义、性质和应用,以及如何将连续LTI系统转换为s域分析。
教材章节:第二章 拉普拉斯变换3. 连续LTI系统的时域分析:介绍零状态响应、零输入响应和全响应的计算方法,分析系统稳定性。
教材章节:第三章 时域分析4. 连续LTI系统的频域分析:讲解频率响应函数,分析系统频率特性,介绍波特图和尼奎斯特图。
信号与系统实验报告实验三连续时间LTI系统的频域分析
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三连续时间LTI系统分析一、实验目的(一)掌握使用Matlab进行连续系统时域分析的方法1、学会使用符号法求解连续系统的零输入响应和零状态响应2、学会使用数值法求解连续系统的零状态响应3、学会求解连续系统的冲激响应和阶跃响应(二)掌握使用Matlab进行连续时间LTI系统的频率特性及频域分析方法1、学会运用MATLAB分析连续系统的频率特性2、学会运用MATLAB进行连续系统的频域分析(三)掌握使用Matlab进行连续时间LTI系统s域分析的方法1、学会运用MATLAB求拉普拉斯变换(LT)2、学会运用MATLAB求拉普拉斯反变换(ILT)3、学会在MATLAB环境下进行连续时间LTI系统s域分析二、实验条件装有MATLAB的电脑三、实验内容(一)熟悉三部分相关内容原理 (二)完成作业1、已知某系统的微分方程如下:)(3)()(2)(3)(t e t e t r t r t r +'=+'+''其中,)(t e 为激励,)(t r 为响应。
(1) 用MATLAB 命令求出并画出2)0(,1)0(),()(3='==---r r t u et e t时系统的零状态响应和零输入响应(零状态响应分别使用符号法和数值法求解,零输入响应只使用符号法求解);符号法求解零输入响应: >> eq='D2y+3*Dy+2*y=0';>> cond='y(0)=1,Dy(0)=2'; >> yzi=dsolve(eq,cond); >> yzi=simplify(yzi)yzi =符号法求解零状态响应:exp(-2*t)*(4*exp(t) - 3)eq1='D2y+3*Dy+2*y=Dx+3*x';eq2='x=exp(-3*t)*heaviside(t)'; cond='y(-0.001)=0,Dy(-0.001)=0'; yzs=dsolve(eq1,eq2,cond); yzs=simplify(yzs)yzs =(exp(-2*t)*(exp(t) - 1)*(sign(t) + 1))/2 图像如下:代码:subplot(211)ezplot(yzi,[0,8]);grid ontitle('ÁãÊäÈëÏìÓ¦')subplot(212)ezplot(yzs,[0,8]);grid ontitle('Áã״̬ÏìÓ¦')数值计算法:t=0:0.01:10;sys=tf([1,3],[1,3,2]);f=exp(-3*t).*uCT(t);y=lsim(sys,f,t);plot(t,y),grid on;axis([0 10 -0.001 0.3]);title('ÊýÖµ¼ÆËã·¨µÄÁã״̬ÏìÓ¦')(2)使用MATLAB命令求出并画出系统的冲激响应和阶跃响应(数值法);用卷积积分法求系统的零状态响应并与(1)中结果进行比较;系统的冲激响应和阶跃响应(数值法):代码:t=0:0.01:10;sys=tf([1,3],[1,3,2]);h=impulse(sys,t);g=step(sys,t);subplot(211)plot(t,h),grid on;axis([0 10 -0.01 1.1]);title('³å¼¤ÏìÓ¦')subplot(212)plot(t,g),grid on;axis([0 10 -0.01 1.6]);title('½×Ô¾ÏìÓ¦'卷积积分法求系统的零状态响应:Ctsconv函数的定义:function[f,t]=ctsconv(f1,f2,t1,t2,dt)f=conv(f1,f2);f=f*dt;ts=min(t1)+min(t2);te=max(t1)+max(t2);t=ts:dt:te;subplot(221)plot(t1,f1);grid onaxis([min(t1),max(t1),min(f1)-abs(min(f1)*0.2),max(f1)+abs(max(f1)*0.2)]) title('f1(t)');xlabel('t')subplot(222)plot(t2,f2);grid onaxis([min(t2),max(t2),min(f2)-abs(min(f2)*0.2),max(f2)+abs(max(f2)*0.2)]) title('f2(t)');xlabel('t')subplot(212)plot(t,f);grid onaxis([min(t),max(t),min(f)-abs(min(f)*0.2),max(f)+abs(max(f)*0.2)])title('f(t)=f1(t)*f2(t)'); xlabel('t')求系统的零状态响应代码:dt=0.01;t1=0:dt:10; f1=exp(-3*t1).*uCT(t1); t2=t1;sys=tf([1,3],[1,3,2]); f2=impulse(sys,t2); [t,f]=ctsconv(f1,f2,t1,t2,dt)如图,根据两图相比较,两种方法做出的零状态响应大体相同。
(3) 若已知条件同(1),借助MATLAB 符号数学工具箱实现拉普拉斯正反变换的方法求出并画出2)0(,1)0(),()(3='==---r r t u et e t时系统的零状态响应和零输入响应,并与(1)的结果进行比较。
普拉斯正反变换的方法求出系统的零状态响应和零输入响应: 代码:syms t s Rzis=(s+5)/(s^2+3*s+2); rzi=ilaplace(Rzis)rzi =4*exp(-t) - 3*exp(-2*t)et=exp(-3*t)*heaviside(t); es=laplace(et);Rzss=((3+s)*es)/(s^2+3*s+2); rzs=ilaplace(Rzss) rzs =exp(-t) - exp(-2*t)根据图像,同样也能看出拉普拉斯变换法得出的结果相同。
2、已知某RC 网络如下,()r t ()e t +-+-RC(1) 求出该网络的频域系统函数()H j ω; H (jw )=a/(a+jw) 其中a=1/RC(2) 使用MATLAB 命令画出1RC =时系统的幅频特性和相频特性; 代码:w=-3*pi:0.01:3*pi; b=[0,1];a=[1,1];h=freqs(b,a,w); subplot(211) plot(w,abs(h)),grid on axis([-10 10 0 1.1]); title('H(w)µÄ·ùƵÌØÐÔ') subplot(212)plot(w,angle(h)),grid on title('H(W)µÄÏàƵÌØÐÔ')(3) 若1RC =,且激励信号()sin sin(3)e t t t =+,使用频域分析法求解()r t ,分别画出()e t 和()r t 波形,讨论经传输是否引起失真。
代码:t=0:0.1:20; w1=1;w2=3; H1=1/(1+1i*w1); H2=1/(1+1i*w2); f=sin(t)+sin(3*t);y=abs(H1)*sin(w1*t+angle(H1))+abs(H2)*sin(w2*t+angle(H2)); subplot(2,1,1); plot(t,f);grid onylabel('f(t)'),xlabel('Time(s)')title('ÊäÈëÐźŵIJ¨ÐÎ')subplot(2,1,2);plot(t,y);grid onylabel('y(t)'),xlabel('Time(sec)')title('ÎÈ̬ÏìÓ¦µÄ²¨ÐÎ')如图,两组波形进行比较可以明显看出,二者不成线性关系,所以此传输系统失真。
3、已知某系统框图如下,∑+-))((121-+ssK)(1sV)2sV(1)写出下图所示系统的s域系统函数()H s;H(s)=1/(S2+S-2+K)(2)使用MATLAB命令分别用两种方式画出90,1,2,,34K=时该系统的零极点分布图,并由图讨论K从0增长时,该系统的稳定性变化情况。
代码:. b1=[0 1];a1=[1 1 -2];sys1=tf(b1,a1);subplot(321)pzmap(sys1)axis([-2 2 -2 2])b2=[0 1];a2=[1 1 -1];sys1=tf(b2,a2);subplot(322)pzmap(sys1)axis([-2 2 -2 2])b3=[0 1];a3=[1 1 0];sys1=tf(b3,a3);subplot(323)pzmap(sys1)axis([-2 2 -2 2])b4=[0 1];a4=[1 1 0.25];sys1=tf(b4,a4);subplot(324)pzmap(sys1). axis([-2 2 -2 2])b4=[0 1];a4=[1 1 1];sys1=tf(b4,a4);subplot(325)pzmap(sys1)axis([-2 2 -2 2])根据图像,很明显的可以看出,随着K的逐渐增大,系统逐渐稳定。