浙江大学微积分复习资料

合集下载

[微积分Ⅰ]2-1a导数的概念和运算法则

[微积分Ⅰ]2-1a导数的概念和运算法则


求函数 f ( x ) C (C为常数) 的导数.
h 0
解 f ( x ) lim

f ( x h) f ( x ) C C 0. lim h 0 h h
(C ) 0.
例 解
设函数 f ( x ) sin x , 求(sin x )及(sin x )
C
o

M

x0
x
x
y y0 f ( x ) f ( x0 ) tan , x x0 x x0
C N 沿曲线 M , x x0 ,
f ( x ) f ( x0 ) . 切线MT的斜率为 k tan lim x x0 x x0
二、导数的定义
S S ( t t ) S ( t ) v t t
平均速度 v与Δ t的取值有关,一般不等于质点在时 v 愈接近于 t 时刻的速度 刻 t 的速度 v ,但 Δ t 的值愈小, v(t)。因此,取极限t0,质点在时刻t的瞬时速度:
S ( t t ) S ( t ) v v ( t ) Lim t t 0
dy dx
df ( x ) 或 x x0 dx
x x0
x x0
,
即 y
f ( x 0 x ) f ( x 0 ) y lim lim x 0 x x 0 x
若极限不存在, 则称函数f ( x ) 在点x 处不可导. 0
y , 也说函数 f ( x )在点x0的导数为无穷大. 若 lim x 0 x
3) 对于任一 x I , 都对应着 f ( x ) 的一个确定的 导数值.这个函数叫做原来函数f ( x ) 的导函数. dy df ( x ) 记作 y , f ( x ), 或 . dx dx

(完整版)微积分复习资料

(完整版)微积分复习资料

(完整版)微积分复习资料基本知识复习⼀、不定积分1.不定积分概念,第⼀换元积分法(1)原函数与不定积分概念设函数()F x 与()f x 在区间(),a b 内有定义,对任意的(),x a b ∈,有()()'F x f x =或()()dF x f x dx =,就称()F x 是()f x 在(),a b 内的⼀个原函数。

如果()F x 是函数()f x 的⼀个原函数,称()f x 的原函数全体为()f x 的不定积分,记作()(),f x dx F x C =+?(2)不定积分得基本性质1.()()df x dx f x dx=?2。

()()'F x dx F x C =+? 3。

()()()().Af x Bg x dx A f x dx B g x dx +=+(3)基本不定积分公式表⼀()()122222(1)2)1,13ln C,x (4)arctan ,1(5)arcsin ,(6)cos sin ,(7)sin cos ,(8)sec tan ,cos (9)csc cot ,sin (10)sec t kdx kx C k x x dx C dx x dx x C x x C xdx x C xdx x C dx xdx x C x dx xdx x C x x µµµµ+=+=+≠-+=+=++=+=+=-+==+==-+是常数,(1()22an sec ,(11)csc cot csc ,(12),ln (13),(14),1(15),1(16).xxxdx x C x xdx x C a a dx C ashxdx chx C chxdx shx C dx thx C ch x dx cthx C sh x =+=-+=+=+=+=+=-+(3)第⼀换元积分法(凑微分法)设()f u 具有原函数, ()u x ?=可导,则有换元公式()()()()'.u x f x x dx f u du =??=?2.第⼆换元积分法,分部积分法(1)第⼆换元积分法设()x t ψ=是单调的、可导的函数,并且()'0t ψ≠.⼜设()()'f t t ψψ具有原函数,则有换元公式()()()()1',t x f x dx f t t dt ψψψ-=??=其中()1x ψ-是()x t ψ=的反函数.(2)分部积分法设函数()u u x =及()v v x =具有连续导数,那么,()''',uv u v uv =+移项,得 ()'''.uv uv u v =-对这个等式两边求不定积分,得''.uv dx uv u vdx =-??这个公式称为分部积分公式.它也可以写成以下形式:.udv uv vdu =-??(3)基本积分公式表⼆(2222(17)tan ln cos )cot ln sin ,sec ln sec tan C,(20)csc ln csc cot ,1(21)arctan ,1(22)ln ,2(23)arcsin ,(24)ln ,(2xdx x C xdx x C xdx x xdx x x C dx x C a x a a dx x adx C x a a x a xC a x C =-+=+=++=-+=++-=+-+=+=++,(18(19)5)ln .x C =+ (3)有理函数的积分,三⾓函数有理式的积分,某些简单⽆理式的积分⼀、有理函数的积分两个多项式的商()()P x Q x 称为有理函数,⼜称为有理分式.我们总假定分⼦多项式()P x 与分母多项式()Q x 之间是没有公因式的.当分⼦多项式()P x 的次数⼩于分母多项式()Q x 的次数时,称这有理函数为真分式,否则称为假分式.利⽤多项式的除法,总可以将⼀个假分式化成⼀个多项式与⼀个真分式之和的形式,由于多项式的积分容易求,故我们将重点讨论真分式的积分⽅法.对于真分式()()n m P x Q x ,⾸先将()m Q x 在实数范围内进⾏因式分解,分解的结果不外乎两种类型:⼀种是()kx a -,另外⼀种是()2lx px q ++,其中,k l 是正整数且240p q -<;其次,根据因式分解的结果,将真分式拆成若⼲个分式之和.具体的做法是:若()m Q x 分解后含有因式()kx a -,则和式中对应地含有以下k 个分式之和:()()()122,k kA A A x a x a x a +++---L 其中:1,,k A A L 为待定常数.若()m Q x 分解后含有因式()2lx px q ++,则和式中对应地含有以下l 个分式之和:()()()11222222,l l l M x N M x N M x N x px q x px q x px q ++++++++++++L 其中:(),1,2,,i i M N i l =L 为待定常数.以上这些常数可通过待定系数法来确定.上述步骤称为把真分式化为部分分式之和,所以,有理函数的积分最终归结为部分分式的积分.⼆、可化为有理函数的积分举例例4 求()1sin .sin 1cos xdx x x ++?解由三⾓函数知道,sin x 与cos x 都可以⽤tan2x的有理式表⽰,即 222222222tan 2tan22sin 2sin cos ,22sec 1tan 221tan 1tan 22cos cos sin .22sec 1tan 22x x x x x x xx xx x x x x ===+--=-==+如果作变换()tan2xu x ππ=-<<,那么 22221sin ,cos ,11u u x x u u -==++ ⽽2arctan ,x u =从⽽2.1dx du u =+ 于是()22222221sin sin 1cos 2211121111112212ln 2211tan tan ln tan .42222 xdx x x u du u u u u u u u du u u u u C x x xC ++??+ ?++??=??-+ ?++??=++=+++ ?=+++例5求. 解u =,于是21,2,x u dx udu =+=从⽽所求积分为()222222111212arctan 12.u u dx udu dux u u du u u C u C =?=++?=-=-++??=+ 例6求u =,于是322,3,x u dx u du =-=从⽽所求积分为223113113ln 13ln 1.2u duu u duu u u u C C =+?=-+ +=-+++=+例7 求解设6x t =,于是56,dx t dt =从⽽所求积分为()()52223266111616arctan 16arctan .t t dt dt t t tdt t t C t C ==++?=-=-+ +=+例8求解t =,于是()2222112,,,11x tdtt x dx x t t +===---从⽽所求积分为 ()()()22222222*********ln 1122ln 1ln 12ln 1ln .t t t t dt dtt t t dt t Ct t t t t C x C -=-?=----?=-+=--+ -+=-++--+=-++⼆、定积分(1)定积分概念,微积分基本定理,定积分得基本性质(1)定积分的概念1。

高等数学一微积分考试必过归纳总结要点重点

高等数学一微积分考试必过归纳总结要点重点

高等数学(一)微积分一元函数微分学( 第三章、第四章)一元函数积分学(第五章)第一章函数及其图形第二章极限和连续多元函数微积分(第六章)高数一串讲教材所讲主要内容如下:全书内容可粗分为以下三大部分:第一部分 函数极限与连续(包括级数) 第二部分 导数及其应用(包括多元函数)第三部分 积分计算及其应用 (包括二重积分和方程)第一部分 函数极限与连续一、关于函数概念及特性的常见考试题型: 1、求函数的自然定义域。

2、判断函数的有界性、周期性、单调性、奇偶性。

3、求反函数。

4、求复合函数的表达式。

二、 极限与连续 常见考试题型:1、求函数或数列的极限。

2、考察分段函数在分段点处极限是否存在, 函数是否连续。

3、函数的连续与间断。

4、求函数的渐进线。

5、级数的性质及等比级数。

6、零点定理。

每年必有的考点第三部分导数微分及其应用常见考试题型:1、导数的几何意义;2、讨论分段函数分段点的连续性与可导性。

3、求函数的导数:复合函数求导,隐含数求导,参数方程求导;4、讨论函数的单调性和凹凸性,求曲线的拐点;5、求闭区间上连续函数的最值;6、实际问题求最值。

每年必有的考点第四部分积分计算及应用考试常见题型1、不定积分的概念与计算;2、定积分的计算;3、定积分计算平面图形的面积;4、定积分计算旋转体的体积;5、无穷限反常积分6、二重积分7、微分方程最近几年考题中,积分计算的题目较多,而且也有一定的难度。

第一部分函数极限与连续一、关于函数概念及特性的常见考试题型:1、求函数的自然定义域。

2、判断函数的有界性、周期性、单调性、奇偶性。

3、求反函数。

4、求复合函数的表达式。

log log x的定义域是___________. 2007.7例1..函数y=23知识点:定义域约定函数的定义域是使函数的解析表达式有意义的一切实数所构成的数集。

解 要使根式函数有意义必须满足23log log 0x ≥,要使23log log 0x ≥成立, 只有3log 1x ≥,即3x ≥.注:我们所求定义域的函数一般都是初等函数,而初等函数:由基本初等函数,经过有限次的+-×÷运算及有限次的复合得到的函数称为初等函数。

浙江大学微积分一习题解答 第零,一,二章(秋冬)

浙江大学微积分一习题解答 第零,一,二章(秋冬)

u n +1 un
= (1 + = (1 +
n n 1 1 n +1 1 n +1 ) (1 + ) − n = (1 + ) ( ) n +1 n n +1 n +1
1 −1 1 −1 n +1 1 n +1 1 n 1 ) (1 − ) = (1 − > (1 − ) ) ) n +1 (1 − ) (1 − n +1 n +1 n +1 n +1 ( n + 1) 2 ( n + 1) 2
f ( x1 + x 2 ) f ( x1 + x 2 ) f (x 2 ) f ( x1 ) ≤ , ≤ x1 x1 + x 2 x1 + x 2 x2
x 1 f ( x 1 + x 2 ) ≤ ( x 1 + x 2 ) f ( x 1 ) , x 2 f ( x 1 + x 2 ) ≤ ( x 1 + x 2 )f ( x 2 )
# 题 4(4) (p69) 【7】 『证』 用夹逼准则证明
1 + n 2 + ... + n n =1 n → +∞ n lim
1=
n 1 + n 2 + ... + n n n n n n < < = n n n n
故由夹逼准则,极限为 1。# 题 6(3) (p69) 【8】 『解』 可以。可用数列极限的定义来证。 若 a=0,则反之也成立。否则不成立。如数列 {( −1) n } #
=1 且
1 x
>G。故可取 x=

浙江大学城市学院微积分II(丙)练习册全部答案

浙江大学城市学院微积分II(丙)练习册全部答案

第八章 微分方程初步第一节 微分方程的概念1. 验证函数212y C x C x =+是否为微分方程2220yy y x x'''-+=的解.解:122y C C x y C '''=+=2, 2, 代入方程:()221212222222()0y y y C C C x C x C x x x x x'''-+=-⋅+++=22 因此是解。

2.验证由方程22x xy y C -+=所确定的函数为微分方程(2)2x y y x y '-=-的通解.解:对22x xy y C -+=两边求导,有2()20x y xy yy ''-++=,即有 (2)2x y y x y '-=-,是解有因为解中一个任意常数,任意常数个数与微分方程阶数相同,因此是通解。

3.验证函数1212()(,xy C C x e C C -=+为任意常数)是微分方程20y y y '''++=的通解,并求满足初始条件004,2,x x y y =='==-的特解.解:2122122212212()(),()(2),x x x x x x y C e C C x e C C C x e y C e C C C x e C C C x e ------'=-+=--''=----=--- 将上式代入方程左边有:21221212(2)2()()0x x x C C C x e C C C x e C C x e ------+--++=,有因为解中2个任意常数,任意常数个数与微分方程阶数相同,因此是通解。

由004,2,x x y y =='==-得: 124,2C C ==特解:(42)xy x e -=+第二节一阶微分方程1、求下列可分离变量微分方程的通解(或特解)(1)0 xydx=解:1,dyy= 11211,(1)ln, ln,,C Cdy x yyy Cy y e--=-=+==±⋅=⎰(20 +=解:,=,=()21,y=-arcsin,x C=即为通解(3)212,0x yxy xe y-='==解: 22,,x y y xdyxe e e dy xe dxdx-=⋅=()()22222222221,,211,,221111,ln,2224y x y xy x x y x xy x x x xe dy xe dx e xdee xe e dx e xe e dxe xe e C y xe e C===-=-⎛⎫⎛⎫=-+=-+⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰由12xy==,得1,C=211ln()122xy x e⎡⎤=-+⎢⎥⎣⎦(4)23(4),1xx x y y y='-==.解:22,,(4)(4)dy dx dy dxy x x y x x==--⎰⎰()411111ln,ln ln ln4,4441ln ln,,4444Cy dx y x x Cx xC xx xy C y ex x x=+=--+-=+=±⋅=---⎰ 由31xy==,得113C=,43(4)xyx=-。

浙江大学05-06夏微积分三期末试卷有答案-5页精选文档

浙江大学05-06夏微积分三期末试卷有答案-5页精选文档

浙江大学2019–2019学年夏季学期 《 微积分Ⅲ》课程期末考试试卷开课学院: 理学院 考试形式:闭卷考试时间:2007年7月1日 所需时间:120 分钟考生姓名: _____学号: 专业: ________(1) 设l 为椭圆1422=+y x 的一周,其全长为a ,则平面第一型(即对弧长的)曲线积分=-⎰cds y x 2)2(.(2) 已知()()y d e xex d eye x yyx++---为某二元函数),(y x u 的全微分,且.1)0,0(=u 则=),(y x u .(3)设),,(z y x u u =具有二阶连续偏导数,且满足,222222222z y x zu y u x u ++=∂∂+∂∂+∂∂ S 为球面)0(2222>+++a a z y x 的外侧,则第二类曲面积分=∂∂+∂∂+∂∂⎰⎰Sy x z ux z y u z y x u d d d d d d .(4)设)(y ϕ具有连续的一阶导数,,1)1(=ϕ l 为自点(0, 0)沿曲线x x y 232-=到点(1, 1)的有向弧,则平面第二型曲线积分.d ))((d ))(2(2=-'+-⎰ly y y xx y y x ϕϕ二、选择题(每小题5分, 每小题所给4个选项中只有1个是符合要求的, 请将所选代码填入【 】中).(5) 设 }0|),{(22>+=y x y x D ,l 是D 内的任意一条逐段光滑的封闭曲线,则必有 (A)0)()(22=+++-⎰l y x dy y x dx y x (B) 0)()(22≠+++-⎰ly x dyy x dx y x (C)0)d d (44=+-⎰ly x x y y x xy . (D) .0)d d (44≠+-⎰ly x x y y x xy 【 】 (6) 设S 为上半球面),0(,0,2222>≥+++a z a z y x 下列第一型曲面积分或第二型曲面积分不为0的是 (A).d d ⎰⎰上侧S z y x (B)⎰⎰上侧S z y y .d d 2(C)⎰⎰SS y .d (D) ⎰⎰SS y x .d 【 】(7) 设),(y x P 与),(y x Q 在平面区域D 上连续且有连续的一阶偏导数,则“当yPx Q ∂∂=∂∂ D y x ∈),(”是“对于D 内的任意一条逐段光滑的闭曲线l , 0d ),(d ),(=+⎰ly y x Q x y x P ”的(A) 充分条件而非必要条件. (B) 必要条件而非充分条件.(C) 充分必要条件. (D)既非充分有非必要条件. 【 】 (8) 设空间区域}0,0,0,9|),,{(222≥≥≥≤++=Ωz y x z y x z y x ,函数)(x f 为正值的连续函数,则.)()()()(3)(2)(=++++⎰⎰⎰ΩdV z f y f x f z f y f x f(A) .29π (B) .9π (C) .227π (D) .27π 【 】三、解答题(以下各小题每题10分,解题时应写出必要的解题过程).(9) 设Ω是由曲面)(2122y x z +=与8=z 所围成的空间有界闭区域,求⎰⎰⎰Ω+V y x d )(22. (10) 设S 是锥面)10(22≤≤+=z y x z 的上侧,求.d d 3d d 2d d ⎰⎰++Sy x z x z y z y x(11) 设L 为空间曲线⎪⎩⎪⎨⎧=++=xy x yx z 22222,自z 轴正向往负向看,L 是逆时针的,求.d d d 222z z y x x y L++⎰(12) 设l 为自点)0,1(-A 沿圆周4)1(22=+-y x 的上半个到点)0,3(B 的有向弧段,求.4d d 22⎰+-lyx xy y x (13)设S 为曲面),10(),(2122≤≤+=z y x z 求第一型曲面积分.d )12(⎰⎰+SS z(14)设)(u f 具有连续的一阶导数,点)1,1(A ,点)3,3(B ,l 为以AB 为直径的左上半个圆弧,自A 到B ,求.d ))(1(d ))(1(⎰+-+ly x y xf y x y y x f x参考解答:一.(1) a ; (2)1+--yxxe ye ; (3)554a π; (4)21.二. C A B B. 三.(9) 解1:原式31024d d r d 82r 403202==⎰⎰⎰z r πθ 解2:原式=31024d r d d 2032080==⎰⎰⎰z r z πθ (10)解1:高斯公式.1,1:221≤+=y x z S ,下侧,V :1:,12222≤+≤≤+y x D z y x xy原式⎰⎰⎰⎰-=+11S S S ⎰⎰⎰⎰⎰---=ΩxyD V σd 3d 6ππθπ=+-=⎰⎰⎰3d d r d 61r1020z r解2:化第一类曲面积分.1:,0:22222≤+=--y x D y x z S xy ,},,{210z y x zn --=原式⎰⎰++=SS z y x d )cos 3cos 2cos (γβα⎰⎰⎰⎰+=+--=SS S y x z S z y x z d )2(121d )32(12122222⎰⎰++=yx D y x y x σd 22222πθθπ=+=⎰⎰12220d )cos 1(r d 4r(11)解1:Stokes 公式 x y x D y x y x z S xy 2:),(,:2222≤+∈+=上侧原式⎰⎰∂∂∂∂∂∂=Szx y z y x yx x z z y 222d d d d d d ⎰⎰-=S y x y x d d )22(⎰⎰-=y x D y x y x d d )22(⎰⎰=yx D y x x d d 2πθθθπ2d cos r d 4cos 2022==⎰⎰r解2:直接法.π20:,2cos 2,sin ,cos 1:→==+=t t z t y t x L 原式ππ2t)d cos t (2cos 2032=+==⎰t(12)解:y Py x x y x Q ∂∂=+-=∂∂22222)4(4, )0,0(),(≠y x , 积分与路径无关. 设),0(44:22≥=+y y x L AC )0,1()0,1(C A →- 0:,sin 2,cos →==πt t y t x⎰⎰+=CBL AC原式⎰-=ACL x y y x d d 41+0⎰+=022t)d sin 2t (2cos 41πt 2π-=(13)解:σd y x dS 221++=,2:),(21:2222≤++=y x D y x z S xy⎰⎰⎰⎰++++⋅=+S D yx d y x y x dS z σ22221]1)(212[)12(202|)1(5221225r +⋅⋅=π)139(52-=π(14)解:2-=∂∂-∂∂yPx Q , )31:(:→=x x y AB , 22||=AB ⎰⎰+=+ABBAL AB 原式0d d 2+-=⎰⎰y x D-π2=。

浙江大学历年微积分(1)试卷解答-极限与连续

浙江大学历年微积分(1)试卷解答-极限与连续

常见的等价无穷小量:
• 当x → 0 时,常见的等价无穷小量: (1)sin x ∼ x ; (2) tan x ∼ x ; (3)ln(1 + x) ∼ x ; (4) e x − 1 ∼ x ; x2 ; (8) (1 + x)α − 1 ∼ α x. 2
(5) 1 − cos x ∼
= lim
4−
u →+∞
1
9、 求: lim(cos x) sin x .
x →0
2
I = lim (1 + (cos x − 1) ) cos x −1
x →0
1

cos x −1 sin 2 x
= e 2.

1
1 − x2 cos x − 1 1 其中: lim = lim 22 = − . 2 x →0 x →0 sin x 2
3
浙江大学微积分(1)历年试题分类解答——极限与连续
6、 求: lim
x →0
ln(1 + x) − sin x
3
1 − x2 − 1
.
1 − cos x ln(1 + x) − sin x + 1 x = −3lim 【方法一】:I = lim x→0 x→0 1 2x − x2 3 1 − + sin x 3 (1 + x) 2 = −3lim = . x →0 2 2 1 x3 [ x − x 2 + o( x 2 )] − [ x − + o( x 3 )] 3 2 6 【方法二】:I = lim = . x→0 1 2 − x2 3
【方法二】:记 y = (e − x) ,则: lim ln y = lim

未定式的极限

未定式的极限

f(x)
f (ξ )
lim lim
A.
x x0 g(x) ξ x0 g'(ξ )
注: 如果 f (x) 仍属 0 型,且 f (x),g'(x)满足
g'(x) 0 定 理 的 条 件 , 可 以 继 续使 用 洛 必 达 法 则 , 即
lim f(x) lim f (x) lim f (x) A(或).
lim
x0
cos bx cos ax
1.
例 求 lim tan x .( ) x tan 3 x
2

原式
lim
x
sec2 3 sec 2
x 3
x
1 3
lim
x
cos2 3x cos2 x
2
2
1 lim 6cos3x sin 3x
3 x 2cos x sin x
2
lim sin 6x x sin 2 x
(1)lim f ( x) x x0
lim g( x)
x x0
(2) f (x) 和 g( x) 在x0的某一去心邻域内存在,且
g(x) 0
(3) lim f (x) A(或) xx0 g(x)

则有 lim f (x) lim f (x) A(或) xx0 g ( x) xx0 g( x)
微积分讲课提纲
微积分(I) 浙江大学理学院 讲课人:朱静芬 E-mail:jfzhu@
第三章 微分中值定理及导数的应用
第二节 未定式的极限
一、0 型 未 定 式 的 极 限 0
二 、 型 未 定 式 的 极 限
三、其他类型未定式的极限
我们知道:两个无穷小量或两个无穷 大量的商的极限,随着无穷小量或无穷大 量的形式不同,极限值可能存在、也可能 不存在、可能是无穷小量、也可能是无穷 大量,为此,我们称这类极限为“不定型”, 记为:0 或 .

微积分(一)_浙江大学中国大学mooc课后章节答案期末考试题库2023年

微积分(一)_浙江大学中国大学mooc课后章节答案期末考试题库2023年

微积分(一)_浙江大学中国大学mooc课后章节答案期末考试题库2023年1.设【图片】均为非负数列,且【图片】,则必有( )参考答案:极限不存在2.设函数【图片】,则【图片】在【图片】处的参考答案:左导数存在,右导数不存在3.设常数【图片】,函数【图片】在【图片】内零点个数为( )参考答案:24.设【图片】为【图片】内不恒为零的可导奇函数,则【图片】参考答案:一定是内的偶函数5.设【图片】,则使【图片】存在的最高阶数【图片】为( )参考答案:26.【图片】在【图片】连续,求常数a.参考答案:-27.当【图片】时,函数【图片】的极限()参考答案:不存在但也不为8.设【图片】是奇函数,除【图片】外处处连续,【图片】是其第一类间断点,则【图片】是( )参考答案:连续的偶函数9.设【图片】 , 则在点【图片】处参考答案:取得极大值10.设【图片】,则在点【图片】处函数【图片】( )参考答案:不连续11.函数【图片】的图形,在参考答案:是凹的12.设函数【图片】, 其中【图片】是有界函数,则【图片】在【图片】处参考答案:可导13.设函数【图片】,则在【图片】处参考答案:当且仅当时才可微14.设【图片】在【图片】处连续,则下列命题错误的是()。

参考答案:若存在,则存在15.若【图片】, 则方程【图片】参考答案:有唯一的实根16.设【图片】,则在【图片】处,有()成立。

参考答案:在处连续,但不可导17.函数【图片】不可导点的个数是( )参考答案:218.设【图片】在闭区间【图片】连续,则下列选项错误的是()。

参考答案:存在,使19.要使函数【图片】在【图片】处的导函数连续,则【图片】可取值\参考答案:320.当【图片】时,曲线【图片】( )参考答案:有且仅有水平渐近线21.曲线【图片】渐近线的条数为参考答案:322.设函数【图片】连续,且【图片】 ,则存在【图片】, 使得参考答案:对任意的, 有23.若函数【图片】有【图片】,则当【图片】时,该函数在【图片】处的微分【图片】是( )参考答案:与同阶的无穷小24.函数【图片】不可导点的个数为参考答案:225.设【图片】, 则参考答案:,但在处不连续26.设【图片】, 则【图片】是()参考答案:偶函数27.设【图片】,则在【图片】处,【图片】()。

浙江大学级微积分期终考试试卷

浙江大学级微积分期终考试试卷

浙江大学级微积分(上)期终考试试卷系班级学号姓名考试教室一、选择题:(每小题分,共分)在每题的四个选项中,只有一个是正确的,请把正确那项的代号填入空格中.设()()()()()f x x a x b x c x d=----,其中a,b,c,d互不相等,且'()()()()f k k a k b k c=---,则k的值等于().().a().b().c().d.曲线y=x→-∞时,它有斜渐进线().().1y x=+().1y x=-+().1y x=--().1y x=-.下面的四个论述中正确的是().().“函数()f x在[],a b上有界”是“()f x在[],a b上可积”的必要条件;().函数()f x在区间(),a b内可导,(),x a b∈,那末'()0f x=是()f x在x处取到极值的充分条件;().“函数()f x在点x处可导”对于“函数()f x在点x处可微”而言既非充分也非必要;().“函数()f x在区间E上连续”是“()f x在区间E上原函数存在”的充要条件..下面四个论述中正确的是().().若0nx≥(1,2,)n=,且{}n x单调递减,设lim nnx a→+∞=,则0a>;(). 若0nx>(1,2,)n=,且limnnx→+∞极限存在,设limnnx a→+∞=,则0a>;(). 若lim0nnx a→+∞=>,则0nx≥(1,2,)n=;(). 若lim0nnx a→+∞=>,则存在正整数N,当n N>时,都有2nax>.二、填空题:(每空格分,共分)只填答案. 2lim (1)tgxx x π→-;2lim (1)tgxx x π→--..函数()f u 可导,(sin )y f x x =,则dy dx.. cos sin x xxe e dx e ⎰. . 50sin tdt π⎰;50cos tdt π⎰.三、求极限:(每小题分,共分).数列{}n x通项21n x n =++++,求lim n n x →+∞..求300sin lim sin xx t dt t x x→-⎰.四、求导数:(每小题分,共分). 2sin 1xx y x x =+,求dydx.. 2,sin ,x t y t ⎧=⎨=⎩求dy dx ,22d ydx ..函数()y y x =由sin x y y +=确定,求221,;x y dydxππ=-=22221,.x y d y dx ππ=-=五、求积分:(每小题分,共分) .求21(1)x dx x x ++⎰..求0sin cos x x dx π-⎰..求0⎰(0)a >..计算2cos x e xdx π+∞-⎰.六、(分)下面两题做一题,其中学过常微分方程的专业做第题,未学常微分方程的专业做第题..求解常微分方程:22(),(1) 1.x dy xy x dx y ⎧=-⎨=⎩.有一半径为M 的半球形水池注满了水,现要把水全部抽到距水池水面高M 的水箱内,问至少要做多少功?七、(分)在xoy 平面上将连结原点(0,0)O 与点(1,0)A 的线段OA (即区间[]0,1)作n 等分,分点(,0)k n记作k P ,对1,2,,1k n =-,过k P 作抛物线2y x =的切线,切点为k Q ..设k k P Q A ∆的面积为k S ,求k S ;.求极限111lim n k n k S n -→+∞=∑.八、证明题(分)设()f x 在(),-∞+∞上连续,且()0f x >,0()()xG x tf x t dt =-⎰.证明:对任意,(,)a b ∈-∞+∞,且a b ≠,必有()()'()()0G b G a G a b a --->.浙江大学级微积分(下)期终考试试卷系班级学号姓名考试教室一、填空题:(每小题分,共分)只填答案.设一平面经过原点及点()6,3,2-,且与平面428x y z-+=垂直,则此平面的方程是。

微积分复习资料_微积分公式运算法则

微积分复习资料_微积分公式运算法则

《 微积分》综合复习资料一、填空题1、设1ln ,0,()1,0x x f x x x+>⎧⎪=⎨<⎪⎩,则)(x f 的定义域 ,1()f e = .2、曲线2xy x e =+在点(0,1)处的切线方程是 .210,2Q C Q Q =+=3、设产量为时的成本为则产量时的平均成本 边际成本为4、设21,11,()1,13,x x f x x x ⎧+-≤≤=⎨-<≤⎩,则(1)f = .(0)f = (2)f =5、曲线ln y x x =在点(1,0)处的法线方程是: .6、3(),()f x dx x C f x dx '=+=⎰⎰则7、设111)(++-=x x x f ,则)(x f 的定义域 ,(1)f x += . 8、曲线1xy x=+的水平渐近线为 ,铅直渐近线为 。

9、设需求函数为505,Q P =-2P =时的边际收益为 10、设21()1f x x=++,则)(x f 的定义域 ,2()f x π+= . 11、曲线41y x =+在点(1,2)处的切线方程是 。

12、设需求函数时的边际收益为则销售量2,210=-=Q QP . 二、选择题1、 下列函数中的奇函数是( )(a)2()sin ,[0,1]f x x x x =+∈ (b)),(,)(2+∞-∞∈=x x x f (c))1,1(,cos )(-∈=x x x x f (d) 2()tan(1),(,)f x x x =+∈-∞+∞ 2、下列级数中绝对收敛的是( )(a)∑∞=121n n (b) ∑∞=-1)1(n nn (c)14()n n ∞=π∑ (d) 11n n n ∞=+∑ 3、下列算式中不正确的是( )(a)(sin )sin cos x x x x x '=+ (b)22()x x e e '=(c)2()2d x xdx +π= (d)1ln(1)1d x dx x+=+ 4、下列函数中函数是非奇非偶的函数是( )(a)2()sin ,[1,1]f x x x x =+∈- (b)),(,)(2+∞-∞∈=x x x f (c))1,1(,cos )(-∈=x x x x f (d) 24()log (1),(,)f x x x =+∈-∞+∞5、若130(4)0x k dx -=⎰,则k=( )(a) -1 (b) 1 (c) 0 (d) 26、下列算式中不正确的是( )(a)2(ln )2ln x x x x x '=+ (b)(sin 2)2cos 2x x '= (c)2()d x xdx +π= (d)222ln(1)1d xx dx x +=+ 7、下列函数对中是偶函数的是( )(a)53)(x x f = (b)x x x x x f cos 1)(224++=(c)x x x f sin )(+= (d)2)(x x x f +=8、2211(),121x x f x x kx x ⎧-≤==⎨->⎩在点连续,则k=( ) (a) 4 (b) 3 (c) 2 (d) 19、下列极限中能用罗必达法则计算得出结果的是( ) (a)21lim1++→x x x (b) )1sin(1lim 1--→x x x(c) xx xx x sin sin lim +-∞→ (d) x x x x x e e e e --+∞→+-lim10、下列函数中既是偶函数又是有界函数的是( ) (a)]1,0[,)(2∈=x x x f (b)),(,)(2+∞-∞∈=x x x f (c))1,1(,cos )(-∈=x x x x f (d) ),(,11)(2+∞-∞∈+=x xx f 11、31(),11x kx f x x x kx -≤⎧==⎨+>⎩在处连续,则k=( ) (a) 0 (b) 1 (c) 2 (d) 3 12、下列算式中不正确的是( )(a)x xt e dt e dx d =⎰0 (b))()(x f dx x f dxd =⎰(c)C x dx x dx d +=⎰22sin )(sin (d)1cos cos xdtdt x dx =⎰三、判断题1、已知2(1)1,f x x -=+则2()22f x x x =++( )2、如果极限lim ()x af x →存在,则函数()f x 在点a 连续 ( )3、已知边际收益函数为()2R p p '=,则总收益函数为2()R p p =( )4、函数()sin(21)f x x =+是周期函数,也是有界函数( )5、如果函数()f x 在点a 的导数存在,则()f x 在点a 连续。

微积分-期末复习总结整理-第一章.docx

微积分-期末复习总结整理-第一章.docx

第一章第一节常用符号介绍一,集合符号1.集合与元素之间符号“W”表示“属于”,符号F “表示”不属于“。

2.集合之间符号” W “表示”包含于“;符号”=“表示”等于“;符号” 0“表示”空集”;符号“U”表示“并”;符号“CI”表示“和”;符号表示“差”或“余”。

二,数集符号自然数集:表示为“N”;整数集:表示为“Z“;有理数集:表示为” Q”。

显然有NCZCQCR区间设a, b WR, a<bo常用的有限区间有开区间 (a, b) ={x I a<x<b };闭区间【a, b] ={x I aWxWb };半开半闭区间:(a,, b] ={x I aVxWb }或【a, b) =(x I aWxVb }o常用的无限区间有(a, +oo) ={x I x>a} ; [a, +oo) ={x I xNa}(-oo, a) ={x I xVa} ; (-oo, a] ={x I xWa}邻域设aWR,对任意5>0,记数集U (a, 8) =(x I x-a| <8}= (a-5, a+5),称作以a为中心,以6为半径的邻域。

当不需要证明邻域半径5时,常将它表示为U(a),简称为a的邻域记数集U (a, 8) = (x I 0< x-a | <8}= (a—& a+6) Ta}, 即在a的5的邻域u(a, 5)中去掉a,称为a的6去心邻域。

第二节函数的概念一,函数的定义给定一个数集A,假设其中的元素为xo现对A中的元素x施加对应法则f,记作f (x),得到另一数集B。

假设B中的元素为y。

则y与x之间的等量关系可以用y=f (x)表示。

我们把这个关系式就叫函数关系式,简称函数。

函数概念含有三个要素:定义域A、值域C和对应法则f。

其中核心是对应法则f,它是函数关系的本质特征。

符号函数(1, x>0Y=sgnx< 0, x = 0(-1/ x <ro绝对值函数I . (—X, x<0 Y=|x|=I x, x > 0迪利克雷函数黎曼函数1 V一,X = 一Y 二q qto, x = 0, 1和3D内的无理数第三节数列的极限1.定义:设有数列{%} , a是常数,若对任意的£>0 ,总存在自然数N ,对任意的自然数n>N ,有|a孔-a\ < £ ,则称数列{%}的极限是a , 或数列{%}收敛于a,表示为ZiTna” = a71T002.重点性质:唯一性,有界性,保序性3.数列收敛的判别方法:两边夹定理(夹逼定理),单调有界定理•夹逼定理:如果数列{Xn},{Yn}及{Zn}满足下列条件:(1 )当n>N0 时,其中NOeN* ,有YnWXnWZn ,(2 ){Yn}、{Zn}有相同的极限a ,设-»<a<+oo单调性对任一数列{Xj,如果从某一项Xk开始,满足Xk <X k+l <X k+2 < ......则称数列(从第k项开始)是单调递增的。

1-4b连续函数的局部性质及其初等函数在其定义域区间上的连续性

1-4b连续函数的局部性质及其初等函数在其定义域区间上的连续性

x0 x
x0
x
x0 x
即: x ~ ln a(ax 1) x 0.
例 求 lim arcsin x .
x0
x
arcsin x arcsinxt
t
解 lim
lim 1.
x0
x
t0 sin t
例 求 lim arctan x .
x0
x
arctan x arctan xt
t
解 lim
lim 1.
x
例 求 lim e x 1 .
即: x ~ ex 1
x0 x
解 令 e x 1 y, 则 x ln(1 y),
当x 0时, y 0.
原式 lim y lim y0 ln(1 y) y0
1 1. 1
ln(1 y) y
x 0.
同理可得 lim a x 1 lim e xlna 1 lim x ln a ln a.
x0
x0
lim f (x) lim(x 1) 1
x0
x0
lim f (x) 不存在
x0
an bm
a0
/ 0
b0
nm nm nm
3x2 5x 7 3
lim
x
2x2
3x
8
2
lim
x
2x2 3x 8 3x3 5x2 7
0
3x3 5x 7
lim
x
2x2
3x
8
lim
x
x x x 3
x 2
五 第一个重要极限。
sin x
lim
1
x0 x
arcsin x
lim
x0
x
:=

微积分复习(线面积分)

微积分复习(线面积分)
如何学习 曲线、曲面积分
一、 曲线积分的计算法 二、曲面积分的计算法
第九章
目录
上页
下页
返回
结束
第九章 曲线积分与曲面积分
积分学 定积分二重积分三重积分 曲线积分 曲面积分
积分域 区 间 平面域 空间域 曲线弧
曲线积分 曲面积分 对弧长的曲线积分
曲面域
对坐标的曲线积分
对面积的曲面积分
对坐标的曲面积分
D sin x
y π
D
O
( e
D
e
sin x
) d
π x
2 d
(易证 et e t 2 )
2 π2
目录
上页
下页
返回
结束
2. 地球的一个侦察卫星携带的广角高分辨率摄象机 能监视其”视线”所及地球表面的每一处的景象并摄 像, 若地球半径为R , 卫星距地球表面高度为 H =0.25 R , 卫星绕地球一周的时间为 T , 试求 (1) 在任一固定时刻 , 此卫星能监视的地球表面积是
提示:
原式 a
2
0 t sin t d t
t cos t sin t
2π 0

a
2
目录
上页
下页
返回
结束
1(6). 计算 提示: 因在 上有
其中 由平面 y = z 截球面 从 z 轴正向看沿逆时针方向. 故
z
O
1y
x
原式 =
1 π 3 1 π 2 2 2 4 2 2
ky
3
目录
上页
下页
返回
结束
P245 11. 求力
沿有向闭曲线 所作的

浙江大学微积分一习题解答 第三,四章(秋冬)

浙江大学微积分一习题解答 第三,四章(秋冬)

2
∆ T≈ π
1 gl 0
l 0 0.000011∆W = 0.000011π
0
24.83 16 =0.8797× 10 −4 (秒)每天约慢 0.8797× 10 −4 ×24×3600=7.6(秒) 980
又冬季室温到-10
∆ T≈ π
C 时 ∆W =-30,周期每秒约快
24.83 30 =-0.1648× 10 −3 (秒). 980
π (sin ax )' = a sin(ax + ) 2
π (sin ax )' ' = a 2 sin(ax + 2 ⋅ ) 2
π (sin ax ) ( n ) = a n sin(ax + n ⋅ ) 2

y (n ) =
π π π 1 1 1 1 1 1 (sin 2 x ) ( n ) + (sin 4 x ) ( n ) − (sin 6 x ) ( n ) = 2 n sin( 2x + n ) + 4 n sin(4 x + n ) − 6 n sin(6 x + n ) # 4 4 2 4 4 2 4 4 2
~~ calculus I chap 03-- 04 ~~ 第三章 导数与微分 题 5(5) (p101) 【1】 『解』 f(x)在 x 0 可导,试讨论|f(x)|在 x 0 的可导性 只需考虑
x →x 0
lim
| f (x) | − | f (x 0 ) | 。 x − x0
我们希望去掉绝对值。故分情况讨论
以此类推
π y''' (− 2 ) 3 [e − x sin( x − 3 ⋅ )] 4 π y ( n ) = (− 2 ) n [e − x sin( x − n ⋅ )] # 4

(完整版)微积分复习资料

(完整版)微积分复习资料

基本知识复习一、 不定积分1. 不定积分概念,第一换元积分法(1) 原函数与不定积分概念设函数()F x 与()f x 在区间(),a b 内有定义,对任意的(),x a b ∈,有()()'F x f x =或()()dF x f x dx =,就称()F x 是()f x 在(),a b 内的一个原函数。

如果()F x 是函数()f x 的一个原函数,称()f x 的原函数全体为()f x 的不定积分,记作()(),f x dx F x C =+⎰(2) 不定积分得基本性质1.()()df x dx f x dx=⎰2。

()()'F x dx F x C =+⎰ 3。

()()()().Af x Bg x dx A f x dx B g x dx +=+⎡⎤⎣⎦⎰⎰⎰(3)基本不定积分公式表一()()122222(1)2)1,13ln C,x (4)arctan ,1(5)arcsin ,(6)cos sin ,(7)sin cos ,(8)sec tan ,cos (9)csc cot ,sin (10)sec t kdx kx C k x x dx C dx x dx x C x x C xdx x C xdx x C dx xdx x C x dxxdx x C x x μμμμ+=+=+≠-+=+=++=+=+=-+==+==-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰是常数,(1()22an sec ,(11)csc cot csc ,(12),ln (13),(14),1(15),1(16).xxxdx x C x xdx x C a a dx C ashxdx chx C chxdx shx C dx thx C ch x dx cthx C sh x =+=-+=+=+=+=+=-+⎰⎰⎰⎰⎰⎰⎰(3) 第一换元积分法(凑微分法)设()f u 具有原函数, ()u x ϕ=可导,则有换元公式()()()()'.u x f x x dx f u du ϕϕϕ=⎡⎤=⎡⎤⎣⎦⎣⎦⎰⎰2. 第二换元积分法,分部积分法(1) 第二换元积分法设()x t ψ=是单调的、可导的函数,并且()'0t ψ≠.又设()()'f t t ψψ⎡⎤⎣⎦具有原函数,则有换元公式()()()()1',t x f x dx f t t dt ψψψ-=⎡⎤=⎡⎤⎣⎦⎣⎦⎰⎰其中()1x ψ-是()x t ψ=的反函数.(2) 分部积分法设函数()u u x =及()v v x =具有连续导数,那么,()''',uv u v uv =+移项,得 ()'''.uv uv u v =-对这个等式两边求不定积分,得''.uv dx uv u vdx =-⎰⎰这个公式称为分部积分公式.它也可以写成以下形式:.udv uv vdu =-⎰⎰(3) 基本积分公式表二(2222(17)tan ln cos )cot ln sin ,sec ln sec tan C,(20)csc ln csc cot ,1(21)arctan ,1(22)ln ,2(23)arcsin ,(24)ln ,(2xdx x C xdx x C xdx x xdx x x C dx x C a x a a dx x adx C x a a x a xC a x C =-+=+=++=-+=++-=+-+=+=++⎰⎰⎰⎰⎰⎰,(18(19)5)ln .x C =+ (3)有理函数的积分,三角函数有理式的积分,某些简单无理式的积分一、有理函数的积分 两个多项式的商()()P x Q x 称为有理函数,又称为有理分式.我们总假定分子多项式()P x 与分母多项式()Q x 之间是没有公因式的.当分子多项式()P x 的次数小于分母多项式()Q x 的次数时,称这有理函数为真分式,否则称为假分式.利用多项式的除法,总可以将一个假分式化成一个多项式与一个真分式之和的形式,由于多项式的积分容易求,故我们将重点讨论真分式的积分方法.对于真分式()()n m P x Q x ,首先将()m Q x 在实数范围内进行因式分解,分解的结果不外乎两种类型:一种是()kx a -,另外一种是()2lx px q ++,其中,k l 是正整数且240p q -<;其次,根据因式分解的结果,将真分式拆成若干个分式之和.具体的做法是:若()m Q x 分解后含有因式()kx a -,则和式中对应地含有以下k 个分式之和:()()()122,k kA A A x a x a x a +++---L 其中:1,,k A A L 为待定常数.若()m Q x 分解后含有因式()2lx px q ++,则和式中对应地含有以下l 个分式之和:()()()11222222,l l l M x N M x N M x N x px q x px q x px q ++++++++++++L 其中:(),1,2,,i i M N i l =L 为待定常数.以上这些常数可通过待定系数法来确定.上述步骤称为把真分式化为部分分式之和,所以,有理函数的积分最终归结为部分分式的积分.二、可化为有理函数的积分举例 例4 求()1sin .sin 1cos xdx x x ++⎰解 由三角函数知道,sin x 与cos x 都可以用tan2x的有理式表示,即 222222222tan 2tan22sin 2sin cos ,22sec 1tan 221tan 1tan 22cos cos sin .22sec 1tan 22x x x x x x xx xx x x x x ===+--=-==+如果作变换()tan2xu x ππ=-<<,那么 22221sin ,cos ,11u u x x u u -==++ 而2arctan ,x u =从而22.1dx du u =+ 于是()22222221sin sin 1cos 2211121111112212ln 2211tan tan ln tan .42222xdx x x u du u u u u u u u du u u u u C x x xC ++⎛⎫+ ⎪++⎝⎭=⎛⎫-+ ⎪++⎝⎭⎛⎫=++ ⎪⎝⎭⎛⎫=+++ ⎪⎝⎭=+++⎰⎰⎰例5求. 解u =,于是21,2,x u dx udu =+=从而所求积分为()222222111212arctan 12.u u dx udu dux u u du u u C u C =⋅=++⎛⎫=-=-+ ⎪+⎝⎭=+⎰⎰⎰⎰ 例6求解u =,于是322,3,x u dx u du =-=从而所求积分为223113113ln 13ln 1.2u duu u duu u u u C C =+⎛⎫=-+ ⎪+⎝⎭⎛⎫=-+++=+ ⎪⎝⎭⎰⎰例7 求解 设6x t =,于是56,dx t dt =从而所求积分为()()52223266111616arctan 16arctan .t t dt dt t t tdt t t C t C ==++⎛⎫=-=-+ ⎪+⎝⎭=+⎰⎰⎰例8求.解t =,于是()2222112,,,11x tdtt x dx x t t +===---从而所求积分为 ()()()22222222*********ln 1122ln 1ln 12ln 1ln .t t t t dt dtt t t dt t Ct t t t t C x C -=-⋅=----⎛⎫=-+=--+ ⎪-+⎝⎭=-++--+⎫=-++⎪⎪⎭⎰⎰⎰二、 定积分(1) 定积分概念,微积分基本定理,定积分得基本性质 (1) 定积分的概念1。

《微积分二》复习要点整理(基本层次要求)

《微积分二》复习要点整理(基本层次要求)

实用标准文档微积分(II )复习要点(共11页)(此提纲主要针对基础较薄弱的同学使用 建议按照提纲罗列顺序进行复习)Ch6+Ch7两章第一部分计算偏导与全微分(以二元函数为主)或偏导函数 解法:求具体点偏导 —x 0y 0步骤如下:X1代入y y °,则原二元函数变为一元 函数f x,y ° , 2利用上学期方法求上述 一元函数的导数 dz,dx求偏导函数—步骤如下:x 1)将f x,y 中的y 视为常数,2利用上学期方法求z 对x 的导数,所得结果即为—x *类似,将f x,y 中的x 视为常数,对y 求导即得二.y配套练习) 强烈建议严格遵循以下顺序操练!前提一一熟记第三章P63导数公式、P60“四则运算”求导法则、P64 复合函数求导之链式法则!P251 Ex8 2) 1) 4), Ex9 3) 2)问题2.已知z f x,y ,求全微分dz.问题1.已知初等函数z f x,y 具体形式,求解偏导数zx o ,y oXx o ,y oy3最后代入x x o ,即得所求x o ,y° -*类似,可求出-yx o ,y o -解法:利用全微分与偏导的关系一一先分别求出二,二的具体结果x y则dz — dx — dy为所求.x y配套练习) 强烈建议严格遵循以下顺序操练!P253 Ex13 2) 7) 3)问题3•已知初等函数z f x,y具体形式,求解二阶偏导数2 2z z, 2 .y x y*务必准确识别以上四个二阶偏导的含义,参见P225相关定义和记号求法按照符号的定义逐阶求偏导2比如——:首先针对z f x,y求出-^,然后针对求出的结果(即—x y x x再求此新函数关于y的偏导.配套练习) 强烈建议严格遵循以下顺序操练!P253 Ex12 1) 2)问题4.复合函数求导(偏导).要点:借助“路线图”,根据题目实际情况熟练写出链式法则(如P219 公式(7 10),再进一步具体算出各部分结果.配套练习) 强烈建议严格遵循以下顺序操练!P254 Ex16 1) 4)问题5.隐函数求导(偏导或全微分).要点:熟记P223一元隐函数导数公式 (7 15), P224二元隐函数偏导公式(7 16),套用即可.学会P223〜P224两例的法一即可!配套练习) 强烈建议严格遵循以下顺序操练!P254 Ex18 1) 3), Ex19 2) 1)第二部分求二元函数的极值和条件最值问题1.求二元初等函数z f x,y的极值解法步骤:Z x 01)求出Z x,Z y,并令,解此方程组得所有驻点,如x i ,y i , , X k ,y kzy2 求出 Z xx , Z xy , Z yx , Z yy3)针对以上各驻点,逐个利用P229定理7.8结论判定极值与否、极大/极小.*学会P230例2、例3解答过程.配套练习)强烈建议严格遵循以下顺序操练!P254 Ex20 1) 4)问题2.求具有实际背景(尤其经济背景)二元初等函数Z f x,y 在条件 x,y 0下的条件最值.解法步骤:1)令F x,y, f x,y x,y2)求F的驻点,即解下列方程组:令F x f x x 0令F y f y y 0令F x,y 03)若以上驻点x°,y°, 0唯一,则x°,y°为所求条件最值点.该部分课本相应例题解答均有问题,建议参考相关课堂笔记!并依照以上步骤做以下练习:例)某公司通过电台、报纸两种方式做销售某商品的广告.据统计资料,销售收入R 万元与电台广告费用x万元及报纸广告费用y万元之间的关系如下经验公式:2 2R 15 14x 32y 8xy 2x 10y若提供的广告费用为1.5万元且用尽,求相应的最优广告策略.Key : x 0, y 1.5第三部分定积分相关要点基本前提:熟记P119~P120及P131~P132不定积分公式!b问题1.已知f x 具体形式,求解定积分 f x dx.a主要方法)牛顿一莱布尼兹公式:1)利用求不定积分的方法,求出f x 的一个原函数F x , bb2 从而 fxdx F x b F b Fa.a*重点:若f X 是a,b 上的分段函数,比如以C 为分段点,则需利用—I-定积分的“拆区间”性质f f f,使得右端每个被积函数 a a c 1均取明确形式,再进行计算.配套练习)强烈建议严格遵循以下顺序操练!P187 Ex11 1) 2) 3) 4) 8) 10)a特殊方法)当积分区间关于原点对 称时,定积分f 有公式如下: -a0, f 为奇函数a20f, f 为偶函数1 ; -------------------------------例.求解 x 2sinx x£1 x 2x dx.1解:(务必注意积分区间的特点!) x 2sinx, x . 1 X 2均有奇函数,x 2sin xdxxl1 x 2dx 0. 1 111 1x 为偶函数,xdx 2 xdx 2 xdx1.'10 I从而原式 0 0 11.问题2.变限积分的求导及应用要点)x1)熟记函数 x f t dt 的求导公式:x f x .au xf t dt f u x u x进一步有公式:au xa -af t dt f u x u x f v x v xv x2利用以上求导公式,结合L' Hospital法则,可求解某些极限配套练习)强烈建议严格遵循以下顺序操练!P186 Ex5 1), Ex4 1) 2)问题3.定积分的几何应用与经济应用要点)1)几何应用一 --- 求平面图形面积)典型例P162例1 P163例4:注意针对不同的区域形状选择适当的积分变量.配套练习)强烈建议严格遵循以下顺序操练!P189 Ex22 1) 3) 4)2)几何应用二-- 求旋转体体积)熟记P166公式(6 22及其适用的图6 19,熟记公式(6 24及其适用的图6 21.运用以上两公式求解旋转体体积.*注意:以上两公式只能直接用于求解具有“实心”特征的旋转体体积若考察空心旋转体体积,则只能间接利用公式将所求体积转化为若干实心体积.例如P166式(6 23即运用了此原理.配套练习)强烈建议严格遵循以下顺序操练!P189 Ex29 3) 5)3)经济应用 -- 已知边际求总量)原理:若已知F x ,则由牛顿一莱布尼兹公式可得xF x F a F t dt,其中a为选定的常数.熟记 P168 〜169公式(6 26)~(6 28 .典型例:P169例8, P170例9.配套练习)强烈建议严格遵循以下顺序操练!P190 Ex33, Ex34第四部分二重积分相关要点问题1.已知区域D具体形式,将二重积分 f x,y dxdy表达为两种D累次积分次序.解法步骤)1)在平面直角坐标系中画出D的草图2判断D的形状:若D为P239图7 27(a)之“x型”区域,则运用公式(7 21)写出“外x内y”形式的累次积分;若D为P239图7 27(b)之“y 型”区域,则运用公式(7 22写出“外y内x”形式的累次积分3)若D并非标准的“x型”或“y 型”,则需利用分块积分法则(P238性质7.7),将D划分为若干标准的“x型”或“y型”区域,再分别写出累次积分结果.典型例:P241例2配套练习)强烈建议严格遵循以下顺序操练!P255 Ex30 3) 1)问题2.将给定的累次积分交换积分次序.要点)1)根据题目形式写出积分区域D的形状,2)对于f x,y dxdy ,按要求写出另一种累次积分,方法同“问题1D典型例:P241例3配套练习)强烈建议严格遵循以下顺序操练!P255 Ex31 1) 3) 4) 2)问题3.已知f x,y和积分区域D的具体形式,计算f x,y dxdy.D要点)1)画出积分区域D的草图,2根据D的形状及f x,y的形式选择适当的累次积分次序表达,3)由内层至外层逐层计算上述累次积分,最终求出原二重积分.*若区域形状为圆、环、扇形等,且f x,y为关于x2y2或y的形式,x则上述过程宜采用极坐标系计算,即令x rcos ,y rsin ,将原积分化为frcos ,rsin rdrd ,再将此新二重积分化为外层关于、内层关于r的累次积分,具体结果见P244 ~ P245公式(7 24) ~ (7 26),重点熟记(7 25)即可.典型例(建议按以下顺序复习):P242例4,例6,例5,P246例8配套练习) 强烈建议严格遵循以下顺序操练!P255 Ex32 3) 4), Ex33 2) 1)问题4.求以非负曲面z f x,y为顶,xy平面上某区域D为底的曲顶柱体体积.要点:由题意准确识别出作为“顶”的函数z f x,y及作为“底”的平面区域D.则V f x,y dxdy .再利用问题3中方法求此二重积分.D配套练习) 强烈建议严格遵循以下顺序操练!P256 Ex35 1) 2)第五部分其它要点摘录1. 理清z f x,y 偏导函数连续、可微、偏导存在、连续的关系,理清 f x,y 的极值点、驻点的关系.2. 熟用 P147性质 6.3并练习 P186Ex21)2)4).3. 熟记概率积分 e"dx 「. 02+a4.按定义判定无穷限积分 f x dx, f x dx, f x dx 的敛散性;a-能识别瑕积分,并按定义判定瑕积分bf x dx (三类:分别a 、b c a,b 为瑕点)的敛散性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I = lim (x2 + 2x + sin x) - (x + 2)2 = lim
-2x + sin x + 4
x®+¥ x2 + 2x + sin x + (x + 2) x®+¥ x2 + 2x + sin x + (x + 2)
= lim
-2 + x-1 sin x + 4x-1
= -1.
x®+¥ 1 + 2x-1 + x-2 sin x + (1 + 2x-1)
x
= 1.
x®0
x®0
x2
x®0 2x(ex - x) x®0 2x(ex - x) 2
1
1
因此,lim (ex - x) x2 = e2 .
x®0
6、 求:lim sin x - tan x . x®0 tan x(ex - 1) ln(1 - x)
I
=
lim
x®0
tan
x(cos -x3
x
- 1)
若为高阶无穷小量,可考虑用 Taylor 展开,不过在应用Taylor 展开时,要求 对有关展开式比较熟悉;否则还是“慎用”.
常见的等价无穷小量:
· 当x ® 0 时,常见的等价无穷小量: (1)sin x ~ x ; (2) tan x ~ x ; (3)ln(1+ x) ~ x ; (4) ex -1 ~ x ; (5) arctan x ~ x ;(6) arcsin x ~ x ; (7) 1 - cos x ~ x2 ;(8) (1 + x)a -1 ~ a x.
xa
=
0.
【注】:极限 lim ex 并不存在,因为 lim ex = +¥,lim ex = 0.
x®¥
x ® +¥
x ® -¥
1
1
1
同样,极限 lim 2x 也不存在;因为 lim 2x = +¥,lim 2x = 0.
x®0
x ® 0+
x ® 0-
对于一些复杂的数列极限,一般利用函数极限的“归结原理”化为函
x®0 xa (1 + 1 - x2 ) 2 x®0
2
1
15、

un
=
éêë(1 +
1)(1 + n
2)L(1 + n
n n
)
ù úû
n
,求:lim n®¥
un
.
å ò ò lim
n®¥
ln
un
=
lim
n®¥
1 n
n
ln(1 +
k =1
=
lim
x®0
x
× (- 1 2
- x3
x2)
=
1. 2
7、
求:lim x®0
12 x3 [(
+
cos x )x 3
- 1].
I
=
ex
ln
æçè1+
cos x 3
-1
ö ÷ø
lim
-1
= lim
x ln(1 +
cos x -1) 3
=
lim cos x
-1
=
-1 lim 2
x2
=
- 1.
x®0
x3
x®0
( ) 【方法一】:I
= lim
1 + (ex
-1- x)
1 × ex -1- x ex -1- x x2
1
= e2.
x®0
其中:lim ex -1 - x = lim ex - 1 = 1 .
x®0
x2
x®0 2x 2
1
【方法二】:记 y = (ex - x) x2 ,则:
lim ln y = lim ln(ex - x) = lim ex -1 = lim
=
-
1 6
.
14、 若 lim1 x®0
1- x2 xa
= 1,求:a 的值. 2
【方法一】:由于lim1 x®0
1- x2 xa
1 x2
=
lim
x®0
2 xa
= 1 lim x2-a 2 x®0
= 1,则:a = 2. 2
【方法二】:I = lim
x2
= 1 lim x2-a = 1,则:a = 2.
浙江大学微积分(1)历年试题分类解答
目录
一. 极限与连续 ......................................................................................2 二. 导数与微分 ....................................................................................12 三. 不定积分 ........................................................................................23 四. 定积分及其应用 ............................................................................26 五. 级 数 ............................................................................................33
2
常见函数的 Maclaurin 展开式:
· 常见函数的MaclaΒιβλιοθήκη rin展开式:(最高展开到 x5)
(1) ex = 1 + x + x2 + x3 + o(x3); 2! 3!
(2) sin x = x - x3 + x5 + o(x5); 3! 5!
(3) cos x = 1 - x2 + x4 + o(x4 ); 2! 4!
x®0
x2
x x ® 0
2
x x ® 0
2
22
第6 页
浙江大学微积分(1)历年试题分类解答
13、
求:lim(
2
+
cos
x
)
1 x2
.
x®0
3
I
=
lim
x®0
æçè1
+
cos x 3
- 1 ö 3 × cos x-1 cos x-1 3x2 ÷ø
=
-1
e 6.
其中:lim x®0
cos x 3x2
1
(2) 当a
>
0
时,lim x ® +¥
ln x xa
=
lim
x ® +¥
1 a xa
= 0.
特别的,lim ln x x x ® +¥
= 0.
1
(3) 当a
>
0 时,lim x ® 0+
xa
ln x
=
lim
x ® 0+
ln x x -a
=
lim
x ® 0+
x -a x-a -1
=
-a
lim
x ® 0+
u ®+¥
u®+¥ u2 - 2u - 5 + (u - 2)
= lim
2u -1
= 1.
u®+¥ u2 - 2u - 5 + (u - 2)
2、
求:lim( 1 x®0 x
-
1
ex
-
). 1
【方法一】:I
=
lim
x®0
ex -1- x x(ex -1)
=
lim
x®0
ex
-1x2
x
=
lim
x®0
ex -1 2x
=
1. 2
【方法二】:I
=
lim
ex
-1-
x
=
[1 + lim
x
+
1 2
x2
+
o(x2 )] -1 -
x
=
1.
x®0 x(ex - 1) x®0
x2
2
3、 求:lim
x2 + sin x - x .
x®-¥ x + ln x
x=-u
I = lim u ®+¥
u2 - sin u + u = lim
-u + ln u
23
2!
两个重要极限:
(1)
lim sin x
= 1;
(2)
lim(1 +
1)x
=
e
=
lim(1 +
1
x) x .
x®0 x
x®¥
x
x®0
第2 页
浙江大学微积分(1)历年试题分类解答
关于 “1 ¥ ”型极限的计算:
设lim f (x) = 0,lim g(x) = ¥,且lim f (x)g(x) = A,则:lim(1 + f ) (x) g(x) = eA.
数极限进行计算. 函数极限的“归结原理”
设f
(x)

x0
的某领域内有定义,则:lim x® x0
f
(x)
相关文档
最新文档