纳米材料与纳米结构21个题目完整答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.简单论述纳米材料的定义与分类。

2.什么是原子团簇? 谈谈它的分类.

3.通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径?

4.论述碳纳米管的生长机理。

5.论述气相和溶液法生长纳米线的生长机理。

6.解释纳米颗粒红外吸收宽化和蓝移的原因。

7.论述光催化的基本原理以及提高光催化活性的途径。

8.什么是库仑堵塞效应以及观察到的条件?

9.写出公式讨论半导体纳米颗粒的量子限域效应和介电限域效应对其吸收边,发光峰的影响。

10.纳米材料中的声子限域和压应力如何影响其Raman 光谱。

11.论述制备纳米材料的气相法和湿化学法。

12.什么是纳米结构,并举例说明它们是如何分类的,其中自组装纳米结构形成的条件是什么。

13.简单讨论纳米颗粒的组装方法

14.论述一维纳米结构的组装,并介绍2种纳米器件的结构。

15.论述一维纳米结构的组装,并介绍2种纳米器件的结构。

16.简单讨论纳米材料的磁学性能。

17.简述“尺寸选择沉淀法”制备单分散银纳米颗粒的基本原理

18.简述光子晶体的概念及其结构

19.目前人们已经制备了哪些纳米结构单元、复杂的纳米结构和纳米器件。并说明那些纳米结构应该具有增强物理和化学性

能。

20.简单论述单电子晶体管的原理。

21.简述纳米结构组装的工作原理。

1.简单论述纳米材料的定义与分类。

答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。

现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。

如果按维数,纳米材料可分为三大类:

零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。

一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。

二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。

因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。

3.通过Raman光谱中如何鉴别单壁和多壁碳纳米管?如何计算单壁碳纳米管的直径?

答:利用微束拉曼光谱仪能有效地观察到单臂纳米管特有的谱线,这是鉴定单臂纳米管非常灵敏的方法。

100-400cm-1范围内出现单臂纳米管的特征峰,单臂纳米管特有的环呼吸振动模式;1609cm-1,这是定向多壁纳米管的拉曼特征峰。

单臂管的直径d与特征拉曼峰的波数成反比,即d=224/w

d:单壁管的直径,nm;w:为特征拉曼峰的波数cm-1

4.论述碳纳米管的生长机理。

答:

采用化学气相沉积(CVD)在衬底上控制生长多壁碳纳米管。原理:首先,过镀金属(Fe ,Co, Ni)催化剂颗粒吸收和分解碳化合物,碳与金属形成碳-金属体,随后碳原子从过饱和的催化剂颗粒中析出,为了便于碳纳米管的合成,金属纳米催化剂通常由具有较大的表面积的材料承载。

各种生长模型:1、五元环-七元环缺陷沉积生长 2、层-层相互作用(lip-lip interaction)生长3、层流生长(step flow)4、顶端生长(tip growth)5、根部生长(base growth)6、喷塑模式生长(extrusion mode) 7、范守善院士:13C 同位素标记,多壁碳纳米管的所有层数同时从催化剂中生长出来的,证明了“帽”式生长(yarmulke)的合理性;“帽”式生长机理:不是生长一内单壁管,然后生长外单壁管;而是在从固熔体相处时,开始就形成多层管。

5.论述气相和溶液法生长纳米线的基本原理。

6.解释纳米颗粒红外吸收宽化和蓝移的原因。

答:红外吸收带的宽化原因:

纳米氮化硅、SiC、及Al2O3粉对红外有一个宽频带强吸收谱,这是由于纳米粒子大的比表面导致了平均配位数下降,不饱和键和悬键增多,与常规大块材料不同,没有一个单一的,择优的键振动模,而存在一个较宽的键振动模的分布,在红外光场作用下,它们对红外吸收的频率也就存在一个较宽的分布。这就导致了纳米粒子红外吸收带的宽化。

蓝移原因:

与大块材料相比,纳米微粒的吸收带普遍存在“蓝移”现象,即吸收带移向短波长方向。

表面效应:由于纳米微粒尺寸小,大的表面张力使晶格畸变,晶格常数变小。对纳米氧化物和氮化物小粒子研究表明:第一近邻和第二近邻的距离变短。键长的缩短导致纳米微粒的键本征振动频率增大,结果使红外光吸收带移向了高波数。(化学键的振动)

量子尺寸效应:由于颗粒尺寸下降能隙变宽,这就导致光吸收带移向短波方向。Ball 等对这种蓝移现象给出了普适性的解释:已被电子占据分子轨道能级与未被占据分子轨道能级之间的宽度(能隙)随颗粒直径减小而增大,这是产生蓝移的根本原因。这种解释对半导体和绝缘体都适应。(电子跃迁)

7.论述光催化的基本原理以及提高光催化活性的途径。

答:光催化的基本原理:

当半导体纳米粒子受到大于禁带宽度能量的光子照射后,电子从价带跃迁到导带,产生电子空穴时,电子具有还原性,空穴具有氧化性。空穴与半导体纳米粒子表面OH ―反应生成氧化性很高的·OH 自由基,这种活泼的·OH 自由基可把许多难降解的有机物氧化为CO 2和H 2O 等无机物。

提高光催化活性的途径:半导体的光催化活性主要取决于:导带与价带的氧化―还原电位。价带的氧化―还原电位越正,导带的氧化―还原电位越负,则光生电子和空穴的还原及氧化能力越强,光催化的效率就越高。

(1)减小半导体光催化剂的颗粒尺寸,可以提高其催化效率。(a.当半导体粒子d <某一临界值,量子尺寸效应变的显著,这时导带与价带变成分离能级,能隙变宽,价带电位变的更正,导带电位变的更负,这就增加了光生空穴和电子的氧化还原能力。b.光生载流子可通过简单的扩散,从粒子内部迁移到粒子的表面,而与电子给体或受体发生氧化还原反应,电子从内部扩散到表面的时间越小,光电电荷分离效果就越高,电子和空穴的复合概率就越小,从而导致光催化活性的提高。c.纳米半导体的尺寸越小,处于表面的原子越多,比表面积越大,大大增强了半导体催化吸附的能力从而提高了光催化降解有机物的能力。)

(2)通过对纳米半导体材料进行敏化,搀杂,表面修饰以及表面沉淀金属或金属氧化物等方法,显著改善光吸收及光催化性能

8.什么是库仑堵塞效应以及观察到的条件?

答:库仑堵塞效应:由于库仑堵塞能的存在对一个小体系的充放电过程,电子不能集体传输,而是一个一个单电子传输,这种现象叫做库仑堵塞效应。

库仑堵塞是在极低温度下观察到的.

观察到的条件是:(e 2/2C )> k B T

有人曾统计如果量子点的尺寸为nm ,可在室温下观察到上述效应。量子点是十几nm 。上述效应必须在液氮温度下。

9.写出公式讨论半导体纳米颗粒的量子限域效应和介电限域效应对其吸收边,发光峰的影响。 答:Ry r g r E r e r E E 248.0786.1222

22)()(--+=∞=εμπη 式中:E (r ): 纳米微粒的吸收带隙, E g(r=∞)为体相的带隙, r 为粒子半径μ=[m e -1+m h -1] -1为粒子的折合质量,其

中m e 和 m h 分别为电子和空穴的有效质量

第二项为量子限域能(蓝移),第三项表明介电限域效应,第四项为有效里德伯能224

2h

e E Ry πμ= 由上式可以看出,随着粒子半径的减少,量子限域效应为主,其吸收光谱发生蓝移;介电限域效应导致介电常数ε增加引起吸收边蓝移,其吸收光谱发生红移。

10.纳米材料中的声子限域和压应力如何影响其Raman 光谱。

答:声子限域效应加强,使Raman 峰向低波方向移动,发生蓝移,表面包覆或镶嵌某物质时,Raman 要考虑正压力的影响,正压力增加,Raman 光谱向高波数方向移动,发生红移。

11.论述制备纳米材料的气相法和湿化学法。在纳米制备研究中最重要的是什么?

答:气相法:既严格控制了成核过程,又避免了因为扩散与扰动或者产物收集与后处理时导致的团聚。因此是控制粒径单分散的最佳方法之一。(1)低压气体中蒸发法(气体冷凝法):此种制备方法是在低压的氩、氮等惰性气体中加热金属,使其蒸发后形成超微粒(1—1000nm )或纳米微粒。用气体冷凝法可通过调节惰性气体压力,蒸发物质的分压即蒸发温度或速度,或惰性气体的温度,来控制纳米微粒粒径的大小。(2)活性氢-熔融金属反应法:含有氢气的等离子体与金属间产生电弧,使金属熔融,电离的N2,Ar 等气体和H2溶入熔融金属,然后释放出来,在气体中形成了金属的超微粒子,用离心收集器、过滤式收集器使微粒与气体分离而获得纳米微粒。(3)溅射法:用两块金属板分别作为

相关文档
最新文档