三角形中位线经典好例题[1]

合集下载

专题 三角形中位线定理的运用(原卷版)

专题 三角形中位线定理的运用(原卷版)

八年级下册数学《第十八章 平行四边形》专题 三角形中位线定理的运用【例题1】(2022秋•长沙期中)如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F ,G 分别是AD ,AE 的中点,且FG =2cm ,则BC 的长度是( )A .4cmB .6cmC .8cmD .10cm【变式1-1】(2022秋•海淀区期中)如图,BD 是△ABC 的中线,E ,F 分别是BD ,BC 的中点,连接EF .若AD =4,则EF 的长为( )A .32B .2C .52D .4【变式1-2】(2022秋•莲池区校级期末)如图,在△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D ,BD =√6,若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A .√2B .√62C .√63D .√3【变式1-3】(2022春•巨野县校级月考)如图,在△ABC 中,D 是AB 上一点,AE 平分∠CAD ,AE ⊥CD 于点E ,点F 是BC 的中点,若AB =10,AC =6,则EF 的长为( )A .4B .3C .2D .1【变式1-4】(2022秋•南关区校级期末)如图,四边形ABCD 中,∠A =90°,AB =12,AD =5,点M 、N 分别为线段BC 、AB 上的动点,点E 、F 分别为DM 、MN 的中点,则EF 长度的可能为( )A .2B .2.3C .4D .7【变式1-5】如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.【变式1-6】(2022春•海淀区校级期中)如图,在Rt△ABC中,∠BAC=90°,点D和点E分别是AB,AC的中点,点F和点G分别在BA和CA的延长线上,若BC=10,GF=6,EF=4,则GD的长为.【变式1-7】(2022春•本溪期末)如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC 的中点,点M,N分别是AC,BD的中点,顺次连接EM,MF,FN,NE,若AB=CD=2,则四边形ENFM的周长是.【变式1-8】(2022春•雁塔区校级期末)如图,点D,E分别是△ABC的边AB,AC的中点,连接BE,过点C 作CF ∥BE ,交DE 的延长线于点F ,若EF =3,求DE 的长.【变式1-9】如图,在△ABC 中,AB =12cm ,AC =8cm ,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于点F ,交AB 于点G ,连接EF ,求线段EF 的长.【例题2】(2022秋•安岳县期末)如图,在△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点,若∠CFE =55°,则∠ADE 的度数为( )A .65°B .60°C .55°D .50°【变式2-1】(2021秋•鼓楼区校级期末)如图,点M ,N 分别是△ABC 的边AB ,AC 的中点,若∠A =60°,∠B=75°,则∠ANM=.【变式2-2】(2022•永安市模拟)如图,DE是△ABC的中位线,∠ABC的平分线交DE于点F,若∠DFB =32°,∠A=75°,则∠AED=.【变式2-3】(2022春•顺德区校级期中)如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,求∠ADC的度数.【变式2-4】(2022•九江二模)如图,在四边形ABCD中,点E,F,G分别是AD,BC,AC的中点,AB =CD,∠EGF=144°,则∠GEF的度数为.【变式2-5】(2022秋•新泰市期末)如图,四边形ABCD中,AD=BC,E,F,G分别是AB,DC,AC 的中点.若∠ACB=64°,∠DAC=22°,则∠EFG的度数为.【变式2-6】(2022春•鼓楼区期中)如图所示,在△ABC中,∠A=40°,D,E分别在AB,AC上,BD =CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q.求∠APQ的度数.【例题3】(2021秋•杜尔伯特县期末)如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点.求证:BD=2EF.【变式3-1】(2021春•秦都区期末)如图,在△ABC中,AB=AC,点D、E分别是边AB、AC上的点,连接BE、DE,∠ADE=∠AED,点F、G、H分别为BE、DE、BC的中点.求证:FG=FH.【变式3-2】(2021秋•互助县期中)如图,已知AB=AC,BD=CD,DB⊥AB,DC⊥AC,且E、F、G、H分别为AB、AC、CD、BD的中点,求证:EH=FG.【变式3-3】已知:如图,E为▱ABCD中DC边的延长线上的一点,且CE=DC,连接AE分别交BC、BD 于点F、G,连接AC交BD于O,连接OF.求证:AB=2OF.【变式3-4】(2021春•崇川区校级月考)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:(1)DE∥FG;(2)DG和EF互相平分.【变式3-5】(2022春•富平县期末)如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F分别是AB、CD的中点,E、F分别交BD、AC于点G、H,取BC边的中点M,连接EM、FM.求证:(1)△MEF是等腰三角形;(2)OG=OH.【变式3-6】(2022春•瑶海区期末)已知:如图,在△ABC中,点D、E分别是AB、AC的中点(1)若DE=2,则BC=;若∠ACB=70°,则∠AED=°;(2)连接CD和BE交于点O,求证:CO=2DO.【变式3-7】(2022春•虎丘区校级期中)如图,线段AM是∠CAB的角平分线,取BC中点N,连接AN,过点C作AM的垂线段CE垂足为E.(1)求证:EN∥AB.(2)若AC=13,AB=37,求EN的长度.【例题4】(2021春•莆田期末)如图,在四边形ABCD 中,AD =BC ,E 、F 分别是边DC 、AB 的中点,FE 的延长线分别AD 、BC 的延长线交于点H 、G ,求证:∠AHF =∠BGF .【变式4-1】(2022春•西峰区校级月考)如图,四边形ABCD 中,AD =BC ,P 是对角线BD 的中点,N 、M 分别是AB 、CD 的中点,求证:∠PMN =∠PNM .【变式4-2】(2021春•歙县期中)如图,CD 是△ABC 的角平分线,AE ⊥CD 于E ,F 是AC 的中点,(1)求证:EF ∥BC ;(2)猜想:∠B 、∠DAE 、∠EAC 三个角之间的关系,并加以证明.【变式4-3】如图,△ABC 中,D 、E 分别为AB 、AC 上的点,且BD =CE ,M 、N 分别是BE 、CD的中点.过MN的直线交AB于P,交AC于Q,求证:∠QP A=∠PQA.【变式4-4】一个对角线相等的四边形ABCD,E、F分别为AB,CD的中点,EF分别交对角线BD,AC 于M,N,求证:∠OMN=∠ONM.【变式4-5】(2022春•船营区校级月考)如图是华师版九年级上册数学教材第80页的第3题.如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.求证:∠PMN=∠PNM(1)在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F,如图②,请先完成图①的证明,再继续证明∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.【例题5】(2022秋•任城区期末)如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点,若AB=10,AC=6,则EF的长为()A.2B.3C.4D.5【变式5-1】(2022春•綦江区校级月考)如图,在四边形ABCD中,AC⊥BD,BD=16,AC=30,E,F 分别为AB,CD的中点,则EF=()A.15B..16C.17D.8【变式5-2】(2021春•沈北新区期末)如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=12CF.【变式5-3】如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.【变式5-4】(2021•罗湖区校级模拟)如图,已知在Rt△ABC中,∠ACB=90°,点D是AC延长线上的一点,AD=24,点E是BC上一点,BE=10,连接DE,M、N分别是AB、DE的中点,则MN=.【变式5-5】(2022春•香坊区校级期中)如图所示,在四边形ABCD中,点E、F分别是AD、BC的中点,连接EF,AB=20,CD=12,∠B+∠C=120°,则EF的长为.【变式5-6】(2022秋•张店区校级期末)已知:如图,在△ABC中,点D在AB上,BD=AC,E、F、G 分别是BC、AD、CD的中点,EF、CA的延长线相交于点H.求证:(1)∠CGE=∠ACD+∠CAD;(2)AH=AF.【变式5-7】如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=12(AC﹣AB);(2)如图2,请直接写出线段AB、AC、EF的数量关系.【变式5-8】(1)如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.求证:FG=12(AB+BC+AC).[提示:分别延长AF、AG与直线BC相交](2)如图2,若BD、CE分别是△ABC的内角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.【变式5-9】如图,在四边形ABCD中,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不必证明)(温馨提示:在图(1)中,连接BD,取BD的中点H,连接HE.HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线的性质,可证明∠BME=∠CNE)(1)如图(2),在四边形ADBC中,AB与CD相交于点O,AB=CD,E.F分别是BC.AD的中点,连接EF,分别交CD.BA于点M.N,判断△OMN的形状,请直接写出结论.(2)如图(3)中,在△ABC中,AC>AB,D点在AC上,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD形状并证明.。

中位线经典题型解析

中位线经典题型解析

《中位线》专题练习参考答案与试题解析一.选择题(共5小题)1.(2013•淄博)如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A.B.C.3D.4考点:三角形中位线定理;等腰三角形的判定与性质.专题:压轴题.分析:首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.解答:解:∵BQ平分∠ABC,BQ⊥AE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=26﹣BC=26﹣10=16,∴DE=BE+CD﹣BC=6,∴PQ=DE=3.故选C.点评:本题考查了三角形的中位线定理,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.2.(2009•绍兴)如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48°,则∠APD等于()A.42°B.48°C.52°D.58°考点:三角形中位线定理;翻折变换(折叠问题).专题:操作型.分析:由翻折可得∠PDE=∠CDE,由中位线定理得DE∥AB,所以∠CDE=∠DAP,进一步可得∠APD=∠CDE.解答:解:∵△PED是△CED翻折变换来的,∴△PED≌△CED,∴∠CDE=∠EDP=48°,∵DE是△ABC的中位线,∴DE∥AB,∴∠APD=∠CDE=48°,故选B.点评:本题考查三角形中位线定理的位置关系,并运用了三角形的翻折变换知识,解答此题的关键是要了解图形翻折变换后与原图形全等.3.(2010•威海)如图,在△ABC中,D,E分别是边AC,AB的中点,连接BD.若BD 平分∠ABC,则下列结论错误的是()A.B C=2BE B.∠A=∠EDA C.B C=2AD D.B D⊥AC考点:三角形中位线定理.分析:根据D,E分别是边AC,AB的中点,得出DE是△ABC的中位线,所以DE∥BC 且BC=2DE;又BD平分∠ABC,所以∠CDB=∠DBE=∠BDE,所以BE=DE=AE,所以AB=2DE,所以AB=BC,即可得出B、D选项正确.解答:解:∵D,E分别是边AC,AB的中点,∴DE∥BC且BC=2DE,∵BD平分∠ABC,∴∠CBD=∠DBE=∠BDE,∴BE=DE=AE,∴AB=2DE,BC=2DE=2BE,故A正确;∴AB=BC,∴∠A=∠C=∠EDA,故B正确;C、∵AE=DE,与AD不一定相等,故本选项不一定成立;D、∵AB=BC,点D是AC的中点,∴BD⊥AC,故本选项正确.故选C.点评:本题利用三角形的中位线定理、角平分线的性质和平行线的性质推出等角,得到等腰三角形是解题的关键.4.如图,△ABC中,AB=8cm,AC=5cm,AD平分∠BAC,且AD⊥CD,E为BC中点,则DE=()A.3cm B.5cm C.2.5cm D.1.5cm考点:三角形中位线定理.分析:延长CD交AB于F点.根据AD平分∠BAC,且AD⊥CD,证明△ACD≌△AFD,得D是CF的中点;又E为BC中点,所以DE是△BCF的中位线,利用中位线定理求解.解答:解:延长CD交AB于F点.∵AD平分∠BAC,∴∠FAD=∠CAD;∵AD⊥CD,∴∠ADF=∠ADC;又AD=AD,∴△ACD≌△AFD,∴CD=DF,AF=AC=5cm.∵E为BC中点,BF=AB﹣AF=8﹣5=3,∴DE=BF=1.5(cm).故选D.点评:此题关键是作辅助线构造全等三角形,证明D是CF的中点,从而证明DE是三角形的中位线,运用中位线定理求解.5.如图,△ABC中,D为BC中点,E为AD的中点,BE的延长线交AC于F,则为()A.1:5 B.1:4 C.1:3 D.1:2考点:相似三角形的判定与性质.分析:过D作BF的平行线,交AC边于G,即:DG∥BF,又D为BC中点可得出:△CDG∽△CBF,即:==,CG=FC=FG;同理可得:△AEF∽△ADG,AF=AG=FG,所以AF=FG=GC,即:==.解答:解:过D作BF的平行线,交AC边于G,如下图所示:∵D为BC中点,DG∥BF∴∠CGD=∠CFB又∵∠C=∠C∴△CDG∽△CBF∴==,即:CG=CF=FG又E为AD的中点,BE的延长线交AC于F,DG∥BF同理可得:△AEF∽△ADG∴==,即:AF=AG=FG∴AF=FG=GC∴===1:2故选:D.点评:本题主要考查相似三角形的判定与性质,关键在于找出条件判断两个三角形相似,再运用相似三角形的性质求解.二.解答题(共3小题)6.如图,在四边形ABCD中,AD=BC,E、F、G分别是AB、CD、AC的中点,若∠DAC=20°,∠ACB=66°,求∠FEG的度数.考点:三角形中位线定理.分析:根据中位线定理和等腰三角形等边对等角的性质求解即可.解答:解:∵AD=BC,E,F,G分别是AB,CD,AC的中点,∴GF是△ACD的中位线,GE是△ACB的中位线,又∵AD=BC,∴GF=GE,∠FGC=∠DAC=20°,∠AGE=∠ACB=66°,∴∠FGE=∠FGC+∠EGC=20°+(180°﹣66°)=134°,∴∠FEG=(180°﹣∠FGE)=23°.点评:主要考查了中位线定理和等腰三角形两底角相等的性质,题目的难度不大.7.如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CF、AC.求证:四边形ABFC是平行四边形.考点:等腰梯形的性质;等腰三角形的判定与性质;平行四边形的判定.专题:证明题.分析:根据等腰梯形性质求出∠ABC=∠DCB,根据DE⊥BC,DE=EF,得出△DFC是等腰三角形,推出∠ABC=∠DCB=∠FCE,AB=CD=CF,推出AB∥CF,根据平行四边形的判定定理推出即可.解答:证明:等腰梯形ABCD中,AB=DC,∴∠ABC=∠DCB,∵DE⊥BC,DE=EF,∴△DFC是等腰三角形,∴∠DCB=∠FCE,DC=CF,∴∠ABC=∠FCE,∴AB∥CF,∵AB=CD=CF,∴四边形ABFC是平行四边形.点评:本题考查了等腰梯形的性质,等腰三角形的性质和判定,平行线的判定等知识点的应用,关键是推出AB=CF,AB∥CF,通过做此题培养了学生分析问题和解决问题的能力,题目比较典型,难度适中.8.(2013•永州)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.考点:三角形中位线定理;等腰三角形的判定与性质.分析:(1)证明△ABN≌△ADN,即可得出结论;(2)先判断MN是△BDC的中位线,从而得出CD,由(1)可得AD=AB=10,从而计算周长即可.解答:(1)证明:在△ABN和△ADN中,∵,∴△ABN≌△ADN,∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,DN=NB,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.点评:本题考查了三角形的中位线定理及等腰三角形的判定,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.。

三角形中位线经典测试题

三角形中位线经典测试题

三角形中位线经典测试题1、已知三角形ABC,其中AC与BD交于点O,BC边中点为E,OE=1,求AB的长。

2、已知三角形ABC,其中DE是BC边的中位线,DE=2cm,求BC的长。

3、已知三角形ABC,要测量A、B两点间的距离,取OA的中点C,OB的中点D,测得CD=30米,求AB的长。

4、顺次连结任意四边形各边中点所得到的四边形一定是平行四边形。

5、以三角形的三个顶点及三边中点为顶点的平行四边形共有4个。

6、已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD上从C向D移动而点R不动时,线段EF的长不变。

7、已知三角形三边长分别为6、8、10,则它的中位线构成的三角形的面积为24.8、已知△ABC中,AD=11/44AB,AE=AC,BC=16,求DE的长。

9、已知四边形ABCD中,M、N、P、Q分别为AB、BD、CD、AC的中点,证明四边形MNPQ是平行四边形。

10、已知四边形ABCD中,AD∥BC,BC=3AD,E、F分别是对角线AC、BD的中点,证明四边形ADEF是平行四边形。

11、已知四边形ABCD中,AB=CD,E、F分别为BC、AD的中点,BA、EF的延长线交于点M,CD、EF的延长线交于点N,证明∠AME=∠XXX。

12、已知△ABC中,P是中线AD的中点,连接BP并延长交AC于E,F为BE的中点,证明AF∥DE。

13、已知四边形ABCD中,M是OB的中点,连接AM并延长至P,使MP=AM,连接DP交AC于N,证明(1)MN∥AD;(2)S四边形MPNQ=S△XXX。

14、已知△ABC中,AD是外角平分线,CD⊥AD于D,E是BC的中点,证明(1)DE∥AB;(2)DE=1/2(AB+AC)。

15、已知等腰梯形ABCD中,AB∥CD,AB>CD,AD=BC,对角线相交于点O,∠AOB=60°,且E、F、M分别是OD、OA、BC的中点,证明△EFM是等边三角形。

三角形的中位线定理练习题

三角形的中位线定理练习题

三角形的中位线定理练习题一、填空选择题:1.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm2、三角形三条中位线的长分别为3、4、5,则此三角形的面积为_________3.三角形的三边长分别为12cm、16cm、20cm,则它的中位线构成的三角形的周长与面积分别为____ 和___.4.三角形一条中位线分三角形所成的新三角形与原三角形周长之和为60 cm ,则原三角形的周长为_______. 5.三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是6.已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是(C )A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定7、在平行四边形ABCD中,AB=2AD,∠A=60°,E,F分别是AB,CD的中点,且EF=1cm,那么对角线BD=____cm.8、在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是____度.18°9.梯形的上底长4cm,下底长6cm,则梯形的中位线长为( B )A.12cmB.5cmC.10cmD.20cm10.如果梯形的一底为6,中位线为8,则另一底为( C ) A.4 B.7 C.10 D.14 11.已知等腰梯形ABCD的中位线EF的长为5,腰AD的长为4,则这个等腰梯形的周长为. 18 12.在四边形ABCD中,对角线AC=BD,那么顺次连结四边形ABCD各边的中点所得的四边形一定是( ) 13.梯形的中位线长16cm,梯形的一条对角线把中位线分成两条线段,这两条线段的差是4cm,则梯形上底长是cm. 12 cm14.梯形ABCD中,AD//BC,BD为对角线,中位线EF交BD于O点,若FO-EO=3,则BC-AD等于(B )A.4 B.6 C.8 D.1015.梯形ABCD中,AD∥BC,AD=12,BC=16,中位线EF与对角线分别相交于H和G,则GH的长是. 216.如图,梯形ABCD中,AD∥BC,EF为中位线,G为BC上任一点,如果S△GEF=cm2,那么梯形的面积是cm2.217.如图,EF 是△ABC 的中位线,BD 平分∠ABC 交EF 于D ,若DE =2,则EB =_____.2二、证明题:1.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点. 求证:四边形DEFG 是平行四边形.3.如图,已知四边形ABCD 中,点E ,F ,G ,H 分别是AB 、CD 、AC 、BD 的中点,并且点E 、F 、G 、H 有在同一条直线上.求证:EF 和GH 互相平分.4.如图,同底边BC 的△ABC 与△DBC 中,E 、F 、G 、H 分别是AB 、AC 、DB 、DC 的中点,求证:EH 与FG 互相平分。

北师大版八年级下册第六章:平行四边形专题三【三角形中位线】知识点总结经典例题变式训练(无答案)

北师大版八年级下册第六章:平行四边形专题三【三角形中位线】知识点总结经典例题变式训练(无答案)

第六章 平行四边形三角形的中位线例1:如图,D 、E 、F 分别是△ABC 三边的中点.G 是AE 的中点,BE 与DF 、DG 分别交于P 、Q 两点.求PQ:BE 的值。

例2:如图,在△ABC 中,AC>AB ,M 为BC 的中点.AD 是∠BAC 的平分线,假设CF ⊥AD 交AD的延长线于F.求证:MF1ACAB 。

2例3:如图3,在△ABC 中,AD 是△BAC 的角平分线,M 是BC 的中点,ME ⊥AD 交AC 的延长线于.且 CE1 ACB=2B 。

ECD.求证:∠2∠例4:如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC,过BC的中点M作ME⊥AD,交BA的延长线于E,交AD的延长线于F。

求证:BE1BD。

2挑战自我,勇攀高分稳固根底练1.△ABC周长为16,D、E分别是AB、AC的中点,那么△ADE的周长等于()在△ABC中,D、E分别是AB、AC的中点,P是BC上任意一点,那么△PDE面积是△ABC'面积的()A.1B.1C.1D.1 23483.如图,在四边形ABCD中,E、F分别为AC、BD的中点,那么EF与AB+CD的关系是()A.2EFAB CDB.2EFABCDC.2EFABCDD.不确定D CE F A B4.如图,∥,、F 分别是、的中点,且,,那么的长为。

AB CDE BC AD AB=aCD=b EF如图6,四边形ABCD中,AD=BC,F、E、G分别是AB、CD、AC的中点,假设∠DAC=200,∠ACB=600,那么∠FEG=。

如图,△ABC的周长为1,连接△ABC三边的中点构成第二个三角,再连接第二个三角形三边中点构成第三个三角形,依此类推,第2003个三角形的周长为。

7.三角形三条中位线的比为3:5:6,三角形的周长是112cm,求三条中位线长。

8.如图,△ABC中,AD是高,BE是中线,∠EBC=300,求证:AD=BE。

9.如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连接CE、CD。

专题1三角形中位线

专题1三角形中位线

专题1:三角形中位线【经典例题】例1:如图3,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F 处,若∠B=55°,则∠BDF= °.例2:如图,点P是四边形ABCD的对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠CBD=45°,∠ADB=105°,探究EF与PF之间的数量关系,并证明。

例3:如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连接DC,点M,P,F分别为DE,DC,BC的中点,△ADE可以绕点A在平面内自由旋转,若AD =4,AB=10,则△PMF的面积S的变化范围是.练习:1.如图,点分别是三边上的中点.若的面积为12,则的面积为 .2.如图,∠ACB=∠BCD=90°,AC=BC ,点E 在BC 上,CD=CE ,点P ,M ,N 分别为AB ,AD ,BE 的中点,试探究:PM 与PN 之间的数量关系和位置关系.3.如图,四边形ABCD 中,∠A =90°,AB =8,AD =6,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为( )A .8B .7C .6D .51题 3题 4题4. 如图,ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO,BO 的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米.【经典例题】例4已知:如图,在ABCD 中,E 是CD 的中点,F 是AE 的中点,FC 与BE 交于G .求证:GF =GC .D E F ,,ABC △ABC △DEF △例5如图,在△ABC 中,∠ABC=90°,BA=BC,△BEF 为等腰直角三角形、∠BEF=90°,M 为AF 的中点,求证:12ME CF =。

三角形中位线专项训练(30道)(解析版)

三角形中位线专项训练(30道)(解析版)

专题9.7 三角形中位线专项训练(30道)【苏科版】1.(2021秋•淅川县期末)如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为()A.2B.5C.7D.9【分析】根据三角形的中位线定理得出EF=12DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,N与A重合时,DN最小,从而求得EF的最大值为6.5,最小值是2.5,可解答.【解答】解:连接DN,∵ED=EM,MF=FN,∴EF=12DN,∴DN最大时,EF最大,DN最小时,EF最小,∵N与B重合时DN最大,此时DN=DB=√AD2+BD2=√52+122=13,∴EF的最大值为6.5.∵∠A=90°,AD=5,∴DN≥5,∴EF≥2.5,∴EF长度的可能为5;故选:B.2.(2021秋•渝中区校级期末)如图,在△ABC中,AB=CB=6,BD⊥AC于点D,F在BC上且BF=2,连接AF,E为AF的中点,连接DE,则DE的长为()A.1B.2C.3D.4【分析】根据等腰三角形的性质得到AD=DC,根据三角形中位线定理解答即可.【解答】解:∵CB=6,BF=2,∴FC=6﹣2=4,∵BA=BC,BD⊥AC,∴AD=DC,∵AE=EF,∴DE是△AFC的中位线,∴DE=12FC=12×4=2,故选:B.3.(2021秋•龙岗区校级期末)如图,四边形ABCD中,E,F分别是边AB,CD的中点,则AD,BC和EF的关系是()A.AD+BC>2EF B.AD+BC≥2EF C.AD+BC<2EF D.AD+BC≤2EF【分析】取AC的中点G,连接EF,EG,GF,根据三角形中位线定理求出EG=12BC,GF=12AD,再利用三角形三边关系:两边之和大于第三边,即可得出AD,BC和EF的关系.【解答】解:如图,取AC的中点G,连接EF,EG,GF,∵E,F分别是边AB,CD的中点,∴EG,GF分别是△ABC和△ACD的中位线,∴EG=12BC,GF=12AD,在△EGF中,由三角形三边关系得EG+GF>EF,即12BC+12AD>EF,∴AD +BC >2EF ,当AD ∥BC 时,点E 、F 、G 在同一条直线上,∴AD +BC =2EF ,所以四边形ABCD 中,E ,F 分别是边AB ,CD 的中点,则AD ,BC 和EF 的关系是AD +BC ≥2EF .故选:B .4.(2021秋•荆门期末)如图,△ABC 的周长为20,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC =8,则MN 的长度为( )A .32B .2C .52 D .3【分析】证明△BNA ≌△BNE ,得到BE =BA ,AN =NE ,同理得到CD =CA ,AM =MD ,求出DE ,根据三角形中位线定理计算即可.【解答】解:在△BNA 和△BNE 中,{∠NBA =∠NBE BN =BN ∠BNA =∠BNE,∴△BNA ≌△BNE (ASA )∴BE =BA ,AN =NE ,同理,CD =CA ,AM =MD ,∴DE =BE +CD ﹣BC =BA +CA ﹣BC =20﹣8﹣8=4,∵AN =NE ,AM =MD ,∴MN =12DE =2,故选:B .5.(2021秋•宛城区期中)如图,在△ABC 中,∠A =90°,AC >AB >4,点D 、E 分别在边AB 、AC 上,BD =4,CE =3,取DE 、BC 的中点M 、N ,线段MN 的长为( )A .2.5B .3C .4D .5【分析】如图,作CH ∥AB ,连接DN ,延长DN 交CH 于H ,连接EH ,首先证明CH =BD ,∠ECH =90°,解直角三角形求出EH ,利用三角形中位线定理即可解决问题.【解答】解:作CH ∥AB ,连接DN 并延长交CH 于H ,连接EH ,∵BD ∥CH ,∴∠B =∠NCH ,∠ECH +∠A =180°,∵∠A =90°,∴∠ECH =∠A =90°,在△DNB 和△HNC 中,{∠B =∠NCH BN =CN ∠DNB =∠HNC,∴△DNB ≌△HNC (ASA ),∴CH =BD =4,DN =NH ,在Rt △CEH 中,CH =4,CE =3,∴EH =√CH 2+CE 2=√42+32=5,∵DM =ME ,DN =NH ,∴MN =12EH =2.5,故选:A .6.(2021•丹东模拟)如图,在△ABC 中,CE 是中线,CD 是角平分线,AF ⊥CD 交CD延长线于点F ,AC =7,BC =4,则EF 的长为( )A .1.5B .2C .2.5D .3【分析】延长AF 、BC 交于点G ,证明△ACF ≌△GCF ,根据全等三角形的性质得到CG =AC =7,AF =FG ,求出BG ,根据三角形中位线定理解答即可.【解答】解:延长AF 、BC 交于点G ,∵CD 是△ABC 的角平分线,∴∠ACF =∠BCF ,在△ACF 和△GCF 中,{∠ACF =∠GCF CF =CF ∠AFC =∠GFC =90°,∴△ACF ≌△GCF (ASA ),∴CG =AC =7,AF =FG ,∴BG =CG ﹣CB =3,∵AE =EB ,AF =FG ,∴EF =12BG =1.5,故选:A .7.(2021•碑林区校级模拟)如图,AD 为△ABC 的角平分线,BE ⊥AD 于E ,F 为BC 中点,连接EF ,若∠BAC =80°,∠EBD =20°,则∠EFD =( )A .26°B .28°C .30°D .32°【分析】延长BE 交AC 于G ,证△ABE ≌△AGE (ASA ),得BE =GE ,再由三角形中位线定理得EF ∥GC ,则∠EFD =∠C ,然后求出∠ABC =∠ABE +∠EBD =70°,即可解决问题.【解答】解:延长BE 交AC 于G ,如图所示:∵AD 平分∠BAC ,∠BAC =80°,∴∠BAE =∠GAE =12∠BAC =40°,∵BE ⊥AD ,∴∠BEA =∠GEA =90°,∵AE =AE ,∴△ABE ≌△AGE (ASA ),∴BE =GE ,∵F 为BC 的中点,∴EF 是△BCG 的中位线,∴EF ∥GC ,∴∠EFD =∠C ,∵∠BEA =90°,∴∠ABE =90°﹣∠BAE =90°﹣40°=50°,∴∠ABC =∠ABE +∠EBD =50°+20°=70°,∴∠EFD =∠C =180°﹣∠BAC ﹣∠ABC =180°﹣80°﹣70°=30°,故选:C .8.(2021秋•广饶县期末)如图,AD 是△ABC 的中线,E 是AD 的中点,F 是BE 延长线与AC 的交点,若AC =4,则AF =( )A .85 B .43 C .1 D .23 【分析】取EF 的中点H ,连接DH ,根据三角形中位线定理得到DH =12FC ,DH ∥AC ,证明△AEF ≌△DEH ,根据全等三角形的性质得到AF =DH ,计算即可.【解答】解:取EF 的中点H ,连接DH , ∵BD =DC ,BH =HF ,∴DH =12FC ,DH ∥AC ,∴∠HDE =∠F AE ,在△AEF 和△DEH 中,{∠AEF =∠DEH AE =DE ∠EAF =∠EDH,∴△AEF ≌△DEH (ASA ), ∴AF =DH ,∴AF =12FC , ∵AC =4,∴AF =43,故选:B .9.(2021春•平邑县期末)如图,在△ABC 中,AB =8,AC =6,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为( )A .1B .2C .32D .12【分析】证明△AFG ≌△AFC ,得到GF =FC ,根据三角形中位线定理计算即可.【解答】解:∵AD 是∠BAC 的角平分线,∴∠GAF =∠CAF ,∵CG ⊥AD ,∴∠AFG =∠AFC =90°,在△AFG 和△AFC 中,{∠AFG =∠AFC AF =AF ∠FAG =∠FAC,∴△AFG≌△AFC(ASA),∴GF=FC,AG=AC=6,∴GB=AB﹣AG=2,∵GF=FC,BE=EC,∴EF=12GB=1,故选:A.10.(2021春•宽城县期末)如图,E,F是四边形ABCD两边AB,CD的中点,G,H是对角线AC,BD的中点,若EH=6,则以下结论不正确的是()A.BC=12B.GF=6C.AD=12D.EH∥GF【分析】先判定EH为△ABD的中位线,GF为△ADC的中位线,然后根据三角形中位线性质对各选项进行判断.【解答】解:∵点E为AB的中点,点H为BD的中点,∴EH为△ABD的中位线,∴EH=12AD,EH∥AD,∵点F为CD的中点,点G为AC的中点,∴GF为△ADC的中位线,∴GF=12AD,GF∥AD,∴GF=EH=6,AD=2EH=12,EH∥GF,所以A选项符合题意,B选项、C选项和D 选项不符合题意.故选:A.二.填空题(共10小题)11.(2021秋•莱阳市期末)如图,D、E分别为△ABC的边AB、AC的中点.连接DE,过点B作BF平分∠ABC,交DE于点F.若EF=4,AD=7,则BC的长为22.【分析】根据三角形中位线定理得到DE ∥BC ,DE =12BC ,BD =AD =7,根据平行线的性质、角平分线的定义得到∠DBF =∠FBC ,根据等腰三角形的判定定理得到DF =BD =7,计算即可.【解答】解:∵D 、E 分别为△ABC 的边AB 、AC 的中点,∴DE ∥BC ,DE =12BC ,BD =AD =7,∴∠DFB =∠FBC ,∵BF 平分∠ABC ,∴∠DFB =∠DBF ,∴∠DBF =∠FBC ,∴DF =BD =7,∴DE =DF +EF =11,∴BC =2DE =22,故答案为:22.12.(2021秋•让胡路区校级期末)如图,△ABC 的周长为64,E 、F 、G 分别为AB 、AC 、BC 的中点,A ′、B ′、C ′分别为EF 、EG 、GF 的中点,△A ′B ′C ′的周长为 16 .如果△ABC 、△EFG 、△A ′B ′C ′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n 个三角形的周长是 27﹣n .【分析】根据E 、F 、G 分别为AB 、AC 、BC 的中点,可以判断EF 、FG 、EG 为三角形中位线,利用中位线定理求出EF 、FG 、EG 与BC 、AB 、CA 的长度关系即可求得△EFG 的周长是△ABC 周长的一半,△A ′B ′C ′的周长是△EFG 的周长的一半,以此类推,可以求得第n 个三角形的周长.【解答】解:∵如图,△ABC 的周长为64,E 、F 、G 分别为AB 、AC 、BC 的中点, ∴EF 、FG 、EG 为三角形中位线,∴EF =12BC ,EG =12AC ,FG =12AB ,∴EF +FG +EG =12(BC +AC +AB ),即△EFG 的周长是△ABC 周长的一半.同理,△A ′B ′C ′的周长是△EFG 的周长的一半,即△A ′B ′C ′的周长为14×64=16.以此类推,第n 个小三角形的周长是第一个三角形周长的64×(12)n ﹣1=27﹣n故答案是:27﹣n .13.(2021春•安徽月考)如图,在四边形ABCD 中,AD =BC ,∠DAB =50°,∠CBA =70°,P 、M 、N 分别是AB 、AC 、BD 的中点,若BC =6,则△PMN 的周长是 9 .【分析】根据三角形中位线定理得到PM ∥BC ,PM =12BC =3,PN ∥AD ,PN =12AD =3,根据等边三角形的判定和性质定理解答即可.【解答】解:∵P 、M 分别是AB 、AC 的中点,∴PM ∥BC ,PM =12BC =3,∴∠APM =∠CBA =70°,同理可得:PN ∥AD ,PN =12AD =3,∴∠BPN =∠DAB =50°,∴PM =PN =3,∠MPN =180°﹣50°﹣70°=60°,∴△PMN 为等边三角形,∴△PMN 的周长为9,故答案为:9.14.(2021秋•长春期中)如图所示,在△ABC 中,BC >AC ,点D 在BC 上,DC =AC =10,且AD BD =32,作∠ACB 的平分线CF 交AD 于点F ,CF =8,E 是AB 的中点,连接EF ,则EF 的长为 4 .【分析】根据等腰三角形的性质得到F 为AD 的中点,CF ⊥AD ,根据勾股定理得到DF =√CD 2−CF 2=6,根据三角形的中位线定理即可得到结论.【解答】解:∵DC =AC =10,∠ACB 的平分线CF 交AD 于F ,∴F 为AD 的中点,CF ⊥AD ,∴∠CFD =90°,∵DC =10,CF =8,∴DF =√CD 2−CF 2=6,∴AD =2DF =12,∵AD BD =32,∴BD =8,∵点E 是AB 的中点, ∴EF 为△ABD 的中位线,∴EF =12BD =4,故答案为:4.15.(2021•商丘四模)如图,四边形ABCD 中,点E 、F 分别为AD 、BC 的中点,延长FE交CD 延长线于点G ,交BA 延长线于点H ,若∠BHF 与∠CGF 互余,AB =4,CD =6,则EF 的长为 √13 .【分析】根据三角形的中位线定理和勾股定理解答即可.【解答】解:连接BD ,取BD 的中点M ,连接EM ,FM ,∵E 、F 分别为AD 、BC 的中点,M 为BD 的中点,∴EM ,MF 分别为△ADB 、△BCD 的中位线,∴EM ∥AB ,MF ∥DC ,EM =12AB =2,MF =12DC =3,∵MF ∥DC ,∴∠FGC =∠EFM ,∵EM ∥AB ,∴∠FEM =∠FHB ,∵∠BHF 与∠CGF 互余,∴∠CGF +∠BHF =∠EFM +∠FEM =90°,∴∠EMF =180°﹣∠EFM ﹣∠FEM =90°,∴△EMF 是直角三角形,∴EF=√EM2+FM2=√22+32=√13,故答案为:√13.16.(2021•香坊区校级开学)如图,在△ABC中,E是AB的中点,D是AC上一点,连接DE,BH⊥AC于H,若2∠ADE=90°﹣∠HBC,AD:BC=4:3,CD=2,则BC的长为6.【分析】如图,延长AC至N,使CN=BC,连接BN,由等腰三角形的性质可得∠ADE =∠N,可证DE∥BN,由三角形中位线定理可得AD=DN,即可求解.【解答】解:如图,延长AC至N,使CN=BC,连接BN,∵2∠ADE=90°﹣∠HBC,∠BCA=90°﹣∠HBC,∴∠BCA=2∠ADE,∵CN=BC,∴∠N=∠CBN,∴∠BCA=∠N+∠CBN=2∠N,∴∠ADE=∠N,∴DE∥BN,又∵E是AB的中点,∴DE是△ABN的中位线,∴AD=DN,∵AD:BC=4:3,∴设AD=DN=4x,BC=CN=3x,∴CD=DN﹣CN=x=2,∴BC=6,故答案为6.17.(2021春•牡丹区期末)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=13,AC=8,则DF的长为 2.5.【分析】延长CF交AB于点G,判断出AF垂直平分CG,得到AC=AG,根据三角形中位线定理解答.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∴AF垂直平分CG,∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=12BG=12(AB﹣AG)=12(AB﹣AC)=2.5,故答案为:2.5.18.(2021春•洛阳期末)如图,D是△ABC的边BC的中点,AE平分∠BAC,BE⊥AE于点E,且AB=10cm,DE=2cm,则AC的长为6cm.【分析】延长AC 、BE 交于点F ,证明△AEB ≌△AEF ,根据全等三角形的性质得到AF =AB =10cm ,BE =EF ,根据三角形中位线定理计算即可.【解答】解:延长AC 、BE 交于点F ,∵AE 平分∠BAC ,∴∠BAE =∠CAE ,在△AEB 和△AEF 中,{∠BAE =∠FAE AE =AE ∠AEB =∠AEF =90°,∴△AEB ≌△AEF (ASA ),∴AF =AB =10(cm ),BE =EF ,∵BD =DC ,DE =2cm ,∴CF =2DE =4(cm ),∴AC =AF ﹣CF =6(cm ),故答案为:6.19.(2021春•盐湖区校级期末)如图,在四边形ABCD 中,AB =CD ,M 、N 、P 分别是AD 、BC 、BD 的中点,若∠MPN =130°,则∠NMP 的度数为 25° .【分析】根据中位线定理和已知,易证明△PMN 是等腰三角形,根据等腰三角形的性质和三角形内角和定理即可求出∠PMN 的度数.【解答】解:在四边形ABCD 中,M 、N 、P 分别是AD 、BC 、BD 的中点,∴PN ,PM 分别是△CDB 与△DAB 的中位线,∴PM =12AB ,PN =12DC ,PM ∥AB ,PN ∥DC ,∵AB =CD , ∴PM =PN ,∴△PMN 是等腰三角形,∵∠MPN=130°,∴∠PMN=180°−130°2=25°.故答案为:25°.20.(2021春•虹口区校级期末)如图,在△ABC中,BM、CN平分∠ABC和∠ACB的外角,AM⊥BM于M,AN⊥CN于N,AB=10,BC=13,AC=6,则MN= 4.5.【分析】延长AM交BC于点G,根据BM为∠ABC的平分线,AM⊥BM得出∠BAM=∠G,故△ABG为等腰三角形,所以AM=GM.同理AN=DN,根据三角形中位线定理即可求得MN.【解答】解:延长AM交BC于点G,延长AN交BC延长线于点D,∵BM为∠ABC的平分线,∴∠CBM=∠ABM,∵BM⊥AG,∴∠ABM+∠BAM=90°,∠MGB+∠CBM=90°,∴∠BAM=∠MGB,∴△ABG为等腰三角形,∴AM=GM.BG=AB=10,同理AN=DN,CD=AC=6,∴MN为△ADG的中位线,∴MN=12DG=12(BC﹣BG+CD)=12(BC﹣AB+AC)=12(13﹣10+6)=4.5.故答案为:4.5.三.解答题(共10小题)21.(2019春•岐山县期末)△ABC的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:EF∥DG,且EF=DG.【分析】连接DE,FG,由BD与CE为中位线,利用中位线定理得到ED与BC平行,FG与BC平行,且都等于BC的一半,等量代换得到ED与FG平行且相等,进而得到四边形EFGD为平行四边形,利用平行四边形的性质即可得证.【解答】证明:连接DE,FG,∵BD,CE是△ABC的中线,∴D,E是AB,AC的中点,∴DE∥BC,DE=12BC,同理:FG∥BC,FG=12BC,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.22.(2021秋•桓台县期末)如图,在四边形ABCD中,E,F分别是AD,BC的中点.(1)若AB=6,CD=8,∠ABD=30°,∠BDC=120°,求EF的长;(2)若∠BDC﹣∠ABD=90°,求证:AB2+CD2=4EF2.【分析】(1)取BD的中点P,利用三角形中位线定理可以求得EP、FP的长度,然后利用勾股定理来求EF的长度;(2)如图,取BD的中点P,连接EP、FP.用三角形中位线定理可以求得EP、FP的长度,然后利用勾股定理即可得到结论.【解答】(1)解:如图,取BD的中点P,连接EP、FP.∵E,F分别是AD、BC的中点,AB=6,CD=8,∴PE ∥AB ,且PE =12AB =3,PF ∥CD 且PF =12CD =4.又∵∠ABD =30°,∠BDC =120°,∴∠EPD =∠ABD =30°,∠DPF =180°﹣∠BDC =60°,∴∠EPF =∠EPD +∠DPF =90°,在直角△EPF 中,由勾股定理得到:EF =√EP 2+PF 2=√32+42=5,即EF =5;(2)证明:如图,取BD 的中点P ,连接EP 、FP .∵E ,F 分别是AD 、BC 的中点,∴PE ∥AB ,且PE =12AB ,PF ∥CD 且PF =12CD .∴∠EPD =∠ABD ,∠BPF =∠BDC ,∴∠DPF =180°﹣∠BPF =180°﹣∠BDC ,∵∠BDC ﹣∠ABD =90°,∴∠BDC =90°+∠ABD ,∴∠EPF =∠EPD +∠DPF =∠ABD +180°﹣∠BDC =∠ABD +180°﹣(90°+∠ABD )=90°,∴PE 2+PF 2=(12AB )2+(12CD )2=EF 2,∴AB 2+CD 2=4EF 2.23.(2021秋•莱州市期末)已知:如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,且AC =BD ,E 、F 分别是AB 、CD 的中点,EF 分别交BD 、AC 于点G 、H .求证:OG =OH .【分析】取BC 边的中点M ,连接EM ,FM ,则根据三角形的中位线定理,即可证得△EMF 是等腰三角形,根据等边对等角,即可证得∠MEF =∠MFE ,然后根据平行线的性质证得∠OGH =∠OHG ,根据等角对等边即可证得.【解答】解:取BC边的中点M,连接EM,FM,∵M、F分别是BC、CD的中点,∴MF∥BD,MF=12BD,同理:ME∥AC,ME=12AC,∵AC=BD∴ME=MF∴∠MEF=∠MFE,∵MF∥BD,∴∠MFE=∠OGH,同理,∠MEF=∠OHG,∴∠OGH=∠OHG∴OG=OH.24.(2021春•抚州期末)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AE平分∠CAB,CE⊥AE于点E,延长CE交AB于点D.(1)求证:CE=DE;(2)若点F为BC的中点,求EF的长.【分析】(1)根据ASA证明△AEC和△AED全等,进而利用全等三角形的性质解答即可;(2)根据勾股定理得出AB,进而利用三角形中位线定理解答即可.【解答】(1)证明:∵AE平分∠CAB,∴∠CAE=∠BAE,∵CE⊥AE,∴∠AEC =∠AED =90°,在△AEC 和△AED 中,{∠CAE =∠DAE AE =AE ∠AEC =∠AED,∴△AEC ≌△AED (ASA ),∴CE =DE ;(2)在Rt △ABC 中,∵AC =6,BC =8,∴AB =√AC 2+BC 2=√62+82=10,∵△AEC ≌△AED ,∴AD =AC =6,∴BD =AB ﹣AD =4,∵点E 为CD 中点,点F 为BC 中点,∴EF =12BD =2.25.(2021春•秦都区期末)如图,在△ABC 中,AB =AC ,点D 、E 分别是边AB 、AC 上的点,连接BE 、DE ,∠ADE =∠AED ,点F 、G 、H 分别为BE 、DE 、BC 的中点.求证:FG =FH .【分析】根据等腰三角形的判定定理得到AD =AE ,根据线段的和差得到BD =CE ,根据三角形的中位线定理即可得到结论.【解答】证明:∵∠ADE =∠AED ,∴AD =AE ,∵AB =AC ,∴AB ﹣AD =AC ﹣AE ,即BD =CE ,∵点F 、G 、H 分别为BE 、DE 、BC 的中点,∴FG 是△EDB 的中位线,FH 是△BCE 的中位线,∴FG =12BD ,FH =12CE ,∴FG =FH .26.(2021春•泰兴市月考)如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.【分析】连接BD,取BD的中点H,连接HE,HF,根据三角形的中位线的性质得到FH∥BM,FH=12AB,EH∥CN,EH=12CD,根据平行线的性质得到∠BME=∠HFE,∠CNE=∠HEF,根据等腰三角形的性质得到∠HFE=∠HEF,等量代换即可得到结论.【解答】证明:连接BD,取BD的中点H,连接HE,HF,∵E、F分别是BC、AD的中点,∴FH∥BM,FH=12AB,EH∥CN,EH=12CD,∴∠BME=∠HFE,∠CNE=∠HEF,∵AB=CD,∴FH=EH,∴∠HFE=∠HEF,∴∠BME=∠CNE.27.(2021春•沈北新区期末)如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=12CF.【分析】过D 作DG ∥AC ,可证明△AEF ≌△DEG ,可得AF =DG ,由三角形中位线定理可得DG =12CF ,可证得结论.【解答】证明:如图,过D 作DG ∥AC ,则∠EAF =∠EDG ,∵AD 是△ABC 的中线,∴D 为BC 中点, ∴G 为BF 中点,∴DG =12CF ,∵E 为AD 中点,∴AE =DE ,在△AEF 和△DEG 中,{∠EAF =∠EDG AE =DE ∠AEF =∠DEG,∴△AEF ≌△DEG (ASA ), ∴DG =AF ,∴AF =12CF .28.(2021春•莆田期末)如图,已知四边形ABCD 的对角线AC 与BD 相交于点O ,且AC=BD ,M 、N 分别是AB 、CD 的中点,MN 分别交BD 、AC 于点E 、F .你能说出OE 与OF 的大小关系并加以证明吗?【分析】此题要构造三角形的中位线,根据三角形的中位线定理进行证明.【解答】解:相等.理由如下:取AD 的中点G ,连接MG ,NG ,∵G 、N 分别为AD 、CD 的中点, ∴GN 是△ACD 的中位线,∴GN =12AC ,同理可得,GM=12BD,∵AC=BD,∴GN=GM=12AC=12BD.∴∠GMN=∠GNM,又∵MG∥OE,NG∥OF,∴∠OEF=∠GMN=∠GNM=∠OFE,∴OE=OF.29.(2021春•城固县期末)如图,在四边形ABCD中,对角线AC=BD,E,F为AB、CD 的中点,连接EF交BD、AC于P、Q,取BC中点G,连EG、FG,求证:OP=OQ.【分析】根据三角形中位线定理得到EG=12AC,EG∥AC,FG=12BD,FG∥BD,根据平行线的性质、等腰三角形的性质和判定定理证明结论.【解答】证明:∵E,G为AB、BC中点,∴EG=12AC,EG∥AC,∴∠FEG=∠OQP,同理,FG=12BD,FG∥BD,∴∠EFG=∠OPQ,∵AC=BD,∴EG=FG,∴∠FEG=∠EFG,∴∠OPQ=∠OQP,∴OP=OQ.30.(2021春•三水区期末)如图,在△ABC中,AB=AC,点D,E分别是边AB,AC的中点,连接DE、BE,点F,G,H分别为BE,DE,BC的中点.(1)求证:FG=FH;(2)若∠A=90°,求证:FG⊥FH;(3)若∠A=80°,求∠GFH的度数.【分析】(1)由中点性质及AB=AC,得到BD=EC,再由中位线性质证明FG∥BD,GF=12BD,FH∥EC,FH=12EC,从而得到FG=FH;(2)由(1)FG∥BD,FH∥EC,再由∠A=90°,可证FG⊥FH;(3)由(1)FG∥BD,∠A=80°,可求得∠FKC,再由FH∥EC,可求得∠GFH的度数.【解答】(1)证明:∵AB=AC,点D,E分别是边AB,AC的中点∴BD=EC∵点F,G,H分别为BE,DE,BC的中点∴FG∥BD,GF=12 BDFH∥EC,FH=12 EC∴FG=FH;(2)证明:由(1)FG∥BD又∵∠A=90°∴FG⊥AC∵FH∥EC∴FG⊥FH;(3)解:延长FG交AC于点K,∵FG∥BD,∠A=80°∴∠FKC=∠A=80°∵FH∥EC∴∠GFH=180°﹣∠FKC=100°。

三角形中位线定理应用[下学期]--华师大版

三角形中位线定理应用[下学期]--华师大版
三角形中位线的应用
回忆与复习:
1.三角形中位线的定义 2.三角形中位线定理
3.如图,A、B两点分别位于一个池塘 的两端,小明想用绳子测量A、B间的 距离,但绳子不够,一位同学帮他想了 一个主意:先在地上取一个可以直接达 到A、B的点C,找到AC、BC的中 点D、E,并且测出DE的长为15米, 则A、B两点间的距离为______ 米.
上海自动化仪表厂系统工程公司、“销售公司”、“上海自动化仪表厂系统工程公司系统工程公司”、“DCS分公司”、“进出口部”、“国内 备品备件部”、共有18个工厂、21家合资企业。上海自动化仪表厂系统工程公司 上海自动化仪表厂系统工程公司 duh61exc 主要产品有工业生产过程控制系统装置和仪表分析仪器、汽车电子、计算机、楼宇控制系统、商业和金融自动化系统、可编程序控制 器(PLC)、家用电器及仪表控制柜、各种仪表元件和气动元件等。在工业生产过程控制方面的产品有20个大类、150个系列、3000多种品种, 拥有作为现代工业过程控制的分散控制系统(DCS)及各类控制、调节、温度、测量、显示、记录仪以及执行机构和调节阀。 日飞升,真是神仙哪!”下人涕泗横流的报告。老太太回来后听说,登时就怒了,对着明远:“请了活神仙来家,怎么不赶紧叫我去 见?”“„„”明远一脸委屈的想,“要不是这家伙临走前来了这一手,谁认他是真神仙?还不当他是江湖把式吗?请您搁下要事回府、屈尊 去见他,怎开得了这个口!”正是临走前使的一招,才使得张神仙的“活儿”有了质的飞跃,成为上上下下里里外外诸色人等口中津津乐道的 话题。而韩毓笙“芙蓉花主”的名头,听说的人更多了。第三十四章 凭尽栏杆说元夜(1)宝音的身体好得很快。老太太原是不想留个病人在 屋里的,见她病势来得急去得快,刘大夫也说不过是饮食不当、热毒急了攻破喉头,其实无事,也便放宽了心,留她在屋中再看看。这日但见 宝音对着一本书,一边还比着手势,便动问道:“怎么了?不好好养身子,这还比划捣药呢?”宝音忙阖起书,屈膝道:“这本书„„写着捣 茶。”她从明秀那儿,没借佛经,倒借了本茶经,还是挺古早的簿子,里头说吃茶,要捣、要煎、要放盐放油放香料,甚或有把茶叶都吃下去 的!可是作怪。丫头们都纳闷:“好茶叶一捣,不就坏了么,还怎么泡?”老太太倒触动心上痒处,笑道:“你们不知道。拿来我看看。”丫 头捧起书,且喜书上字体不小,她眯着眼看了会儿,道:“果然如此,这倒说的是古法儿的吃茶法呢!——你们单知道‘喝茶’,土话儿也叫 ‘吃茶’,哪知道老早时候,兴的就是吃茶?茶叶先经蒸制,压成饼,好的茶饼,只取芽尖一缕,光明莹洁,状若银线,压得密,手掌薄、半 个手掌大这么一小团,拿起来沉甸甸的,就快半斤了!叫密云团。用时切一小片,磨细下来,已够煮三五碗茶汤——三碗为佳,最多煮五碗, 这才是会吃茶的人。我的爷爷,每次只吃三碗,他就有那种密云团,茶汤浓得呀,再没其他相仿佛的好比拟,那种着实劲儿,用‘喝’就太轻 浮了,所以叫‘吃’。我小时候,从京城以降,已经都兴起炒青泡茶法儿了,他还恋着团茶,我亲手伺候他,煮完了最后一片密云团,再就没 了。市面上再没人能做那种茶啦!”老太太的爷爷,其实是晚年获罪,被抄赃,一吓而亡。老太太很少讲她爷爷的事,无非一次兴起,跟宝音 提过她十来岁时跟爷爷学得一手好煮茶手艺,也不过那么几句话,点到即止。现在她也打算“即止”了,但小丫头们没有宝音识相,簇拥过来 还想听她讲团茶,宝音在当中只凑趣插了几句嘴,老太太忽然发现自己已经兴致勃勃谈起来了。跟她的爷爷无关,只是团茶。话头被引导得那 么好,纯粹说古制,给小孩子们开开眼。她不觉间讲解了螃蟹眼、鹧鸪斑、三沸三辨、十二先生、兔豪鱼目、冷粥栗纹。这些术语、掌故,久 储在她心里,而今渐渐活了过来。老人

三角形中位线习题

三角形中位线习题

三角形中位线练习题(一)计算2.已知△ABC中,AB∶BC∶CA=3∶2∶4,AB=9厘米,D,E,F分别是AB,BC,AC的中点,求△DEF的周长.3.已知△ABC中,D,E,F分别是AB,BC,AC的中点,△ABC的周长与△DEF的周长的和等于18厘米,求△DEF的周长.4.已知△ABC中,D,E分别是AB,AC的中点,F为BC上5.已知△ABC中,D为AB的中点,E为AC上一点,AE=2CE,CD,BE交于O点,OE=2厘米,求BO的长.6.已知梯形ABCD中,AD∥BC,AD<BC,E,F分别是AB,DB的中点,EF交DC于G,EF∶FG=1∶2,AD=7厘米,求BC的长.7.已知△ABC中,D为BC上的一点,E,F,H,G分别是AC,CD,DB,AB的中点,EF +AD=6厘米,求GH的长.8.已知△ABC中,AD⊥BC于D,E,F,G分别是AB,BD,9.已知四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,HF=EG,AC=4厘米,BD=2厘米,求四边形ABCD的面积.10.已知梯形ABCD中,AB∥CD,AD=BC,AC平分∠DAB,AC⊥BC,AB=8厘米,M,N分别是AC,BD的中点,求MN的长.11.已知梯形ABCD中,AD∥BC,AD<BC,AB=DC=12厘米,E,F分别是AB,DB的中点,延长EF交DC于G,EF=4厘米,FG=10厘米,求梯形ABCD的底角.12.已知△ABC中,BD,CE分别是∠ABC,∠ACB的平分线,AH⊥BD于H,AF⊥CE于F.若AB=14厘米,AC=9厘米,BC=18厘米,求FH的长.(二)证明13.已知:如图4-108,从△ABC的顶点A向∠B,∠C的平分线引垂线,垂足分别是D,E.求证:DE∥BC.14.已知:在四边形ABCD中,AB=CD,AD<BC,E,F,P分别是BD,AC,BC的中点.求证:∠PEF=∠PFE.15.已知:在△ABC中,AH⊥BC于H,D,E,F分别是BC,AC,AB的中点.求证:△DEF≌△HFE.16.已知:在△ABC中,AB>AC,AD⊥BC于D,E,F,G分别是AB,BC,AC的中点.求证:∠BFE=∠EGD.17.已知:在△ABC中,AB>AC,D,E,F分别是BC,AB,AC的中点,EG∥AD交FD的延长线于G.求证:AB=GF.18.已知:△ABC中,AB>AC,CD平分∠ACB,AD⊥DC,F为AC的中点,延长FD交AB 于E点.求证:19.已知:△ABC中,E为AC上一点,AE=2CE,D为AB的中20.已知:在△ABC中,中线BE,CF交于O点,G,H分别是OB,OC的中点.求证:FG∥EH.21.已知:如图4-109,E,F分别是AB,AC的中点,延长EF交∠ACD的平分线于G 点.求证:AG⊥CG.22.证明:四边形两组对边中点连线互相平分.23.已知:在矩形ABCD中,AC,BD相交于O点,E,F分别是OA,OD的中点.求证:四边形EBCF是等腰梯形.24.求证:等腰梯形的上、下底中点的连线与两腰中点连线互相垂直.25.已知:在四边形ABCD中,AB=DC,E,F分别是AD,BC的中点,GH⊥EF与AB,DC 分别交于G,H,O为垂足.求证:∠AGH=∠DHG.26.已知:四边形ABCD中,AC=BD,AC,BD交于O点,E,F分别是AB,CD的中点,连结EF分别与BD,AC交于G,H.求证:△OGH是等腰三角形.27.已知:如图4-110,P为矩形ABCD内的一点,四边形BCPQ是平行四边形,A′,B′,C′,D′分别是AP,PB,BQ,QA的中点.求证:A′C′=B′D′.28.已知:在四边形ABCD中,CD≥AB,E,F分别是AC,29.已知:在四边形ABCD中,AD≥BC,E,F分别是AB,30.已知:△ABC中,D,E,F分别是AB,BC,AC的中点,H为BE上任一点,作DG∥FH交CB的延长线于G.求证:GB=HE.31.已知:在△ABC中,∠A=90°,D,E分别是AB,AC上任意一点,M,N,P,Q分别是DE,BE,BC,CD的中点.求证:MP=NQ.32.已知:如图4-111,△ACN,△ABM为等边三角形,D,E,F分别是BM,BC,CN的中点.求证:DE=EF.33.已知:如图4-112,△ABC中,F为BC的中点,D,E为△ABC外的两点,∠D=90°,AD=DB,∠E=90°,AE=EC.求证:DF=EF.34.已知:在四边形ABCD中,G,H分别是AB,AD的中点,连结CG,CH与BD分别交于E,F两点,且BE=EF=FD.求证:四边形ABCD是平行四边形.若HF=3厘米,求CH的长.35.已知:在△ABC中,D,E分别是AB,AC上的点,且BD=CE,F,G分别是BE,CD 的中点,直线FG与AB,AC分别交于M,N.求证:AM=AN.若∠AMN=62°,求∠A的度数.36.已知:梯形ABCD中,AD∥BC,AD<BC,AB=DC,AC,BD交于O点,∠BOC=60°,E,F,G分别是AO,BO,DC的中点.求证:△EFG是等边三角形.37.如图4-113,已知在直角三角形ABC中,∠BAC=90°,D,E,F分别是BC,CA,AB 的中点,AD,EF交于O点.(1)求证:AD=EF;(2)若∠DOF=2∠AOF,求证:△ABD是等边三角形.。

专题16 三角形中位线定理(解析版)

专题16 三角形中位线定理(解析版)

专题16 三角形中位线定理一.选择题1.在△ABC中,D、E分别是AB、AC的中点,则下列说法正确的是()A.CE=BC B.DE=AB C.∠AED=∠C D.∠A=∠C 解:∵D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE BC,故B选项说法错误;CE与BC不一定相等,故A选项说法错误;BD与DE不一定相等,B选项说法错误;由平行线的性质知∠AED=∠C,故选项C说法正确;∠A与∠C不一定相等,故选项D说法错误;故选:C.2.如图,D、E分别是△ABC的边AB、AC的中点,若BC=6,则DE=()A.2 B.3 C.4 D.5解:∵D、E分别是△ABC的边AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=3,故选:B.3.A,B两地被池塘隔开,小明先在AB外选一点C,然后分别步测出AC,BC的中点D,E,并测出DE 的长为20m,则AB的长为()A.10m B.20m C.30m D.40m解:∵点D,E是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=40m,故选:D.4.如图,在四边形ABCD中,P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠EPF =140°,则∠EFP的度数是()A.50°B.40°C.30°D.20°解:∵P是BD的中点,E是AB的中点,∴PE是△ABD的中位线,∴PE=AD,同理,PF=BC,∵AD=BC,∴PE=PF,∴∠EFP=×(180°﹣∠EPF)=×(180°﹣140°)=20°,故选:D.5.如图,在△ABF中,点C在中位线DE上,且CE=CD,连接AC,BC,∠ACB=90°,若BF=20,则AB的长为()A.10 B.12 C.14 D.16解:∵DE是△ABC的中位线,BF=20,∴DE=BF=10,∵CE=CD,∴CD=DE=8,∵∠ACB=90°,∴AB=2CD=16,故选:D.6.如图,在△ABC中,BD平分∠ABC,AF⊥BD于点E,交BC于点F,点G是AC的中点,若BC=10,AB=7,则EG的长为()A.1.5 B.2 C.2.5 D.3.5解:∵BD平分∠ABC,AF⊥BD,∴∠ABE=∠FBE,∠AEB=∠FEB=90°,∵BE=BE,∴△ABE≌△FBE(ASA),∴BF=AB=7,AE=EF,∵BC=10,∴CF=3,∵点G是AC的中点,∴AG=CG,∴EG=CF=,故选:A.7.如图,在△ABC中,BC=20,D、E分别是AB、AC的中点,F是DE上一点,DF=4,连接AF,CF,若∠AFC=90°,则AC的长度为()A.10 B.12 C.13 D.20解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=10,∴EF=DE﹣DF=10﹣4=6,在Rt△AFC中,AE=EC,∴AC=2EF=12,故选:B.8.如图,在△ABC中,AB=6,BC=8,D、E、F分别为AC、BC和AB边上的中点,则四边形BEDF的周长是()A.10 B.12 C.14 D.16解:∵D、E分别为AC、BC边上的中点,∴BE=BC=4,DE是△ACB的中位线,∴DE=AB=3,∵D、F分别为AC、AB边上的中点,∴BF=AB=3,DF是△ABC的中位线,∴DF=BC=4,∴四边形BEDF的周长=BE+DE+DF+BF=4+3+4+3=14,故选:C.9.如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB =90°,且AB=8,BC=14,则EF的长是()A.2 B.3 C.4 D.5解:∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∵BC=14,∴DE=BC=7,∵∠AFB=90°,AB=8,∴DF=AB=4,∴EF=DE﹣DF=7﹣4=3,故选:B.10.如图,点P是△ABC内一点,AP⊥BP,BP=12,CP=15,点D,E,F,G分别是AP,BP,BC,AC的中点,若四边形DEFG的周长为28,则AP长为()A.13 B.9 C.5 D.4解:∵点D,E,F,G分别是AP,BP,BC,AC的中点,∴DG=EF=PC=15=,DE=FG=AB,∵四边形DEFG的周长为28,∴DE=FG=×(28﹣﹣)=,∴AB=13,∵AP⊥BP,BP=12,∴AP===5,故选:C.11.如图,四边形ABCD中.AC⊥BC,AD∥BC,BD为∠ABC的平分线,BC=3,AC=4.E,F分别是BD,AC的中点,则EF的长为()A.1 B.1.5 C.2 D.2.5解:∵AC⊥BC,∴∠ACB=90°,∵BC=3,AC=4,∴AB=5,∵AD∥BC,∴∠ADB=∠DBC,∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD=5,连接BF并延长交AD于G,∵AD∥BC,∴∠GAC=∠BCA,∵F是AC的中点,∴AF=CF,∵∠AFG=∠CFB,∴△AFG≌△CFB(AAS),∴BF=FG,AG=BC=3,∴DG=5﹣3=2,∵E是BD的中点,∴EF=DG=1.故选:A.12.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为()A.2B.5 C.4D.10解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=AH,∵△DFE的面积为1,∴DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC==2.故选:A.二.填空题13.如图,已知线段AB,将线段AB沿某个方向平移4个单位得到线段DC,其中点D是A的对应点,且点D不在直线AB上.连接AC,BD交于点O,若E是CD中点,则OE的长度值是.解:如图,连接AD,BC,根据平移的性质知:AD=4,AB=CD且AB∥CD,则四边形ABCD是平行四边形,∴O点是AC的中点,∵E是CD中点,∴OE是△ACD的中位线,∴OE=AD=2.故答案是:2.14.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=4,则DN=.解:连接CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=2,∵M、N分别是AB、AC的中点,∴MN=BC,MN∥BC,∵CD=BD,∴MN=CD,又MN∥BC,∴四边形NDCM是平行四边形,∴DN=CM=2,故答案为:2.15.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别为AB、AC、AD的中点.若AB=6,则EF的长度为.解:在Rt△ABC中,D为AB的中点,∴CD=AB=3,∵E、F分别为AC、AD的中点,∴EF是△ACD的中位线,∴EF=CD=,故答案为:.16.如图,在△ABC中,AB=13,BC=12,D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的面积是.解:∵D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴AC=2DE=5,∵AC2+BC2=52+122=169,AB2=169,∴AC2+BC2=AB2,∴∠ACB=90°,∴△ABC的面积=×5×12=30,∵D是AB的中点,∴△ACD的面积=△ABC的面积×=15.故答案为:15.17.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线.①点M是边BC中点,则DM=;②探究:点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN、ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.解:(1)∵∠A=90°,AB=AC,BC=20,∴2AC2=BC2=202,∴AC=10,∵D,M分别是AB,BC的中点,∴DM=AC=5;(2)如图作EF⊥BC于F,DN′⊥BC于N′交EM于点O′,此时∠MN′O′=90°,∵DE是△ABC中位线,∴DE∥BC,DE=BC=10,∵DN′∥EF,∴四边形DEFN′是平行四边形,∵∠EFN′=90°,∴四边形DEFN′是矩形,∴EF=DN′,DE=FN′=10,∵AB=AC,∠A=90°,∴∠B=∠C=45°,∴BN′=DN′=EF=FC=5,∴=,∴=,∴DO′=;当∠MON=90°时,∵△DOE∽△EFM,∴=,∵EM==13,∴DO=,故答案为:或.三.解答题18.已知:△ABC中,D是BC上的一点,E、F、G、H分别是BD、BC、AC、AD的中点,求证:EG、HF互相平分.证明:连接EH,GH,GF,∵E、F、G、H分别是BD、BC、AC、AD的中点,∴AB∥EH∥GF,GH∥BC∥BF.∴四边形EHGF为平行四边形.∵GE,HF分别为其对角线,∴EG、HF互相平分.19.如图,点A(0,8),点B(4,0),连接AB,点M,N分别是OA,AB的中点,在射线MN上有一动点P,若△ABP是直角三角形,求点P的坐标.解:∵A(0,8)B(4,0),∴AB=4,∵点M,N分别是OA,OB的中点,∴MN∥AB,MN=OB=2,OM=4,∴点P的纵坐标为4,∵△ABP是直角三角形,∴∠APB=90°或∠ABP=90°,①当∠APB=90°时,则PN=AB=2,∴PM=2+2,∴P(2+2,4),②当∠ABP=90°时,过点P作PC⊥x轴于C,则四边形MOCP是矩形,过P作PC⊥x轴于C,则△ABO∽△BPC,∴==1,∴BP=AB=4,∴PC=OB=4,∴BC=8,∴PM=OC=4+8=12,∴P(12,4),综上可得点P的坐标为(2+2,4)或(12,4).20.如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点E 是AB的中点,连结EF.(1)求证:EF∥BC;(2)若四边形BDFE的面积为3,求△AEF的面积.解:(1)∵DC=AC,CF平行∠ACD,∴F是AD的中点,又∵E是AB的中点,∴EF是△ABD的中位线,∴EF∥BC;(2)∵EF是△ABD的中位线,∴EF∥BC,EF:BD=1:2,如图,连接DE,则S△DEF:S△DEB=1:2,又∵四边形BDFE的面积为3,∴S△DEF=1,又∵F是AD的中点,∴S△DEF=S△AEF=1.21.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)AB=6,AC=4,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?证明你的结论.解:(1)∵AD是高,∴∠ACB=∠ADC=90°,在Rt△ADB中,E是AB的中点,∴DE=AB=3,AE=AB=3,同理可得,AF=DF=AC=2,∴四边形AEDF的周长=3+3+2+2=10;(2)EF垂直平分AD,理由如下:∵EA=ED,FA=FD,∴EF是AD的垂直平分线.22.如图,△ABC中,D,E,F分别是AB,AC,BC的中点.(1)若EF=5cm,则AB=cm;若BC=9cm,则DE=cm;(2)中线AF与中位线DE有什么特殊的关系?证明你的猜想.解:(1)∵在△ABC中,点E、F分别是AC、BC的中点,∴EF是△ABC的中位线,∴EF∥AB且EF=AB.又EF=5cm,∴AB=10cm.同理,DE=BC=4.5cm;故答案是:10、4.5(2)互相平分,理由:如图,连接DF,∵AD=EF,AD∥EF,∴四边形ADFE为平行四边形,∴中线AF与DE的关系是互相平分.23.在△ABC中,D、E分别是AB,AC的中点,作∠B的角平分线(1)如图1,若∠B的平分线恰好经过点E,猜想△ABC是怎样的特殊三角形,并说明理由.(2)如图2,若∠B的平分线交线段DE于点F,已知AB=8,BC=10,求EF的长度.(3)若∠B的平分线交直线DE于点F,直接写出AB、BC、EF三者之间的数量关系.解:(1)∵D、E分别是AB,AC的中点,∴DE=BC,DE∥BC,∴∠DEB=∠EBC,∵BE是∠B的角平分线,∴∠DBE=∠EBC,∴∠DEB=∠DBE,∴DE=DB=AB,∴AB=BC,∴△ABC是等腰三角形;(2)由(1)得,DE=BC=5,DF=AB=4,∴EF=DE﹣DF=1;(3)当点F在线段DE上时,由(2)得,EF=(BC﹣AB);当点F在线段DE的延长线上时,EF=(AB﹣BC).。

三角形的中位线习题归类(绝对经典,绝对震撼)

三角形的中位线习题归类(绝对经典,绝对震撼)

三角形的中位线习题归类一、 直接应用1. 如图1所示,EF 是△ABC 的中位线,若BC=8cm ,则EF=_______cm .2.三角形的三边长分别是3cm ,5cm ,6cm ,则连结三边中点 所围成的三角形的周长是_________cm .3.在Rt △ABC 中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角 边中点的线段长为_______.4.若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为_______.5.如图2所示,A ,B 两点分别位于一个池塘的两端,小聪想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D ,E ,并且测出DE的长为10m ,则A ,B 间的距离为_______.6.已知△ABC 的周长为1,连结△ABC 的三边中点构成第二个三角形, •再连结第二个三角形的三边中点构成第三个三角形,依此类推, 第2010个三角形的周长是( )A 、20081B 、20091C 、220081D 、220091 7.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6, AC=4,则四边形AEDF•的周长是( )A .10B .20C .30D .408.如图所示,□ ABCD 的对角线AC ,BD相交于点O ,AE=EB ,求证:OE ∥BC .9.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=12BD .10.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC .11.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE 分别交BC 、BD 于点F 、G ,连结AC交BD 于O ,连结OF .求证:AB =2OF .12.如图,△ABC 中,AD=41AB ,AE=41AC ,BC=16.求DE 的长.(角平分线的垂线必有等腰三角形)13.如图,在△ABC 中,已知AB=6,AC=10,AD 平分∠BAC ,BD ⊥AD 于点D ,E•为BC 中点.求DE 的长.14.如图,AD 是△ABC 的外角平分线,CD ⊥AD 于D ,E 是BC 的中点.求证:(1)DE ∥AB ; (2)DE=21(AB+AC )如图17,BE 、CF 是△ABC 的角平分线,AN ⊥BE 于N ,AM ⊥CF 于M . 求证:MN ∥BC .B G A E F H D C二、中点寻线,线组形(多个中点)1.如图,在四边形ABCD 中,点E 是线段AD 上的任意一点 ,G F H ,,分别是BE BC CE ,,的中点.证明四边形EGFH 是平行四边形;2.如图,在四边形ABCD 中,AD=BC ,点E ,F ,G 分别是AB ,CD ,AC 的中点。

中位线(三角形)例题

中位线(三角形)例题

6、已知D、E分别是AC、BC的中点,S△OBE=4, 求:S△ODE=_______ S△ABC=_________
A D O B E C
7、已知:BD平分∠ABC,BD⊥AD,AB=8, BC=12,E是AC的中点, 1 求DE的长;求证: DE 2 ( BC AB )
A
E
D B C
8、如图,在四边形ABCD中,AB>CD,E、F分别 是对角线BD、AC的中点.求证:EF>
.
9、已知D、E、F分别是△ABC的三边的中点, 依次取第二个三角形三边的中点,第三个三角形 三边的中点……,若△ABC的周长为a,面积为S。 求:①第二个三角形DEF的周长;②第三个三角 形GHI的周长;③第2014个三角形的周长。
F C
E
①顺次连接任意四边形的中点得到的四边形是? ②顺次连接矩形四边的中点得到的四边形是? ③顺次连接菱形四边中点得到的四边形是? ④顺次连接正方形四边中点得到的四边形是? ①当ABCD满足_______时, D D1 A1B1C1D1是矩形; C2 A D 2 ②当ABCD满足_______时, C1 A1 A1B1C1D1是菱形; B2 A2 ③当ABCD满足_______时, B C B1 A1B1C1D1是正方形; ④若ABCD的面积为S,则A1B1C1D1的面积是_____; A2B2C2D2的面积是_____;AnBnCnDn的面积是 _______。
A A A A A A
A F B E
G D
C
4、已知,G是重心,过G作EF平行于BC,求: AF:FC=?EG:GF=?S△BGC:S△ABC=?
A
D
E G F
B
C
5、已知:D、E分别是AB、AC的中点, S△DOE=3, 求S△ABC=_____; S△OBC=_____A ;S△ADE=____。

5.6 三角形中位线

5.6 三角形中位线

A
A
E
D
C
D
E
A E
F
B
C
B
C
三角形的中位线与第三边有什么关系?
三角形的中位线平行且等于第三边的一半
已知:如图,DE是△ABC的中位线.
1 求证: DE // BC 2
证明:如图,以点E为旋转中心,把⊿ADE绕点E, 按顺时针方向旋转180゜,得到⊿CFE 得到⊿CFE,⊿ADE≌⊿CFE. ∴∠ADE=∠F,AD=CF,DE=EF ∴AB∥CF 又∵BD=AD=CF, ∴四边形BCFD是平行四边形
E C
如图,点D、E、F分别 是AB、AC、BC的中点.
F
(1) △DEF的周长与 △ABC的周长有什么关系? (2) △DEF的面积与 △ABC的面积有什么关系?
已知:如图,在四边形ABCD中,E、F、G、H分别是 AB、BC、CD、DA的中点. 求证:四边形EFGH是平行四边形.
A E H
证明:如图,连接AC
C
∴AB∥CF。
又∵BD=AD=CF, ∴四边形BCFD是平行四边形(一组对边平 行且相等的四边形是平行四边形), ∴DF∥BC(根据什么?), ∴DE 1/2BC
返回
D
B
证法二:过点C作AB的平行 A 线交DE的延长线于F ∵CF∥AB, E F ∴∠A=∠ECF 又AE=EC,∠AED=∠CEF C ∴△ADE≌△CFE ∴ AD=FC 又DB=AD, ∴DB FC ∴四边形BCFD是平行四边形 ∴DE// BC 且DE=EF=1/2BC
A E
D
F
B
C
DF//BC
DE// BC
1 2
已知:如图,DE是△ABC的中位线.

三角形的中位线典型题(精选)

三角形的中位线典型题(精选)

【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =.C ED B A【例2】 在ABC △中,CD 、AE 分别为AB 、BC 边上的高,60B =︒∠,求证:12DE AC =. CE DB A【例3】 如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.三角形的中位线【例4】 已知四边形ABCD 的对角线AC BD =,E 、F 分别是AD 、BC 的中点,连结EF 分别交AC 、BD于M 、N ,求证:AMN BNM =∠∠.CM FE NDB A【例5】 已知:ABCD 是凸四边形,且AC BD <.E F 、分别是AD BC 、的中点,EF 交AC 于M ;EF 交BD 于N ,AC 和BD 交于G 点.求证:GMN GNM ∠>∠.GNM FE DCBA【例6】 在ABC ∆中,90ACB ∠=︒,12AC BC =,以BC 为底作等腰直角BCD ∆,E 是CD 的中点,求证:AE EB ⊥且AE BE =.EDCBA【例7】 如图,在五边形ABCDE 中,90ABC AED ∠=∠=︒,BAC EAD ∠=∠,F 为CD 的中点.求证:BF EF =.EDFCBA【例8】 如图所示,P 是ABC ∆内的一点,PAC PBC ∠=∠,过P 作PM AC ⊥于M ,PL BC ⊥于L ,D 为AB 的中点,求证DM DL =.LPMD CBA【例9】 如图所示,在ABC ∆中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE DF =.过E 、F 分别作直线CA 、CB 的垂线,相交于点P ,设线段PA 、PB 的中点分别为M 、N .求证: (1)DEM FDN ∆∆≌; (2)PAE PBF ∠=∠.【例10】 如图所示,已知ABD ∆和ACE ∆都是直角三角形,且90ABD ACE ∠=∠=︒,连接DE ,设M 为DE的中点.(1)求证MB MC =. (2)设B A D C A E ∠=∠,固定Rt ABD ∆,让Rt ACE ∆移至图示位置,此时MB MC =是否成立?请证明你的结论.EMDCBA EMDCBA【例11】 已知:在ABC ∆中,分别以AB 、AC 为斜边作等腰直角三角形ABM ,和CAN ,P 是边BC 的中点.求证:PM PN =PNMCBA【例12】 已知,如图四边形ABCD 中,AD BC =,E 、F 分别是AB 和CD 的中点,AD 、EF 、BC 的延长线分别交于M 、N 两点.求证:AME BNE ∠=∠.A CDM FE NB【例13】 已知:在ABC ∆中,BC AC >,动点D 绕ABC ∆的顶点A 逆时针旋转,且AD BC =,连结DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N .F图3图2图1F N MDCE B ANMDCE BAHF (N )DM C E BA(1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连结HE 、HF ,根据三角形中位线定理和平行线的性质,可得结论AMF BNE ∠=∠(不需证明).(2)当点D 旋转到图2或图3中的位置时,AMF ∠与BNE ∠有何数量关系?请分别写出猜想,并任选一种情况证明.【例14】 如图,AE AB ⊥,BC CD ⊥,且AE AB =,BC CD =,F 为DE 的中点,FM AC ⊥.证明:12FM AC =.NM FEDCBA【例15】 如左下图,在梯形ABCD 中,AB CD ∥,E 、F 分别是AC 、BD 中点.求证:EF AB ∥,且()12EF AB CD =-.FECDBA【例16】 等腰梯形ABCD 中,AB CD ∥,AC BD =,AC 与BD 交于点O ,60AOB ∠=︒,P 、Q 、R 分别是OA 、BC 、OD 的中点,求证:PQR ∆是正三角形.Q P R O D CB A【例17】 AD 是ABC ∆的中线,F 是AD 的中点,BF 的延长线交AC 于E .求证:13AE AC =. FA DE CB【例18】 在图1至图3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合,求证:FM MH =,FM MH ⊥;(2)将图1中的CE 绕点C 顺时针旋转一个锐角,得到图2,求证:FMH ∆是等腰直角三角形; (3)将图2中的CE 缩短到图3的情况,F M H ∆还是等腰直角三角形吗?(不必说明理由)图1EHF G(N)DC(M)BA图2M NHG FEDC BA图3NHG M FEDCB A【例19】 如图,已知ABC ∆,线段BE 、CF 分别平分ABC ∠、ACB ∠、AG BE ⊥,AH CF ⊥,H 、G 为垂足,求证:GH BC ∥.HGFCBAE【例20】 已知ABC ∆中,90ACB ∠=︒,AB 边上的高线CH 与ABC ∆的两条内角平分线AM 、BN 分别交于P 、Q 两点PM 、QN 的中点分别为E 、F .求证:EF AB ∥.QPEF MN HCBA。

三角形的中位线习题归类(绝对经典-绝对震撼)(同名17763)

三角形的中位线习题归类(绝对经典-绝对震撼)(同名17763)

三角形的中位线习题全面归类一、直接应用1 .如图1所示,EF是厶ABC 的中位线,若BC=8cm 则EF=___________ cm.2 •三角形的三边长分别是3cm, 5cm, 6cm,则连结三边中点所围成的三角形的周长是 ______________ cm .3.在Rt△ ABC中,/ C=90°, AC=?5, ?BC=?12, ?则连结两条直角边中点的线段长为 ___________ .4.若三角形的三条中位线长分别为2cm, 3cm, 4cm,则原三角形的周长为 __________ .5 •如图2所示,A, B两点分别位于一个池塘的两端,小聪想用绳子测量A, B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A, B的点C,找到AC, BC的中点D, E,并且测岀DE 的长为10m,则A, B间的距离为___________ .6.已知△ ABC的周长为1,连结△ ABC的三边中点构成第二个三角形, ?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是()12008 2009 20082 2 7 •如图4,在厶ABC中,E, D, F分别是AB,AC=4,则四边形AEDF?的周长是()A. 10 B . 20 C . 30 D . 408. 如图所示,口ABCD的对角线AC, BD 相交于点0, AE=EB求证:OE// BC.9. 如图所示,在△ ABC中,点D在BC上且1CF 平分/ ACB AE=EB 求证:EF= BD.22009A 4CD=CAB(角平分线的垂线必有等腰三角形 )13. 如图,在△ ABC 中,已知 AB=6, AC=10, AD 平分 / BAC BD 丄AD 于点D , E?为BC 中点.求 DE 的长.AD 是厶ABC 的外角平分线,1(1) DE /AB; ( 2) DE=- 2如图17, BE 、CF 是厶ABC 的角平分线, AN 丄BE 于N , AM 丄CF 于10. 如图所示,已知在 口ABC 冲,E , F 分别是AD, BC 的中点,求证:MN/ BC. i11. 已知:如图,E 为口ABCD 且CE = DC ,连结AE 分别交 中DC 边的延长线上的一点,BC 、BD 于点F 、G ,连结AC 交BD 于0,连结 OF .求证:AB = 2OF .1 112. 如图,△ ABC 中,AD=_AB, AE=_ AC, BC=16.求DE 的长. 14.如图, 求证:M.求证:MN // BC.二、中点寻线,线组形(多个中点)1. 如图,在四边形ABCD中,点E是线段AD上的任意一点,G, F,H分别是BE, BC,CE的中点. 证明四边形EGFH是平行四边形;2. 如图,在四边形ABCD中,AD=BC,点E,F,G分别是AB,CD,AC的中点。

2021年中考复习分类专题练习:三角形中位线定理综合运用(一)

2021年中考复习分类专题练习:三角形中位线定理综合运用(一)

2021年中考复习分类专题练习:三角形中位线定理综合运用(一)一.选择题1.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是AC、BC的中点,则DE的长是()A.2 B.C.D.0.52.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上.DE∥BC,DE=BC,连结DF、EF.添加下列条件后,仍无法判定△BFD与△EDF全等的是()A.EF∥AB B.BF=CF C.∠A=∠DFE D.∠B=∠DEF 3.如图,已知△ABC,AB=10,AC=8,BC=6,D、E分别是AB、AC的中点,连接ED、CD,则△CDE的周长为()A.11 B.12 C.13 D.144.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为()A.125 cm B.100 cm C.75 cm D.50 cm5.如图,在△ABC中,∠ACB=90°,D,E分别是AB,AC的中点,若CD=2,∠ADE =30°,则BC的长为()A.B.2C.4 D.4.86.如图,在▱ABCD中,AB=3,AD=5,AM平分∠BAD,交BC于点M,点E,F分别是AB,CD的中点,DM与EF交于点N,则NF的长等于()A.0.5 B.1 C.D.27.如图,在△ABC中,AC=8,BC=12,AF交BC于F,E为AB的中点,CD平分∠ACB,且CD⊥AF,垂足为D,连接DE,则DE的长为()A.2 B.C.3 D.48.如图,A,B两地被池塘隔开,小明通过下列方法测出了A,B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A,B间的距离.有关他这次探究活动的描述错误的是()A.S△CMN=S△ABC B.CM:CA=1:2C.MN∥AB D.AB=24m9.如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.1510.如图,△ABC和△DBC均为等腰三角形,∠A=60°,∠D=90°,AB=12,若点E、F、G、H分别为边AB、AC、CD、BD的中点,则四边形EFGH的面积为()A.36(+1)B.18(+1)C.12(+1)D.9(+1)11.如图,△ABC的周长为31,点D、E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.3 B.3.5 C.4 D.4.612.如图,△DEF的顶点分别是△ABC各边的中点,△GHI的顶点分别是△DEF各边的中点,…,依次做下去,记△ABC得周长为P1,△DEF的周长为P2,△GHI的周长为P3,…,已知P1=1,则P n等于()A.B.C.D.二.填空题13.如图,在△ABC中,AB=AC,AD为BC边上的高,点E为AC的中点,连接DE.若△ABC的周长为20,则△CDE的周长为.14.如图,已知线段AB,将线段AB沿某个方向平移4个单位得到线段DC,其中点D是A的对应点,且点D不在直线AB上.连接AC,BD交于点O,若E是CD中点,则OE的长度值是.15.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=4,则DN=.16.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别为AB、AC、AD的中点.若AB=6,则EF的长度为.17.如图,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.当BC=4,DE=5,∠FMN=45°时,则BE的长为.三.解答题18.如图,在△ABC中,M是BC的中点,AN平分∠BAC,AN⊥BN于N,已知AB=10,AC=16,求MN的长.19.如图,在△ABC中,D,E分别是AB和AC的中点,F是BC的延长线上一点,DF 平分CE于G,已知CF=1cm,求BC的长.20.由四边形各边中点组成的四边形称为“中点四边形”.如图,在四边形ABCD中,已知E、F、G、H分别是边AB、BC、CD、DA各边的中点.(1)观察并猜想中点四边形EFGH的形状?并证明你的结论;(2)在(1)的条件下,当对角线AC=BD时,中点四边形EFGH的形状又是什么呢?请说明理由.(3)直接写出:①菱形ABCD的中点四边形EFGH的形状是;②对角线相等且互相垂直的四边形ABCD的中点四边形EFGH的形状是.21.在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.22.如图,AD为△ABC的中线,BE为△ABD的中线.(1)在△BED中作BD边上的高,垂足为F;(2)若△ABC的面积为20,BD=5.①△ABD的面积为,②求△BDE中BD边上的高EF的长;(3)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代数式表示)23.已知:△ABC是任意三角形.(1)如图1所示,点M、P、N分别是边AB、BC、CA的中点,求证:∠MPN=∠A.(2)如图2所示,点M、N分别在边AB、AC上,且,,点P1、P2是边BC的三等分点,你认为∠MP1N+∠MP2N=∠A是否正确?请说明你的理由.(3)如图3所示,点M、N分别在边AB、AC上,且,,点P1、P2、…、P2009是边BC的2010等分点,则∠MP1N+∠MP2N+…+∠MP2009N=.(请直接将该小问的答案写在横线上)参考答案一.选择题1.解:∠C=90°,AC=3,BC=4,∴AB==5,∵D、E分别是AC、BC的中点,∴DE=AB=,故选:B.2.解:∵DE∥BC,DE=BC,∴D、E分别是AB、AC的中点,当EF∥AB时,EF=BD,DE=BF,DF=DF,可以判断△BFD与△EDF全等,A不符合题意;当BF=CF时,EF=BD,DE=BF,DF=DF,可以判断△BFD与△EDF全等,B不符合题意;当∠A=∠DFE时,无法判定△BFD与△EDF全等,C符合题意;当∠B=∠DEF时,由∠EDF=∠DFB,DF=F,可以判断△BFD与△EDF全等,D不符合题意,故选:C.3.解:∵D、E分别是AB、AC的中点,∴DE=BC=3,CE=AC=4,∵AB2=100,AC2+BC2=100,∴AB2=AC2+BC2,∴∠ACB=90°,又D是AB的中点,∴CD=AB=5,∴△CDE的周长=DE+CE+CD=12,故选:B.4.解:∵AC⊥BC,OD⊥BC,∴OD∥AC,又点O是OD的中点,∴AC=2OD=100(cm),故选:B.5.解:∵∠ACB=90°,D是AB的中点,∴AD=CD=2,∵D,E分别是AB,AC的中点,∴DE∥BC,DE=BC,∴∠AED=∠ACB=90°,又∠ADE=30°,∴AE=AD=1,DE=AD=,∴BC=2DE=2,故选:B.6.解:过点M作MG∥AB交AD于点G,∵AD∥BC,AB∥MG,∴四边形ABMG是平行四边形,∴∠AGM=∠ABM.∵AM平分∠BAD,∴∠GAM=∠MAB,∴∠AMB=∠AMG.在△AGM与△ABM中,,∴△AGM≌△ABM,∴AB=AG=3,∴四边形ABMG是菱形,∴MC=5﹣3=2.∵EF∥BC,点E,F分别是AB,CD的中点,∴NF是△DCM的中位线,∴NF=MC=1.故选:B.7.解:∵CD平分∠ACB,∴∠ACD=∠FCD,在△ACD和△FCD中,,∴△ACD≌△FCD,∴FC=AC=8,AD=DF,∴BF=BC﹣CF=4,∵E为AB的中点,AD=DF,∴DE是△ABF的中位线,∴DE=BF=2,故选:A.8.解:∵AC,BC的中点M,N,∴MN∥AB,MN=AB,∴△CMN∽△CAB,∴S△CNM:S△ACB=(MN:AB)2,∴S△CNM:S△ACB=1:4,∴S△CMN=S△ABC,故A描述错误;∵M是AC中点,∴CM:CA=1:2,故B描述正确;∵AC,BC的中点M,N,∴MN∥AB,故C描述正确;∵MN的长为12m,MN=AB,∴AB=24m,故D描述正确,故选:A.9.解:如图,∵∠AFC=90°,AE=CE,∴EF==6,DE=1+6=7;∵D,E分别是AB,AC的中点,∴DE为△ABC的中位线,∴BC=2DE=14,故选:C.10.解:∵△ABC和△DBC均为等腰三角形,∠A=60°,∠D=90°,∴△ABC是等边三角形,△DBC等腰直角三角形,∵AB=12,∴BC=12,∴BD=6,连接AD交BC于O,∵AB=AC,BD=CD,∴AD⊥BC,BO=CO,∴AD=AO+OD=6+6,∵点E、F、G、H分别为边AB、AC、CD、BD的中点,∴EH∥AD,EH=AD,FG∥AD,FG=AD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,∵AD⊥BC,∴EH⊥BD,HG⊥AD,∴EH⊥HG,∴∠EHG=90°,∴四边形EFGH是矩形,∵EH=AD=3+3,HG=BC=6,∴四边形EFGH的面积=18(+1),故选:B.11.解:∵BQ平分∠ABC,BQ⊥AE,∴∠ABQ=∠EBQ,∵∠ABQ+∠BAQ=90°,∠EBQ+∠BEQ=90°,∴∠BAQ=∠BEQ,∴AB=BE,同理:CA=CD,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=31﹣BC=31﹣12=19,∴DE=BE+CD﹣BC=7,∴PQ=DE=3.5.故选:B.12.解:∵△ABC的周长为1,△DEF的顶点分别是△ABC各边的中点,∴P2=P1=×1=,同理:P3=P2=×=,…以此类推,P n=P n﹣1=.故选:B.二.填空题(共5小题)13.解:∵AB=AC,AD为BC边上的高,∴BD=DC,∵△ABC的周长为20,∴AB+AC+BC=20,∴AC+CD=10,在Rt△ADC中,点E为AC的中点,∴DE=AC=EA,∴△CDE的周长=CD+CE+DE=CD+CE+AE=CD+AC=10,故答案为:10.14.解:如图,连接AD,BC,根据平移的性质知:AD=4,AB=CD且AB∥CD,则四边形ABCD是平行四边形,∴O点是AC的中点,∵E是CD中点,∴OE是△ACD的中位线,∴OE=AD=2.故答案是:2.15.解:连接CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=2,∵M、N分别是AB、AC的中点,∴MN=BC,MN∥BC,∵CD=BD,∴MN=CD,又MN∥BC,∴四边形NDCM是平行四边形,∴DN=CM=2,故答案为:2.16.解:在Rt△ABC中,D为AB的中点,∴CD=AB=3,∵E、F分别为AC、AD的中点,∴EF是△ACD的中位线,∴EF=CD=,故答案为:.17.解:∵点M,N,F分别为AB,AE,BE的中点,∴MF,MN都是△ABE的中位线,∴MF∥AE,MN∥BE,∴四边形EFMN是平行四边形,∴∠AEB=∠NMF=45°,又∵AB⊥AE,∴∠ABE=45°,∴△ABE是等腰直角三角形,∴AB=AE,∵BC⊥CD,DE⊥CD,又∵∠ABC+∠BAC=90°,∠EAD+∠BAC=90°,∴∠ABC=∠EAD,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴Rt△ABC中,AB==,∴等腰Rt△ABE中,BE==,故答案为:.三.解答题(共6小题)18.解:延长BN交AC于D,∵AN⊥BN,AN平分∠BAC∴∠ANB=∠AND,∠BAN=∠DAN又∵AN=AN∴△ABN≌△ADNAD=AB=10,BN=DN∴点N是BD的中点∵点M是BC的中点∴MN是△BCD的中位线∴MN=CD=(AC﹣AD)=3.19.解:∵D,E分别是AB和AC的中点,∴DE是△ABC的中位线,∴BC=2DE,BC∥DE,∴∠F=∠EDG,∵DF平分CE于G,∴EG=CG,在△DEG和△FCG中,,∴△DEG≌△FCG(AAS),∴DE=CF=1cm,∴BC=2DE=2×1=2cm.20.解:(1)观察猜想:四边形EFGH是平行四边形.证明:如图,连接AC、BD,∵E、F、G、H是四边形ABCD各边中点,∴EH=FG=BD,EH∥FG∥BD,∴四边形EFGH是平行四边形;(2)由(1)可知,同理可证EF=HG=AC,∵AC=BD,∴EH=EF,∴EF=FG=GH=EH,∴四边形EFGH是菱形;(3)①矩形;②正方形.21.解:(1)FH与FC的数量关系是:FH=FC.证明如下:延长DF交AB于点G,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴.∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH.(2)FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.22.解:(1)作EF⊥BD垂足为F,(2)①∵AD为△ABC的中线,∴S△ABD=S△ABC,∵△ABC的面积为20,∴△ABD的面积为10;②∵BE为△ABD的中线,∴S△BDE=S△ABD=5,∵BD=5,∴EF的长=2;③∵EG∥BC,BE为△ABD的中线,∴EG是△ACD的中位线,∴DG是△ACD的中线,∴S△BDE=S△CDG,S△BDE=S△CDG=S△ABD=S△ABC=,∴S△GDC=,又∵S△COD=n,∴S△GOC=S△GDC﹣S△COD=.23.(1)证明:∵点M、P、N分别是AB、BC、CA的中点,∴线段MP、PN是△ABC的中位线,∴MP∥AN,PN∥AM,∴四边形AMPN是平行四边形,∴∠MPN=∠A.(2)解:∠MP1N+∠MP2N=∠A正确.如图所示,连接MN,∵,∠A=∠A,∴△AMN∽△ABC,∴∠AMN=∠B,,∴MN∥BC,MN=BC,∵点P1、P2是边BC的三等分点,∴MN与BP1平行且相等,MN与P1P2平行且相等,MN与P2C平行且相等,∴四边形MBP1N、MP1P2N、MP2CN都是平行四边形,∴MB∥NP1,MP1∥NP2,MP2∥AC,∴∠MP1N=∠1,∠MP2N=∠2,∠BMP2=∠A,∴∠MP1N+∠MP2N=∠1+∠2=∠BMP2=∠A.(3)解:∠A.理由:连接MN,∵,∠A=∠A,∴△AMN∽△ABC,∴∠AMN=∠B,,∴MN∥BC,MN=BC,∵P1、P2、…、P2009是边BC的2010等分点,∴MN与BP1平行且相等,MN与P1P2平行且相等,…,MN与P2009C平行且相等,∴四边形MBP1N、MP1P2N、…、MP2009CN都是平行四边形,∴MB∥NP1,MP1∥NP2,…,MP2009∥AC,∴∠MP1N=∠BMP1,∠MP2N=∠P1MP2,…,∠BMP2009=∠A,∴∠MP1N+∠MP2N=∠BMP1+∠P1MP2+…+∠P2008MP2009=∠BMP2009=∠A.。

专题15 三角形的中位线(含答案)

专题15 三角形的中位线(含答案)

专题15 三角形的中位线知识解读三角形的中位线定理,反映了三角形的中位线与第三边的双重关系:(1)位置关系,三角形的中位线平行于第三边;(2)数量关系,三角形的中位线等于第三边长的一半。

位置关系可证明两直线平行;数量关系可证明线段的倍分关系。

培优学案典例示范一、中位线反映了线段间的平行和数量关系1.如图4-15-1,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()图4-15-1A.2B.3C.52D.4【提示】由于D,E分别是BC,AC的中点,所以DE是△ABC的中位线,根据中位线定6理可知DE∥AB,所以∠BFD=∠ABF;又由于BF平分∠ABC,所以∠ABF=∠CBF,就可证得△BDF为等腰三角形,要求DF 的长,只需求BD的长即可.【技巧点评】当题中有中点时,特别是一个三角形中出现两边中点时,我们常常考虑运用三角形的中位线来解决问题.本题是采用中位线来证明两直线平行.跟踪训练1.如图4-15-2,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10D.11图4-15-2 2.如图4-15-3,已知E为平行四边形ABCD中DC边的延长线的一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF.求证:AB=2OF.图4-15-3【提示】点O是平行四边形两条对角线的交点,所以点O是线段AC的中点,要证明AB=2OF,我们只需证明点F是BC的中点,即证明OF是△ABC的中位线,证明F是BC的中点有两种方法,方法一是证明四边形ABEC是平行四边形,利用平行四边形的对角线互相平分来证明;方法二是证明△ABFQ△ECF,利用全等三角形对应边相等来证明.【解答】【技巧点评】由于中位线等于三角形第三边长的一半,因此当需要证明某一线段是另一线段的一半或两倍,且题中出现中点的时候,常常考虑使用中位线定理.跟踪训练2.如图4-15-4,平行四边形ABCD中,M、N分别是AB、CD的中点,AN与DM相交于点P,BN与CM 相交于点Q.试说明PQ与MN互相平分.图4-15-4二、补全三角形,使得中点连线段成为中位线例3如图4-15-5,已知M、N、P、Q分别是线段AB、BD、CD、AC的中点,四边形MNPQ是平行四边形吗?为什么?【提示】点P、点N分别是CD,BD的中点,很显然PN是△BCD的中位线,所以考虑连接BC,将△BCD补全,然后运用中位线定理解决问题.【解答】图4-15-5 【技巧点评】当一个图形中出现具有公共端点的两条线段的中点时,可考虑连接另外两个端点,构造三角形,使得中点连线段成为中位线.跟踪训练3.如图4-15-6,在△ABC中,E、F分别是AB、BC的中点,G、H是AC的三等分点,EG、FH的延长线相交于点D.求证:四边形ABCD是平行四边形.【解答】图4-15-6三、由一个中点构造中位线解决问题例4如图4-15-7,已知四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,则线段MN的取值范围是()图4-15-7A.1<MN<5B.1<MN≤5C.12<MN52<D.12<MN52【提示】M,N虽然是AD,BC的中点,但MN却不是三角形的中位线,可考虑连接BD,取BD的中点G,线段GM和GN可以看成△ABD和△BCD的中位线,利用中位线可求得GM、GN的长分别为1和1.5.在△GMN中利用三角形两边之和大于第三边以及两边之差小于第三边可求得MN的范围.【技巧点评】当图形中出现中点的时候,就可能应用中位线知识解决问题,如果没有中位线,应考虑构造中位线解决问题.跟踪训练4.如图4-15-8所示.D,E分别在AB,AC上,BD=CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q.求证:AP=AQ.【解答】图4-15-8拓展延伸例5 在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图4-15-9①,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图4-15-9②,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.图4-15-9【提示】(1)延长DF交AB于点G,根据三角形中位线的判定得出点G为AB的中点,根据中位线的性质及已知条件AC=BC,得出DC=DG,从而EC=FG,易证∠ECF=∠GFH=90°-∠DFC,∠CEF=∠FGH=135°,由AAS证出△CEF≌△FGH.∴CF=FH.(2)通过证明△CEF≌△FGH得出.【解答】跟踪训练5.如图4-15-10,D 是△ABC 中AB 边上的中点,△ACE 和△BCF 分别是以AC ,BC 为斜边的等腰直角三角形,连接DE ,DF.求证:DE=DF.【解答】EABFCD图4-15-10竞赛链接例6(武汉竞赛试题)如图4-15-11,在△ABC 中,∠ABC,∠ACB 的平分线 BE ,CF 相交于O ,AGLBE 于G ,AHLCF 于H. (1)求证:GH/∥BC;(2)若AB=9厘米,AC=14厘米,BC=18厘米,求GH 的长度。

9.21 三角形中位线

9.21 三角形中位线
三角形的中位线
南外文华部
李丹丹
做一做:你能将任意一个三角形分成四个 全等的三角形吗?
连接三角形两边中点的线段叫三角形的中位线 A
D
E
B
注意
F
C 三角形的中位线和三角形的中线
不同
三角形的中位线平行于第三边, 并且等于第三边的一半.
A
D
B
E
已知:如图,D、E分别是 △ABC的边AB、AC的中点.
1 求证:DE∥BC, DE BC 2
菱形
(3)依次连接菱形各边中点所得的 四边形是什么?
矩形
(4)依次连接正方形各边中点所得的 四边形是什么?
正方形
(5)依次连接梯形各边中点所得的 四边形是什么?
平行四边形
(6)依次连接等腰梯形各边中点所得的 四边形是什么?
菱形
议一议:你认为顺次连接四边形各边中点得到的
图形的形状和什么有关呢?
1.如果顺次连接四边形四边中点所得的四边形是菱形,那么原 四边形的两条对角线存在什么关系 ? 2.上问中的菱形改为矩形呢? 3.当四边形满足什么条件时,顺次连接它的四边中点 所得的四边形是正方形?
F
C
∴DE∥BC,
1 1 DE DF BC . 2 2
(1)你能证明
A
D
(2)图中共有几个平行四边形? B (3)小明说: “△ABC的周长为16cm, 面积为12 cm2 ”小刚稍加思考,马上 说出了△DEF的周长和面积。你知道 他是怎样得到的吗?
E
F C
如图,任意作一个四边形,并将其四边的 中点依次连接起来,得到一个新的四边形,这 个新的四边形的形状有什么特征? A E H 已知:如图,在四边形ABCD中,

中位线例题

中位线例题

三角形中位线典型例题例1 如图,△ABC 中,D 是AB 中点,E 是AC 上的点,且3AE =2AC ,CD 、BE 交于O点.求证:OE =41BE .分析:已知D 是AB 中点,遇到中点我们应当考虑到可能要用中位线,有中位线就可以得到线段的一半,同样可能再得到21线段的一半,从而可以得到某线段的41;又已知3AE =2AC ,得AE =32AC ,如果取AE 中点F ,连结DF 就可得到△ABE 的一条中位线. 证明:取AE 中点F ,连结DF ,∵D 是AB 中点,∴DF 是△ABE 的中位线∴DF =21BE 且DF //BE (三角形中位线定理) ∵3AE =2AC ,∴AE =32AC ∴AF =FE =EC =31AC 在△CFD 中,∵EF =EC 且DF //BE 即OE //DF ,∴CO =DO (过三角形一边中点,与另一边平行的直线,必平分第三边)∴OE 是△CDF 的中位线∴OE =21DF ∴OE =41BE .说明:本题我们做了一条中位线,使得在两个三角形中可使用中位线定理.遇中点,作中位线是常见的辅助线.例2已知:如图,△ABC中,E、F分别是AB、CB的中点,G、H为AC上两点,且AG=GH=HC,延长EG、FH交于点D.求证:四边形ABCD是平行四边形.分析:图中有两个中点,两个三等分点,联想到:若分别连结BG,BH可分别构造两个三角形中位线的环境,从而得到EG//BH即GD//BH,同理BG//DH,得平行四边形BHDG,它与四边形ABCD共对角线BD,那么用对角线互相平分来判定平行四边形成为可能.证明:分别连结BG,BH,BD交AC于O∵E是AB中点,AG=GH∴EG是△ABH的一条中位线∴EG//BH,即GD//BH同理可证BG//DH∴四边形BHDG是平行四边形.∴BO=OD,GO=OH.又∵AG=HC∴AG+GO=HC+OH即AO=OC又BO=OD(已证)∴四边形ABCD是平行四边形.说明:有中点条件,一般都需要构造中位线环境或中线环境.例3已知:如图,在△ABC中AB=AC,延长AB到D,使BD=AB,E为AB的中点.求证:CD=2CE.分析:这是证明线段的倍半问题.证明一条线段等于另一条线段的二倍或一半时,常常是先找出短线段的二倍,或者取长线段的一半,设法把线段的倍半问题转化为证线段的相等问题.这就是通常所说的“加倍”,“折半”的方法.下面我们就把问题转化成证明线段的相等.方法1:找出CD 的一半,然后证明CD 的一半和CE 相等,因此要取CD 中点F ,证CF=CE.证明:取CD 的中点F ,连结BF∴CD=2CF∵AB=BD∴BF 是△ADC 的一条中位线BF//AC ,BF=21AC ∴∠2=∠ACB∵AB=AC ,∴∠1=∠ACB∴∠1=∠2∵E 是AB 中点,∴BE=21AB ∵BF=21AC ,且AB=AC∴BE=BF△BCE 和△BCF 中⎪⎩⎪⎨⎧=∠=∠=BC BC BF BE 21∴△BCE ≌△BCF (SAS )∴CE=CF∵CD=2CF ∴CD=2CE.方法2:找出CE 的2倍,然后证明CE 的2倍和CD 相等,因此要延长CE 到F 使EF=CE .证CF=CD .证明:延长CE 至F 使EF=CE ,连结FB .∴CF=2CE ,∠1=∠2∵E 为AB 中点,∴AE=BE在△AEC 和△BEF 中⎪⎩⎪⎨⎧=∠=∠=BE AE EF CE 21∴△AEC ≌△BEF (SAS )∴AC=BF ,∠3=∠F∴AC//BF∴∠FBC+∠ACB=1800∵∠CBD+∠ABC=1800∵AB=AC ,∴∠ABC=∠ACB∴∠FBC=∠DBC∵AC=AB ,AB=BD ,AC=BF.∴BF=BD .在△CBF 和△CBD 中⎪⎩⎪⎨⎧=∠=∠=DB FB DBC FBC CB CB∴△CBF ≌△CBD (SAS )∴CD =CF∵CF =2CE∴CD =2CE此题还有其它证法,请同学们思考.说明:证明线段相等的方法很多,要学会根据条件来选择合适当方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N M F E D C
B
A 三角形中位线经典例题
1、.如图,在□ABCD 中,EF ∥AB 交BC 于E ,交AD 于F ,连结AE 、BF 交于点M ,连结CF 、DE 交于点N ,求证:(1)MN ∥AD ;(2)MN=
12AD 。

变形题1:已知如图,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点。

求证:四边形EFGH 是平行四边形
F B
C
变形题2:已知E 为平行四边形ABCD 边的延长线上的一点,且CE=DC,连结AE ,分别
交BC 、BD 于F 、G ,连结AC 交BD 于O 点,连AF 。

求证:AB=2OF
E D
B
A
变形题:在四边形ABCD 中,ACBD 相交于O 点,AC=BD,E 、F 分别是AB 、CD 的中点,连接EF 分别交AC 、BD 于M 、N ,判断三角形MON 的形状,并说明理由。

C B
如图,在四边形ABCD 中,AB=CD,E 、F 分别是BC 、AD 的中点,连结EF 并延长,分别与BA 、CD 的延长线相交于M 、N 。

求证:∠BME=∠CNE
F B
C。

相关文档
最新文档