材料物理性能与检测(吴雪梅主编;诸葛兰剑[等]编著)思维导图
材料物理性能基础知识点课件.doc
<<材料物理性能>>基础知识点一,基本概念:1. 摩尔热容: 使1摩尔物质在没有相变和化学反应的条件下,温度升高1K 所需要的热量称为摩尔热容。
它反映材料从周围环境吸收热量的能力。
2. 比热容:质量为1kg 的物质在没有相变和化学反应的条件下,温度升高1K 所需要的热量称为比热容。
它反映材料从周围环境吸收热量的能力。
3. 比容:单位质量(即1kg 物质)的体积,即密度的倒数(m3/kg)。
4. 格波:由于晶体中的原子间存在着很强的相互作用,因此晶格中一个质点的微振动会引起临近质点随之振动。
因相邻质点间的振动存在着一定的位相差,故晶格振动会在晶体中以弹性波的形式传播,而形成“格波”。
5. 声子(Phonon): 声子是晶体中晶格集体激发的准粒子,就是晶格振动中的简谐振子的能量量子。
6. 德拜特征温度: 德拜模型认为:晶体对热容的贡献主要是低频弹性波的振动,声频支的频率具有0~ωmax 分布,其中,最大频率所对应的温度即为德拜温度θD,即θD=?ωmax/k。
7. 示差热分析法(Differential Thermal Analysis, DTA ): 是在测定热分析曲线(即加热温度T与加热时间t 的关系曲线)的同时,利用示差热电偶测定加热(或冷却)过程中待测试样和标准试样的温度差随温度或时间变化的关系曲线ΔT~T(t),从而对材料组织结构进行分析的一种技术。
8. 示差扫描量热法(Differential Scanning Calorimetry, DSC ): 用示差方法测量加热或冷却过程中,将试样和标准样的温度差保持为零时,所需要补充的热量与温度或时间的关系。
9. 热稳定性(抗热振性):材料承受温度的急剧变化(热冲击)而不致破坏的能力。
10. 塞贝克效应:当两种不同的导体组成一个闭合回路时,若在两接头处存在温度差则回路中将有电势及电流产生,这种现象称为塞贝克效应。
11. 玻尔帖效应:当有电流通过两个不同导体组成的回路时,除产生不可逆的焦耳热外,还要在两接头处出现吸热或放出热量Q 的现象。
第四章材料物理性能
是非均质晶体的特性,是材料各向异性的表现。
2020/12/8
29
2020/12/8
30
双折射:当一束单色自然光在各向异性晶体的界面折射 时,一般产生两束折射光(均为线偏振光)。
ü 寻常光:平行于入射面的光线的折射率n0不随入射角的变化而变化,始终为一常数,服从 折射定律。
ü 非常光:与寻常光垂直的光线的折射率ne随入射线方向的改变而变化,不服从折射定律。
2020/12/8
14
3.1.1 光的波动性 光是电磁波,是交变的电磁场在空间的传播。变化着电场的周围感生出变化的磁场,变化着的磁场周围又会
感生出另一个变化的电场,两者交织在一起。 光波是横波,电场强度E和磁场强度H的振动方向垂直。并同时垂直于传播方向S(即光的能量流动方向)。
线偏振光的电振动磁振动及传播方向
θ1,折射角为θ2 ,n则材料真2空 相/对材材料 料l 的c相对折射率为
相对折射率:
材料
材料的折射率是永远为大
于1的正数(原因:光与原子作用导致
电子极化,使光速变n慢2。1)ss。ii例nn12如nn12
1 2
空气:n=1.003; 固体氧化物: n= 1.3~2.7;
硅酸20盐20玻/12璃/8: n= 1.5~1.9
2020/12/8
12
电磁波谱
2020/12/8
13
无线电波:λ>1m 微波:λ=1mm~1m 红外线:λ=760nm~1mm 可见光:λ=390nm~760nm 紫外线:λ=10nm~390nm X射线:λ=10-3 nm~几十nm γ射线:λ=10-5nm~10-1nm 宇宙射线:λ<10-5nm
人造光学玻璃成为主要光学材料。 n 20世纪初,以望远镜、显微镜、光谱仪以及物理光学仪器四大类为主体,建立了光学工业。
材料的性能与表征课程教学大纲
材料的性能与表征课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:材料的性能与表征所属专业:材料化学课程性质:专业基础课学分:2(二)课程简介、目标与任务:材料的物理性能是材料的重要性能之一。
外接因素(温度、电场、磁场等)作用于材料,引起材料内部原子、分子、电子的微观运动状态的改变,在宏观上表现为一定的感应物理量,即呈现某一物理性能。
具体地讲,最常见的材料物理性能有材料的电性能、介电性能、光学性能、热学性能、磁学性能以及弹性性能,每一种物理性能对应一定的物理基础。
而材料的物理性能强烈依赖于物质不同层次的结构组成,同时也受环境因素的强烈影响。
每一种材料物理性能都具有一定的分子和测试方法,而物理性能分析也是材料研究的重要手段。
通过本课程的学习,对材料的电性能、介电性能、光学性能、热学性能、磁学性能以及弹性性能的物理本质和表征参量、影响因素、分析测试方法有较全面地认识,并了解物理性能分析在材料研究中的应用。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接:先修课程:力学,热学,电磁学,普通物理(光学与原子物理),材料科学基础(四)教材与主要参考书。
教材:刘勇,陈国钦编著. 材料物理性能. 北京:北京航空航天大学出版社, 2015.09主要参考书:吴雪梅主编;诸葛兰剑等编著. 材料物理性能与检测. 北京:科学出版社, 2012.01.关振铎,龚江宏,唐子龙著. 无机材料物理性能第2版. 北京:清华大学出版社, 2011.06.高智勇,隋解和,孟祥龙编著. 材料物理性能及其分析测试方法. 哈尔滨:哈尔滨工业大学出版社, 2015.11.二、课程内容与安排第1章绪论(一)教学方法与学时分配课堂授课,1学时(二)内容及基本要求主要内容:简要介绍本课程的主要内容,学习本课程的意义和目的,以本课程的学习方法。
【了解】:本课程的主要内容,本课程的学习方法。
【一般了解】:学习本课程的意义和目的第2章材料的电性能2.1 电导率和载流子2.2 电子类载流子导电2.3 离子类载流子导电2.4 半导体2.5 超导体2.6 导电性的测量2.7 电阻分析的应用2.8 延伸阅读(一)教学方法与学时分配课堂授课,5学时(二)内容及基本要求主要内容:主要讲述电子类载流子导电、离子类载流子导电、半导体、超导体的导电机制及影响因素,导电性的测量方法及电阻分析的应用。
第 05-1 讲材料物理性能与测试PPT
r1
2
如果要得到更精确的测定结果,可 采用下面的经验公式:
2 S (r1 r2 ) 4 4h Rv v 2 r1 r2
(r1 r2 ) V v 4h I
2
3.表面电阻和表面电阻率
板状式样
圆片试样
I V
r1 a r2 b
Q ——通过的电量
F ——法拉第常数
用此可检验材料中是否存在离子电导。
2.迁移率和电导率的一般表达式
物体的导电现象,其微观本质是载流子在 电场作用下的定向迁移。
V=1cm3
设单位截面积为 S 1cm 2 ,在单位体积 1cm3 内载流子数为ncm 3 ,每一载流子的电荷 量为q ,则单位体积内参加导电的自由电荷 为 nq 。 如果介质处在外电场中,则作用于每一个载流子的 力等于 qE。在这个力的作用下,每一载流子在 E方 向发生漂移,其平均速度为 vcm s 。容易看出, 单位时间(1s)通过单位截面 S 的电荷量为:
第五章
无机材料的电导
电导的物理现象 离子电导 电子电导 无机非金属材料电导 电导的应用
5.1 电导的物理现象
欧姆定律示意图
一.电导的宏观参数
1.电导率和电阻率 长L,横截面S的均匀导电体,两端加电压V, 根据 欧姆定律: I V R (5.1) 在这样一个形状规则的均匀材料,电流是均匀的, 电流密度J在各处是一样的,总电流强度: I SJ (5.2)
J nqv
(
J I S)
根据欧姆定律及 R h s ,可推导:
欧姆定律最一般的形式: J E E
因为 、 只决定于材料的性质,所以电流密 度与几何因子无关,这就给讨论电导的物理本 质带来了方便。
《材料物理性能lec》课件
目录
引言材料物理性能概述材料的力学性能材料的热学性能材料的电学性能材料的磁学性能光学性能环境友好性能
01
CHAPTER
引言
《材料物理性能LEC》
课程名称
材料科学、物理、工程等专业的学生和从业人员
适用对象
介绍材料的电、热、光、磁等物理性能及其应用
主要内容
01
02
VS
讨论不同材料对光的吸收特性,以及吸收光谱的测量和应用。
光的反射
分析光的反射现象,包括镜面反射和漫反射,以及反射光谱的测量和应用。
光的吸收
介绍材料的发光原理,包括荧光、磷光等,以及发光性能的测量和应用。
探讨非线性光学效应的原理,如倍频、和频、差频等,以及其在光学器件中的应用。
发光
非线性光学效应
08
CHAPTER
环境友好性能
1
2
3
指材料抵抗环境中腐蚀介质侵蚀的能力。
耐腐蚀性
材料的化学组成、微观结构、环境因素(温度、湿度、压力、腐蚀介质类型和浓度等)。
影响因素
选用高纯度材料、加入合金元素、表面涂覆保护层等。
提高耐腐蚀性的方法
材料与生物体之间的相互适应性。
生物相容性
材料能够与活体组织发生化学反应,促进组织生长和修复。
记录原理
利用物质在磁场中的磁化方向变化来记录信息,如硬盘和软盘的记录方式。
应用领域
除了计算机存储外,磁记录和磁存储技术还广泛应用于音频和视频记录、传感器等领域。
07
CHAPTER
光学性能
光的传播
描述光在介质中的传播速度、折射率、反射率等特性。
光的散射
解释光的散射现象,包括米氏散射、瑞利散射等,以及散射对光学性能的影响。
第一章-金属材料电学性能
重
无
叠
禁
带
金属
未
宽
填
禁
满
带
窄 禁 带
空带 禁带
满带
绝缘体 半导体
三种导电理论的主要特征
连续能量分布的价电子在均匀势场 中的运动
不连续能量分布的价电子在均匀势 场中的运动
不连续能量分布的价电子在周期性 势场中的运动
第二节 影响金属导电性的因素
一、温度的影响 二、应力的影响 三、冷加工变形的影响 四、合金元素及相结构的影响
电的电子平均速度
❖ : 单位时间内散射的次数
(散射系数)
☺一价金属的neff
比二、三价金
属多,因此一
价金属的导电 性好
马基申定则
T
声子散射和电子散射 (与温度成正比)
电子在杂质和缺陷上的 散射(与温度无关)
❖ 马基申定则(Matthiessen Rule)
总的电阻包括金属的基本电阻(与温度有关) 和杂质浓度引起的电阻(与温度无关)
+11
+11
❖ 电子具有波粒二象性,运动着的电子作为物质波 (德布罗意波),其波长与电子的运动速率或动 量之间的关系为
h h
mv p
2 2 mv h
❖ m:电子质量 ❖ v :电子速度 ❖ :波长 ❖ p:电子动量
E 1 mv2 2
E8h22m228h22mK2
❖ h:普朗克常量
h 2 常数 K 2 波数
❖ 禁带(带隙)
价带与空带之间存在着一段能量间隔,在这个区域永远 不可能有电子,这个能量区域称为禁带或带隙
空带
晶体中电子的E-K曲线
带隙
价带
充带
禁带 充带
材料物理性能与测试PPT
刚球模型:组成离子晶体的原子在得失电子后,电 子组态与惰性原子的电子组态一样,这种电子壳层 结构是稳定的,具有球形对称性,由此可以把正负 离子作为钢球来处理。
结合力:正负离子间的静电库仑力 。 配位体:离子的最邻近的异种离子。 配位数:异种离子的总数。 晶体的结合能Eb:晶体由N个原子组成,这些原子的 在自由时的总能量EN与晶体处于稳定状态时的能量 (动能和势能)E0之差。 晶体结合能的意义:结合能对了解组成晶体的粒子间 相互作用的本质,为探索新材料的合成提供了理论指 导。
★ 离子键是由异性离子的静电吸引而形成;
★共价键是反平行自旋的交叠电子,通过静电吸引束缚与它们 关联的离子而形成;
★金属键是靠负电子云同正离子实间的库仑力形成;
★分子键靠感生偶极矩间的互作用形成
2. 原子间的排斥作用来源于交叠电荷的静电排斥和泡利原理造 成的排斥。 3. 晶体采用何种结合类型决定于原子束缚电子的能力,这个能 力由原子的电负性衡量。
=
排斥作用
晶格处于稳定状态
二
互作用力、互作用势能和原子间距的关系
原子间的相互作用 u(r) 1. 计算ro 、rm
r
斥力 f(r) ro 吸引力 rm
由势能u(r)可以按下式计 算互作用力: f(r) = -du(r)/dr 当两原子很靠近时, 斥力大于引力,总的作 用力f(r) 0。 当两原子相离比较远 时,总的作用力为引力, f(r)0
1.2 晶体的结合
1.2.1
1.2.1 晶体结合的类型 1.2.2 结合力
晶体的结合类型
离子晶体 原子晶体
结合力的不同可以将其分成五个典型的结合类型:
金属晶体
分子晶体 氢键晶体
一、离子晶体 1 . 类型
高一物理必修一思维导图-20210828012106
高一物理必修一思维导图一、力学2. 时间和位移3. 速度和加速度4. 匀变速直线运动5. 自由落体运动6. 抛体运动7. 力的概念8. 牛顿三大定律9. 力的合成与分解10. 力矩和转动11. 动能和势能12. 动能定理13. 势能定理14. 能量守恒定律15. 动能守恒定律16. 势能守恒定律17. 动能和势能的转化18. 动能和势能的守恒19. 动能和势能的转化和守恒20. 动能和势能的转化和守恒的应用21. 动能和势能的转化和守恒的应用实例二、热学1. 温度2. 热量3. 热传递4. 内能5. 热力学第一定律6. 热力学第二定律7. 热力学第三定律8. 热力学过程9. 热力学循环10. 热力学循环的应用11. 热力学循环的应用实例12. 热力学循环的应用实例分析三、电磁学1. 电荷2. 电场3. 电势4. 电流5. 电阻6. 欧姆定律7. 电功率8. 电容9. 电感10. 电磁感应11. 电磁感应的应用12. 电磁感应的应用实例13. 电磁感应的应用实例分析四、光学1. 光的传播2. 光的反射3. 光的折射4. 光的衍射5. 光的干涉6. 光的偏振7. 光的散射8. 光的吸收9. 光的发射10. 光的传播的应用11. 光的传播的应用实例12. 光的传播的应用实例分析五、现代物理1. 相对论2. 量子力学3. 原子结构4. 核物理5. 粒子物理6. 现代物理的应用7. 现代物理的应用实例8. 现代物理的应用实例分析高一物理必修一思维导图一、力学质点的定义坐标系的建立2. 时间和位移时间的测量位移的概念位移的表示方法3. 速度和加速度速度的定义加速度的概念加速度的计算方法4. 匀变速直线运动匀变速直线运动的特征运动方程的推导实例分析5. 自由落体运动自由落体运动的条件自由落体运动的特点自由落体运动的计算6. 抛体运动抛体运动的基本概念抛体运动的轨迹分析抛体运动的计算方法7. 力的概念力的定义力的单位力的测量方法8. 牛顿三大定律牛顿第一定律牛顿第二定律牛顿第三定律9. 力的合成与分解力的合成方法力的分解方法实例分析10. 力矩和转动力矩的概念力矩的计算转动的条件11. 动能和势能动能的定义势能的概念动能和势能的转换12. 动能定理动能定理的内容动能定理的应用13. 势能定理势能定理的内容势能定理的应用14. 能量守恒定律能量守恒定律的原理能量守恒定律的应用15. 动能守恒定律动能守恒定律的条件动能守恒定律的应用16. 势能守恒定律势能守恒定律的条件势能守恒定律的应用17. 动能和势能的转化动能和势能的转化过程动能和势能的转化实例18. 动能和势能的守恒动能和势能的守恒条件动能和势能的守恒实例19. 动能和势能的转化和守恒动能和势能的转化和守恒关系动能和势能的转化和守恒实例分析20. 动能和势能的转化和守恒的应用动能和势能的转化和守恒在生活中的应用动能和势能的转化和守恒在工程中的应用21. 动能和势能的转化和守恒的应用实例动能和势能的转化和守恒实例分析二、热学1. 温度温度的定义温度的测量温度的单位2. 热量热量的概念热量的传递热量的单位3. 热传递热传递的方式热传递的速率热传递的实例4. 内能内能的概念内能的变化内能的单位5. 热力学第一定律热力学第一定律的内容热力学第一定律的应用6. 热力学第二定律热力学第二定律的内容热力学第二定律的应用7. 热力学第三定律热力学第三定律的内容热力学第三定律的应用8. 热力学过程热力学过程的分类热力学过程的特征热力学过程的分析9. 热力学循环热力学循环的定义热力学循环的分类热力学循环的分析10. 热力学循环的应用热力学循环在热机中的应用热力学循环在制冷中的应用11. 热力学循环的应用实例热力学循环实例分析12. 热力学循环的应用实例分析热力学循环实例分析的步骤热力学循环实例分析的方法热力学循环实例分析的意义热力学循环实例分析的结论三、电磁学1. 电荷电荷的概念电荷的单位2. 电场电场的概念电场的性质电场的单位3. 电势电势的概念电势的性质电势的单位4. 电流电流的概念电流的性质电流的单位5. 电阻电阻的概念电阻的性质电阻的单位6. 欧姆定律欧姆定律的内容欧姆定律的应用7. 电功率电功率的概念电功率的计算8. 电容电容的概念电容的性质电容的单位9. 电感电感的概念电感的性质电感的单位10. 电磁感应电磁感应的概念电磁感应的现象电磁感应的应用11. 电磁感应的应用电磁感应的应用实例电磁感应的应用分析12. 电磁感应的应用实例电磁感应实例分析13. 电磁感应的应用实例分析电磁感应实例分析的步骤电磁感应实例分析的方法电磁感应实例分析的意义电磁感应实例分析的结论四、光学光的传播方式光的传播速度光的传播实例2. 光的反射光的反射现象光的反射规律光的反射应用3. 光的折射光的折射现象光的折射规律光的折射应用4. 光的衍射光的衍射现象光的衍射规律光的衍射应用5. 光的干涉光的干涉现象光的干涉规律光的干涉应用6. 光的偏振光的偏振现象光的偏振规律光的偏振应用光的散射现象光的散射规律光的散射应用8. 光的吸收光的吸收现象光的吸收规律光的吸收应用9. 光的发射光的发射现象光的发射规律光的发射应用10. 光的传播的应用光的传播在通信中的应用光的传播在医学中的应用11. 光的传播的应用实例光的传播实例分析12. 光的传播的应用实例分析光的传播实例分析的步骤光的传播实例分析的方法光的传播实例分析的意义光的传播实例分析的结论五、现代物理1. 相对论相对论的基本概念相对论的主要理论相对论的应用2. 量子力学量子力学的基本概念量子力学的主要理论量子力学的应用3. 原子结构原子结构的基本概念原子结构的主要理论原子结构的应用4. 核物理核物理的基本概念核物理的主要理论核物理的应用5. 粒子物理粒子物理的基本概念粒子物理的主要理论粒子物理的应用6. 现代物理的应用现代物理在科技中的应用现代物理在工程中的应用7. 现代物理的应用实例现代物理实例分析8. 现代物理的应用实例分析现代物理实例分析的步骤现代物理实例分析的方法现代物理实例分析的意义现代物理实例分析的结论高一物理必修一思维导图一、力学质点的定义坐标系的建立2. 时间和位移时间的测量位移的概念位移的表示方法3. 速度和加速度速度的定义加速度的概念加速度的计算方法4. 匀变速直线运动匀变速直线运动的特征运动方程的推导实例分析5. 自由落体运动自由落体运动的条件自由落体运动的特点自由落体运动的计算6. 抛体运动抛体运动的基本概念抛体运动的轨迹分析抛体运动的计算方法7. 力的概念力的定义力的单位力的测量方法8. 牛顿三大定律牛顿第一定律牛顿第二定律牛顿第三定律9. 力的合成与分解力的合成方法力的分解方法实例分析10. 力矩和转动力矩的概念力矩的计算转动的条件11. 动能和势能动能的定义势能的概念动能和势能的转换12. 动能定理动能定理的内容动能定理的应用13. 势能定理势能定理的内容势能定理的应用14. 能量守恒定律能量守恒定律的原理能量守恒定律的应用15. 动能守恒定律动能守恒定律的条件动能守恒定律的应用16. 势能守恒定律势能守恒定律的条件势能守恒定律的应用17. 动能和势能的转化动能和势能的转化过程动能和势能的转化实例18. 动能和势能的守恒动能和势能的守恒条件动能和势能的守恒实例19. 动能和势能的转化和守恒动能和势能的转化和守恒关系动能和势能的转化和守恒实例分析20. 动能和势能的转化和守恒的应用动能和势能的转化和守恒在生活中的应用动能和势能的转化和守恒在工程中的应用21. 动能和势能的转化和守恒的应用实例动能和势能的转化和守恒实例分析二、热学1. 温度温度的定义温度的测量温度的单位2. 热量热量的概念热量的传递热量的单位3. 热传递热传递的方式热传递的速率热传递的实例4. 内能内能的概念内能的变化内能的单位5. 热力学第一定律热力学第一定律的内容热力学第一定律的应用6. 热力学第二定律热力学第二定律的内容热力学第二定律的应用7. 热力学第三定律热力学第三定律的内容热力学第三定律的应用8. 热力学过程热力学过程的分类热力学过程的特征热力学过程的分析9. 热力学循环热力学循环的定义热力学循环的分类热力学循环的分析10. 热力学循环的应用热力学循环在热机中的应用热力学循环在制冷中的应用11. 热力学循环的应用实例热力学循环实例分析12. 热力学循环的应用实例分析热力学循环实例分析的步骤热力学循环实例分析的方法热力学循环实例分析的意义热力学循环实例分析的结论三、电磁学1. 电荷电荷的概念电荷的性质电荷的单位2. 电场电场的概念电场的性质电场的单位3. 电势电势的概念电势的性质电势的单位4. 电流电流的概念电流的性质电流的单位5. 电阻电阻的概念电阻的性质电阻的单位6. 欧姆定律欧姆定律的内容欧姆定律的应用7. 电功率电功率的概念电功率的计算电功率的单位8. 电容电容的概念电容的性质电容的单位9. 电感电感的概念电感的性质电感的单位10. 电磁感应电磁感应的概念电磁感应的现象电磁感应的应用11. 电磁感应的应用电磁感应的应用实例电磁感应的应用分析12. 电磁感应的应用实例电磁感应实例分析13. 电磁感应的应用实例分析电磁感应实例分析的步骤电磁感应实例分析的方法电磁感应实例分析的意义电磁感应实例分析的结论四、光学1. 光的传播光的传播方式光的传播速度光的传播实例2. 光的反射光的反射现象光的反射规律光的反射应用3. 光的折射光的折射现象光的折射规律光的折射应用4. 光的衍射光的衍射现象光的衍射规律光的衍射应用5. 光的干涉光的干涉现象光的干涉规律光的干涉应用6. 光的偏振光的偏振现象光的偏振规律光的偏振应用7. 光的散射光的散射现象光的散射规律光的散射应用8. 光的吸收光的吸收现象光的吸收规律光的吸收应用9. 光的发射光的发射现象光的发射规律光的发射应用10. 光的传播的应用光的传播在通信中的应用光的传播在医学中的应用11. 光的传播的应用实例光的传播实例分析12. 光的传播的应用实例分析光的传播实例分析的步骤光的传播实例分析的方法光的传播实例分析的意义光的传播实例分析的结论五、现代物理1. 相对论相对论的基本概念相对论的主要理论相对论的应用2. 量子力学量子力学的基本概念量子力学的主要理论量子力学的应用3. 原子结构原子结构的基本概念原子结构的主要理论原子结构的应用4. 核物理核物理的基本概念核物理的主要理论核物理的应用5. 粒子物理粒子物理的基本概念粒子物理的主要理论粒子物理的应用6. 现代物理的应用现代物理在科技中的应用现代物理在工程中的应用7. 现代物理的应用实例现代物理实例分析8. 现代物理的应用实例分析现代物理实例分析的步骤现代物理实例分析的方法现代物理实例分析的意义现代物理实例分析的结论。
材料物理性能课件第三章材料的导电性能
掌握材料导电性能(电阻率、电导率)的 测量方法;
了解电阻率和电导率的相互关系;
了解高分子、陶瓷材料的体电阻、表面电阻;
理解成分对金属材料导电性能影响。
一、目的要求
二、基本原理
欧姆定律 电阻率与材料本质有关 电阻率的单位:m , cm , cm, 工程技术上常用mm2/m。它们之间的换算关系为 1 cm = 10-8 m = 10-6 cm = 10-2 mm2/m 电阻率与电导率关系 的单位为西门子每米(S/m)。 工程中也常用相对电导率(IACS%),它表示导体材料的导电性能。国际上把标准软铜在室温20。C下的电阻率 = 0.01724 mm2/m的电阻率作为100%,其他材料的电导率与之相比的百分数为该材料的相对电导率。
02
将“放电、测试”开关放在“测试”位置,检查电压应选择的位置,打开输入短路开关(即按钮抬起来),读取加上测试电压1分钟,指示电表显示的电阻值。读数完毕,将“倍率”打回“10-1”档。
03
测量体积电阻值Rv
测量表面电阻值Rs
2)测量表面电阻值Rs (1)将Rv、Rs转换开关旋至Rs处。 (2)将电压选择开关置于所需要的测试电压位置上,将“倍率选择”旋至所 需要的位置。 (在不了解测试值的数量级时,倍率应从低次方开始选择。) (3)将“放电、测试”开关放在“测试”位置,检查应选择的位置,打开输 入短路开关(即按钮抬起来),读取加上测试电压1分钟时,指示电表显示的电阻值。读数完毕,将“倍率”打回“10-1”档。 (4)接入短路开关,将“放电、测试”开关打回到“放电”位置。更换试样,重复以上操作,待全部试样测量完毕后,切除电源,除去各种连接线,按要求整理、放置好仪器。
01
02
03
04
第二章材料物理性能 ppt课件
(c)反常元素
一些半导体和绝缘体转变为导体的压力极限
元素
S Se Si Ge I
p极限/ GPa ρ/(μΩ·m)
元素
40
-
H
12.5 16 12 22
-
金刚石
-
P
-
AgO
500
p极限/ GPa 200 60 20 20
ρ/(μΩ· m)
-
60±20 70±20
-
22
(三).冷加工和缺陷对电阻率的影响 (1)晶体缺陷使金属的电阻率增加
D
特征温度。 常用的非过渡族金属的德拜温度一般不超过500K。
12
在德拜温度以上,可以认为电子是完 全自由的,金属的电阻取决于离子的 热振动。此时,纯金属的电阻率与温
度关系为 T 电声
1 电声 T (T 2 3 D );
2
电声
T
5 (T D
);
3 电电 T 2 (T 2K)
19
正常金属元素:电阻率随压力增大而下降;(铁、 钴、镍、钯、铂、铱、铜、银、金、锆、铪等)
反常金属元素:碱金属、碱土金属、稀土金属和第 V族的半金属,它们有正的电阻压力系数,但随压力升 高一定值后系数变号。研究表明,这种反常现象和压力 作用下的相变有关。
20
压力对金属电阻的影响
21
(a) (b)正常元素
3
4
表1. 常见材料的电阻率 (×10-8Ωm)
材料 Ag Cu Al Fe Mn 电阻率 1.46 1.54 1.72 5.88 260
5
2.2 电子类载流子导电
22..22..11金金属属导导电电机机制制
e2 n e2 n l 2m 2m
材料物理性能与力学性能解析PPT课件
裂的规律与一次冲击相同;当冲击次数大于105次时,破坏后 具有典型的疲劳断口特征。 冲击功-冲断次数曲线(A-N曲线): 随冲击功A的减小,冲断次数增加。
第1页/共48页
3、冲击韧性及工程意义 1)一次冲击: 冲击韧度(冲击值):用冲击吸收功除以试样缺口处截面(cm2)
第16页/共48页
裂纹的三种基本类型: (1)张开型(I型)裂纹 拉应力垂直作用于裂纹面,裂纹沿作用力方向张开,扩展 方向和拉应力垂直。 (2)滑开型(Ⅱ型)裂纹 切应力平行于裂纹面,并且与裂纹前沿线垂直,裂纹沿裂纹 面平行滑移扩展 (3)撕开型(Ⅲ型)裂纹 切应力平行作用于裂纹面,并且与裂纹线平行,裂纹沿裂纹面 撕开扩展。
冲 击 功
三类材料的冲击功-温度曲线
第6页/共48页
低温脆性的宏观解释:
第7页/共48页
韧脆转化温度及其评价方法
工程上希望确定一个材料的冷脆转化温度,在此温度以上只要
应力还处于弹性范围,材料就不会发生脆性破坏。在冷脆转化
温度的确定标准一旦
建立之后,实际上是按照
吸
冷脆转化温度的高低来选
收 的
择材料。例如,有两种材
当r=0时,应力为无穷大。但实际上对一般金属材料,当应力超 过材料的屈服强度,将发生塑性变形,在裂纹尖端将出现塑性 区,裂纹尖端的应力分布发生改变。
讨论塑性区的意义: 1)断裂是裂纹的扩展过程,裂纹扩展所需的能量主要是消耗于 塑性变形功,材料的塑性区尺寸大,消耗的塑性变形功也越大, 材料的断裂韧性KIc相应地也就越大。 2)由于我们是根据线弹性断裂力学来讨论裂纹尖端的应力应变 场的,当塑性区尺寸过大时,线弹性断裂理论是否依然适用? 因此我们必须讨论不同应力状态的塑性区以及塑性区尺寸的决 定因素。
材料物理性能课件第六章材料的光学 204页
电磁波谱
紫外线(UV) 1015-1016HZ :频率高于可见光的,不能引起视
觉,对生命有危害,来自太阳的紫外线几乎被大气中的臭氧完全吸 收,臭氧保护着地球的生命,少量透过大气的紫外线会晒黑皮肤或 使进行日光浴的人体产生晒斑。
X射线: 1016-1021HZ,波长比紫外线还短的电磁波,它们很易
杨氏干涉花样
相干光
光的干涉 (体现光的波动性)
(一)干涉条件:两列光波频率相同,振动情况相同 (相干光源)
1、单色光:产生明暗相间的等间距的 条纹。
(二)条纹特点 2、红光的条纹间距最大,紫光的条 纹间距最小
3、白光:中间为白色明条纹,两边为 彩色条纹
1、双缝干涉: 产生明暗条纹的条件
明条纹:路程差等于半波长 的偶数倍。
同介质中具有不同波长。
1
光在真空中的传播速度c≈3×108m/s。 C 00
光在介质中传播中的传播速度为
令
n rr
v c rr
光在真空中的速度与在介质中的速
度之比——介质的折射率
C n v
单色光
具有单一频率的光波称为单色光。
任何光源所发出的光波都有一定的频率(或波长 范围,在此范围内,各种频率(或波长)所对应 的强度是不同的。
微波——109-1011HZ,波长范围分布从毫米到几十厘米,他 们在食物里很容易被水分子吸收,食物迅速被加热。
红外线(IR)——1011-1014HZ,分布在微波和可见光之间, 且仅能够在它聚集热的地方探测到。蛇和其他一些生物对红 外线很敏感;红外线不能透过玻璃,这一特性可以解释温室 效应:晴天时,经过温室玻璃的可见光被植物吸收,而红外 线被再次辐射,被玻璃捕获的红外线引起温室内部的温度升 高,整个宇宙充满了宇宙大爆炸时残留的冷却物质发出的红 外辐射。