高一数学必修一对数函数

合集下载

数学必修一第四章知识点总结

数学必修一第四章知识点总结

高中数学人教必修第一册第四章知识点讲解对数函数及其性质1.对数函数的概念(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:a x 的系数:1a x 的底数:常数,且是不等于1的正实数a x 的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.【例1-1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________.解析:由a 2-a +1=1,解得a =0,1.又a +1>0,且a +1≠1,∴a =1.答案:1【例1-2】下列函数中是对数函数的为__________.(1)y =log(a >0,且a ≠1);(2)y =log 2x +2;(3)y =8log 2(x +1);(4)y =log x 6(x >0,且x ≠1);(5)y =log 6x .解析:答案:2.对数函数y =log a x (a >0,且a ≠1)的图象与性质(1)图象与性质a >10<a <1图象性质(1)定义域{x |x >0}(2)值域{y |y R }(3)当x =1时,y =0,即过定点(1,0)(4)当x >1时,y >0;当0<x <1时,y <0(4)当x >1时,y <0;当0<x <1时,y >0(5)在(0,+∞)上是增函数(5)在(0,+∞)上是减函数谈重点对对数函数图象与性质的理解对数函数的图象恒在y 轴右侧,其单调性取决于底数.a >1时,函数单调递增;0<a <1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.(2)指数函数与对数函数的性质比较解析式y =a x (a >0,且a ≠1)y =log a x (a >0,且a ≠1)性质定义域R (0,+∞)值域(0,+∞)R过定点(0,1)(1,0)单调性单调性一致,同为增函数或减函数奇偶性奇偶性一致,都既不是奇函数也不是偶函数(3)底数a 对对数函数的图象的影响①底数a 与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.②底数的大小决定了图象相对位置的高低:不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.点技巧对数函数图象的记忆口诀两支喇叭花手中拿,(1,0)点处把花扎,若是底数小于1,左上穿点渐右下,若是底数大于1,左下穿点渐右上,绕点旋转底变化,顺时方向底变大,可用直线y =1来切,自左到右a 变大.【例2】如图所示的曲线是对数函数y =log a x 的图象.已知a,43,35,110中取值,则相应曲线C 1,C 2,C 3,C4的a 值依次为()A 43,35,110B 43,110,35C .43,,35,110D .43110,35解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应于曲线C 1,C 2,C 3,C 4,43,35,110.答案:A点技巧根据图象判断对数函数的底数大小的方法(1)方法一:利用底数对对数函数图象影响的规律:在x 轴上方“底大图右”,在x 轴下方“底大图左”;(2)方法二:作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小.3.反函数(1)对数函数的反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.(2)互为反函数的两个函数之间的关系①原函数的定义域、值域是其反函数的值域、定义域;②互为反函数的两个函数的图象关于直线y =x 对称.(3)求已知函数的反函数,一般步骤如下:①由y =f (x )解出x ,即用y 表示出x ;②把x 替换为y ,y 替换为x ;③根据y =f (x )的值域,写出其反函数的定义域.【例3-1】若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=()A .log 2xB .12xC .12log xD .2x-2解析:因为函数y =a x (a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x .答案:A【例3-2】函数f (x )=3x (0<x ≤2)的反函数的定义域为()A .(0,+∞)B .(1,9]C .(0,1)D .[9,+∞)解析:∵0<x ≤2,∴1<3x ≤9,即函数f (x )的值域为(1,9].故函数f (x )的反函数的定义域为(1,9].答案:B【例3-3】若函数y =f (x )的反函数图象过点(1,5),则函数y =f (x )的图象必过点()A .(5,1)B .(1,5)C .(1,1)D .(5,5)解析:由于原函数与反函数的图象关于直线y =x 对称,而点(1,5)关于直线y =x 的对称点为(5,1),所以函数y =f (x )的图象必经过点(5,1).答案:A 4.利用待定系数法求对数函数的解析式及函数值对数函数的解析式y =log a x (a >0,且a ≠1)中仅含有一个常数a ,则只需要一个条件即可确定对数函数的解析式,这样的条件往往是已知f (m )=n 或图象过点(m ,n )等等.通常利用待定系数法求解,设出对数函数的解析式f (x )=log a x (a >0,且a ≠1),利用已知条件列方程求出常数a 的值.利用待定系数法求对数函数的解析式时,常常遇到解方程,比如log a m =n ,这时先把对数式log a m =n 化为指数式的形式a n =m ,把m 化为以n 为指数的指数幂形式m =k n (k >0,且k ≠1),则解得a =k >0.还可以直接写出1na m =,再利用指数幂的运算性质化简1nm .例如:解方程log a 4=-2,则a -2=4,由于2142-⎛⎫= ⎪⎝⎭,所以12a =±.又a >0,所以12a =.当然,也可以直接写出124a -=,再利用指数幂的运算性质,得11212214(2)22a ---====.【例4-1】已知f (e x )=x ,则f (5)=()A .e 5B .5eC .ln 5D .log 5e解析:(方法一)令t =e x,则x =ln t ,所以f (t )=ln t ,即f (x )=ln x .所以f (5)=ln 5.(方法二)令e x =5,则x =ln 5,所以f (5)=ln 5.答案:C【例4-2】已知对数函数f (x )的图象经过点1,29⎛⎫⎪⎝⎭,试求f (3)的值.分析:设出函数f (x )的解析式,利用待定系数法即可求出.解:设f (x )=log a x (a >0,且a ≠1),∵对数函数f (x )的图象经过点1,29⎛⎫⎪⎝⎭,∴11log 299a f ⎛⎫== ⎪⎝⎭.∴a 2=19.∴a =11222111933⎡⎤⎛⎫⎛⎫==⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴f (x )=13log x .∴f (3)=111331log 3log 3-⎛⎫= ⎪⎝⎭=-1.【例4-3】已知对数函数f (x )的反函数的图象过点(2,9),且f (b )=12,试求b 的值.解:设f (x )=log a x (a >0,且a ≠1),则它的反函数为y =a x (a >0,且a ≠1),由条件知a 2=9=32,从而a =3.于是f (x )=log 3x ,则f (b )=log 3b =12,解得b=123=5.对数型函数的定义域的求解(1)对数函数的定义域为(0,+∞).(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.(3)求函数的定义域应满足以下原则:①分式中分母不等于零;②偶次根式中被开方数大于或等于零;③指数为零的幂的底数不等于零;④对数的底数大于零且不等于1;⑤对数的真数大于零,如果在一个函数中数条并存,求交集.【例5】求下列函数的定义域.(1)y =5(2x -1)(5x -4);(3)y =.分析:利用对数函数y =log a x (a >0,且a ≠1)的定义求解.解:(1)要使函数有意义,则1-x >0,解得x <1,所以函数y =log 5(1-x )的定义域是{x |x <1}.(2)要使函数有意义,则54>0,21>0,211,x x x -⎧⎪-⎨⎪-≠⎩解得x >45且x ≠1,所以函数y =log (2x -1)(5x -4)的定义域是4,15⎛⎫⎪⎝⎭(1,+∞).(3)要使函数有意义,则0.5430,log(43)0,x x ->⎧⎨-≥⎩解得34<x ≤1,所以函数y =的定义域是3<14x x ⎧⎫≤⎨⎬⎩⎭.6.对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下:①分解成y =log a u ,u =f (x )这两个函数;②求f (x )的定义域;③求u 的取值范围;④利用y =log a u 的单调性求解.(3)对于函数y =f (log a x )(a >0,且a ≠1),可利用换元法,设log a x =t ,则函数f (t )(t ∈R )的值域就是函数f (log a x )(a >0,且a ≠1)的值域.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.【例6-1】求下列函数的值域:(1)y =log 2(x 2+4);(2)y =212log (32)x x +-.解:(1)∵x 2+4≥4,∴log 2(x 2+4)≥log 24=2.∴函数y =log 2(x 2+4)的值域为[2,+∞).(2)设u =3+2x -x 2,则u =-(x -1)2+4≤4.∵u >0,∴0<u ≤4.又y =12log u 在(0,+∞)上为减函数,∴12log u ≥-2.∴函数y =212log (32)x x +-的值域为[-2,+∞).【例6-2】已知f (x )=2+log 3x ,x ∈[1,3],求y =[f (x )]2+f (x 2)的最大值及相应的x 的值.分析:先确定y =[f (x )]2+f (x 2)的定义域,然后转化成关于log 3x 的一个一元二次函数,利用一元二次函数求最值.解:∵f (x )=2+log 3x ,x ∈[1,3],∴y =[f (x )]2+f (x 2)=(log 3x )2+6log 3x +6且定义域为[1,3].令t =log 3x (x ∈[1,3]).∵t =log 3x 在区间[1,3]上是增函数,∴0≤t ≤1.从而要求y =[f (x )]2+f (x 2)在区间[1,3]上的最大值,只需求y =t 2+6t +6在区间[0,1]上的最大值即可.∵y =t 2+6t +6在[-3,+∞)上是增函数,∴当t =1,即x =3时,y max =1+6+6=13.综上可知,当x =3时,y =[f (x )]2+f (x 2)的最大值为13.7.对数函数的图象变换及定点问题(1)与对数函数有关的函数图象过定点问题对数函数y =log a x (a >0,且a ≠1)过定点(1,0),即对任意的a >0,且a ≠1都有log a 1=0.这是解决与对数函数有关的函数图象问题的关键.对于函数y =b +k log a f (x )(k ,b 均为常数,且k ≠0),令f (x )=1,解方程得x =m ,则该函数恒过定点(m ,b ).方程f (x )=0的解的个数等于该函数图象恒过定点的个数.(2)对数函数的图象变换的问题①函数y =log a x (a >0,且a ≠1)――----------------→向左(b >0)或向右(b <0)平移|b |个单位长度函数y =log a (x +b )(a >0,且a ≠1)②函数y =log a x (a >0,且a ≠1)――---------------→向上(b >0)或向下(b <0)平移|b |个单位长度函数y =log a x +b (a >0,且a ≠1)③函数y =log a x (a >0,且a ≠1)―----------------―→当x >0时,两函数图象相同当x <0时,将x >0时的图象关于y 轴对称函数y =log a |x |(a >0,且a ≠1)④函数y =log a x (a >0,且a ≠1)――----------------------------------------→保留x 轴上方的图象同时将x 轴下方的图象作关于x 轴的对称变换函数y =|log a x |(a >0,且a ≠1)【例7-1】若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为__________.解析:∵函数的图象恒过定点(3,2),∴将(3,2)代入y =log a (x +b )+c (a >0,且a ≠1),得2=log a (3+b )+c .又∵当a >0,且a ≠1时,log a 1=0恒成立,∴c =2.∴log a (3+b )=0.∴b =-2.答案:-2,2【例7-2】作出函数y =|log 2(x +1)|+2的图象.解:(第一步)作函数y =log 2x 的图象,如图①;(第二步)将函数y =log 2x 的图象沿x 轴向左平移1个单位长度,得函数y =log 2(x +1)的图象,如图②;(第三步)将函数y =log 2(x +1)在x 轴下方的图象作关于x 轴的对称变换,得函数y =|log 2(x +1)|的图象,如图③;(第四步)将函数y =|log 2(x +1)|的图象,沿y 轴方向向上平移2个单位长度,便得到所求函数的图象,如图④.8.利用对数函数的单调性比较大小两个对数式的大小比较有以下几种情况:(1)底数相同,真数不同.比较同底数(是具体的数值)的对数大小,构造对数函数,利用对数函数的单调性比较大小.要注意:明确所给的两个值是哪个对数函数的两个函数值;明确对数函数的底数与1的大小关系;最后根据对数函数的单调性判断大小.(2)底数不同,真数相同.若对数式的底数不同而真数相同时,可以利用顺时针方向底数增大画出函数的图象,再进行比较,也可以先用换底公式化为同底后,再进行比较.(3)底数不同,真数也不同.对数式的底数不同且指数也不同时,常借助中间量0,1进行比较.(4)对于多个对数式的大小比较,应先根据每个数的结构特征,以及它们与“0”和“1”的大小情况,进行分组,再比较各组内的数值的大小即可.注意:对于含有参数的两个对数值的大小比较,要注意对底数是否大于1进行分类讨论.【例8-1】比较下列各组中两个值的大小.(1)log31.9,log32;(2)log23,log0.32;(3)log aπ,log a3.141.分析:(1)构造函数y=log3x,利用其单调性比较;(2)分别比较与0的大小;(3)分类讨论底数的取值范围.解:(1)因为函数y=log3x在(0,+∞)上是增函数,所以f(1.9)<f(2).所以log31.9<log32.(2)因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.(3)当a>1时,函数y=log a x在定义域上是增函数,则有log aπ>log a3.141;当0<a<1时,函数y=log a x在定义域上是减函数,则有log aπ<log a3.141.综上所得,当a>1时,log aπ>log a3.141;当0<a<1时,log aπ<log a3.141.【例8-2】若a2>b>a>1,试比较log a ab,log bba,log b a,log a b的大小.分析:利用对数函数的单调性或图象进行判断.解:∵b>a>1,∴0<ab<1.∴log a ab<0,log a b>log a a=1,log b1<log b a<log b b,即0<log b a<1.由于1<b a <b ,∴0<log b b a <1.由log b a -log b ba=2log b a b ,∵a 2>b >1,∴2ab>1.∴2log b a b >0,即log b a >log b b a.∴log a b >log b a >log b b a >log a ab.9.利用对数函数的单调性解对数不等式(1)根据对数函数的单调性,当a >0,且a ≠1时,有①log a f (x )=log a g (x )⇔f (x )=g (x )(f (x )>0,g (x )>0);②当a >1时,log a f (x )>log a g (x )⇔f (x )>g (x )(f (x )>0,g (x )>0);③当0<a <1时,log a f (x )>log a g (x )⇔f (x )<g (x )(f (x )>0,g (x )>0).(2)常见的对数不等式有三种类型:①形如log a f (x )>log a g (x )的不等式,借助函数y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.②形如log a f (x )>b 的不等式,应将b 化为以a 为对数的对数式的形式,再借助函数y =log a x 的单调性求解.③形如log a f (x )>log b g (x )的不等式,基本方法是将不等式两边化为同底的两个对数值,利用对数函数的单调性来脱去对数符号,同时应保证真数大于零,取交集作为不等式的解集.④形如f (log a x )>0的不等式,可用换元法(令t =log a x ),先解f (t )>0,得到t 的取值范围.然后再解x 的范围.【例9-1】解下列不等式:(1)1177log log (4)x x >-;(2)log x (2x +1)>log x (3-x ).解:(1)由已知,得>0,4>0,<4,x x x x ⎧⎪-⎨⎪-⎩解得0<x <2.所以原不等式的解集是{x |0<x <2}.(2)当x >1时,有21>3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得1<x <3;当0<x <1时,有21<3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得0<x <23.所以原不等式的解集是20<<1<<33x x x ⎧⎫⎨⎬⎩⎭或.【例9-2】若22log 3a ⎛⎫ ⎪⎝⎭<1,求a 的取值范围.解:∵22log 3a ⎛⎫ ⎪⎝⎭<1,∴-1<2log 3a <1,即12log log log 3a a a a a <<.(1)∵当a >1时,y =log a x 为增函数,∴123a a <<.∴a >32,结合a >1,可知a >32.(2)∵当0<a <1时,y =log a x 为减函数,∴12>>3a a .∴a <23,结合0<a <1,知0<a <23.∴a 的取值范围是230<<>32a a a ⎧⎫⎨⎬⎩⎭,或.10.对数型函数单调性的讨论(1)解决与对数函数有关的函数的单调性问题的关键:一是看底数是否大于1,当底数未明确给出时,则应对底数a 是否大于1进行讨论;二是运用复合法来判断其单调性;三是注意其定义域.(2)关于形如y =log a f (x )一类函数的单调性,有以下结论:函数y =log a f (x )的单调性与函数u =f (x )(f (x )>0)的单调性,当a >1时相同,当0<a <1时相反.例如:求函数y =log 2(3-2x )的单调区间.分析:首先确定函数的定义域,函数y =log 2(3-2x )是由对数函数y =log 2u 和一次函数u =3-2x 复合而成,求其单调区间或值域时,应从函数u =3-2x 的单调性、值域入手,并结合函数y =log 2u 的单调性考虑.解:由3-2x >0,解得函数y =log 2(3-2x )∞设u =3-2x ,x ∞∵u =3-2x ∞y =log 2u 在(0,+∞)上单调递增,∴函数y =log 2(3-2x )∞∴函数y =log 2(3-2x )∞【例10-1】求函数y =log a (a -a x )解:(1)若a >1,则函数y =log a t 递增,且函数t =a -a x 递减.又∵a -a x >0,即a x <a ,∴x <1.∴函数y =log a (a -a x )在(-∞,1)上递减.(2)若0<a <1,则函数y =log a t 递减,且函数t =a -a x 递增.又∵a -a x >0,即a x <a ,∴x >1.∴函数y =log a (a -a x )在(1,+∞)上递减.综上所述,函数y =log a (a -a x )在其定义域上递减.析规律判断函数y =log a f (x )的单调性的方法函数y =log a f (x )可看成是y =log a u 与u =f (x )两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.需特别注意的是,在求复合函数的单调性时,首先要考虑函数的定义域,即“定义域优先”.【例10-2】已知f (x )=12log (x 2-ax -a )在1,2⎛⎫-∞-⎪⎝⎭上是增函数,求a 的取值范围.解:1,2⎛⎫-∞-⎪⎝⎭是函数f (x )的递增区间,说明1,2⎛⎫-∞- ⎪⎝⎭是函数u =x 2-ax -a 的递减区间,由于是对数函数,还需保证真数大于0.令u (x )=x 2-ax -a ,∵f (x )=12log ()u x 在1,2⎛⎫-∞-⎪⎝⎭上是增函数,∴u (x )在1,2⎛⎫-∞-⎪⎝⎭上是减函数,且u (x )>0在1,2⎛⎫-∞- ⎪⎝⎭上恒成立.∴1,2210,2a u ⎧≥-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩即1,10.42a aa ≥-⎧⎪⎨+-≥⎪⎩∴-1≤a ≤12.∴满足条件的a 的取值范围是112a a ⎧⎫-≤≤⎨⎬⎩⎭.11.对数型函数的奇偶性问题判断与对数函数有关的函数奇偶性的步骤是:(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f (-x )与f (x )或-f (x )是否相等;(2)当f (-x )=f (x )时,此函数是偶函数;当f (-x )=-f (x )时,此函数是奇函数;(3)当f (-x )=f (x )且f (-x )=-f (x )时,此函数既是奇函数又是偶函数;(4)当f (-x )≠f (x )且f (-x )例如,判断函数f (x )=log )a x (x ∈R ,a >0,且a ≠1)的奇偶性.解:∵f (-x )+f (x )==log )a x -+log )a x )=log a (x 2+1-x 2)=log a 1=0,∴f (-x )=-f (x ).∴f (x )为奇函数.【例11】已知函数f (x )=1log 1axx+-(a >0,且a ≠1).(1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性;(3)求使f (x )>0的x 的取值范围.分析:对于第(2)问,依据函数奇偶性的定义证明即可.对于第(3)问,利用函数的单调性去掉对数符号,解出不等式.解:(1)由11xx+->0,得-1<x <1,故函数f (x )的定义域为(-1,1).(2)∵f (-x )=1log 1ax x -+=1log 1a xx+--=-f (x ),又由(1)知函数f (x )的定义域关于原点对称,∴函数f (x )是奇函数.(3)当a >1时,由1log 1a x x +->0=log a 1,得11xx+->1,解得0<x <1;当0<a <1时,由1log 1ax x +->0=log a 1,得0<11xx+-<1,解得-1<x <0.故当a >1时,x 的取值范围是{x |0<x <1};当0<a <1时,x 的取值范围是{x |-1<x <0}.12.对数型函数模型的实际应用地震震级的变化规律、溶液pH 的变化规律、航天问题等,可以用对数函数模型来研究.此类题目,通常给出函数解析式模型,但是解析式中含有其他字母参数.其解决步骤是:(1)审题:弄清题意,分清条件和结论,抓住关键的词和量,理顺数量关系;(2)建模:将文字语言转化成数学语言,利用数学知识,求出函数解析式模型中参数的值;(3)求模:求解函数模型,得到数学结论;(4)还原:将用数学方法得到的结论还原为实际问题的结论.由此看,直接给定参数待定的函数模型时,利用待定系数法的思想,代入已知的数据得到相关的方程而求得待定系数.一般求出函数模型后,还利用模型来研究一些其他问题.代入法、方程思想、对数运算性质,是解答此类问题的方法精髓.【例12】我国用长征二号F 型运载火箭成功发射了“神舟”七号载人飞船,实现了中国历史上第一次的太空漫步,令中国成为世界上第三个有能力把人送上太空并进行太空漫步的国家(其中,翟志刚完全出舱,刘伯明的头部和手部部分出舱).在不考虑空气阻力的条件下,假设火箭的最大速度y (单位:km/s)关于燃料重量x (单位:吨)的函数关系式为y =k ln(m +x )-k )+4ln 2(k ≠0),其中m 是箭体、搭载的飞行器、航天员的重量和.当燃料重量为-1)m 吨时,火箭的最大速度是4km/s .(1)求y =f (x );(2)已知长征二号F 型运载火箭的起飞重量是479.8吨(箭体、搭载的飞行器、航天员、燃料),火箭的最大速度为8km/s ,求装载的燃料重量(e =2.7,精确到0.1).解:(1)由题意得当x =(-1)m 时,y =4,则4=k ln[m +-1)m ]-k ln()+4ln 2,解得k =8.所以y =8ln(m +x )-)+4ln 2,即y =8ln m xm+.(2)由于m +x =479.8,则m =479.8-x ,令479.888ln479.8x=-,解得x ≈302.1.故火箭装载的燃料重量约为302.1吨.。

高中数学必修一对数函数

高中数学必修一对数函数

像 性 (1)定义域: (0,+) (2)值域:R (3)过点(1,0),即当x=1时,y=0 质 (4)在(0,+) (4)在(0,+)上 上是增函数 是减函数
1.函数y log 2 x , y log 5 x , y lg x 的图象如图所示, 回答下列问题: (1)哪个函数对应于哪个图象 (2)在同一坐标系中画出
1 2
x
y log
1 4
x
观察他们之间有什么关系
指数函数y=ax的图像与性质
a>1

0<a<1

(1)定义域为(-∞,+ ∞ ),值域为(0,+ ∞ ) 性 质
(2)图像都过点(0,1),当x=0时,y=1 (3)是R上的增函数 (3)是R上的减函数
对数函数的图像与性质
a>1 图 0<a<1
y log
1 2
x , y log
1 5
x , y log
1 10
x
的图象.
思考:根据什么来画?
练习2:如下图的曲线是对数函数y log
a
x
的图像,已知 a 的取值
4 3 1 3、 、 、 , 3 5 10
则相应于曲线 c 1、 c 2、 c 3、 c 4的 a 值依次为____________
a>1
0<a<1
a>1
0<a<1
指数函数 ( -∞ , +∞ ) ( 0 , +∞ ) 当a>1时,y=ax是增函数 当0<a<1时, y=ax是减函数
1 x y a 与y 的图象 a 关 于 y轴 对 称

高一必修一对数函数知识点

高一必修一对数函数知识点

高一必修一对数函数知识点对数函数是高中数学中的一个重要内容,它涉及到了指数函数和对数函数的关系。

对数函数的学习对于高中数学学习的深入理解和能力的发展非常重要。

本文将为大家介绍高一必修一对数函数的主要知识点,并通过示例来加深理解。

一、对数函数的定义和性质1. 对数函数的定义:对数函数y=loga(x)定义为y=a^x,其中a>0且a≠1。

其中,a称为底数,x称为指数,y称为对数。

2. 对数函数的性质:- 当x>0时,对数函数y=loga(x)是严格单调递增函数。

- 当0<a<1时,对数函数关于x轴对称。

- 当a>1时,对数函数关于y轴对称。

二、对数函数的图像和性质1. 对数函数的图像:对数函数的图像随着底数a的不同而变化,当底数a>1时,对数函数的图像呈现上升的指数形状;当0<a<1时,对数函数的图像呈现下降的指数形状。

2. 对数函数的常用性质:- 对数函数的定义域为(0, +∞),值域为(-∞, +∞)。

- 对数函数的图像经过点(1, 0),即loga(1) = 0。

- 对数函数在x=1时取到最小值,即loga(1) = 0。

- 对数函数在x→+∞时,值趋近于正无穷;在x→0+时,值趋近于负无穷。

三、对数函数的基本性质1. 对数函数的指数运算:- loga(xy) = loga(x) + loga(y)- loga(x/y) = loga(x) - loga(y)- loga(x^p) = p·loga(x)2. 对数函数的换底公式:- loga(x) = logb(x) / logb(a)四、对数方程和对数不等式1. 对数方程的求解:- 求解对数方程时,需要根据对数函数的性质来进行等式变形和求解。

2. 对数不等式的求解:- 求解对数不等式时,需要根据对数函数的性质来确定不等式的取值范围。

五、常用对数的计算常用对数是以10为底的对数,用logx表示。

高一数学对数函数课件

高一数学对数函数课件
高一数学对数函数课件
目录
• 对数函数的定义与性质 • 对数函数的运算 • 对数函数的应用 • 对数函数与其他函数的关系 • 对数函数的综合题解析
01
对数函数的定义与性质
定义与表示
总结词
对数函数是指数函数的反函数,其定义是指数函数的自变量和因变量互换位置 后得到的函数。
详细描述
对数函数的一般形式为 (y = log_{a}x)(其中 (a > 0) 且 (a neq 1)),其中 (x) 是自变量,(y) 是因变量。对数函数表示的是以 (a) 为底数,(x) 的对数。
计算机科学
在计算机科学中,对数函数常被用 于数据结构和算法设计,如二叉查 找树、哈希表等。
04
对数函数与其他函数的关 系
与指数函数的关系
指数函数和对数函数互为反函数,它 们的图像关于直线y=x对称。
对数函数和指数函数在解决实际问题 中经常一起出现,例如在计算复利、 解决声音强度问题等。
对数函数的定义是基于指数函数的, 即如果a的x次方等于N(a>0,a不等 于1),那么x叫做以a为底N的对数, 记作x=logₐN。
与三角函数的关系
对数函数和三角函数在形式上没有直接的关系,但在一些特定情况下可以相互转化 。例如,对于正弦函数和余弦函数的值可以通过对数函数进行计算。
三角函数和对数函数在解决实际问题中经常一起出现,例如在信号处理、振动分析 等领域。
对数函数和三角函数在一些数学问题中可以相互转化,例如在求解一些复杂的积分 问题时,可以将积分转化为对数函数的求解问题。
综合题类型与解题思路
01
类型三:对数方程求解
02
对数方程是常见的题型,需要掌握解对数方程的方法和步骤。

高一上学期数学必修课件第章对数函数的概念对数函数y=logx的图像和性质

高一上学期数学必修课件第章对数函数的概念对数函数y=logx的图像和性质

在金融领域中的应用
复利计算
在金融领域,对数函数被广泛应用于复利计算。通过对数函 数,可以方便地计算出本金在固定利率下经过一段时间后的 累积金额。
风险评估
在金融风险评估中,对数函数可用于描述极端事件(如市场 崩盘)发生的概率分布,帮助投资者更好地管理风险。
在科学研究中的应用
数据分析
在统计学和数据分析中,对数函数常 用于数据转换和处理,以便更好地揭 示数据间的关系和趋势。
单调性的应用
利用对数函数的单调性,可以比较两 个同底数的对数的大小,也可以解决 一些与对数函数相关的不等式问题。
奇偶性判断
对数函数的奇偶性
对于底数为正数且不等于1的对数函数y=logax,其既不是奇函数也不是偶函数 ,即它不具有奇偶性。
奇偶性的应用
虽然对数函数本身不具有奇偶性,但是在解决一些与对数函数相关的问题时,可 以考虑利用其他函数的奇偶性来简化问题。
指数式与对数式的互化
$a^x=N Leftrightarrow x=log_a N$
指数函数与对数函数的关系
指数函数$y=a^x$与对数函数$y=log_a x$互为反函数。这意味着它们的图像 关于直线$y=x$对称。
02
对数函数y=logx图像分些x和对应的y值,然 后在坐标系中描点,最后用平滑 曲线连接各点即可得到对数函数 的图像。
对数函数的底数$b$必须大于0且不等于1,否则函数无意义。同时,对于不同的底数,对 数函数的图像和性质也会有所不同。
对数运算规则
对数运算有特定的运算法则,如$log_b(mn) = log_b(m) + log_b(n)$、$log_b(m/n) = log_b(m) - log_b(n)$等。在解题过程中,需要正确运用这些法则进行化简和计算。

高一数学课件:2.4 对数函数及其性质(新人教版必修1)

高一数学课件:2.4 对数函数及其性质(新人教版必修1)
2

3

返回
学点三 对数函数的图像 已知a> 且 的图像只能是( 已知 >0且a≠1,函数 ,函数y=ax与y=loga(-x)的图像只能是( ) 的图像只能是 【分析】应先由函数定义域判断图像的位置,再对底 分析】应先由函数定义域判断图像的位置, 进行讨论, 数a进行讨论,最后选出正确选项 进行讨论 最后选出正确选项. 【解析】解法一:首先 曲线 首先,曲线 解析】解法一 首先 曲线y=ax 只可能在上半平面,y=loga(-x)只 只可能在上半平面 只 可能在左半平面上,从而排除 从而排除A,C. 可能在左半平面上 从而排除 其次,从单调性着眼 其次 从单调性着眼,y=ax与 从单调性着眼 y=loga(-x)的增减性正好相反 又 的增减性正好相反,又 的增减性正好相反 可排除D. 可排除 故应选B. 故应选
单调性
当0<x<1时,y∈(0,+∞) 时 ∈ 函数值的 当 x=1 时,y=0; 变化规律 当 x>1 时, y<0.
当x=1时, y=0 ; 时 当x>1时, y>0 . 时
返回
学点一 比较大小 比较大小: 比较大小:
4 6 log 1 ,log 1 ; (1) ) 2 5 2 7
2) (2) 1 3, log 1 5 ; log
) (2) y = log 2 2 ) . - x + 2x + 2 (1)∵x2-4x+6=(x-2)2+2≥2,又∵y=log2x在(0,+∞)上是增 ∵ 又 在 上是增 函数, 函数
(x2-4x+6);
∴log2(x2-4x+6)≥log22=1. ∴函数的值域是[1,+∞). 函数的值域是[ (2) ∵-x2+2x+2=-(x-1)2+3≤3, 1 1 ∴ - x 2 + 2x + 2 <0或 - x 2 + 2x + 2 ≥ 1 . 或 1 3 1 ≥ log 2 ∴ 2 log - x + 2x + 2 1 3 ∴函数的值域是 log 2 ,+∞ ,

对数函数及其性质(第一课时)课件-高一上学期数学人教A版(2019)必修第一册

对数函数及其性质(第一课时)课件-高一上学期数学人教A版(2019)必修第一册


(1)A已.知cab0.3a0.4 ,A.b cB.lobga34ab,cc lBo.g0.a3 4C,b.则b(c a c )C. b Da.bc c a D.b c a
A. c b a B. a b c
C.b a c
D.b c a
例题讲练
(2)设 a log3 , b log2 3 , c log3 2 ,则(
x lxogaloyg(a ya ( 0a且 a0 且 1a),1x),也是x 也以是y以为自y 为变自量变的量函的数函(数其(中其y 中 0y, 0x , Rx ),R ), 根据根我据们我的们认的知认习知惯习,惯我,们我把们x 把 lxogaloyg中a 字y 中母字x 母, xy,对调y 对,调, 写成写y成 lyogaloxg(a 其x (中其x 中 0x, 0y, Ry ).R ).
例题讲练
【练习习 55】】
((11))已已知知ff((xx))的的定定义义域域为为[0[,10],1,] ,则函则数函数f [lof g[l1o(g31(3x)] 的x)定] 的义定域义为域___为____________._____.
22
例题讲练
(2)已知函数 y f [lg(x 1)] 的定义域为 (0,99] ,则函数 y f [log2 (x 2)] 的定义域为__________.
§4.4 对数函数及其性质 (第一课时)
人教版高中数学必修一
课堂引入:
通过前面的学习我们知道,某细胞经过 x 次分裂后,变成的细胞个数 y 2x ,
得由到一由y 个y2指x 数2x函x数x.lo由gglo22gyyy2y2对x 于对任于x意任的意lo细的g2胞细y个胞,数个对数y于,任y 我,意们我的都们细可都胞以可个通以数过通y对过,数对我运数们算运都算可 得到以得唯通到一唯过的一对的数x 与运x 之与算对之得应对到,应唯所,一以所的细以x胞细与分胞之裂分对次裂应数次,所数x以也x细可也胞以可分看以裂出看次以出数细以x胞细也个胞可数个以数y看为y成自为以变自细变胞个 量的数量函的y数函为.数自.变量的函数. 同样同地样,地根,据根指据数指与数对与数对的数关的系关,系由,y由 ayx(aax ( 0a且 a0 且 1a)可1)以可得以到得:到:

数学高一上对数函数知识点

数学高一上对数函数知识点

数学高一上对数函数知识点1. 对数的概念对数是指以某个固定正数(底数)为底,另一个正数(真数)的幂等于给定的正数,那么这个幂就是对数。

例如,以10为底,100的对数就是2,即10^2 = 100。

对数函数是一个广义的幂函数,它是指数函数的逆运算。

对数函数可以用来解决指数方程,求解对数方程,以及简化复杂的数学问题。

2. 对数函数的定义对数函数的定义如下:y = logₐ(x)其中,a为底数,x为真数,y为幂。

3. 对数函数的性质对数函数具有以下几个重要的性质:(1) 底数为1时的特殊性质当底数a为1时,对数函数的结果始终为0。

这是因为任何数的1次幂都等于1,即1^x = 1,所以log₁(x) = 0。

(2) 底数为0时的不存在性质当底数a为0时,对数函数的结果是不存在的。

这是因为0的任何次幂都等于0,而对数函数的幂等于给定的正数,所以不存在一个真数的幂等于0。

(3) 底数为正数且不等于1时的单调性质当底数a为正数且不等于1时,对数函数是递增的。

这意味着如果x₁ < x₂,则logₐ(x₁) < logₐ(x₂)。

(4) 底数为正数且不等于1时的定义域和值域对数函数的定义域是正实数集(0, +∞),值域是实数集(-∞, +∞)。

(5) 底数为负数时的复数解当底数a为负数时,对数函数的结果可以是复数。

这是因为负数的幂在实数范围内没有定义,但在复数范围内是有定义的。

4. 对数函数的常用性质对数函数具有一些常用的性质,包括:(1) 对数的乘法法则logₐ(xy) = logₐ(x) + logₐ(y)(2) 对数的除法法则logₐ(x/y) = logₐ(x) - logₐ(y)(3) 对数的幂法法则logₐ(x^k) = k * logₐ(x)(4) 底数为10的常用对数函数常用对数函数指的是以10为底的对数函数,通常表示为log(x)。

常用对数函数在科学计算和实际问题中经常出现。

5. 对数函数的应用对数函数在各个领域有着广泛的应用,包括:(1) 科学计算对数函数在科学计算中经常用来简化复杂的数学问题,例如求解指数方程、对数方程等。

高一数学必修一对数函数的基本性质

高一数学必修一对数函数的基本性质

高一数学必修一对数函数的基本性质对数函数是高中数学中重要的一类函数,具有许多特殊的性质和应用。

本文将介绍对数函数的基本性质。

1. 对数函数的定义对数函数是指以某个正数为底的对数函数,一般表示为$y=\log_{a}x$,其中 $a>0$,$a\neq 1$,$x>0$。

其中,$a$ 为底数,$x$ 为真数,$y$ 为对数值。

2. 对数函数的图像特征对数函数的图像呈现出以下特征:- 当 $0<x<1$ 时,$\log_{a}x<0$;- 当 $x=1$ 时,$\log_a1=0$;- 当 $x>1$ 时,$\log_a x>0$;- 对数函数的图像在 $x$ 轴的正半轴上单调递增,但增长速度越来越慢;- 对数函数的图像通过点 $(1, 0)$,并且与 $x$ 轴和 $y$ 轴分别渐近。

3. 对数函数的基本性质对数函数具有以下基本性质:- $\log_ab$ 为 $x=a^y$ 的反函数,即 $\log_ab=y\Rightarrowa^y=x$;- $\log_a(mn)=\log_am+\log_an$,即可以将乘积化为求和;- $\log_a\frac{m}{n}=\log_am-\log_an$,即可以将商化为差;- $\log_aa^x=x$;- $a^{\log_ax}=x$。

4. 对数函数的常用公式对数函数的常用公式有:- $\log_aa=1$;- $\log_a1=0$;- $\log_a a^k=k$。

5. 对数函数的应用对数函数在实际问题中具有广泛的应用,例如:- 在科学计算中,对数函数可以用于简化复杂的数值计算;- 在经济学中,对数函数可以用于描述指数增长和指数衰减的现象;- 在物理学中,对数函数可以用于描述某些物理现象的特性;- 在生物学中,对数函数可以用于研究生物体的生长和衰退规律。

以上就是对数函数的基本性质和应用的简要介绍。

对数函数在数学中具有重要的地位,通过深入理解对数函数的性质和应用,可以更好地解决实际问题。

高中必修高一数学PPT课件对数函数的图像和性质

高中必修高一数学PPT课件对数函数的图像和性质

例题讲解
例2 比较下列各组数中两个值的大小:
(1) log2 3.4,log 2 3.8
(2) log 0.5 1.8, log 0.5 2.1
( 3) log a 5.1, log a 5.9(a 0, a 1)
归纳总结
问题. 两个同底数的对数比较大小的 一般步骤:
①确定所要考查的对数函数; ②根据对数底数判断对数函数增减性; ③比较真数大小,然后利用对数函数的 增减性判断两对数值的大小.
回顾小结
通过本节的学习,大家对对数函数有哪些认 识?能概括一下吗?
P74
习题2.2 7,8 .10(做书上)
试一试
比较下列各题中两个值的大小:
6
4 1 、 log0.5 ______log0.5
1.6 14 .
2 、 log1.5 ______log1.5
m
3、 若 log3 log3
m
n
,则m___n;
4、 若 log0.7 log0.7 ,
n
则m___n.
例题讲解 例3.溶液酸碱度的测量. 溶液酸碱度是通过pH刻画的.pH的计算公 式为pH=-lg[H+],其中[H+]表示溶液中氢离 子的浓度,单位是摩尔/升. (1)根据对数函数性质及上述pH的计算公 式,说明溶液酸碱度与溶液中氢离子的浓度 胃酸中氢离子的浓度是2.5×10-2 摩尔/升, 之间的变化关系; 胃酸的pH是多少? (2)已知纯净水中氢离子的浓度为 [H+]=10-7摩尔/升,计算纯净水的pH.
2.2.2对数函数的图像和性质(2)
温故知新
1பைடு நூலகம்对数函数的定义:
一般地,函数y = loga x(a>0,且a≠1) 叫做对数函数.其中 x是自变量.

高一数学有关必修一对数函数知识点

高一数学有关必修一对数函数知识点

高一数学有关必修一对数函数知识点高一数学必修1对数函数知识点一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。

底数则要大于0且不为1对数的运算性质当a0且a1时,M0,N0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N);(2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n)=nlog(a)(M)(nR)(4)换底公式:log(A)M=log(b)M/log(b)A (b0且b1)对数与指数之间的关系当a0且a1时,a^x=N x=㏒(a)N常用简略表达方式(1)常用对数:lg(b)=log(10)(b)(2)自然对数:ln(b)=log(e)(b)(3)log(a)+(b)=log(a)(b)e=2.718281828... 通常情况下只取e=2.71828 对数函数的定义对数函数的一般形式为y=㏒(a)x,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y。

因此指数函数里对于a的规定(a0且a1),同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

定义域:(0,+)值域:实数集R定点:函数图像恒过定点(1,0)。

单调性:a1时,在定义域上为单调增函数,并且上凸;01时,在定义域上为单调减函数,并且下凹。

1时,在定义域上为单调奇偶性:非奇非偶函数周期性:不是周期函数零点:x=1知识拓展:16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数。

德国的史提非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。

对数函数的图像和性质第课件高一上学期数学人必修第一册

对数函数的图像和性质第课件高一上学期数学人必修第一册

C.(2,0)
D.(-1,0)
题型二 图像恒过定点问题
探究 :指数函数y= 过哪个定点?
定点:即底数a变化时,函数值不受影响的点。
根据loga1=0,知无论a(a>0,
且a≠1)取何值,对数函数y=logax
的图象恒过定点(1,0).
题型三 对数函数图像应用
例1
(1)已知lg a+lg b=0,则函数f(x)=
所以y=log2(x2+4)的值域为[2,+∞).
题型四 对数函数值域与单调性 大本128页
例 3 求下列函数的值域与单调性:
2
(1)y=log2(x +4);
2
(2)y=log1(3+2x-x ).
2
[解] (1)y=log2(x2+4)的定义域是R.
因为x2+4≥4,
所以log2(x2+4)≥log24=2.
3
4
(1)log54,log53;
(2)log12,log12;
3
5
大本128页
(3)取中间值 1,
因为 log23>log22=1=log55>
log54,
(3)log23,log54.
所以 log23>log54.
大本128页[跟踪训练2]
比较下列各
组中两个值的大小:
(1)log31.99,log32;
练习1 函数的 f (x)=loga(x-2)的图象必
经过定点 (3, 0) .
【解析】令x-2=1,得x = 3,
所以f (3)=loga(3-2)=0,
即函数的 f (x)=loga(x-2的图象必经过
定点(3,0).
练习2 函数的 f (x)=loga(x-2)-2x的

对数函数的概念课件-高一上学期数学人教A版(2019)必修第一册

对数函数的概念课件-高一上学期数学人教A版(2019)必修第一册
1.若函数 f(x)=(a2+a-5)logax 是对数函数,则 a=________.
2 [由 a2+a-5=1 得 a=-3 或 a=2.又 a>0 且 a≠1,所以 a=2.]
题型 2 对数函数的定义域
例1 求下列函数定义域
(1) y log3 x2;
(2) y loga 4 xa 0,且a 1.
[解] (1)要使函数 f(x)有意义,则 log1x+1>0,即 log1x>-1,
2
2
解得 0<x<2,即函数 f(x)的定义域为(0,2).
(2)函数式若有意义,需满足x2+-1x>≥00,, 2-x≠0
即xx<>2-,1,
解得-1<x<2,故函数的定义域为(-1,2).
(3)由题意得- 2x-4x+ 1>80>,0, 2x-1≠1,
【解析】(1)因为 x2>0,即x ≠ 0,所以函数 y = log3x 的定义域是
{x|x≠0}.
(2)因为4-x>0,即x < 4,所以函数 y = loga (4-x)的定义域是 {x|x<4}.
典例解析
例 2 求下列函数的定义域. (1)f(x)= log11x+1;
2
(2)f(x)= 21-x+ln(x+1); (3)f(x)=log(2x-1)(-4x+8).
根据指数与对数的关系,由y
((
1
1
) 5730
) x,( x
0)得到:
2
x log 5730 y,(0 y 1) 1 2
这是函数吗?
函数的概念是什么?
问题探究
根据指数与对数的关系,由y

数学高一上对数函数知识点

数学高一上对数函数知识点

数学高一上对数函数知识点对数函数是高中数学中的重要知识点之一,在高一上学期,学生首次接触到了对数函数的概念和基本性质。

下面我们就来系统地了解一下高一上对数函数的知识点。

1. 对数函数的定义和性质:对数函数是指满足一定条件的函数,其中最常见和常用的是以10为底的对数函数,即常用对数函数。

常用对数函数的定义是:y = log10x,其中x和y分别表示自变量和因变量,log10x表示以10为底的x的对数。

对数函数的性质有:- 定义域:对数函数的定义域是正实数集。

- 值域:对数函数的值域是实数集。

- 单调性:对于正数x1和x2,如果x1 > x2,则log10x1 >log10x2。

也就是说,对数函数是递增函数。

- 零点:对数函数的零点是x = 1,因为log101 = 0。

- 对称性:对数函数关于直线y = x对称。

- 拉伸和压缩:对数函数y = log10(x/a)表示将函数的图像沿x轴拉伸a倍,而y = log10(ax)表示将函数的图像沿x轴压缩a倍。

- 幂函数与对数函数的互逆关系:指数函数与对数函数是互为反函数的关系。

2. 对数函数的图像和性质:对数函数的图像特点与函数的性质密切相关。

对数函数y =log10x的图像在x轴的右侧是递增的,而在x轴的左侧是递减的。

当x取正数时,函数图像在y轴的右侧上方,当x取0时,函数图像经过(0, -∞)的点,当x取负数时,函数图像在y轴的左侧下方。

对数函数的图像是一个渐近线为y = 0的曲线,该曲线在点(1, 0)处与x轴相交。

当x趋近于无穷大时,函数的值也趋近于无穷大,反之亦然。

3. 对数函数的运算和性质:对数函数的运算是基于指数函数的运算规律的。

对数函数的运算包括:- 指数和对数之间的互化:指数函数和对数函数是互为反函数的关系,两者之间可以通过指数函数的计算特性进行换算。

- 对数的乘除法:log10(a * b) = log10a + log10b,log10(a / b) = log10a - log10b。

高一数学必修一对数知识点

高一数学必修一对数知识点

高一数学必修一对数知识点对数是数学中的一个重要概念,广泛应用于各个领域。

在高一数学必修一课程中,掌握对数的相关知识点对于学习和解题都非常关键。

本文将介绍高一数学必修一中与对数相关的几个重要知识点。

一、对数的定义和性质对数是指数运算的逆运算,用于描述指数运算中的幂次关系。

设a和b是正实数且a≠1,若a^x=b,则称x是以a为底b的对数,记作x=log_a b。

对数的性质包括对数的定义、对数的唯一性和对数的计算规则。

二、常用对数和自然对数常用对数以10为底,通常记作lgx或logx,其中x是正实数。

自然对数以常数e(自然对数的底)为底,通常记作lnx,其中x是正实数。

常用对数和自然对数在科学和工程计算中经常使用,掌握其使用方法和性质对于解题和应用都具有重要意义。

三、对数函数与指数函数的性质对数函数和指数函数是互为反函数的函数。

指数函数y=a^x (a>0,a≠1)是底为a的对数函数y=log_a x的反函数,反之亦然。

对数函数和指数函数的图像具有一些特殊的性质,如对数函数的图像在直线y=x上对称。

四、对数方程和对数不等式对数方程是指形如log_a f(x)=b的方程,其中a是正实数,a≠1;f(x)是一个关于x的已知函数,b是常数。

对数不等式是指形如log_a f(x)<b或log_a f(x)>b的不等式,其中a是正实数,a≠1;f(x)是一个关于x的已知函数,b是常数。

解对数方程和对数不等式需要运用对数的性质和计算规则。

五、指数函数与对数函数的应用指数函数和对数函数在实际问题中具有广泛的应用。

例如,指数函数可以用于描述金融领域中的复利计算,对数函数可以用于描述物理学中的衰减和增长现象。

掌握指数函数和对数函数的应用方法,能够帮助我们更好地理解和解决实际问题。

以上就是高一数学必修一中与对数相关的几个重要知识点的简要介绍。

对数作为数学的一个重要概念,在不同领域都具有广泛的应用价值。

通过学习和掌握这些知识点,我们能够更好地理解数学中的对数运算,并能够灵活地运用于实际问题中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一章集合与函数概念
1.1 集合
1.1.1 集合的含义与表示
1.1.2 集合间的基本关系
1.1.3 集合的基本运算
1.2 函数及其表示
1.2.1 函数的概念
1.2.2 函数的表示法
1.3 函数的基本性质
1.3.1 单调性与最大(小)值
1.3.2 奇偶性
章末整合提升
第二章基本初等函数(I)
2.1 指数函数
2.1.1 指数与指数幂的运算
2.1.2 指数函数及其性质
2.2 对数函数
2.2.1 对数与对数运算
2.2.2 对数函数及其性质
2.3 幂函数
章末整合提升
第三章函数的应用
3.1 函数与方程
3.1.1 方程的根与函数的零点
3.1.2 用二分法求方程的近似解
3.2 函数模型及其应用
3.2.1 几类不同增长的函数模型
3.2.2 函数模型的应用实例
章末整合提升
2.2 对数函数
2.2.2对数函数及其性质
【基础知识解读】
知识点一 对数函数的概念
1.概念:一般地,我们把函数,(log 0>=a x y a 且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是 (0,+∞).
注意:对数函数的特征①x a log 的系数是1;②x a log 的底数是不等于1的正数;③x a log 的真数仅含有自变量x .
知识点二 对数函数的图象和性质
1.对数函数数,(log 0>=a x y a 且a ≠1)的图象和性质
)(log 10<<=a x y a
)(log 1>=a x y a
图象
性质
相同点 定义域为(0,+∞),值域为R 图象都过定点(1,0),即当x =1时,y=0
图象都无限地靠近y 轴
不同点
在(0,+∞)上是减函数 在(0,+∞)上是增函数 当0<x <1时,y >0;
当x >1时,y <0
当0<x <1时, y <0; 当x >1时,y >0
2.底数对函数图象的影响
对数函数x y x y x y x y x y 3
12
1532log ,log ,log ,log ,log =====的图象如图所示,可得到如下规律:
①x a log 与x a
1log 的图象关于x 轴对称;
②当1>a 时,底数越大图象越靠近x 轴,当10<<a 时,底数越小 图象越靠近x 轴.
例:已知函数x y x y x y x y a a a a 4321log ,log ,log ,log ====的图象, 则底数之间的关系: 【目标要求】
1.理解对数的概念,掌握对数函数的图象与性质.
2.会利用对数函数的图象与性质解决相关问题.
3.知道x
a y =与,(log 0>=a x y a 且a ≠1)为反函数.
知识点三 反函数 1.反函数的定义:
当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数.
由反函数的概念可知,同底数的指数函数和对数函数互为反函数. 2.互为反函数的两个函数之间的关系:
(1)原函数的定义域、值域是其反函数的值域、定义域; (2)互为反函数的两个函数的图象关于直线y=x 对称; (3)由反函数的概念可知“单调函数一定有反函数”;
(4)互为反函数的两个函数是描述同一变化过程中两个变量关系的不同数学模型.
例:函数)()(203≤<=x x f x
的反函数的定义域为________.
【应用能力提升】
应用点一 与对数函数有关的定义域值域问题 例1.求下列函数的定义域:
(1)32+=x y log ;(2))(log 232
1-=x y ;
(3)1
21
2
1--=x x y log ;(4))
(log 329
222-+-=x x x y .
例2.(1)已知函数)lg(a x x y ++=22
的定义域为R ,求实数a 的取值范围;
(2)已知函数[]
1112
2+++-=x a x a x f )()(lg )(,若f (x )的定义域为R ,求实数a 的取值范围.
例3.求下列函数的值域:
(1))(log 642
2+-=x x y (2))(log 5422--=x x y
例4.已知函数)lg()(122
++=x ax x f .
(1)若f (x )的值域为R ,求实数a 的取值范围; (2)若f (x )的定义域为R ,求实数a 的取值范围.
应用点二 对数函数单调性的应用 1.利用单调性比较大小
例5.比较下列各组值得大小: (1)542
1
log 与76
2
1log ; (2)321log 与351log ; (3)3031.log 与802.log
2.利用单调性解对数不等式 例6.解不等式:
(1))(log )(log 653222-≥+x x ;
(2)).,()(log )(log 100
124≠>>---a a x x a a
点拨:解不等式的一般步骤:⎪⎩

⎨⎧>>>⇔>>)()()()())((log )(log x g x f x g x f a x g x f a a 00
1
⎪⎩

⎨⎧>>>⇔<<<)()()()())((log )(log x g x f x g x f a x g x f a a 0010
3.利用单调性求参数的取值范围: 例7.已知函数⎥⎦

⎢⎣⎡+-=121x a x f a )(log )(在区间[]21,
上恒为正值,求实数a 的取值范围.
例8.已知函数)(log )(log )(ax x a x f a a 22⋅=,当[]
42,
∈x 时,f (x )的取值范围是⎥⎦

⎢⎣⎡-081,,求实数a 的取值范围.
应用点三 对数函数的综合应用
例9.已知,)(k x x x f +-=2
且 0222>==a k a f a f ,)(log ,)(log 且1≠a .
(1)求a ,k 的值;
(2)当x 为何值时,)(log x f y 2=有最小值?求出该最小值.
例10.已知函数,(log )(011>-+=a x
x
x f a
)1≠a . (1)求出f (x )的定义域; (2)判断函数的奇偶性;
(3)求使f (x )> 0的x 的取值范围.。

相关文档
最新文档