直流电机PWM调速控制系统
基于单片机STC89C52的直流电机PWM调速控制系统
第一章:前言Pwm 电机调速原理对于电机的转速调整,我们是采用脉宽调制(PWM)办法,控制电机的时候,电源并非连续地向电机供电,而是在一个特定的频率下以方波脉冲的形式提供电能。
不同占空比的方波信号能对电机起到调速作用,这是因为电机实际上是一个大电感,它有阻碍输入电流和电压突变的能力,因此脉冲输入信号被平均分配到作用时间上,这样,改变在始能端EN1 和EN2 上输入方波的占空比就能改变加在电机两端的电压大小,从而改变了转速。
此电路中用微处理机来实现脉宽调制,通常的方法有两种:(1)用软件方式来实现,即通过执行软件延时循环程序交替改变端口某个二进制位输出逻辑状态来产生脉宽调制信号,设置不同的延时时间得到不同的占空比。
(2)硬件实验自动产生PWM 信号,不占用CPU 处理的时间。
这就要用到STC89C52的在PWM模式下的计数器1,具体内容可参考相关书籍。
51 单片机PWM 程序产生两个PWM,要求两个PWM 波形占空都为80/256,两个波形之间要错开,不能同时为高电平!高电平之间相差48/256,PWM 这个功能在PIC 单片机上就有,但是如果你就要用51 单片机的话,也是可以的,但是比较的麻烦.可以用定时器T0来控制频率,定时器T1 来控制占空比:大致的的编程思路是这样的:T0 定时器中断是让一个I0口输出高电平,在这个定时器T0的中断当中起动定时器T1,而这个T1 是让IO 口输出低电平,这样改变定时器T0 的初值就可以改变频率,改变定时器T1 的初值就可以改变占空比。
前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过 PWM 方式控制直流电机调速的方法就应运而生。
基于单片机的直流电机PWM调速控制系统的设计
基于单片机的直流电机PWM调速控制系统的设计第一章:前言1.1前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。
采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。
而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。
并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。
随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。
1.2本设计任务:任务: 单片机为控制核心的直流电机PWM调速控制系统设计的主要内容以及技术参数:功能主要包括:1)直流电机的正转;2)直流电机的反转;3)直流电机的加速;4)直流电机的减速;5)直流电机的转速在数码管上显示;6)直流电机的启动;7)直流电机的停止;第二章:总体设计方案总体设计方案的硬件部分详细框图如图一所示。
示数码管显PWM单片机按键控制电机驱动基于单片机的直流电机PWM调速控制系统的设计键盘向单片机输入相应控制指令,由单片机通过P1.0与P1.1其中一口输出与转速相应的PWM脉冲,另一口输出低电平,经过信号放大、光耦传递,驱动H型桥式电动机控制电路,实现电动机转向与转速的控制。
PWM单闭环直流调速控制系统设计方案稿
PWM单闭环直流调速控制系统设计方案稿一、概述本文将介绍一种基于PWM单闭环直流调速控制系统的设计方案。
该控制系统采用先进的数字信号处理技术,结合现代控制理论,实现了对直流电机的速度闭环控制。
通过控制电机的输入电压和电流,可以实现对电机的速度和转矩的调节。
二、系统组成系统由控制器、电源、电机、位置传感器等组成。
1. 控制器控制器采用单片机作为核心,结合高性能数字信号处理器(DSP)实现对直流电机的控制。
控制器的输入信号包括电机的速度信号和电流信号,输出信号为PWM波形输出信号。
控制器还可以接受外部命令,以实现自动控制。
2. 电源电源模块主要提供DC电压和电流,以驱动电机运转。
电源还需要具备良好的稳定性和可靠性,以确保电机的顺畅运行。
3. 电机电机是系统中最重要的组成部分,它产生的动力能够驱动机械系统的运动。
电机主要由电路板、转子和定子组成。
电机所选定子是具有良好导电、高强度、低热膨胀系数、低扭矩波动等性能的材料。
4. 位置传感器位置传感器主要用于检测电机的运动状态和位置。
这里采用霍尔效应传感器,它可以通过感应磁场的变化来检测转子位置和转速。
三、控制原理PWM(Pulse Width Modulation)可以用来控制电机的速度和转矩,可实现大功率的低损耗控制,是电动汽车等应用领域的重要技术。
PWM单闭环直流调速控制系统采用电流控制和速度控制两个环节,实现对直流电机的闭环控制。
电流控制环节主要用来控制电流大小和方向。
在此环节中,通过对电机的PWM控制信号来控制电机的输入电流,可以实现对电机转矩的调节。
2. 速度控制环节本系统的控制器选用TI的C2000系列数字信号处理器作为核心,主要用于PWM输出信号的实现和电机控制功能的实现。
该数字信号处理器具有高性能、低功耗、高可靠性等优点,能够满足本系统的控制要求。
控制器主要由PWM模块、ADC模块、PID控制器、位置检测器等组成。
其中,PWM模块用来实现电机的PWM信号输出,ADC模块用来实现电机的电流量测和速度量测,PID控制器用来根据电机的速度信号和目标速度信号计算出PWM信号,位置检测器用来检测电机的位置。
单片机课程设计PWM直流电动机调速控制系统方案
单片机原理及应用—— P W M直流电机调速控制系统概括直流电动机具有良好的启动性能和调速特性。
具有起动转矩大、调速平稳、经济大范围、调速容易、调速后效率高等特点。
本文设计的直流电机调速系统主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路和独立按键组成的电子产品组成。
电源采用78系列芯片,采用PWM波方式实现电机+5V、+15V调速,PWM为脉宽调制,通过51单片机改变占空比实现。
通过独立的按键实现电机的启停、调速和转向的手动控制,LED实现测量数据(速度)的显示。
电机转速采用霍尔传感器检测输出方波,通过51单片机统计1秒内方波脉冲个数,计算电机转速,实现直流电机的反馈控制。
关键词:直流电机调速; H桥驱动电路; LED显示屏; 51单片机目录摘要2摘要错误!未定义书签。
目录3第 1 章引言41.1 概述41.2 国外发展现状41.3 要求51.4 设计目的及6第 2 章项目论证与选择72.1 电机调速模块72.2 PWM调速工作模式72.3 PWM脉宽调制方式错误!未定义书签。
2.4 PWM 软件实现错误!未定义书签。
第三章系统硬件电路设计83.1 信号输入电路83.2 电机PWM驱动模块电路9第 4 章系统的软件设计104.1 单片机选型104.2 系统软件设计分析10第 5 章 MCU 系统集成调试135.1 PROTEUS 设计与仿真平台错误!未定义书签。
18传统开发流程对比错误!未定义书签。
第一章简介1.1 概述现代工业的电驱动一般要求部分或全部自动化,因此必须与各种控制元件组成的自动控制系统相联动,而电驱动可视为自动电驱动系统的简称。
在这个系统中,生产机械可以自动控制。
随着现代电力电子技术和计算机技术的发展以及现代控制理论的应用,自动电驱动正朝着计算机控制的生产过程自动化方向发展。
以实现高速、高质量、高效率的生产。
在大多数集成自动化系统中,自动化电力牵引系统仍然是不可或缺的组成部分。
直流电机的PWM冲调速控制技术
直流电机的PWM冲调速控制技术直流电机的PWM冲(宽度调变)调速控制技术为调节马达转速和方向需要对其直流电压的大小和方向进行控制。
目前,常用大功率晶体管脉宽调制(PWM)调速驱动系统和可控硅直流调速驱动系统两种方式。
可控硅直流(SCR)驱动方式,主要通过调节触发装置控制SCR 的导通角来移动触发脉冲的相位,从而改变整流电压的大小,使直流电机电枢电压的变化易平滑调速。
由于SCR本身的工作原理和电源的特点,导通后是利用交流过零来关闭的,因此,在低整流电压时,其输出是很小的尖峰值的平均值,从而造成电流的不连续性。
由于晶体管的开关响应特性远比SCR 好,因此前者的伺服驱动特性要比后者好得多。
所谓脉冲宽度调变(Pulse Width Modulate 简称 PWM)信号就是一连串可以调整脉冲宽度的信号。
脉宽调变是一种调变或改变某个方波的简单方法。
在它的基本形式上,方波工作周期(duty cycle)是根据输入信号的变化而变化。
在直流电机控制系统中,为了减少流经电机绕线电流及降低功率消耗等目的,常常使用脉冲宽度调变信号(PWM)来控制交换式功率组件的开与关动作时间。
其最常使用的就是借着改变输出脉冲宽度或频率来改变电机的转速。
图1 PWM 脉冲宽度调变信号图若将供应电机的电源在一个固定周期做ON及OFF的控制,则ON的时间越长,电机的转速越快,反之越慢。
此种ON与OFF比例控制速度的方法即称为脉冲宽度调变,ON的期间称为工作周期(duty cycle),以百分比表示。
若直流电机的供应电源电压为10伏特,乘以20%的工作周期即得到2伏特的输出至电机上,不同的工作周期对应出不同电压让直流电机转速产生不同的变化。
若直流电机的供应电源电压为10伏特,乘以20%的工作周期即得到2伏特的输出至电机上,不同的工作周期对应出不同电压让直流电机转速产生不同的变化。
PWM产生器方块图如下图所示,计数器采下数计数器与上数计数器的两种PWM讯号。
基于FPGA的直流电机PWM调速系统设计实现分析
基于FPGA的直流电机PWM调速系统设计实现分析1.引言直流电机广泛应用于各个领域,如工业控制、机器人等。
调速系统是直流电机应用中非常重要的一部分,直流电机的调速在一定范围内能够满足不同负载需求。
本文将介绍基于FPGA的直流电机PWM调速系统的设计实现分析。
2.系统设计2.1系统架构设计基于FPGA的直流电机PWM调速系统主要包括FPGA、PWM控制器、驱动电路和直流电机。
其中,FPGA负责进行调速算法的运算和时序控制,PWM控制器用于生成PWM信号,驱动电路控制直流电机的转速和方向。
2.2算法设计调速算法一般采用PID控制算法,通过测量直流电机的转速和负载情况,计算出PWM占空比,并调整PWM信号的频率和占空比以实现电机的调速。
在FPGA中,可以使用硬件描述语言(HDL)进行算法实现。
使用VHDL或Verilog等HDL语言,编写PID控制器、计数器和状态机等模块,实现调速算法的运算和时序控制。
3.系统实现3.1FPGA的选择FPGA是可编程逻辑芯片,具有灵活性和高性能的特点。
在选择FPGA 时,需要考虑系统的性能需求、资源使用和开发成本等因素。
常用的FPGA型号包括Xilinx系列和Altera(Intel)系列等。
3.2PWM控制器设计PWM控制器的设计主要包括频率和占空比的控制。
可以使用计数器和状态机实现PWM信号的生成。
计数器用于计数并产生PWM控制信号的频率,状态机用于控制计数器并调整PWM占空比。
3.3驱动电路设计驱动电路主要负责将FPGA生成的PWM信号转化为适合驱动直流电机的电压和电流信号。
驱动电路一般包括功率放大器、H桥驱动模块和电流反馈模块等。
通过控制H桥驱动模块的开关,可以实现直流电机的正反转和调速功能。
4.总结本文介绍了基于FPGA的直流电机PWM调速系统的设计实现分析。
通过使用FPGA进行调速算法的运算和时序控制,实现了对直流电机的精确调速。
系统设计包括FPGA选择、PWM控制器设计和驱动电路设计等。
单片机课程设计完整版《PWM直流电动机调速控制系统》
单片机原理及应用课程设计报告设计题目:学院:专业:班级:学号:学生姓名:指导教师:年月日目录设计题目 (3)1 设计要求及主要技术指标: (4)1.1 设计要求 (4)1.2 主要技术指标 (5)2 设计过程 (6)2.1 题目分析 (9)2.2 整体构思 (10)2.3 具体实现 (12)3 元件说明及相关计算 (14)3.1 元件说明 (14)3.2 相关计算 (15)4 调试过程 (16)4.1 调试过程 (16)4.2 遇到问题及解决措施 (20)5 心得体会 (21)参考文献 (22)附录一:电路原理图 (23)附录二:程序清单 (24)设计题目:PWM直流电机调速系统本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED液晶显示器、霍尔测速电路以及独立按键组成的电子产品。
电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。
通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。
电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。
关键词:直流电机调速;定时中断;电动机;PWM波形;LED显示器;51单片机1 设计要求及主要技术指标:基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM 调速控制装置。
1.1 设计要求(1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。
(2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。
(3)设计一个4个按键的键盘。
K1:“启动/停止”。
K2:“正转/反转”。
K3:“加速”。
K4:“减速”。
(4)手动控制。
在键盘上设置两个按键----直流电动机加速和直流电动机减速键。
在手动状态下,每按一次键,电动机的转速按照约定的速率改变。
基于PWM控制直流电机自动调速系统设计
1 绪论1.1 课题的研究背景和意义直流电动机是最早出现的电动机,也是最早能实现调速的电动机。
长期以来,直流电动机一直占据着调速控制的统治地位。
由于它具有良好的线性调速特性,简单的控制性能,高的效率,优异的动态特性;尽管近年来不断受到其他电动机(如交流变频电机、步进电机等)的挑战,但到目前为止,它仍然是大多数调速控制电动机的优先选择。
近年来,直流电动机的结构和控制方式都发生了很大变化。
随着计算机进入控制领域以及新型的电力电子功率元件的不断出现,使采用全控型的开关功率元件进行脉宽调制 (PulseWidthModulation,简称PWM)控制方式已成为绝对主流。
这种控制方式很容易在单片机控制中实现,从而为直流电动机控制数字化提供了契机。
五十多年来,直流电气传动经历了重大的变革。
首先,实现了整流器件的更新换代,从50年代的使用己久的直流发电机一电动机组(简称G-M系统)及水银整流装置,到60年代的晶闸管电动机调速系统(简称V-M系统),使得变流技术产生了根本的变革。
再到脉宽调制 (PulsewidthModulation)变换器的产生,不仅在经济性和可靠性上有所提高,而且在技术性能上也显示了很大的优越性,使电气传动完成了一次大的飞跃。
另外,集成运算放大器和众多的电子模块的出现,不断促进了控制系统结构的变化。
随着计算机技术和通信技术的发展,数字信号处理器单片机应用于控制系统,控制电路己实现高集成化,小型化,高可靠性及低成本。
以上技术的应用,使系统的性能指标大幅度提高,应用范围不断扩大。
由于系统的调速精度高,调速范围广,所以,在对调速性能要求较高的场合,一般都采用直流电气传动。
技术迅速发展,走向成熟化、完善化、系统化、标准化,在可逆、宽调速、高精度的电气传动领域中一直居于垄断地位[1]。
目前,国内各大专院校、科研单位和厂家也都在开发直流数字调速装置。
姚勇涛等人提出直流电动机及系统的参数辨识的方法。
该方法依据系统或环节的输入输出特性,应用最小二乘法,即可获得系统或环节的内部参数,所获的参数具有较高的精度,方法简便易行。
PWM控制的直流电动机调速系统设计
中國計量學院課程設計設計報告書題目:PWM控制的直流電動機調速系統設計二級學院現代科技學院專業電氣工程及自動化班級電氣062姓名*****學號**********同組同學姓名 ****** ******* 同組同學學 *********** *********2009年 12 月 23 日設計題目:PWM控制的直流電動機調速系統設計1、前言近年來,隨著科技的進步,電力電子技術得到了迅速的發展,直流電機得到了越來越廣泛的應用。
直流它具有優良的調速特性,調速平滑、方便,調速範圍廣;超載能力大,能承受頻繁的衝擊負載,可實現頻繁的無級快速起動、制動和反轉;需要能滿足生產過程自動化系統各種不同的特殊運行要求,從而對直流電機的調速提出了較高的要求,改變電樞回路電阻調速,改變電樞電壓調速等技術已遠遠不能滿足要求,這時通過PWM方式控制直流電機調速的方法應運而生。
採用傳統的調速系統主要有以下缺陷:模擬電路容易隨時間漂移,會產生一些不必要的熱損耗,以及對雜訊敏感等。
而在用了PWM技術後,避免了以上的缺陷,實現了用數字方式來控制模擬信號,可以大幅度降低成本和功耗。
另外,由於PWM 調速系統的開關頻率較高,僅靠電樞電感的濾波作用就可獲得平穩的直流電流,低速特性好;同樣,由於開關頻率高,快速回應特性好,動態抗干擾能力強,可以獲得很寬的頻帶;開關器件只工作在開關狀態,主電路損耗小,裝置效率高。
PWM 具有很強的抗噪性,且有節約空間、比較經濟等特點。
2、設計要求及組內分工2.1設計要求(1)根據電機與拖動實驗室提供的直流電動機,設計基於PWM的電動機調速方案。
(2)選用合適的功率器件,設計電動機的驅動電路。
(3)設計PWM波形發生電路,使能通過按鍵對電機轉速進行調節,要求至少有兩個速度控制按鍵,其中一個為加速鍵(每按一次,使電機轉速增加);另一個為減速鍵,功能與加速鍵相反。
(4)撰寫課程設計報告。
2.2組內分工(1)負責直流電動機調速控制硬體設計及電路焊接:主要由胡佳春和葉秋平完成(2)負責調速控制軟體編寫及調試:主要由朱健和葉秋平完成(3)撰寫報告:主要由胡佳春和朱健完成3、系統設計原理脈寬調製技術是利用數字輸出對模擬電路進行控制的一種有效技術,尤其是在對電機的轉速控制方面,可大大節省能量,PWM控制技術的理論基礎為:衝量相等而形狀不同的窄脈衝加在具有慣性的環節上時,其效果基本相同,使輸出端得到一系列幅值相等而寬度不相等的脈衝,用這些脈衝來代替正弦波或其他所需要的波形。
基于PWM控制的直流电机自动调速系统设计
基于PWM控制的直流电机自动调速系统设计一、引言直流电机是工业中最常见的电动机之一,其工作原理简单,结构紧凑,控制方便,广泛应用于各行各业。
为了满足不同工况下的运行需求,需要设计一个自动调速系统来调整直流电机的转速。
本文将基于PWM控制方法设计一个直流电机自动调速系统。
二、系统设计1.系统结构直流电机自动调速系统的基本结构包括传感器、控制器、电源和执行器。
传感器用于检测电机的转速,控制器根据检测到的转速信号进行处理,并通过PWM控制方法调整电机的输入电压,从而实现自动调速。
2.传感器选择直流电机的转速检测一般使用霍尔效应传感器来实现。
霍尔传感器可以直接测量电机转子的位置,并根据位置变化来计算转速。
传感器输出的信号经过放大和处理后,可以作为控制器的输入信号。
3.控制器设计控制器是整个自动调速系统的核心部分。
控制器接收传感器的转速信号,并通过PID算法对电机的转速进行调节。
PID算法是一种经典的控制方法,可以根据当前的偏差、偏差变化率和偏差积分值来计算控制量。
在本系统中,控制器输出的控制量即为PWM信号。
4.PWM控制方法PWM(Pulse Width Modulation)控制方法是一种通过调整脉冲宽度来控制输出电压的方法。
在本系统中,PWM控制方法可以通过改变PWM信号的占空比来调整电机的输入电压。
当需要提高电机转速时,增加PWM信号的占空比;当需要降低电机转速时,减小PWM信号的占空比。
通过反馈控制,控制器可以根据实际转速信号不断调整PWM信号的占空比,从而实现电机的自动调速。
5.电源选择在直流电机自动调速系统中,电源需要提供稳定的直流电压以供电机正常工作。
一般可选择线性稳压器或开关稳压器来提供所需的直流电压。
在选择电源时,需要考虑电机的功率和电源的效率,以确保系统的稳定性和可靠性。
6.执行器选择执行器是将控制信号转换为实际操作的部分。
在直流电机自动调速系统中,执行器可选择光耦隔离器和驱动芯片来实现PWM信号控制。
PWM直流电机调速系统设计
PWM直流电机调速系统设计PWM(脉宽调制)直流电机调速系统设计是通过改变电机输入电压的有效值和频率,以控制电机转速的一种方法。
本文将介绍PWM直流电机调速系统的原理、设计过程和实施步骤。
一、PWM直流电机调速系统原理1.电机:PWM直流电机调速系统使用的电机一般是带有永磁励磁的直流电机,其转速与输入电压成正比。
2.传感器:传感器主要用于检测电机转速和转速反馈。
常用的传感器有霍尔传感器和编码器。
3.控制器:控制器通过接收传感器反馈信号,并与用户输入信号进行比较来调整电机输入电压。
控制器一般包括比较器、计数器、时钟和PWM 发生器。
4.功率电源:功率电源负责提供PWM信号的电源。
PWM直流电机调速系统的工作原理是:先将用户输入转速转化为电压信号,然后通过比较器将输入信号与传感器反馈信号进行比较,再将比较结果输入给计数器,由计数器根据输入信号的边沿通过时钟控制PWM发生器,最后通过功率电源提供PWM信号给电机。
二、PWM直流电机调速系统设计过程1.确定电机类型和参数:根据实际需要确定使用的直流电机类型和技术参数,包括额定电压、额定转速、功率等。
2.选择传感器:根据调速要求选择合适的传感器,常用的有霍尔传感器和编码器。
3.设计控制器:根据电机类型和传感器选择合适的控制器,设计比较器、计数器、时钟和PWM发生器电路,并进行连线连接。
4.设计功率电源:根据控制器和电机的电压和电流要求设计适当的功率电源电路。
5.总结设计参数:总结所选器件和电路的技术参数,确保设计完整。
三、PWM直流电机调速系统实施步骤1.进行电路连线:根据设计图将所选器件和电路进行连线连接,包括控制器、传感器、电机和功率电源。
2.进行参数调整:根据需要进行控制器参数的调整,如比较器的阈值、计数器的初始值等。
3.进行调速测试:连接电源后,通过用户输入信号和传感器反馈信号进行调速测试。
根据测试结果进行参数调整。
4.优化系统性能:根据测试结果优化系统性能,如改进控制器参数、调整电机参数等。
直流电机PWM调速控制系统设计
直流电机PWM调速控制系统设计一、引言直流电机是一种常见的电动机,广泛应用于工业生产中的机械传动系统。
为了实现对直流电机的调速控制,可以采用PWM(脉宽调制)技术。
PWM调速控制系统通过控制脉冲宽度的变化来调整输出信号的平均电压,从而改变电机的转速。
本文将详细介绍直流电机PWM调速控制系统的设计原理、电路设计和控制算法等方面。
二、设计原理1、PWM调制原理PWM调制是一种通过改变脉冲宽度来控制平均电压的技术。
在PWM调速控制系统中,主要是通过改变脉冲的占空比来改变输出信号的平均电压,从而调整电机的转速。
2、直流电机调速原理直流电机的转速与电源电压成正比,转速调节的基本原理是改变电机的供电电压。
在PWM调速控制系统中,通过改变PWM信号的占空比,即每个周期高电平的时间占总周期时间的比例,来改变电机的供电电压,从而控制电机的转速。
三、电路设计1、输入电源电压变换电路为了适应不同的输入电源电压,需要设计输入电源电压变换电路。
该电路的功能是将输入电源电压通过变压器等元件进行变压或变换,使其适应电机的工作电压要求。
2、PWM信号发生电路PWM信号发生电路主要是负责产生PWM信号。
常用的PWM信号发生电路有555定时器电路和单片机控制电路等。
3、驱动电路驱动电路用于控制电机的供电电压。
常见的驱动电路有晶闸管调压电路、MOSFET驱动电路等。
通过改变驱动电路的控制信号,可以改变电机的转速。
四、控制算法在PWM调速控制系统中,需要设计相应的控制算法,来根据系统输入和输出变量进行调速控制。
常见的控制算法有PID控制算法等。
PID控制算法是一种经典的控制算法,通过对系统的误差、误差变化率和误差积分进行综合调节,来控制输出变量。
在PWM调速控制系统中,可以根据电机的转速反馈信号和设定转速信号,计算出误差,并根据PID 控制算法调节PWM信号的占空比,从而实现对电机转速的精确控制。
五、系统实现根据上述设计原理、电路设计和控制算法,可以实现直流电机PWM调速控制系统的设计。
直流电机PWM调速系统的设计与仿真
直流电机PWM调速系统的设计与仿真一、引言直流电机是电力传动中最常用的一种电动机,具有调速范围广、响应快、结构简单等优点。
而PWM(脉宽调制)技术是一种有效的电机调速方法,可以通过改变占空比控制电机的转速。
本文将介绍直流电机PWM调速系统的设计与仿真,包括建模分析、控制策略、电路设计和仿真实验等内容。
二、建模分析1.直流电机的模型直流电机的数学模型包括电动势方程和电机转矩方程。
电动势方程描述电机的输出电动势与供电电压之间的关系,转矩方程描述电机的输出转矩与电机转速之间的关系。
2.PWM调速系统的控制策略PWM调速系统的控制策略主要包括PID控制和模糊控制两种方法。
PID控制是一种经典的控制方法,通过比较实际输出与期望输出,计算出控制量来调整系统。
模糊控制则是一种基于模糊逻辑的控制方法,通过模糊推理,将输入量映射为输出量。
三、电路设计1.电机驱动电路设计电机驱动电路主要由电流传感器、逆变器和滤波器组成。
电流传感器用于测量电机的电流,逆变器将直流电压转换为交流电压,滤波器用于消除电压中的高频噪声。
2.控制电路设计控制电路主要由控制器、比较器和PWM信号发生器组成。
控制器接收电机转速的反馈信号,并与期望转速进行比较,计算出控制量。
比较器将控制量与三角波进行比较,生成PWM信号。
PWM信号发生器将PWM信号转换为对应的脉宽调制信号。
四、仿真实验1.系统建模与参数设置根据直流电机的模型,建立MATLAB/Simulink仿真模型,并根据实际参数设置电机的转矩常数、转矩常数、电机阻抗等参数。
2.控制策略实现使用PID控制和模糊控制两种方法实现PWM调速系统的控制策略。
通过调节控制参数,比较不同控制方法在系统响应速度和稳定性上的差异。
3.仿真实验结果分析通过仿真实验,分析系统的静态误差、动态响应和稳定性等性能指标。
比较不同控制方法的优缺点,选择合适的控制方法。
五、结论本文介绍了直流电机PWM调速系统的设计与仿真,包括建模分析、控制策略、电路设计和仿真实验等内容。
单片机控制PWM的直流电机调速系统的设计
单片机控制PWM的直流电机调速系统的设计PWM(脉宽调制)是一种常用的电压调节技术,可以用来控制直流电机的转速。
在单片机控制PWM的直流电机调速系统中,主要包括硬件设计和软件设计两个方面。
硬件设计方面,需要考虑的主要内容有:电机的选择与驱动、电源电压与电流的设计、速度反馈电路的设计。
首先,需要选择合适的直流电机和驱动器。
选择直流电机时需考虑其功率、转速、扭矩等参数,根据实际需求选择合适的电机。
驱动器可以选择采用集成驱动芯片或者离散元件进行设计,通过PWM信号控制电机的速度。
其次,需要设计合适的电源电压与电流供应。
直流电机通常需要较大的电流来实现工作,因此需要设计合适的电源电流,以及保护电路来防止电流过大烧坏电机和电路。
最后,需要设计速度反馈电路来实现闭环控制。
速度反馈电路可以选择采用编码器等传感器来获得转速信息,然后通过反馈控制实现精确的速度调节。
软件设计方面,需要考虑的主要内容有:PWM输出的控制、速度闭环控制算法的实现。
首先,需要编写代码实现PWM输出的控制。
根据具体的单片机型号和开发环境,使用相关的库函数或者寄存器级的编程来实现PWM信号的频率和占空比调节。
其次,需要实现速度闭环控制算法。
根据速度反馈电路获取的速度信息,通过比较目标速度与实际速度之间的差异,调整PWM信号的占空比来实现精确的速度调节。
常用的速度闭环控制算法有PID控制算法等。
最后,需要优化程序的鲁棒性和稳定性。
通过合理的调节PID参数以及增加滤波、抗干扰等功能,提升系统的性能和稳定性。
在实际的设计过程中,需要根据具体的应用需求和单片机性能等因素,进行合理的选择和调整。
同时,还需要通过实验和调试来验证系统的可靠性和稳定性,不断进行优化和改进,以获得较好的调速效果。
基于51单片机的PWM直流电机调速系统
基于51单片机的PWM直流电机调速系统一、本文概述随着现代工业技术的飞速发展,直流电机调速系统在众多领域如工业自动化、智能家居、航空航天等得到了广泛应用。
在众多调速方案中,基于脉冲宽度调制(PWM)的调速方式以其高效、稳定、易于实现等优点脱颖而出。
本文旨在探讨基于51单片机的PWM直流电机调速系统的设计与实现,以期为相关领域的技术人员提供一种可靠且实用的电机调速方案。
本文将简要介绍PWM调速的基本原理及其在直流电机控制中的应用。
随后,将详细介绍基于51单片机的PWM直流电机调速系统的硬件设计,包括电机选型、驱动电路设计、单片机选型及外围电路设计等。
在软件设计部分,本文将阐述PWM信号的生成方法、电机转速的检测与控制算法的实现。
还将对系统的性能进行测试与分析,以验证其调速效果及稳定性。
本文将总结基于51单片机的PWM直流电机调速系统的优点与不足,并提出改进建议。
希望通过本文的阐述,能为相关领域的研究与应用提供有益参考。
二、51单片机基础知识51单片机,也被称为8051微控制器,是Intel公司在1980年代初推出的一种8位CISC(复杂指令集计算机)单片机。
尽管Intel公司已经停止生产这种芯片,但由于其架构的通用性和广泛的应用,许多其他公司如Atmel、STC等仍然在生产与8051兼容的单片机。
51单片机的核心部分包括一个8位的CPU,以及4KB的ROM、低128B 的RAM和高位的SFR(特殊功能寄存器)等。
它还包括两个16位的定时/计数器,四个8位的I/O端口,一个全双工的串行通信口,以及一个中断系统。
这些功能使得51单片机在多种嵌入式系统中得到了广泛的应用。
在PWM(脉冲宽度调制)直流电机调速系统中,51单片机的主要作用是生成PWM信号以控制电机的速度。
这通常是通过定时/计数器来实现的。
定时/计数器可以设置一定的时间间隔,然后在这个时间间隔内,CPU可以控制I/O端口产生高电平或低电平,从而形成PWM信号。
pwm直流双闭环调速系统设计
PWM直流双闭环调速系统设计引言PWM(Pulse Width Modulation)直流双闭环调速系统是一种常用于电动机调速的控制系统。
在许多应用中,需要对电动机的速度进行精确控制,以满足不同的工作需求。
PWM直流双闭环调速系统通过不断调整电动机输入电压的占空比,使电动机保持稳定的转速,具有快速响应、良好的稳定性和较大的负载适应能力等优点。
本文将介绍PWM直流双闭环调速系统的设计原理、硬件电路和控制算法,并提供代码示例和性能分析。
设计原理闭环控制系统PWM直流双闭环调速系统由两个闭环控制回路组成:速度闭环和电流闭环。
速度闭环通过反馈电动机的实际转速来调整电动机输入电压,以使其达到期望转速。
电流闭环通过反馈电动机的实际电流来调整PWM信号的占空比,以使电动机输出的扭矩与负载要求相匹配。
速度闭环控制速度闭环控制由速度传感器、比例积分控制器和电动机驱动器组成。
速度传感器通常采用编码器或霍尔传感器来测量电动机转速,并将其转换为电压信号。
比例积分控制器根据速度误差和积分误差来计算控制器输出,并将其输入给电动机驱动器。
电流闭环控制电流闭环控制由电流传感器、比例积分控制器和PWM模块组成。
电流传感器用于测量电动机的电流,并将其转换为电压信号。
比例积分控制器计算电流误差和积分误差,并生成控制器输出,将其输入给PWM模块。
硬件电路设计PWM直流双闭环调速系统的硬件电路设计包括电源模块、电流传感器、速度传感器、比例积分控制器、PWM模块和电动机驱动器等。
电源模块电源模块用于提供系统所需的直流电压。
它可以采用稳压稳流电路来稳定输出电压和电流。
电流传感器电流传感器用于测量电动机的电流。
常用的电流传感器包括霍尔传感器和电阻传感器。
它将电动机的电流转换为电压信号,并输入给比例积分控制器。
速度传感器速度传感器用于测量电动机的转速。
常用的速度传感器有编码器、霍尔传感器和光电传感器等。
比例积分控制器比例积分控制器是PWM直流双闭环调速系统的核心控制模块。
PWM控制的直流电动机调速系统设计
PWM控制的直流电动机调速系统设计PWM(脉宽调制)控制的直流电动机调速系统是一种常用于工业和家用电机控制的方法。
它可以通过调整输出脉冲宽度来控制电机的转速。
本文将详细介绍PWM控制的直流电动机调速系统的设计原理和步骤。
一、设计目标本文所设计的PWM控制的直流电动机调速系统的设计目标如下:1.实现电机的精确转速控制。
2.提供多种转速档位选择。
3.实现反转功能。
4.提供过载保护功能。
二、设计原理具体的设计原理如下:1.产生PWM信号:使用微控制器或单片机的计时器/计数器模块来产生固定频率的脉冲信号,频率一般选择在20kHz左右。
通过调整计时器的计数值来改变脉冲的宽度,从而实现不同的电机转速。
2.控制电机转速:将微控制器或单片机的PWM输出信号经过电平转换电路后,接入电机的电源线,通过控制PWM信号的高电平时间来控制电机的转速。
3.实现不同的转速档位选择:通过增加多个PWM信号输出通道,可以实现多个转速档位的选择。
通过选择不同的PWM信号输出通道,可以实现不同的转速设定。
4.实现反转功能:通过改变PWM信号的极性可以实现电机的正转和反转操作。
正转时,PWM信号的高电平时间大于低电平时间;反转时,PWM信号的高电平时间小于低电平时间。
5.过载保护功能:通过添加电机负载的电流检测电路和电流限制功能,可以实现对电机过载时的自动保护。
三、设计步骤1.确定电机的额定电压和额定转速。
2.选择合适的微控制器或单片机作为控制核心,并编写PWM信号产生程序。
3.选择合适的驱动电路,将PWM信号转换成电机所需的电流和电压。
常用的驱动电路有H桥驱动电路和MOSFET驱动电路。
4.搭建电路原型,并进行电路调试和测试。
5.编写控制程序,实现转速档位选择、反转和过载保护功能。
6.进行系统整合和调试,确保系统的各项功能正常。
7.进行性能测试,并根据测试结果对系统进行调整和优化。
8.最后对系统进行稳定性测试,并记录测试结果。
四、总结本文详细介绍了PWM控制的直流电动机调速系统的设计原理和步骤。
PWM调速系统
直流伺服电机晶体管脉宽调制(PWM)调速系统阅读:5731)系统的组成及特①主回路:大功率晶体管开关放大器;功率整流器。
②控制回路:速度调节器;电流调节器;固定频率振荡器及三角波发生器;脉宽调制器和基极驱动电路。
区别:与晶闸管调速系统比较,速度调节器和电流调节器原理一样。
不同的是脉宽调制器和功率放大器。
直流脉宽调制:功率放大器中的大功率晶体管工作在开关状态下,开关频率保持恒定,用调整开关周期内晶体管导通时间(即改变基极调制脉冲宽度)的方法来改变输出。
从而使电机获得脉宽受调制脉冲控制的电压脉冲,由于频率高及电感的作用则为波动很小的直流电压(平均电压)。
脉宽的变化使电机电枢的直流电压随着变化。
直流脉宽调调制的基本原理脉冲宽度正比代表速度F值的直流电压 2)脉宽调制器3)开关功率放大器工作原理:T1 和T4 同时导通和关断,其基极驱动电压Ub1= Ub4。
T2和T3同时导通和关断,基极驱动电压Ub2= Ub3= –Ub1。
以正脉冲较宽为例,负载较重时:①电动状态:当0≤t ≤ t1时,U b1、Ub4为正,T1和T4导通;U b2、U b3为负,T2和T3截止。
电机端电压U AB=U S,电枢电流id= id1,由U S→T1→T4→地。
②续流维持电动状态:在t1≤t ≤ T时,U b1、U b4为负,T1和T4截止;U b2、U b3变正,但T2和T3并不能立即导通,因为在电枢电感储能的作用下,电枢电流id= id2,由D2→D3续流,在D2、D3上的压降使T2、T3的c-e极承受反压不能导通。
U AB=-U S。
接着再变到电动状态、续流维持电动状态反复进行,如上面图示。
负载较轻时:③反接制动状态,电流反向:②状态中,在负载较轻时,则id小,续流电流很快衰减到零,即t =t2时,id=0。
在t2-T 区段,T2、T3在U S和反电动势E的共同作用下导通,电枢电流反向,i d= i d3;由U S→T3→T2→地。
PWM可逆直流调速系统设计
PWM可逆直流调速系统设计1. 引言PWM(脉冲宽度调制)可逆直流调速系统是一种常用的电机调速系统,广泛应用于工业生产和家电领域。
本文将介绍PWM可逆直流调速系统的设计原理、主要组成部分以及工作原理。
2. 设计原理PWM可逆直流调速系统的设计原理基于脉冲宽度调制技术和电机控制原理。
通过调整PWM信号的脉冲宽度,可以控制电机的转速和运行方向。
主要原理包括: - 电源供应:系统通过电源为电机提供电能。
- PWM信号生成:通过数字控制器或单片机产生PWM 信号。
- H桥驱动电路:将PWM信号转换为适合电机的驱动信号。
- 电机控制:根据PWM信号调整电机的转速和运行方向。
3. 主要组成部分PWM可逆直流调速系统主要由以下几个组成部分构成:3.1 电源供应电源供应是系统的功率来源,可以选择直流电源或交流电源。
直流电源常用的电压范围为12V或24V,交流电源则需要将交流电转换为直流电。
3.2 PWM信号生成PWM信号生成是通过数字控制器或单片机来产生PWM信号的过程。
通过控制PWM信号的占空比,可以改变电机的转速。
3.3 H桥驱动电路H桥驱动电路是将PWM信号转换为适用于电机驱动的信号的关键部分。
H桥由4个开关管组成,根据PWM信号的输入情况控制开关管的导通与关闭,从而改变电机的转速和运行方向。
3.4 电机控制电机控制是根据PWM信号调整电机的转速和运行方向的过程。
通过增大或减小PWM信号的占空比,可以控制电机的速度;通过改变PWM信号的极性,可以改变电机的运行方向。
4. 工作原理PWM可逆直流调速系统的工作原理如下:1.首先,电源供应向系统提供电能,为后续的电机驱动做准备。
2.数字控制器或单片机根据预设的参数生成PWM信号,并将其输入到H桥驱动电路。
3.H桥驱动电路根据PWM信号的输入情况控制开关管的导通与关闭,从而改变电机的转速和运行方向。
4.电机控制模块根据PWM信号的占空比调整电机的转速,根据PWM信号的极性改变电机的运行方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流电机PWM调速控制系统
摘要:为了验证控制策略和电机参数设计的合理性,基于matlab/simulink平台,从无刷直流电机的基本原理出发,详细介绍电机各个模块的组成,构建了无刷直流电机pwm调速控制系统的建模与仿真模型,给出仿真曲线并验证该模型的正确性。
关键词:无刷直流电机模型仿真
1、引言
随着无刷直流电机(bldcm)应用领域的不断扩大,要求控制系统设计简易、成本低廉、控制算法合理、开发周期短。
本文主要研究反电势近似梯形波的永磁无刷直流电机模型的建立与仿真,根据电机的参数和实际运行状况,通过matlab软件的simulink和psb 模块,快捷地创建一些电机控制系统模型,并与simulink结合,实现电机控制算法的仿真。
文章介绍了如何创建无刷直流电动机的动态数学模型和pwm调速控制系统模型,并利用该模型,进行了pwm 调速控制系统的仿真试验。
2、无刷直流电机的数学模型
以两相导通三相六状态的无刷直流电机为例。
方波无刷直流电动机的主要特征是反电动势为梯形波,包含有较多的高次谐波,这意味着定子和转子的互感是非正弦的,并且无刷直流电动机的电感为非线性[1]。
采用直、交变换理论己经不是有效的分析方法,因此应该利用电机本身的相变量来建立数学模型。
为简化数学模型的建立,在电动机模型建立时,认为电动机气隙是均匀的。
并作以下假设[2]:
(1)电动机的气隙磁感应强度在空间呈梯形(近似为方波分布);
(2)定子齿槽的影响忽略不计;
(3)电枢反应对气隙磁通的影响忽略不计;
(4)忽略电动机中的磁滞和涡流损耗;
(5)三相绕组完全对称。
无刷直流电动机在运行过程中,每相绕组通过的不是持续不变的电流,该电流和转子作用产生的转矩,以及绕组上的感应电动势也都不是持续的。
因此转矩和反电动势都采用平均值的概念。
由以上假设,根据无刷直流电动机的特性,可建立其电压方程、转矩方程、状态方程以及等效电路结构。
对于三相无刷直流电机,其电压平衡方程可表示为[3]
式中:为定子相绕组电压(v);为定子相绕组电流(a);为定子相绕组反电动势(v);r为每相绕组的电阻(); l为每相绕组的电感(h);m 为每相绕组间的互感(h)。
在通电期间,无刷直流电机的带电导体处于相同的磁场下,各相绕组的反电动势为理想梯形波,其幅值为
式中:为反电动势系数;为转子的机械角速度。
无刷直流电动机的电磁转矩方程为:
式中:为电磁转矩;转子的机械角速度。
无刷直流电动机的运动方程为:(4)
式中:为负载转矩;f为粘滞阻尼系数;j为转子与负载的转动惯量。
3、无刷直流电机及其调速系统仿真模型的建立
在matlab/simulink环境下,根据无刷直流电动机的数学模型、电压方程式及电磁转矩方程,可得到如图1的仿真模型。
该系统主电路由直流电源模块、逆变器模块和直流无刷电动机本体模块组成;模型控制部分由转速给定模块n、转速调解器模块asr、pwm脉宽调制器和控制器单元模块等组成。
其模型如图1所示:
转速调解器模块输出脉宽控制信号,并通过脉宽调制器调节脉冲宽度,用于根据转速调节无换向器电动机的三相电压。
由于bldcm 控制系统要求的相电流为方波电流,pwm调制信号,只需为等幅、等宽、等距的信号,则由一个固定频率的三角波及直流电压信号的合成就可产生出所需的信号[4]。
控制器单元controller模块的作用是根据转子磁极位置分配电动机三相绕组的通电,即控制逆变器模块6个开关器件的开关次序由simulink/psb下提供的3对mosfet功率开关器件,各自并接反并联续流二极管,构成三相逆变桥。
4、实例仿真
为了验证所建模型的功能及其正确性,根据实际系统构建了一个完整的pwm调速系统仿真模型。
本例中仿真电机额定电压为300v,额定转速为2000r/min,定子电阻r为4.765
ω,定子电感l-m为0.0085h,转动惯量j为0.008kg
·m2,励磁磁通为0.1848wb,励磁脉冲宽度120°,极对数p为2,转速调解器的比例系数为10.7,积分系数为0.15,负载转矩为1.5n·m模型的仿真结果如图所示,其中图2为给定2000r/min带载1.5n·m启动时的转速响应,启动时电机转速略有超调后进入状态,稳态转速波动很小。
图2为转速波形图,图3为电动机转矩波形。
图4为a相反电动势波形,图5为a相定子电流波形。
可以看到无换器电动机电流呈交流方波,由于电压采用了pwm控制,在120°导通区间内电流有脉动,这使电动机电压和转矩也产生一定脉动。
在起动初始阶段.转矩有较大峰值,这是因为在无刷直流电动机起动时.无刷直流电动机的反电动势还役来得及建立起来,相电流较大,造成转矩峰值;在反电动势建立起来后,转矩迅速降到稳态值,转矩脉动很小。
以上波形与无刷直流电动机的理论波形吻台。
充分说明建立的无刷直流电机控制系统仿真模型是准确的,且行之有效。
5、结语
在分析无刷直流电动机数学模型的基础上,建立了一种基于matlab/simulluk和simpowersystem的无刷直流电动机pwm调速系统的仿真模型。
仿真结果验证了仿真模型的有效性和正确性。
参考文献
[1]bolopion a,jouve d,pacaut r. control of permanent magnets synchronous machines a simulation comparative surve.
ieee proceeding from applied powerelectronic conference and exposition. 1990,374-383)
[2]纪志成,沈艳霞,姜建国.基于 matlab无刷直流电机系统仿真建模的新方法系统仿真学报,2003,15(13):1745-1758
[3]pillay p,krishnan r. modling,simulation,analysis of permanent-magnet drives,part
π:the brushless dc motor drive.ieee trans on industry applications.1989,25(2):274-279
[4]肖耀南.无刷直流电动机驱动控制系统研究.湖南大学硕士学位论文,2005.
.。