数学物理方法 第六章 拉普拉斯变换
数学物理方法 拉氏变换
1 c j st (1)利用公式 f (t ) F (s)e ds c j 2 πj
(2)对简单形式的F(s)可以查拉氏变换表得原函数 (3)把F(s)分解为简单项的组合
F ( s ) F1 ( s ) F2 ( s ) Fn ( s )
f (t ) f1 (t ) f 2 (t ) f n (t )
K2 Kn ( s p1 ) F (s) K1 ( s p1 ) s p s p 2 n
令 s = p1 方法2
求极限的方法
N (s)(s pi ) K i lim s pi D(s)
返 回 上 页 下 页
N (s)(s pi ) K i lim s pi D(s)
2. 拉氏变换的定义
定义 [ 0 , ∞)区间函数 f(t)的拉普拉斯变换式:
简写 F (s) L f (t ) , f (t ) L F (s)
-1
F ( s ) f (t )e st dt 0 1 c j st F ( s ) e d s f (t ) c j 2 πj
s 1
3
d K 21 [( s 1) 2 F ( s )] s 1 d [ s 4 ] 4 s 1 ds ds s
f (t ) 4 4e 3te
t
t
返 回
上 页
下 页
小结 由F(s)求f(t) 的步骤: n =m 时将F(s)化成真分式和多项式之和 N 0 (s) F (s) A D(s)
(2) f (t ) δ ( t )的象函数
1 L[ (t )] s d (t ) 1 L (t ) L[ ] s 0 1 dt s 2 d f ( t ) ' 推广:L[ ] s[ sF ( s) f (0 )] f (0 ) 2 dt 2 ' s F ( s) sf (0 ) f (0 )
数学物理方程第六章-拉普拉斯变换
L [
1
p 2 p 9 p 36
3 2
p 81
4
2
]
p 81
4
p 2 p 9 p 36 ( p 3 )( p 3 )( p 9 )
2
1 2
1 p3
1 2
1 p3
p p 9
2
1 3
3 p 9
2
L [
1
p 2 p 9 p 36
0
( ) d 0
L [ f ( at )] 1 a f(
0
#
p a ).
(4) 相似定理 (5) 位移定理 (6) 延迟定理
L[e
t
f ( t )] f ( p ).
与傅立叶变换类似
(t t 0 ) H (t t 0 )
(t )
L [ f ( t t 0 )] e
pt
dt ,
0
L [ tf ( t )]
.
L [ t f ( t )] ( 1)
n
n
d L [ f ( t )] dp
n
n
.
2012-8-1
阜师院数科院
2. 性质 与傅立叶变换同为积分变换,故有类似性质 (1) 线性定理 若
L [ f 1 ( t )] f 1 ( p )
和
第六章 拉普拉斯变换
6.2 拉普拉斯变换 与傅立叶变换类似的,通过积 分实现的变换。 1. 定义
f ( p)
对于
f (t )e
pt
f (t ) 0 .
(t 0 )
数学物理方法1课件——第六章 拉普拉斯变换
解:按照拉普拉斯变换的定义,有
∫ ∫ ∞ sin ωt e− ptdt = 1
0
2i
∞ 0
⎡⎣e−(
p −iω
)t
− e−( p+iω)t ⎤⎦ dt =
1⎡ 1
2i ⎢⎣ p − iω
−
p
1
+ iω
⎤ ⎥⎦
=
ω p2 +ω2
sin ωt
U
ω p2 +ω2
类似地,有
∫ ∫ ∞ cosωt e− ptdt = 1
f (n) (t) U pn F ( p) − pn−1 f (0) − pn−2 f (1) (0) − ... − f (n−1) (0)
通过拉普拉斯变换,把原函数的微商运算转化为像函数的乘法 运算,而且还自动包括了原函数的初值。
例2 已知函数f(t)满足如下二阶常微分方程
d 2 f (t) + ω2 f (t) = 0
∞
∑ f (x) = cneiknx n=−∞
∫ 其中kn=nπ/l 为波数
cn
=
1 2l
l f (x)e−iknxdx
−l
¾ 实数形式的傅里叶积分变换
∞
∞
f (x) = ∫0 A(k) cos(kx)dk +∫0 B(k) sin(kx)dk
其中
∫ A(k) = 1
∞
f (x) cos(kx)dx
=
−
1
0
p
∞ tde− pt
0
=
−
1 p
⎡⎢⎣te− pt
∞ 0
−
∞ 0
e−
pt
dt
⎤ ⎥⎦
拉普拉斯变换法
拉氏变换定义
原函数f(t)旳拉氏变换F(S)定义为:
就是将原函数乘以e-st,并将乘积从时间为0→∞之间 作定积分。
拉氏变换旳实质是将时间函数体现式转换为拉氏运 算子s旳函数体现式。 f(t) --- 原函数 F(S)--- 象函数
二、 简朴函数L氏变换 1. 常数 f(t)=A
2. 指数函数 f(t)= e-at
3.导函数
三、L氏变换旳主要性质 ❖ L氏变换是线性变换 设
则
即 代数多项式旳L氏变换等于各项 变换旳代数和。
❖ 微分性质
若 则
某些常用函数旳Laplace变换表
函数,F(t) A t
Ae-at
L氏变换,f(s) A/s 1/s2
A/(s+a)
A/s(s+a)
Ate-at
A/(s+a)(s+b) A/(s+a)2
拉普拉斯变换 (Laplace Transform)
一、 概述
❖ 线性方程组:表征表观零级或一级过程旳速度旳方 程组。
❖ 拉普拉斯变换(L氏变换):是一种微分方程或积 分方程求解旳简化措施。可用于解线性微分方程 组。
❖ 进行L氏变换旳实质,在于把速度方程式中旳时间 定义域置换成拉普拉斯运算子s旳复。
四、L氏变换解线性微分方程
1. 零级静脉输注
速度体现式:
dX k 0 kX
dt
L氏变换
sL[ X (t)] X (0) k 0 kL[ X (t)] s
s X X (0) k 0 k X S
X k0 s(s k)
方程终解 X k 0 (1 ekt ) K
2. 静脉注射
dX kX dt
( t=0, X=X0)
第六章Laplace 变换方法
数学物理方程
第6章 Laplace 变换方法
所以 ,
k p k 2 pt e sin ktdt 2 2 0 p p
2
即
0
2 2 k k p k pt 2 2 e sin ktdt 2 2 p p p k
k L sin kt 2 2 p k
数学物理方程
1 p s t dt 2e p s
0
1
p s
2
数学物理方程
第6章 Laplace 变换方法
st L t e
所以, 同理:
1
p s
2
n st L t e
M
p s
n 1
例 5. 求 L tf t ,其中 f t 是存在Laplace变换的任意函数。 解: 而
这时 f (t )e t 的Fourier变换总是存在的。
t 某函数 f (t ) 乘以 e 在物理上对应于
初值问题,某个物理量在初始时刻 t 0
时
f (0)
,求它在初始时刻后的变化情况
f (t ) ,在
t 0 之前可认为
f (t ) 0t 0)
数学物理方程
例 6. 求 L sin kt k 为实数 解: 所以,
1 ikt ikt sin kt e e 2i
1 1 ikt ikt L L e e 2i 2i
1 L sin kt L eikt e ikt 2i
数学物理方程
第6章 Laplace 变换方法
例 6. 求 L sin kt k 为实数 解:
数学物理方法 第六章
例1
解:设L[y(t)]=Y(p),方程两边取Laplace变换,有
利用初始条件,得到
L-1{Y(p)}
拉普拉斯变换的定义
傅里叶变换要求进行变换的函数在无穷区间 有定义,在任一有限区间上满足狄利克雷条件,并要求 存在.这是一个比较苛刻的要求,一些常用的 函数,如阶跃函数 ,以及 等均不满足这
在物理、线性控制等实际应用中,许多以时间 些要求.另外, 为自变量的函数,往往当 时没有意义,或者不需要知道
的情况.因此傅里叶变换要求的函数条件比较强,这 就限制了傅里叶变换应用的范围.
第六章 拉普拉斯变换简介
拉普拉斯变换理论(又称为运算微积,或称为算子微积)
是在19世纪末发展起来的.首先是英国工程师亥维赛德(O.Heaviside)
发明了用运算法解决当时电工计算中出现的一些问题,但是缺乏严
密的数学论证.后来由法国数学家拉普拉斯(place)给出了严密 的数学定义,称之为拉普拉斯变换方法.
(t )
为了解决上述问题而拓宽应用范围,人们发现对于任意一
个实函数 条件. 首先将函数 乘以单位阶跃函数: ,可以经过适当地改造以满足傅氏变换的基本
得到
,则根据傅氏变换理论有
很显然通过这样的处理,当
时,
在没有定
义的情况下问题得到了解决.但是仍然不能回避
上绝对可积的限制.为此,我们考虑到当 时,衰减速度很快的函数,那就是指数函数 于是有
在
上式即可简写为
这是由实函数
通过一种新的变换得到的复变函数,
这种变换就是我们要定义的拉普拉斯变换.
定义
设 实函数
在
上有定义,且积分
(
为复参变量) 对复平面
上某一范围
符号法《数学物理方法》课件-完整清晰
故 L[est ] 1 ps
数学物理方法
例 6.1.4 计算 L[test ] , s 为常数
解:在 Re p Re s 的半平面上
teste pt dt te( ps)t dt
0
0
1 ps
[te( ps)t ]0
e( ps)t dt
dp
dp 0
0 dp
此可见 f ( p) 在上处处可导,因而是解析的。
数学物理方法
(2)当 p ,而 Argp ( 0) 时, f ( p) 存
2 在且满足 lim f ( p) 0 。
p
证明:
f ( p) f (t)e ptdt f (t)e pt dt
Me 0 tdt M
0
, 0
数学物理方法
6.2.4 拉氏变换基本性质
由 f ( p) f (t)e ptdt 定义的拉氏变换存在如下性质: 0
(1) f ( p) 是在 Re p 0 的半平面上的解析函数。
证明:考察积分 d [ f (t)e pt ]dt ,利用
傅里叶变换,它是一种单 边广义傅里叶变换 。单边指积
分区间为 (0, ) ,广义指它要乘上 et H (t)( 0) 再做
傅里叶变换。
例 6.1.1 计算 L[1] 。
解:在 Re p 0(即 0 )的半平面上
L[1] 1 e ptdt 1 (Re p 0)
或者
f ( p) f (t) (6.2.7) f (t)≒ f ( p) (6.2.8) (注:有的书上为 f (t) f ( p) ) 注意:原函数 f (t) 应该理解为 f (t)H (t) ,通常 H (t) 省
拉普拉斯变换
第一章 拉普拉斯变换1 拉普拉斯变换的概念定义1 设函数()t f 为[)+∞,0上的实(或复)函数,且积分()dt et f st-+∞⎰0(s 为复参量)收敛,则由此积分所确定的函数()()dt et f s F st-+∞⎰=()1称为函数()t f 的拉普拉斯变换(简称为拉式变换).记作()()[]t f L s F =()2()s F 称为()t f 的拉氏变换(或称为象函数).如果()s F 是()t f 的拉普拉斯变换,则称()t f 为()s F 的逆变换(或称为象原函数),记作()()[]s F Lt f 1-=.由拉普拉斯变换的定义,可以求得一些常用函数的拉普拉斯变换. 例1 求阶跃函数()⎩⎨⎧<≥=0,00,t t k t f 的拉普拉斯变换.(图1)解 根据拉普拉斯变换的定义有 ()[]()dt et f t f L st-+∞⎰=0dt e k st-+∞⎰=dt ek st⎰+∞-=0积分dt est⎰+∞-0在()0Re >s 时收敛,且有sesdt e st st110=-=∞+-+∞-⎰所以()[]sk t f L =()()0Re >s .当1=k 时,阶跃函数称为单位阶跃函数,记作()⎩⎨⎧<≥=0,00,t t k t u ,此时有()[]st u L 1=()()0Re >s .例2 求指数函数()ate tf =的拉普拉斯变换.(a 为复数)解 由()1.2式可得()()dt edt ee s F ta s stat ⎰⎰+∞---+∞==as -=1()()()a s Re Re >.例3 求正弦函数()kt t f sin =的拉普拉斯变换.(k 为复数) 解 []dt kt ekt L st⎰+∞-=0sin sin()dt eee istiktikt-+∞-⎰-=21⎪⎭⎫⎝⎛+--=ik s ik s i 112122ksk +=()()()()()iks ik s ik s Re Re ,0Re 0Re >>->+即且.同理可得余弦函数kt cos 的拉普拉斯变换. []22cos kss kt L +=()()()()()ik s ik s ik s Re Re ,0Re 0Re >>->+即且.2 拉普拉斯变换的存在定理定理1 若函数()t f 在[)+∞,0上满足下列条件: ()1 ()t f 在的任一有限区间上分段连续; ()2 存在常数0,0>>c M ,使得()ctMe t f ≤,则()t f 的拉普拉斯变换 ()()dt et f s F st-+∞⎰=在半平面()c s >Re 上一定存在,此时右端的积分绝对且一致收敛,而在这半平面内,()s F为解析函数.定理的条件是充分的,物理学和工程技术中常见的函数大多都满足定理的条件,因此拉普拉斯变换有着广泛的应用.但是定理的条件不是必要的,即在不满足定理条件的前提下,拉普拉斯变换仍可能存在.如函数21-t 在0=t 处不满足定理的条件()1,但从下面的例子可知它的拉普拉斯变换为sπ.例4 求幂函数()mt t f =(常数1->m )的拉普拉斯变换.解 根据()1.2式,有[]dt et tL stm m-+∞⎰=0,令u st =,du sdt 1=,从而有du sesu dt et umm stm10-∞+-∞+⎰⎰=()11111+Γ==++∞-+⎰m sdu eu sm um m故()()111+Γ=+m stL m m()()0Re >s .当m 为正整数时,有 ()1+=m msm t L ! ()()0Re >s .当21-=m 时,由于π==⎰⎰+∞-+∞-022dx edu eu xum,()u x =故sdt et stπ=-∞+-⎰21.前用我们利用拉普拉斯变换的定义求得一些较简单的函数的拉氏变换.但仅用这些来求函数的变换是并不方便的,有的甚至求不出来.本节的性质将有助于求函数的拉普拉斯变换.为叙述方便,假设所要求进行拉氏变换的函数的拉氏变换都存在,且记 ()[]()s F t f L =, ()[]()s G t g L =. 1. 线性性质()()[]()[]()[]t g L t f L t g t f L βαβα+=+; ()3()()[]()[]()[]s G Ls F Ls G s F L111---+=+βαβα, ()4其中,βα,是常数.此性质的证明可由拉式变换,拉式逆变换的定义直接导出. 例5 求函数()kt e kt kt t f ++=cos sin的拉氏变换.解 ()[][][][]kte L kt L kt L tf L ++=cos sinks ksk s -+++=122()()()()()k s ik s Re Re Re Re >>且2. 微分性质()[]()()0f s sF t f L -=' ()5()()[]()()()()()000121-----'--=n n n nn ff sf ss F s t fL ()()c s >Re ()6证 根据拉氏变换的定义,有 ()[]()dt e t f t f L st-+∞⎰'='0.对右端积分利用分部积分法可得()()()dt et f s et f dt e t f ststst -+∞∞+--+∞⎰⎰+='0()[]()0f t f sL -=. 所以()[]()()0f s sF t f L -='.若利用()5式两次,可得 ()[]()[]{}''=''t f L t f L()[]()0f t f sL '-'=()()()002f sf s F s '--=.由此类推,便可得 ()()[]()()()()()000121-----'--=n n n nn ff sf ss F s t fL ()()c s >Re .特别地,当初值()()()()00001==='=-n f f f 时,有()[]()()[]()()()[]()s F s t f L s F s t f L s sF t f L n n ==''=',,,2,()()c s >Re .对于象函数,由拉普拉斯变换存在定理可知()s F 在()c s >Re 内解析,因而 ()()dt et f dsd s F st-+∞⎰='0()[]dt e t f dsd st-+∞⎰=0()dt et tf st-+∞⎰-=()[]t tf L -=,即 ()()[]t tf L s F -=' ()()c s >Re ()7 用同样方法可求得 ()()()()[]()2,≥-=n t f t L s Fnn , ()()c s >Re()8因此,求象函数()s F 的导数转化为求象原函数()t f 乘以()nt -的拉氏变换,亦可反过来求解问题.例6求函数()kt t f sin =的拉式变换解 因为()kt k kt cos sin =',()kt k kt sin sin 2-=",于是有()00=f ,()k f ='0,()00=''f ,从而 []()[]()()()00sin 22f sf s F s t f L kt k L '--=''=-,即 [][]k kt L s kt L k -=-sin sin 22.所以 []22s i n ksk ktL += ()()()()0Re Re >>s k ik s 为实数时,,Re .例7求函数()kt k t f sin =的拉氏变换.解 已知[]22sin ksk kt L +=,等式两边对s 求导,得[]()()222222sin ks ks ks kds d dskt L d +-=⎪⎭⎫⎝⎛+=.则由()7.2式知,[]()[][]kt t L kt t L dskt L d sin sin sin -=-=.比较上述两式即得 []()2222sin kskskt t L +=.同理可得[]()22222c o s ksk sktt L +-=.3. 积分性质()()s F sdt t f L t10=⎥⎦⎤⎢⎣⎡⎰ ()9()()s F s dt t f dt dt L n n t t t 1000=⎥⎦⎤⎢⎣⎡⎰⎰⎰次()10 证 设()()dtt f t h t⎰=,则()()t f t h =',()00=h . 由微分性质,有()[]()[]()()[]t h sL h t h sL t h L =-='0, 即()()[]()s F st f L sdt t f L t110==⎥⎦⎤⎢⎣⎡⎰.重复应用()9.2式,可得 ()()s F s dt t f dt dtL n n ttt1000=⎥⎦⎤⎢⎣⎡⎰⎰⎰ 次. 由此,我们可以把象原函数的积分运算转化为对象函数的代数运算. 另外,根据拉氏变换的存在定理,对于象函数可证得下述积分性质:()()ds s F t t f L s⎰∞=⎥⎦⎤⎢⎣⎡ ()11()()ds s F ds ds t t f L n s s s n 次⎰⎰⎰∞∞∞=⎥⎦⎤⎢⎣⎡ ()12特别地,当0,1==s n 时,有 ()()ds s F dt tt f ⎰⎰∞+∞+=. ()13 例 8 求函数()⎰=td t f 0sin τττ的拉氏变换.解 由式()9可得()[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎰t t L s d L t f L t sin 1sin 0τττ, 又由式()11可得[]ds t L t t L s⎰∞=⎥⎦⎤⎢⎣⎡sin sin ds ss⎰∞+=112s arctan 2-=π.故⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡⎰s s d L t arctan 21sin 0πτττ. 且有211sin 02π=+=⎰⎰+∞+∞ds sdt tt .例9 计算积分dt te ebtat⎰∞+---0.解 由()13可得[]ds eeL dt te ebtatbtat⎰⎰∞+--∞+---=-0a b ds b s a s ln 11=⎪⎭⎫ ⎝⎛+-+=⎰∞+.4. 延迟性质当0<t 时,()0=t f ,则对任一非负实数0t ,有 ()[]()s F e t t f L st 00-=-, ()14()[]()01t t f s F eLst -=--. ()15证 由式()1可知, ()[]()dt e t t f t t f L st⎰+∞--=-000()()dt et t f dt et t f stt stt -+∞-⎰⎰-+-=0000()dt et t f stt -+∞⎰-=0 ()()00=<t f t 时()du eu f e sust -+∞-⎰=0()0t t u -=令()s F e st 0-=.故有()[]()s F et t f L st 00-=-.比较函数()t f 与()0t t f -,前者在0≥t 时有非零数值,而后者在0t t ≥时有非零数值,即向后延迟了时间0t .从图形上来看,()t f 沿t 轴向右平移0t 就可得到()0t t f -.此性质表明,时间函数延迟0t 的拉氏变换等于它的象函数乘以指数因子0st e-.例 10 求函数()⎩⎨⎧≤≥=-000,0,1t t t t t t u 的拉氏变换. 解 因为()[]st u L 1=,所以由()14式可得()[]010st est t u L -=-.5.位移性质()()[]t f e L a s F at=- ()16()[]()t f ea s F Lat=--1()17证 由拉氏变换定义知 ()[]()dt et f et f e L statat-+∞⎰=()()()a s F dt et f ta s -==--+∞⎰.此性质表明:一个函数乘以指数函数ate 后的拉氏变换等于其象函数作位移a . 例11 求[]matte L .解 已知()()111+Γ=+m stL m m,由()16可知,[]()()111+Γ-=+m a s te L m mat.例12 求[]kt e L atsin .解 因为[]22sin ksk kt L +=,所以由()16可得, []()22sin ka s kkt eL at+-=.同理可得 []()22cos ka s skt e L at +-=.6.相似性质()[]⎪⎭⎫⎝⎛=a s F a at f L 1()0>a ()18 证 令at u =,则 ()[]()dt eat f at f L st-+∞⎰=()du eu f auas -∞+⎰=1⎪⎭⎫ ⎝⎛=a s F a 1.7.卷积与卷积定理定义2 若函数()t f 1,()t f 2在0<t 时均为零,则积分()()τττd t f f t-⎰201称为函数()t f 1与()t f 2的卷积,记作()()t f t f 21*,即 ()()()()τττd t f f t f t f t-=*⎰20121. ()19由卷积定义,可证明卷积具有如下性质:()1交换律:()()()()t f t f t f t f 1221*=* ()2结合律: ()()()[]()()[]()t f t f t f t f t f t f 321321**=**()3分配律:()()()[]()()()()t f t f t f t f t f t f t f 3121321*+*=+*例 13 求函数()t t f =1和()t t f sin 2=的卷积. 解 由卷积定义可知, ()()()τττd t t f t f t⎰-=*021s i n()()ττττd t t tt ⎰---=0cos cos()t t t 0sin τ-+=t t sin -= 定理 2 (卷积定理)若()[]()s F t f L 11=,()[]()s F t f L 22=,则()()[]()()s F s F t f t f L 2121=* ()20 ()()[]()()t f t f s F s F L21211*=- ()21卷积定理表明两个函数卷积的拉氏变换等于它们各自的拉式变换的乘积.证明略. 以上卷积定理可推广到n 个函数卷积的情形. 推论 若()[]()()n k s F t f L k k ,,2,1 ==,则()()()[]()()()s F s F s F t f t f t f L n n 2121=*** ()22 例14 求函数()t t f =1和()t t f sin 2=的卷积的拉氏变换.解一 由例13知()()[][]t t L t f t f L sin 21-=*,故[][][]()11111sin sin 2222+=+-=-=*sssst L t L t t L .解二 由卷积定理可得, [][][]()11111s i n s i n 2222+=+==*sssst L t L t t L .8.初值定理设()[]()s F t f L =,且()[]t f L '存在,则()()s sF t f s t ∞→→=+lim lim 0()23若定义()()t f f t +→+=lim 0(假定极限存在),则称()+f 为()t f 的初值.9.终值定理设()[]()s F t f L =,()[]t f L '存在,且()s sF 的一切奇点都在s 平面的左半平面,则 ()()∞+=→f s sF s 0lim ()24其中()()t f f t +∞→=∞+lim (假定极限存在),我们也称()∞+f 为()t f 的终值.前面我们讨论了函数()t f 在拉氏变换下的象函数()s F 的问题,反过来,若已知拉氏变换下的象函数()s F ,求象原函数()t f ,此问题就是拉式逆变换问题.下面给出拉普拉斯逆变换的定义:定义3 若()[]()s F t f L =,则积分 ()()ds e s F i t f sti i ⎰∞+∞-=ααπ21(α为s 的实部) ()25建立的从()s F 到()t f 的对应称作拉普拉斯逆变换(简称拉式逆变换).记作 ()[]()t f s F L=-1.它与拉式变换构成了一个拉式变换对.由拉普拉斯变换存在定理可得:定理 3 若()t f 满足拉普拉斯变换存在定理的条件,即()()[]t f L s F =.则()t f 在连续点处有()()ds e s F it f sti i ⎰∞+∞-=ααπ21.在()t f 的间断点处,上式右端收敛于()()[]0021-++t f t f ,其中()c s >=αRe .若由定义来求拉式逆变换是相当困难的,下面我们介绍一些方法.(1) 利用拉式变换性质求拉式逆变换 例15 求()()()()b a b s a s s F ≠--=1的拉式逆变换.解 因为 ()()⎪⎭⎫ ⎝⎛----=b s a s b a s F 111,所以由拉式变换的线性性质及拉式变换表知 ()[]⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--=---b s L a s L b a s F L 11111 ()btateeba --=1.()()()()[]b a s Re ,Re max Re >例16 求()⎥⎦⎤⎢⎣⎡+-1121s s L . 解 利用高等数学中关于有理真分式的分解知识可知()11111122+++-=+s sss s,故由式()4及拉式变换表可得()⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+----111111121121s L s L s L s s L tet -++-=1. ()()0Re >s通过上述两个例子,我们发现,若()s F 为有理真分式时,可将()s F 进行适当分解,进一步通过查表得到每个分解式的拉式逆变换,然后利用拉式变换的线性性质求处()s F 的拉式逆变换.这种方法也可称为象原函数的部分分式法.例16求函数()11ln+-=s s s F 的拉式逆变换.解 由拉式变换的微分性质可知 ()[]()t tf s F L -='-1,而()1111+--='s s s F ,所以()⎥⎦⎤⎢⎣⎡+---=-111111s s Ltt f . 查拉式变换表可得 ()()tteet t f -=-1sht t2-= ()()1Re >s例17 求函数()922-=-sse s F s的拉式逆变换.解 因为t ch s s L 3921=⎥⎦⎤⎢⎣⎡-- ()()0Re >s , ()922-=-ss e s F s,故由拉式变换的延迟性质有 ()[]()231-=-t ch s F L.例18 求函数()()223252+++=s s s F 的拉式逆变换.解 因为()()()2232122++++=s s s F ,由拉式变换的位移性质可知()[]()()⎥⎦⎤⎢⎣⎡++++=--221132122s s Ls F L⎥⎦⎤⎢⎣⎡++=--2212312s s Let⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+=---2212212333132s L s s L e t, 查拉式变换表可得 ()[]⎪⎭⎫⎝⎛+=--t t es F Lt3sin 313cos 221.例19 求函数()()2211ss s F +=的拉式逆变换.解 因为 ()11122+=sss F ,故由卷积定理知 ()[]⎥⎦⎤⎢⎣⎡+=--1112211s s Ls F Lt t sin *= t t sin -=例20 求函数()()2221+=sss F 的拉式逆变换.解 因为()()11122222+∙+=+=ss ss sss F ,故由卷积定理知 ()[]⎥⎦⎤⎢⎣⎡+∙+=--112211s s s sLs F Lt t cos cos *= ()()[]τττττd t t d t tt⎰⎰-+=-=2cos cos 21cos cos()02sin 21cos 21t t t ⎥⎦⎤⎢⎣⎡-+=ττ ()t t t sin cos 21+=.(2) 利用留数方法此方法主要依据下面的定理.定理 4 若n s s s ,,,21 是函数()s F 的所有奇点(适当选取α使这些奇点全在()α<s Re 的范围内),且当∞→s 时,()0→s F ,则有()()[]∑⎰=∞+∞-=nk k ststi i s es F s ds e s F i 1,Re 21ααπ,即()()[]∑==nk k sts e s F s t f 1,Re ()0>t .()26例21求⎥⎦⎤⎢⎣⎡+--16221s se L s .解 由定理2.4可知 ∑=---⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+nk k sts s s e s se s s se L122221,16Re 16.而i s 41=,i s 42-=为函数1622+-sse s的两个一阶极点,()()()it st s t e i s e i s se s 2422221424,16Re ---===⎥⎦⎤⎢⎣⎡+,()()()it st s t e i s e i s se s 2422221424,16Re ----=-==⎥⎦⎤⎢⎣⎡-+,故()()[]it i t s e e s se L24242212116-----+=⎥⎦⎤⎢⎣⎡+ ()24cos -=t ()2>t .以上介绍的这些方法可根据()s F 的特点灵活选择使用,也可根据具体情况将各种方法结合起来使用.我们主要介绍拉普拉斯变换在求解微分方程(组)及电学上的应用根据拉式变换的线性和微分性质可知,一个微分方程通过拉氏变换可以转换为象函数的代数方程.如果能从代数方程中解出象函数,则通过求象函数的逆变换,就可以得到原微分方程的解.因此拉式变换可用来解微分方程,下面举例说明.例 1 求微分方程133=+'+''+'''y y y y 满足初始条件()()()0000=''='=y y y 的特解.解 设()()[]t y L s Y =,方程两边取拉式变换,并结合初始条件,可得()()()()ss Y s sY s Y s s Y s 13323-=+++,解之,有()()311+=s s s Y()()321111111+-+-+-=s s s s,取逆变换得到()tttet teet y ------=2211.例2 求方程t ydt y y t=+-'⎰044满足初始条件()00=y 的解.解 设()()[]t y L s Y =,方程两边取拉式变换,则原方程变为 ()()()2144ss Y ss Y s sY =+-即()()221-=s s s Y()222124141-+--=s s s,取拉式逆变换可得()ttteet y 22214141+-=.例3求微分方程组()()2930x x x y y y ''''''-+-++= ()()2750x x x y y y ''''''++--+=满足初始条件: (0)(0)1,(0)(0)0x x y y ''====的解.解 对以上微分方程组作拉氏变换, 记()()X p L x t =⎡⎤⎣⎦, ()()Y p L y t =⎡⎤⎣⎦, 并注意初始条件: (0)(0)1,(0)(0)0x x y y ''====, 有()()1L x t p X p '=-⎡⎤⎣⎦, ()()21L x t p Xp p ''=--⎡⎤⎣⎦, ()()L y t p Yp '=⎡⎤⎣⎦, ()()2L y t p Yp ''=⎡⎤⎣⎦, 因而得()()()()2229321p p X p p p Y p p -+-++=+ ()()()()2227523pp Xp pp Yp p ++--+=+将以上两式相加和相减, 得()()()()21122,41p Xp Y p Xp Y p p p +-=+=+-于是有()2211221313434pXp p p p =++-++()2221221313434pYp p p p =---++再作拉氏逆变换, 便得()()111221122112co s 2sin 23134343t p x t LL L e t t p p p ---⎡⎤⎡⎤⎡⎤=++=++⎢⎥⎢⎥⎢⎥-++⎣⎦⎣⎦⎣⎦()()1112221221122co s 2sin 23134343tp y t LL L e t t p p p ---⎡⎤⎡⎤⎡⎤=--=--⎢⎥⎢⎥⎢⎥-++⎣⎦⎣⎦⎣⎦其次, 用拉氏变换来处理一些电路中所反映出的微分方程问题.对于RLC 串联电路(见图5.2.1), 电流()i t 与电阻R 上的电压()R u t 、电感L 上的电压()L u t 及电容C 上的电压()C u t 满足如下的关系式()()()(),,R L d i t u t R i t u t Ld t==()()001,tC u t i t d t q c ⎡⎤=+⎢⎥⎣⎦⎰ (1) 这里0q 表示0t =时电容C 上的电量. 以()I p 表示()i t 的拉氏变换, 或叫运算电流, 又以()RU p 、()L U p 、()C U p 分别表示()R u t 、()L u t 、()C u t 的拉氏变换, 它们都叫运算电压. 由(1.3) 、(1.10) 、(1.13)与(1.16), 有()()()()()()00,1,RL C U p R I p U p L p Ip i U p Ip q C p⎧==-⎡⎤⎣⎦⎪⎨=+⎡⎤⎪⎣⎦⎩(2)其中0i 表示初始时刻0t =电路中的电流. 由于电源电压()()()()R L C u t u t u t u t =++, 如果000i q ==, 则()u t 的拉氏变换为()()()()()()()1R L C Up U p U p U p R L p Ip Zp I p C p ⎡⎤=++=++=⎢⎥⎣⎦(3)此处()1Z p R L p C p=++称为总运算阻抗, 而R 、L p 、1C p分别称为电阻R 、电感L 、电容C 的运算阻抗.一般地说, 当两个运算阻抗为()1Z p 、()2Z p 的元件串联时, 则两个元件上电压的拉氏变换为()()()11U p Z p I p =、()()()22U p Z p I p =,而总电压的拉氏变换为()()()()()()()()1212Up U p U p Z p Z p I p Zp I p =+=+=⎡⎤⎣⎦. (4)类似地, 当两个运算阻抗为()1Z p 、()2Z p 的元件并联时, 总电压的拉氏变换为()()()()()1122Up Z p I p Z p I p ==, (5)而总电流的拉氏变换为()()()()()()()()12121212Up Up Z Z Ip I p I p Up Z p Z p Z Z +=+=+=, (6)所以()()1212Z Z Up Ip Z Z =+. (7)例4 设RLC 串联电路接上电压E 的直流电源, 由在初始时刻0t =的电路中的电流00i =, 电容C 上没有电量即00q =, 求电路中电流()i t 的变化规律?解 由于()()()R L C u t u t u t E ++=, 又000i q ==, 从(2.1), 有()01td i R i Li t d t E d t c++=⎰. (8)由性质, 可知电压E 的拉氏变换为E p, 又由(3), 知(8)式左边的拉氏变换为,()()()()1Up Zp I p R L p Ip C p ⎡⎤==++⎢⎥⎣⎦,所以有()()21111EUp E p I p R L R L p R L p p p C p C p L C L===++++++(9)()()()121212111E ELp p L p p λλλλλλ⎡⎤==-⎢⎥-----⎣⎦, 这里记21,2R L L Cαβ==,而12λαλα=-+=--是代数方程210R p p LC L++=的两个根.1) 当αβ>,即R >,则从(1.6)式,可求得()I p 的拉氏逆变换,即()1212(),0.ttE i t e et L λλλλ⎡⎤=-≥⎣⎦- (10) 2) 当αβ<,即R <时, 12,λλ是一对共轭复数,即12j λαλα=-+=--=此时同样可得()1212()ttE i t e eL λλλλ⎡⎤=-⎣⎦-((ttE e eαα-+-⎡⎤=-⎢⎥⎣⎦(11)sin ,0.tEt α-=≥3) αβ=,即R =, 12λλα==-,则有2211()1()E E I p R L L p p p L C Lα==+++.从而可求得()I p 的拉氏逆变换 (),0tE i t tet L α-=≥. (12)如果R L C 串联电路的电源是正弦式电压0()sin u t u t ω=, 而()u t 的拉氏变换为[]022()u L u t p ωω=+,则由微分方程001()sin ,0,t d i R i Li t d t u t t d t Cω++=≥⎰(13)即初始条件:000,0i q ==, 可得 , 0222()()1()()()u p A p I p B p p L p R p Cωω==+++(14)这里0()A p u p ω=,2221()()()B p p L p R p Cω=+++都是实系数的多项式, ()B p的根是00,,),)22R R i i p p L Lωω--+=--=,若设2110,()04R L CLω>->,则02()1()2()u A i B i L R i Cωωωωω='-++00022000()()()(2)A p u pB p p L p R ωω='++,再由(1.22)式, 便得()I p 的拉式逆变换(2.15)000222001()R e 2R e ,1()(2)p t i tp i t u e e t o p L p R L R i C ωωωωω⎡⎤⎢⎥=+≥⎢⎥++⎢⎥-++⎣⎦.例1 对于图5.2.2所示的电路, 输入电压即电源电压为E (常数), 又初始时刻0t =的电流00i =,电容上的电量00q =, 求输出电压()u t 出.解 已知输入电压(),0u t E t =>入, 要求输出电压(),0u t t >出, 用()U p 入, ()U p 出分别表示()u t 入, ()u t 出的拉氏变换, 而()E U p p=入, 以()i t 表示通过电路的总电流(见图5.2.2), ()I p 是()i t 的拉氏变换. 因电阻1R 与电容1C 是并联着的, 其运算抗阻为11111111111111R C R C p R R Z R C ppR C pτ===+++,这里111R C τ=, 又设222R C τ=, 则电阻2R 与电容2C 是并联运算抗阻为222222211RC R R Z R C ppτ==++于是电路的总运算阻抗为()()()11221212211212121111R C RC R R R R pR R Z Z Z ppp p ττττττ+++=+=+=++++,而输出运算电压()U p 入与输入运算电压()U p 出之比()()()()()()()()2222221212111RC RC R Z p I p Z p U p p R R U p Zp I p Zp ppτττ+===+++出入 (16)11211122122111111pR p R R p R pR R τττττ+==+⎛⎫++++ ⎪+⎝⎭上述函数称为此电路的传递函数, 它描述了整个电路的特征. 从(2.16)式, 并注意()U p E p =入, 又设121a R R =+, 1212b R R ττ=+, 可得()()()()1111111E b a E b a p p E E E a U p U p a b pp a b pa pa b ppp a bττττ--++===+=+++++入出(17)虽然这里没有列出描述电路的微分方程, 但仍得到了输出运算电压()U p 出的具体表示式, 这显示了用拉氏变换处理线性电路问题的优点. 对(17)式, 作拉氏逆变换, 即得输出电压. ()11,0at b Eu t E e t a ba τ-⎛⎫=+-> ⎪⎝⎭出. (18)1)当12ττ=时, ()201212,01R E E u t u t R R R R ===>++出;2) 当1τ《2τ时, ()121200,0R R tR R u t u u e t +-≈->出;3)当1τ》2τ时, ()12121012,0R R tR R R E u t u e t R R +-≈+>+出,从以上情况可以看出: 当111222R C R C ττ===时, 便是无失真的输出, 电压幅度衰减为)(212R R R +倍, 因此上述电路可用来作为衰减器.。
拉普拉斯变换性质及反演
b p a
p f( ) a
数学物理方法
(7)卷积定理
若 f1 ( p) L[ f1 (t )] , f 2 ( p) L[ f 2 (t )]
t
则 L[ f1 (t )* f 2 (t )] f1 ( p) f 2 ( p) ,其中 积。 在傅里叶变换中我们定义了两个函数的卷积: f1 (t ) * f 2 (t ) f1 ( ) f 2 (t )d
a y ( p) y ( p) 2 2 p p 1
1 1 解得 y ( p ) a ( 2 4 ) p p
1 3 从而 y (t ) a (t t ) 6
数学物理方法
(三)黎曼-梅林反演公式* 在 上两种方 法都不能 求出原函 数 时 , 原 则 上 总 是 可 以 采 用
n
数学物理方法
(4)相似性定理
1 p L[ f (at )] f ( ) a a
(5)位移定理 L[ e t f( t) f ( ] p 请大家仿照傅里叶积分变换验证。
)
计算 eat cos t , e at sin t , eat cht , eat sht 的拉普拉斯变换函数。 解:略。 例 6.2.6
e ap 1 解:由于 的原函数为 H (t ) ,应用延迟定理有 p p 1 的原函数为 H (t a) ,又由位移定理有 的原函 pb bt 数为 e 。应用卷积定理,有
t e ap 1 L [ ] H ( a)e b (t ) d 0 p ( p b)
t 1 1 L [ 2 ] ( )et d t 1 et 0 p p 1 1
6.3 拉普拉斯变换的反演
数学物理方法
完整版拉普拉斯变换表
完整版拉普拉斯变换表拉普拉斯变换是探究信号和系统之间关系的重要工具,它在工程和科学领域中得到广泛应用。
本文将为读者详细介绍完整的拉普拉斯变换表,并讨论其应用。
拉普拉斯变换表如下所示:1. 常数函数L{1} = 1/s2. 单位阶跃函数L{u(t)} = 1/s3. 单位冲激函数L{δ(t)} = 14. 指数函数L{e^at} = 1/(s-a)5. 正弦函数L{sin(ωt)} = ω/(s^2+ω^2)6. 余弦函数L{cos(ωt)} = s/(s^2+ω^2)7. 常数乘以函数L{c*f(t)} = c*F(s)8. 函数相加L{f(t)+g(t)} = F(s) + G(s)9. 函数乘以指数L{e^at*f(t)} = F(s-a)10. 函数的积分L{∫f(t)dt} = F(s)/s11. 函数的导数L{df(t)/dt} = sF(s)-f(0)12. 积分的拉普拉斯变换L{∫F(s)ds} = f(t)13. 周延函数L{f(t)} = F(s)|s=jω14. 高斯函数L{e^(-a^2t^2)} = √π/a*e^(-(s^2)/(4a^2))15. 狄利克雷函数L{D(t-a)} = e^(-as)16. 波尔图-特拉潘函数L{e^(-as)/s} = 1/(s+a)拉普拉斯变换表是通过将函数从时间域转换到复频域来描述信号的性质。
每个函数在拉普拉斯域中都具有一个对应的表达式,使得我们可以分析和处理各种复杂的信号和系统。
接下来,我们将讨论拉普拉斯变换的一些应用。
1. 系统分析拉普拉斯变换可用于对线性时不变(LTI)系统进行分析。
通过将输入信号和系统的响应转换到拉普拉斯域,我们可以通过观察系统函数的性质来预测系统的输出。
这对于控制系统和信号处理中的滤波器设计非常有用。
2. 解决微分方程拉普拉斯变换也可用于求解线性常微分方程(ODEs)。
通过将微分方程转换为代数方程,我们可以通过求解代数方程得到原始微分方程的解。
数学物理方法课件:6-拉普拉斯变换
[ e p f2 ( )d ]e p f1( )d f1( p) f2 ( p)
00 15
例 在LR串联电路中加上一方形脉
冲电压E
E(t)
0E,0 ,
t
0
T
t
T
E (t )
求电路中的电流 i (t),设 i (0)=0。
解
L di Ri E (t) dt
(1)
由(2)得 I ( p) 1 E( p)
f(t) f(t-t0)H(t-t0)
o
t0
t
14
(7)卷积定理 L [ f1(t) f2 (t)] f1( p) f2 ( p).
其中 L [ f1(t)] f1( p), L [ f2 (t)] f2 ( p),
t
τ
f1(t) * f2 (t) 0 f1( ) f2 (t )d
2. Laplace 变换即(6.1.3)式存在的条件
(1)在 0 t < 的任一有限区间上,除了有限个第一类间 断点外,函数 f(t) 及其导数是处处连续的,
(2) 存在常数 M>0 和 0,使对于任何t (0 t < ), 有
| f (t) | Me t
的下界称为收敛横标,以0 表示。大多数函数都满足这 个充分条件
L
L0
E0
R E0
R
Rt
(1 e L ),
RT
Rt
(e L 1)e L ,
0t T t T
16
本节作业: 第95页 (1,2,4)
17
§6.2 Laplace 变换的反演
反演:由像函数求原函数
(一)有理分式反演法
若像函数
f ( p) G( p) H ( p)
拉普拉斯变换 课件
Example
f(t) = t 0<= t <=1 1 t >= 1
(法一) L(f(t)) = ∫e-st f(t)dt = ∫te-st dt + ∫e-st dt = (1 – e-s) / s2 (法二) f(t) = tu(t) + [u(t-1) – tu(t-1)] = tu(t) + (1-t)u(t-1) = tu(t) – (t-1)u(t-1) L(f(t)) = (1/s2) - (e-s / s2) = (1-e-s) / s2
sY + s2z = -(s3 / s2 + 1) s2Y – sY(0) - y(0) – z = 1 / s2 + 1 求解得 Y = s / s2 +1 , z = -(s+1) / (s2 + 1) = -(s / s2+1) – (1 / s2+1) ∴y(t) = L-1(Y) = cosx , z(t) = cosx – sinx
(CASE3)不重覆複數因子 (s-a)(s-a*) = (s - α)2 + β2 Y(s) 有 As + B / (s-a)(s-a*) 或 As + B / (s - α)2 + β2 型態之部份分式 L(eatcosβt) = s-α / (s-α)2 + β2 及 L(eatsinβt) = β / (s-a)2 + β2
部份分式法 (微分方程式) 如果解之拉式變換式Y = F(S) / G(S) 可以部份分式分解 之,則可各則由逆拉式變換還原微分式之解y(t)。 (CASE1)不重覆因子 (s-a) Example1 G(s) = (s-a1)(s-a2)(s-a3)…(s-an) Y(s) =( A1 / s – a1) + ( A2 / s – a2) +…+ ( An / s – an) y(t) = A1ea1t + A2ea2t +…+ Aneant
数学物理方法第六章2010
dτ = H ( t − α )∫ e
α
1 dτ = (1 − e − b ( t −α ) ) H ( t − α ) b
黎曼- 黎曼-梅林反演公式
1 f (t ) = i 2π
∫σ
σ + i∞
− i∞
f ( p)e pt dp
C 的圆周在直线Re(p)=a的左侧圆弧, 的左侧圆弧, 的左侧圆弧 推广的约当引理: R是半径为 的圆周在直线 推广的约当引理: 是半径为R的圆周在直线 |p|→∞时, ( p) 在Arg(p)∈[π/2-δ, 3π/2+δ]中一致趋 →∞时 f →∞ ∈ π δ π δ 中一致趋 于0, , lim ∫ f ( p)e pt dp = 0, t > 0
=
π∫
1
∞
e − rt r
0
dr =
1
πt
1
π
∫
∞
0
e − pt 2 dt = t π
∫
∞
0
e − px dx =
2
1 p
直接验证
9
像函数导数的反演
d n f ( p) L-1 [ ] = ( − t )n f ( t ) dp n
∞ d n f ( p) = ∫ ( − t )n f ( t )e − pt dt , 0 dp n
思考: 思考:拉普拉斯变换法在求解常系数线性微分方程 的优点表现在哪些方面? 的优点表现在哪些方面? 12
∞ d d ∞ − pt f ( t )e dt = ∫ [ f ( t )e − pt ]dt 0 dp dp ∫ 0
f ( p ) 是解析函数
满足: 若函数 f ( p) 满足: 1°在 Re( p) = σ > σ 0 中解析,且|p|→∞时,一致趋于 ; ° 中解析, →∞时 一致趋于0; →∞ 2°对于所有的 Re( p) = σ > σ 0,沿直线 Re( p) = σ 的无穷积分
第06章_拉普拉斯变换
f ( )e p ( t0 )d
0
e
t0 p
0
f ( )e p d
e
t0 p
f ( p)
WangChengyou © Shandong University, Weihai
数学物理方法
第6章 拉普拉斯变换
t
15
(6) 位移定理 [e 证明: [e
其中积分 f (t )e pt dt称为拉普拉斯积分,f ( p )称为函
0
数f (t )的拉普拉斯变换函数(像函数),f (t )称为原函数。
拉普拉斯变换存在的充分条件:(1) 在0≤t<∞的任一有限 区间上,除了有限个第一类间断点外,函数f(t)及其导数 是处处连续的;(2) 存在常数M>0和σ≥0,使得对于任何 的t值(0≤t<∞),有 f (t ) Me t σ的下界称为收敛横标,用σ0表示。特别说明:大多数函 数都满足该条件!
d
1 p f( ) a a
WangChengyou © Shandong University, Weihai
数学物理方法
第6章 拉普拉斯变换
14
(5) 延迟定理
[ f (t t0 )] e
t0 p
f ( p)
pt
证明: [ f (t t0 )]
0
f (t t0 )e dt
WangChengyou © Shandong University, Weihai
Байду номын сангаас
数学物理方法
第6章 拉普拉斯变换
11
(2) 导数定理
[ f '(t )] pf ( p) f (0)
拉普拉斯变换
1的拉氏变换为
£[1] 1 , ( p 0) p
例2 求指数函数f (t) eat , (t 0, a为常数)的拉氏变换.
解 由式(27 1)知 £[eat ] eate ptdt e dt ( pa)t
0
0
同上例,这个积分在p a时收敛于 1 ,即 pa
£[ f (t a)(t a)] eapF( p)
无锡职业技术学院数学教研室
(2)在使用该性质时,不能忽视假设条件a 0和当t 0时,f (t)=0
否则会引起混乱.该性质表明,f (t a)的拉氏变换等于f (t)的拉氏变
换乘以因子eap .
例7 求£[(t a)],(a 0).
(t
)
注:(1)此处定义的函数 (t)是广泛意义下的函数,它不能用逐点
的对应来定义(讲清该函数涉及大纲外的内容[实变函数与泛函分
析]);
(2)上述极限也不是通常定义的极限,在通常意义下,
lim
0
(t
)是
不存在, 只有广泛意义下, 这个极限才有效.
显然,对任何 0,有
无锡职业技术学院数学教研室
第一个积分为零,对于第二个积分,令t a u,则
£[ f (t a)] f (u)e p(au)dt eap f (u)e pudu eap F ( p)
0
0
说明: (1)在这个性质中, f (t a)表示函数f (t)在时间上滞后a个
单位,所以这个性质也常称为延滞性性质.也常表示为
£[eat f (t)] eat f (t)e ptdt
拉普拉斯变换-PPT
1
i
s2
2
(Re s 0)
ℒ
[cost] 1 ℒ [eit ] ℒ
2
[eit ]
s
s2 2
(Res 0)
二 原函数导数定理:
ℒ [ f '(t)] sF (s) f (0)
ℒ [ f (n) (t)] sn F (s) sn1 f (0) sn2 f '(0)
sf (n2) (0) f (n1) (0)
t0
s
十二 终值定理
设L[ f (t)] F (s),且 lim f (t)存在,或 t0
sF (s)的奇点位于 Re s 0的平面上,则
F () lim f (t) lim sF (s)
t
s0
例1(P205例10.3.4)
求积分正弦函数Si (t)
t sin d的拉氏变换。 0
例2(P206例10.3.5)
二 Laplace变换的存在条件 1 Laplace 变换存在的充分条件是:
(1)在 0 t < 的任一有限区间上, 除了有限个第一类间断点外,函数f(t)
及其导数是处处连续的。
(2) 存在常数 M > 0 和 0,使对 于任何t (0 t < ), 有
f (t) Met即 f (t)et M
绝对可积的条件
| f (x) | dx
3)在整个数轴上有定义
实际应用中,绝对可积的条件比较强,许多 函数都不满足该条件,如正弦,余弦,阶跃, 线性函数等;另外,在无线电技术中,函数 往往以t作为自变量,t<0无意义。
2 拉普拉斯变换研究的对象函数
1)函数满足这样的条件:
a) t<0时,f(t)=0
数学物理方法拉普拉斯变换法
达朗贝尔公式 例3 求解无限长传输线上的电报方程 RGU ( LG RC)U t LCU tt U xx 0 U |t 0 ( x),U t |t 0 ( x) 解 作函数变换 U ( x, t ) e
(参§7.3)
LG RC 2 LC
u ( x, t ) 定解问题变为
对泛定方程进行拉普拉斯变换,初始条件由二阶导数定理,结果为
p2u p a2uxx b2u 0
非齐次常微分方程的通解为:
u ( x; p) Ae
x p 2 b 2 / a
Be
x p 2 b 2 / a x a p 2 b 2
1 ( x) e 1 ( x) e ( ) p ( )d ( ) p ( )d 2 2 2 2 2a 2a p b p b
x a p 2 b 2
x 2 2 p b a
10
第二个中括号与第一个比较, ( ) 代替
( ) 且多了个因子 P,先对第一个反演,得到原函数,把 改为 对t求导就得到
第二个的原函数. 由附录二公式30,可得 x p 2 b 2 e a ( x )2 1 J b t 2 0 p 2 b2 a2
1 p L f (at ) f ( ) a a
L f t t0 e pt0 f ( p)
L e t f t f ( p )
L f1 t f 2 t f 1 ( p) f 2 ( p)
(5)延迟性定理
(6)位移性定理
x 2 2 x p b p 2 b 2 e a x e a 1 1 ( )d ( )d 2a x 2a p 2 b 2 p 2 b2 x 2 2 x p b p 2 b 2 e a x e a 1 1 p ( )d p ( )d 2a x 2a p 2 b 2 p2 b2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ω
p2 + ω2
1 (3)由于 2 ⇔ sin ωt , ⇔ e −( R L ) t p + ω2 p+R L 引用卷积定理完成反演, E0 t −( R L )( t −τ ) E0 −( R L ) t ( R L )τ ( R L) sin ωt − ω cos ωt t j (t ) = sin ωτdτ = {e [e ] |0 } 2 2 2 ∫0 e L L R L +ω E0 ( R L) sin ωt − ω cos ωt E0 ωe −( R L ) t = + 2 2 2 L R L +ω L R 2 L2 + ω 2
wuxia@
至于它在初始时刻之前的值,不关心,不妨 设f(t)=0 (t<0)。 为了获得宽松的变换条件,把f(t)加工为 g(t)=e-σt f(t). e-σt 是收敛因子,即,正实数σ 的值选的足够大,以保证g(t)在(-∞,∞)上绝 对可积。 于是,可以对g(t)做傅里叶变换,
− 3 2
wuxia@
−
(二)查表法
e −τp 例2:求 解: 1 1 查表得 , ⇔ πt p e −τp 1 再利用延迟定理 ⇔ p π (τ − t ) p 的原函数.
wuxia@
ω p+λ 例3:求 和 的原函数。 2 2 2 2 ( p + λ) + ω ( p + λ) + ω
t0 ∞ − p ( ξ + t0 )
dξ = e
− pt0
∫
∞
t0
f (ξ )e
− pξ
dξ = e
− pt0
−
f ( p)
wuxia@
(7)卷积定理 若f1 (t ) ⇔ f1 ( p ), f 2 (t ) ⇔ f 2 ( p ), 则f1 (t ) ∗ f 2 (t ) = f1 ( p ) f 2 ( p ) 其中f1 (t ) ∗ f 2 (t ) = ∫ f1 (τ ) f 2 (t − τ )dτ , 为f1 (t )与f 2 (t )的卷积。
0
−
其中∫ f (t )e − pt dt称为拉普拉斯积分,
0 −
f ( p )称为f (t )的拉普拉斯变换函数。
−
f (t ) → f ( p )为拉普拉斯变换,e − pt 为拉氏变换的核。 G (ω )的傅里叶逆变换是, 1 ∞ − g (t ) = ∫ G (ω )e dω = f (σ + iω )e(σ +iω ) t dω −∞ 2π ∫−∞ 1 1 σ +iω − ∵ σ + iω = p,∴ dω = dp, f (t ) = f ( p )eip dp i 2πi ∫σ −iω
− pt ∞ ∞ 0
1 1 ⋅ e dt = p
− pt
(Re p > 0)
例2:求L[t ].
wuxia@
例3:求L[eSt ], S为常数。 解: L[e ] = ∫ eSt ⋅ e − pt dtS) t
1 1 -(p-S) t ∞ dt = − [e ]0 = p−S p−S
(Re p > Re S )
例4:求L[teSt ], S为常数。 解: L[te ] = ∫
St ∞ 0
1 te ⋅ e dt = − p−S
St − pt
∫
∞
0
td [e-(p-S) t ]
∞ 1 -(p-S) t ∞ {[te ]0 − ∫ e-(p-S) t dt} =− 0 p−S 1 = (Re p > Re S ) 2 ( p − S) n! 同理L[t n eSt ] = ( p − S ) n +1 wuxia@
0 ∞ ∞
τ
令ξ = t − τ
= ∫ [ ∫ f 2 (ξ )e − pξ dξ ] f1 (τ )e − pτ dτ
0 0
∞
∞
= ∫ f1 (τ )e
0
∞
− pτ
dτ ∫ f 2 (ξ )e
0
∞
− pξ
dξ = f 1 ( p ) f 2 ( p )
wuxia@
−
−
6、2 拉普拉斯变换的反演
拉普拉斯变换主要用于求解线性微分方程 (或积分方程)。 经过变换,原函数所遵从的微分(或积分) 方程变成了像函数所遵从的代数方程。 代数方程比较容易求解,但解出来的像 函数还必须回到原函数。这才是所求的 解。 由像函数求原函数的过程称为拉普拉斯变 换的反演。
wuxia@
(一)有理分式反演法
n n
wuxia@
(二)拉普拉斯变换的基本性质
(1)线性定理 若L[ f1 (t )] = f1 ( p ), L[ f 2 (t )] = f 2 ( p ), 则c1 f1 (t ) + c2 f 2 (t ) ⇔ c1 f1 ( p ) + c2 f 2 ( p ) 证明: L[c1 f1 (t ) + c2 f 2 (t )] = ∫ [c1 f1 (t ) + c2 f 2 (t )]e − pt dt
第六章 拉普拉斯变换
wuxia@
(一)定义
前面提到,傅里叶积分与傅里叶变换存在的 条件是原函数f(x)在任一有限区间满足狄里 希利条件,并且在(-∞,∞)区间上绝对可积。 拉普拉斯变换,存在的条件比傅里叶变换宽 松。 拉氏变换常用于初始值问题,即已知某个物 理量在初始时刻t=0的值f(0),而求解在初始 时刻之后的变换情况f(t).
wuxia@
1 G (ω ) = 2π
∞
∫
∞
−∞
g (t )e
−iωt
1 dt = 2π
∫
∞
−∞
f (t )e −(σ +iω ) t dt
− ∞
令σ + iω = p, G (ω ) = f ( p ) / 2π , 则 f ( p ) = ∫ f (t )e − pt dt
例5:求L[tf (t )], 其中f (t )是存在拉普拉斯变换的任意函数。 解: 对拉氏定义式两边求导,
− ∞ d f ( p) = ∫ e − pt ( −t ) f (t )dt 0 dp d − ∴ tf (t ) ⇔ ( −1) f ( p) dp
类推,有: dn − t f (t ) ⇔ ( −1) f ( p) n dp
−
(3)积分定理 1 ∫0ψ (τ )dτ ⇔ p L[ψ (t )] 证明:
t
考虑到f (t ) = ∫ ψ (τ )dτ , 对f (t )应用导数定理
0
t
f ′(t ) ⇔ pL[ f (t )] − f (0) = pL[ f (t )], 其中f (0) = ∫ ψ (τ )dτ = 0
0 t 1 ∴ L[ψ (t )] = L[ f (t )] = L[ ∫ ψ (τ )dτ ] 0 p t 1 即∫ ψ (τ )dτ ⇔ L[ψ (t )] 0 p
0
wuxia@
( 4)相似性定理 1 − p f ( at ) ⇔ f ( ) a a (5)位移定理 e
− λt
f (t ) ⇔ f ( p + λ )
−
wuxia@
(6)延迟定理 f (t − t0 ) ⇔ e 证明: f (t − t0 ) ⇔ ∫ f (t − t0 )e − pt dt
t0 ∞ − p0t −
f ( p)
用ξ = t − t0代替t作为积分变量, 则f (t − t0 ) ⇔ ∫ f (ξ )e
∞ iωt
wuxia@
−
f ( p )为像函数,f (t )为原函数。 ( p ) = L[ f (t )], f (t ) = L [ f ( p )] f f ( p )存在的条件是
−
−1
−
注意:
−
(1)在0 ≤ t < ∞的任一有限区间上, 除了有限个第一类间断点外,函数f (t )及其导数是处处连续的; (2)存在常数M > 0和σ ≥ 0,对任何t (0 ≤ t < ∞), 有: f (t ) |< Meσt |
解: 查表得: 2 ⇔ sin ωt , 2 p +ω 再应用位移定理,得:
ω
p ⇔ cos ωt 2 2 p +ω
ω p+λ − λt ⇔ e sin ωt , ⇔ e −λt cos ωt ( p + λ )2 + ω 2 ( p + λ )2 + ω 2
wuxia@
e −αp 例4:求 的原函数 p ( p + b) 解: 1 已知 ⇔ H (t ), p e −αp 应用延迟定理, ⇔ H (t − α ), 1 ⇔ e −bt ( p + b) p e −αp 看作 与1 的乘积,应用卷积定理,即得: ( p + b) p
例1:求 f ( p ) = ( p 3 + 2 p 2 − 9 p + 36) ( p 4 − 81)的原函数。 解: p + 2 p − 9 p + 36 1 1 1 1 p −1 f ( p) = = − + 2 2 ( p − 3)( p + 3)( p + 9) 2 p − 3 2 p + 3 p + 9 1 1 1 1 p 1 3 = − + 2 − 2 p − 3 2 p + 3 p + 9 3 p2 + 9 1 3t 1 − 3t 1 ∴ f (t ) = e − e + cos 3t − sin 3t 2 2 3
− pt − pt 0 0 ∞ ∞ − pt −