高中物理带电粒子在磁场中的运动知识点汇总
第2讲 带电粒子在磁场中的运动 - 知识点
提能点(四) 带电粒子在磁场中运动的临界极值问题(活化思维) 1.解答带电粒子在磁场中的临界极值问题的关键点 (1)关注题目中的“恰好”“最大”“最高”“至少”等关键词语,作为解题的
切入点。 (2)关注涉及临界点条件的几个结论 ①粒子刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。 ②当速度 v 一定时,弧长越长,圆心角越大,则粒子在有界磁场中运动的时间
提能点(三) 带电粒子在有界匀强磁场中的圆周运动(题点精研)
解答带电粒子在有界匀强磁场中的圆周运动问题的三个“确定”
圆心的确定
半径的确定
时间的确定
①与速度方向垂直的直线过 基
利用轨迹对应圆心
圆心 本
利用平面几何 角 θ 或轨迹长度 L
②弦的垂直平分线过圆心 思
知识求半径 求时间
③轨迹圆弧与边界切点的法 路
1.粒子进出平行直线边界的磁场时,常见情形如图所示: 2.粒子在平行直线边界的磁场中运动时存在临界条件,如图 a、c、d 所示。
3.各图中粒子在磁场中的运动时间: (1)图 a 中粒子在磁场中运动的时间 t1=θBmq,t2=T2=πBmq。 (2)图 b 中粒子在磁场中运动的时间 t=θBmq。 (3)图 c 中粒子在磁场中运动的时间 t=1-πθT=1-πθ2Bπqm=2mBπq-θ。 (4)图 d 中粒子在磁场中运动的时间 t=πθT=2Bθqm。
带电粒子在三角形边界的磁场中运动时常常涉及临界问题。如图所示,正 △ABC 区域内有匀强磁场,某正粒子垂直于 AB 方向从 D 点进入磁场时,粒 子有如下两种可能的临界轨迹:
(1)粒子能从 AB 边射出的临界轨迹如图甲所示。 (2)粒子能从 AC 边射出的临界轨迹如图乙所示。
带电粒子在矩形(正方形)边界的磁场中运动时,可能会涉及与边界相 切、相交等临界问题,如图所示。
带电粒子在匀强磁场中的运动知识小结
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO ,延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
高中物理之带电粒子在磁场中的运动知识点
高中物理之带电粒子在磁场中的运动知识点带电粒子在磁场中的运动特点带电粒子在磁场中的运动往往比较复杂,我们只考虑其中几种特殊情况:不考虑粒子本身的重力(一般如:电子、质子、粒子、离子等不考虑它们的重力);磁场为匀强磁场。
①初速度v0与磁场平行:此时洛伦兹力F=0,粒子将沿初速度方向做匀速直线运动。
②初速度与磁场垂直:由于洛伦兹力总与粒子运动方向垂直,粒子在洛伦兹力作用下做匀速圆周运动,其向心力由洛伦兹力提供,所以其轨道半径为,运动周期为。
由此可见:荷质比相同的粒子以相同的速度进入同一磁场,其轨道半径相同;带电量相同的粒子以相同的动量进入同一磁场,其轨道半径相同。
它们运动的周期T与粒子的速度大小无关,与粒子的轨道半径R无关,只要是荷质比相同的粒子,进入同一磁场,其周期相同。
规律方法“一点、两画、三定、四写”求解粒子在磁场中的圆周运动问题(1)一点:在特殊位置或要求粒子到达的位置(如初位置、要求经过的某一位置等);(2)两画:画出速度v和洛伦兹力F两个矢量的方向;(3)三定:定圆心、定半径、定圆心角;(4)四写:写出基本方程带电粒子在匀强磁场中的运算1圆心的确定①因为洛伦兹力指向圆心,根据F洛⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点,如下图甲的P、M两点)的F洛的方向,其延长线的交点即为圆心.(也可以说是任意两点的切线方向的垂直线交点)②做粒子入射点速度方向的垂直线,做出入射点、出射点连线的中垂线,两线的交点即是圆心O.2半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角)。
并注意以下两个重要的几何特点:①粒子速度的偏向角(φ)等于回旋角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍,φ=α=2θ=ω。
②相对的弦切角(θ)相等,与相邻的弦切角(θ')互补,即θ+θ'=180°。
3粒子在磁场中运动时间的确定利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角ɑ的大小.由公式,可求出运动时间.如果ɑ为弧度制,则在磁场中运动时间的确定.利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角ɑ的大小.由公式,可求出运动时间.如果ɑ为弧度制,则注意圆周运动中有关对称规律如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
1.3带电粒子在匀强磁场中的运动
依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出
所受重力与洛伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆
周运动,由此可以求出粒子运动的轨道半径及周期。
完全解答:
重力与洛伦兹力之比
(1)粒子所受的重力
G= mg = 1.67×10-27kg×9.8 N= 1.64×10-26N
匀强磁场中。求电子做匀速圆周运动的轨道半径和周期。
解:洛伦兹力提供向心力,首先列:
2
v
qvB m
r
2πr
T
v
mv
9.110 31 1.6 10 6
2
.
55
10
m
r
19
4
1.6 10 2 10
qB
2m
T
qB
2 9.110 31
7
5
.
6875
洛伦兹力提供向心力
v2
qvB m
r
圆周运动的半径
mv
r
qB
粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成
正比,与电荷量、磁感应强度成反比。
观察带电粒子的运动径迹
洛伦兹力演示仪示意图
洛伦兹力演示仪
励磁线圈
玻璃泡
电子枪
加速极电压
励磁电流
选择档
选择档
电子枪可以发射电子束
玻璃泡内充有稀薄的气体,在电
2 m
T
eB
电子在矩形磁场中沿圆弧从
a点运动到c点的时间
t
T
高中物理带电粒子在磁场中的运动知识点汇总-
高中物理带电粒子在磁场中的运动知识点汇总-
1. 磁场的基本概念
磁场是一种物理现象,指在空间范围内存在的磁场力作用所表现出来的影响。
常用的表示磁场的单位是特斯拉 (T)。
2. 洛伦兹力定律
当一个带电粒子在磁场中运动时,会受到一个称为洛伦兹力的力作用。
洛伦兹力的大小与电荷的电量、磁场的强度和带电粒子的速度有关。
3. 带电粒子在匀强磁场中的运动规律
带电粒子在匀强磁场中前进的轨迹为圆形或者螺旋线,圆的半径与带电粒子的质量、速度、电荷量和磁场强度有关。
4. 带电粒子在非匀强磁场中的运动规律
带电粒子在非匀强磁场中的运动规律比匀强磁场更复杂,通常需要用电场力和重力力来计算。
5. 延迟磁场
延迟磁场是指当一个带电粒子在磁场中运动时,会产生一个磁场,这个磁场会影响该带电粒子后续的运动。
在一些情况下,延迟磁场可能比初始磁场更重要。
6. 磁场对物体的影响
磁场不仅对带电粒子的运动有影响,还对物体的运动有影响。
当一个物体在磁场中运动时,会受到磁场力的作用,这个力与电荷无关,而是与磁矩有关。
7. 模拟实验
在实验室中可以使用引入带电粒子和磁场的装置来进行模拟实验。
这些实验可以帮助学生深入理解磁场和带电粒子在其中的运动规律。
物理专题三带电粒子在复合场(电场磁场)中的运动解读
物理专题三 带电粒子在复合场(电场磁场)中的运动解决这类问题时一定要重视画示意图的重要作用。
⑴带电粒子在匀强电场中做类平抛运动。
这类题的解题关键是画出示意图,要点是末速度的反向延长线跟初速度延长线的交点在水平位移的中点。
⑵带电粒子在匀强磁场中做匀速圆周运动。
这类题的解题关键是画好示意图,画示意图的要点是找圆心、找半径和用对称。
例1 右图是示波管内部构造示意图。
竖直偏转电极的板长为l =4cm ,板间距离为d =1cm ,板右端到荧光屏L =18cm ,(本题不研究水平偏转)。
电子沿中心轴线进入偏转电极时的速度为v 0=1.6×107m/s ,电子电荷e =1.6×10-19C ,质量为0.91×10-30kg 。
为了使电子束不会打在偏转电极的极板上,加在偏转电极上的电压不能超过多少?电子打在荧光屏上的点偏离中心点O 的最大距离是多少?[解:设电子刚好打在偏转极板右端时对应的电压为U ,根据侧移公式不难求出U (当时对应的侧移恰好为d /2):2212⎪⎭⎫ ⎝⎛⋅=v l dm Ue d ,得U =91V ;然后由图中相似形对应边成比例可以求得最大偏离量h =5cm 。
]例2 如图甲所示,在真空中,足够大的平行金属板M 、N 相距为d ,水平放置。
它们的中心有小孔A 、B ,A 、B 及O 在同一条竖直线上,两板的左端连有如图所示的电路,交流电源的内阻忽略不计,电动势为U ,U 的方向如图甲所示,U 随时间变化如图乙所示,它的峰值为ε。
今将S 接b 一段足够长时间后又断开,并在A 孔正上方距A 为h (已知d h <)的O 点释放一个带电微粒P ,P 在AB 之间刚好做匀速运动,再将S 接到a 后让P 从O 点自由下落,在t=0时刻刚好进入A 孔,为了使P 一直向下运动,求h 与T 的关系式?[解析:当S 接b 一段足够长的时间后又断开,而带电微粒进入A 孔后刚好做匀速运动,说明它受到的重力与电场力相等,有d q mg ε= 若将S 接a 后,刚从t=0开始,M 、N 两板间的电压为,2ε,故带电粒子进入电场后,所受到的电场力为mg d q F 22==ε,也就是以大小为g 、方向向上的加速度作减速运动。
带电粒子在匀强磁场中的圆周运动
带电粒子在匀强磁场中的运动一、带电粒子在匀强磁场中的匀速圆周运动1.洛伦兹力的作用效果洛伦兹力只改变带电粒子速度的方向,不改变带电粒子速度的大小,或者说洛伦兹力不对带电粒子做功,不改变粒子的能量。
2.带电粒子的运动规律沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动。
洛伦兹力总与速度方向垂直,正好起到了向心力的作用。
公式:q v B =m v 2rr =m vqBT =2πm qB3.圆心、半径、运动时间的分析思路(1)圆心的确定:带电粒子垂直进入磁场后,一定做圆周运动,其速度方向一定沿圆周的切线方向,因此圆心的位置必是两速度方向垂线的交点,如图(a)所示,或某一速度方向的垂线与圆周上两点连线中垂线的交点,如图(b)所示.(2)运动半径大小的确定:一般先作入射点、出射点对应的半径,并作出相应的辅助三角形,然后利用三角函数求解出半径的大小.(3)运动时间的确定:首先利用周期公式T =2πm qB ,求出运动周期T ,然后求出粒子运动的圆弧所对应的圆心角α,其运动时间t =α2πT .(4)圆心角的确定:①带电粒子射出磁场的速度方向与射入磁场的速度方向间的夹角φ叫偏向角.偏向角等于圆心角即φ=α,如图所示.②某段圆弧所对应的圆心角是这段圆弧弦切角的二倍,即α=2θ.[特别提醒]带电粒子(不计重力)以一定的速度v 进入磁感应强度为B 的匀强磁场时的运动轨迹:(1)当v ∥B 时,带电粒子将做匀速直线运动.(2)当v ⊥B 时,带电粒子将做匀速圆周运动.(3)当带电粒子斜射入磁场时,带电粒子将沿螺旋线运动.4、带电粒子在三类有界磁场中的运动轨迹特点(1)直线边界:进出磁场具有对称性。
(2)平行边界:存在临界条件。
(3)圆形边界:沿径向射入必沿径向射出。
【例题1】如图所示,一束电荷量为e 的电子以垂直于磁场方向(磁感应强度为B )并垂直于磁场边界的速度v 射入宽度为d 的磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=60°.求电子的质量和穿越磁场的时间.答案:23dBe 3v 23πd 9v解析:过M 、N 作入射方向和出射方向的垂线,两垂线交于O 点,O 点即电子在磁场中做匀速圆周运动的圆心,过N 作OM 的垂线,垂足为P ,如图所示.由直角三角形OPN 知,电子的轨迹半径r =d sin 60°=233d ①由圆周运动知e v B =m v 2r②解①②得m =23dBe 3v.电子在无界磁场中运动周期为T =2πeB ·23dBe 3v =43πd 3v.电子在磁场中的轨迹对应的圆心角为θ=60°,故电子在磁场中的运动时间为t =16T =16×43πd 3v =23πd 9v.带电粒子在磁场中的圆周运动问题处理方法(1)定圆心:圆心一定在与速度方向垂直的直线上,也在弦的中垂线上,也是圆的两个半径的交点.(2)求半径的两种方法:一是利用几何关系求半径,二是利用r =m v Bq 求半径.(3)求时间:可以利用T =2πr v 和t =Δl v 求时间,也可以利用t =θ2πT 求时间.【例题2】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A 点沿直径AOB 方向射入磁场,经过t 时间从C 点射出磁场,OC 与OB 成60°角。
高考物理带电粒子在磁场中的运动知识点汇总
高考物理带电粒子在磁场中的运动知识点汇总一、带电粒子在磁场中的运动压轴题1.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A点出发后,第一次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mvEqR=解得:EqR vm =(2)粒子从D到A匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22R S = 在磁场中洛伦兹力提供向心力,则有:2mv Bqv R= 得:mv R Bq=设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:若只碰撞一次,则有:112R mv R B q== 22mvR R B q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒子在电场中运动时间:1242R mRt v Eqππ== 在MN 下方的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=⨯⨯== 在MN 上方的磁场中运动时间:232142R mRt v Eq ππ=⨯=总时间:1232mRt t t t Eqπ=++=2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 2md qE R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2EqmdE B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆===Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得 0221221L qE n E v n md n B=⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=02(1)21221L qE n E v n md n B+=⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL =(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==4.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N 点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B 0的大小、磁场变化周期T 各应满足的关系表达式.【答案】(1) (2) (3) (n=1,2,3…)(n=1,2,3…) 【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y =v 0tanθ=v 0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.5.在如图所示的xoy坐标系中,一对间距为d的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y轴重合,桌面与x轴重合,o点与桌面右边相距为74d,一根长度也为d的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d,装置的总质量为3m.两板外存在垂直纸面向外、磁感应强度为B的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m、电量为+q的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g.求:(1)环离开小孔时的坐标值;(2)板外的场强E2的大小和方向;(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.【答案】(1)环离开小孔时的坐标值是-14 d;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;(3)场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d~.【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:2 16qB d Em≈故场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d-~.6.如图,第一象限内存在沿y轴负方向的匀强电场,电场强度大小为E,第二、三、四象限存在方向垂直xOy平面向外的匀强磁场,其中第二象限的磁感应强度大小为B,第三、四象限磁感应强度大小相等,一带正电的粒子,从P(-d,0)点沿与x轴正方向成α=60°角平行xOy平面入射,经第二象限后恰好由y轴上的Q点(图中未画出)垂直y轴进入第一象限,之后经第四、三象限重新回到P点,回到P点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 23603d d dr sin sin α===︒ 根据200mv qv B r =得0233qBdv m=粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得03222y v y tan x v α===由几何知识可得 y=r-rcosα= 1323r d = 则得23x d =所以粒子在第三、四象限圆周运动的半径为1253239d d R d sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度004323v qBdv v cos mα===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动7.如图所示,真空中有一个半径r=0.5m 的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T ,方向垂直于纸面向外,x 轴与圆形磁场相切于坐标系原点O ,在x=0.5m 和x=1.5m 之间的区域内有一个方向沿y 轴正方向的匀强电场区域,电场强E=1.5×103N/C ,在x=1.5m 处竖有一个与x 轴垂直的足够长的荧光屏,一粒子源在O 点沿纸平面向各个方向发射速率相同、比荷9110qm=⨯C/kg 的带正电的粒子,若沿y 轴正方向射入磁场的粒子恰能从磁场最右侧的A 点沿x 轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力.求:(1)粒子源发射的粒子进入磁场时的速度大小;(2)沿y 轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数字);(3)从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.【答案】(1)61.010/v m s =⨯;(2)61.810t s -=⨯;(3)0.75 1.75m y m ≤≤ 【解析】 【分析】(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据2v qvB m R=求解速度;(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O 点处射出的粒子打在荧光屏上的纵坐标区域范围. 【详解】(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m ,由2v qvB mR= 进入电场时qBR v m = 带入数据解得v=1.0×106m/s(2)粒子在磁场中运动的时间61121044R t s v ππ-=⨯=⨯ 粒子从A 点进入电场做类平抛运动,水平方向的速度为v ,所以在电场中运动的时间62 1.010xt s v-==⨯ 总时间6612110 1.8104t t t s s π--⎛⎫=+=+⨯=⨯⎪⎝⎭(3)沿x 轴正方向射入电场的粒子,在电场中的加速度大小121.510/qEa m s m==⨯ 在电场中侧移:2121261111.5100.7522110y at m m ⎛⎫==⨯⨯⨯= ⎪⨯⎝⎭打在屏上的纵坐标为0.75;经磁场偏转后从坐标为(0,1)的点平行于x 轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x 轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带电粒子打在荧光屏上 的纵坐标区域为0.75≤y ≤1.75.8.如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为.现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.【答案】2145qRB E m=【解析】 【分析】 【详解】解答本题注意带电粒子先在匀强磁场运动,后在匀强电场运动.带电粒子在磁场中做圆周运动.粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得2v qvB m r=①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 和d 点.由几何关系知,线段ac bc 、和过a 、b 两点的轨迹圆弧的两条半径(未画出)围成一正方形.因此ac bc r ==② 设,cd x =有几何关系得45ac R x =+③ 2235bc R R x =+- 联立②③④式得75r R =再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE="m a" ⑥ 粒子在电场方向和直线方向所走的距离均为r ,有运动学公式得212r at =⑦ r=vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得2145qRB E m=⑨【点睛】带电粒子在磁场中运动的题目解题步骤为:定圆心、画轨迹、求半径,同时还利用圆弧的几何关系来帮助解题.值得注意是圆形磁场的半径与运动轨道的圆弧半径要区别开来.9.磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源s 发出质量为m 、电量为q 的粒子沿垂直磁场方向进入磁感应强度为B 的匀强磁场,被限束光栏Q 限制在2ϕ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P 上.(重力影响不计)(1)若能量在E ~E +ΔE (ΔE >0,且ΔE <<E )范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围Δx 1.(2)实际上,限束光栏有一定的宽度,α粒子将在2ϕ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围Δx 2 【答案】见解析 【解析】 【详解】(1)设α粒子以速度v 进入磁场,打在胶片上的位置距s 的距离为x 圆周运动2q B mRυυ=α粒子的动能212E m υ=2x R =由以上三式可得22mEx qB= 所以()12222m E E mEx qBqB+∆∆=-化简可得122mEx E qBE∆≈∆; (2)动能为E 的α粒子沿φ±角入射,轨道半径相同,设为R ,粒子做圆周运动2q B mRυυ=α粒子的动能212E m υ=由几何关系得()22224222cos 1cos sin 2mE mE φx R R φφqB qB ∆=-=-=10.如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M .粒子在磁场中运动的轨道半径为R .粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OP =R .不计重力.求M 点到O 点的距离和粒子在磁场中运动的时间.【答案】当α=30°时,粒子在磁场中运动的时间为π126T mt qB== 当α=90°时,粒子在磁场中运动的时间为π42T m t qB== 【解析】根据题意,粒子进入磁场后做匀速圆周运动,设运动轨迹交虚线OL 于A 点,圆心在y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴的P 点,设AP 与x 轴的夹角为β,如图所示.有(判断出圆心在y 轴上得1分)2v qvB m R=(1分)周期为2πmT qB=(1分) 过A 点作x 、y 轴的垂线,垂足分别为B 、D .由几何知识得sin αAD R =,cot 60OD AD =︒,,OP AD BP =+α=β (2分) 联立得到sin αα13+=(2分) 解得α=30°,或α=90° (各2分) 设M 点到O 点的距离为h ,有sin αAD R =h R OC =-,3cos αOC CD OD R AD =-=联立得到h=R 3cos(α+30°) (1分) 解得h=3R (α=30°) (2分) h=3R (α=90°) (2分) 当α=30°时,粒子在磁场中运动的时间为π126T m t qB ==(2分) 当α=90°时,粒子在磁场中运动的时间为π42T m t qB==(2分) 【考点定位】考查带电粒子在匀强磁场中的运动及其相关知识.。
高三物理 复习 专题20 带电粒子在磁场中的运动- 重要知识点、考点、方法总结 、讲义
一、带电粒子在有界磁场中的运动1.运动电荷所受的洛伦兹力....方向始终与速度方向垂直,所以洛伦兹力只改变速度方向,不改变速度大小,洛伦兹力对带电粒子不做功............。
2.带电粒子沿着与磁场垂直的方向射入磁场,在匀强磁场中做匀速圆周运动。
3.洛伦兹力提供带电粒子做圆周运动所需的向心力。
由牛顿第二定律得2v qvB m R=,则粒子运动的轨道半径mv R qB =,运动周期2πm T qB =。
4.带电粒子在匀强磁场中做匀速圆周运动,确定圆心和运动半径,画出粒子运动的轨迹。
⑴ 圆心..的确定:画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的洛伦兹力的方向,两洛伦兹力延长线的交点即为圆心;或利用一根弦的中垂线,结合一点洛伦兹力的延长线作出圆心位置。
⑵ 半径..的确定和计算:圆心确定以后,利用平面几何关系,求出该圆的半径。
⑶ 在磁场中运动时间....的确定:用几何关系求出运动轨迹所对应的圆心角θ,由公式360t T θ=求出粒子在磁场中运动的时间。
【例1】 如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某初速度垂直左边界射入,穿过此区域的时间为t ,若加上磁感应强度为B 、垂直纸面向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出磁场时偏离原方向60︒,利用以上数据可求出下列物理量中的A .带电粒子的比荷B .带电粒子在磁场中运动的周期C .带电粒子的初速度D .带电粒子在磁场中运动的半径【答案】 A B【例2】 如图所示,圆柱形区域的横截面内有垂直于纸面向里的匀强磁场,磁感应强度为B 。
一带电粒子(不计重力)以某一初速度沿截面直径方向射入时,穿过此区域所用的时间为t 。
又知粒子飞出此区域时速度方向偏转了60︒角,根据以上条件可求下列物理量中的A .带电粒子的比荷B .带电粒子的初速度C .带电粒子在磁场中运动的周期D .带电粒子在磁场中运动的半径【答案】 A C【例3】 在一个边界为等边三角形的区域内,存在着方向垂直于纸面向里的匀强磁场,在磁场边界上的P 点处有一个粒子源,粒子源发出比荷相同的三个粒子a b c 、、(不计重力)沿同一方向进入磁场,三个粒子在磁场中的运动轨迹如图所示。
36带电粒子在匀强磁场中的运动共33张PPT
KETANG HEZUO TANJIU
当堂检测
2.回旋加速器两端所加的交流电压的周期由什么决定?
答案:为了保证每次带电粒子经过狭缝时均被加速,使之能量不断
提高。交流电压的周期必须等于带电粒子在回旋加速器中做匀速圆周
2m
。因此,交流电压的周期由带电粒子的质量
qB
运动的周期即 T=
m、带
电荷量 q 和加速器中的磁场的磁感应强度 B 来决定。
方向进入电场中加速。
第18页/共33页
问题导学
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
(2)电场的作用
回旋加速器两个半圆形金属盒之间的缝隙区域存在周期性变化的
并且垂直于两金属盒正对截面的匀强电场,带电粒子经过该区域时被
加速。
(3)交变电压的周期
线的夹角(弦切角 θ)的 2 倍。如图所示,即 φ=α=2θ。
②相对的弦切角 θ 相等,与相邻的弦切角 θ'互补,即 θ+θ'=180°。
第7页/共33页
问题导学
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
(3)粒子在磁场中运动时间的确定
目标导航
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
预习导引
1.带电粒子在匀强磁场中的运动
(1)只考虑磁场作用力时,平行射入匀强磁场中的带电粒子,做匀速
直线运动。
(2)垂直射入匀强磁场中的带电粒子,在洛伦兹力的作用下做匀速
高中物理带电粒子在匀强磁场中的运动讲解_
高中物理带电粒子在匀强磁场中的运动讲解_下面是学习信息网整理的有关高中物理带电粒子在匀强磁场中的运动知识点总结讲解,方便大家的学习浏览1、理解洛伦兹力对粒子不做功。
2、理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀磁场中做匀速圆周运动.3、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题,知道质谱仪的工作原理。
4、知道回旋加速器的基本构造、工作原理、及用途。
[问题1]什么是洛伦兹力?[磁场对运动电荷的作用力][问题2]带电粒子在磁场中是否一定受洛伦兹力?[不一定,洛伦兹力的计算公式为F=qvBsin ,为电荷运动方向与磁场方向的夹角,当 =90 时,F=qvB;当 =0 时,F=0。
] [问题3]带电粒子垂直磁场方向进入匀强磁场时会做什么运动呢?今天我们来学习带电粒子在匀强磁场中的运动。
带电粒子垂直进入匀强磁场中的受力及运动情况分析一是要明确所研究的物理现象的条件----在匀强磁场中垂直于磁场方向运动的带电粒子。
二是分析带电粒子的受力情况,用左手定则明确带电粒子初速度与所受到的洛伦兹力在同一平面内,所以只可能做平面运动。
三是洛伦兹力不对运动的带电粒子做功,它的速率不变,同时洛伦兹力的大小也不变。
四是根据牛顿第二定律,洛伦兹力使运动的带电粒子产生加速度(向心加速度)①电子受到怎样的力的作用?这个力和电子的速度的关系是怎样的?(电子受到垂直于速度方向的洛伦兹力的作用.)②洛伦兹力对电子的运动有什么作用?(洛伦兹力只改变速度的方向,不改变速度的大小)③有没有其他力作用使电子离开磁场方向垂直的平面?(没有力作用使电子离开磁场方向垂直的平面)④洛伦兹力做功吗?(洛伦兹力对运动电荷不做功)1.带电粒子在匀强磁场中的运动(1)运动轨迹:沿着与磁场垂直的方向射入磁场的带电粒子,粒子在垂直磁场方向的平面内做匀速圆周运动,此洛伦兹力不做功。
【说明】:(1)轨道半径和粒子的运动速率成正比.(2)带电粒子在磁场中做匀速圆周运动的周期跟轨道半径和运动速率无关。
带电粒子在匀强磁场中的运动知识点总结
带电粒子在匀强磁场中的运动知识点总结
带电粒子在匀强磁场中的运动知识点总结
物理学与其他许多自然科学息息相关,如物理、化学、生物和地理等。
以下是网为大家整理的高二物理下册带电粒子在匀强磁场中的运动知识点,希望可以解决您所遇到的.相关问题,加油,网一直陪伴您。
本实验的目的是:
1.探究带电粒子在匀强磁场中做匀速圆周运动的半径和周期与哪些因素有关。
2.练习使用左手定则。
操作步骤:
1.分别改变粒子发射的方向、改变粒子的正负、改变磁场的方向来练习使用左手定则。
2.保持出射粒子的速度不变,改变磁感应强度,观察粒子径迹和周期的变化。
3.保持磁感应强度不变,改变粒子的速度,观察粒子径迹和周期的变化。
4.依次类推,保持其他量不变,改变其中一个量的变化,观察粒子径迹和周期的变化。
最后,希望小编整理的高二物理下册带电粒子在匀强磁场中的运动知识点对您有所帮助,祝同学们学习进步。
高中物理:带电粒子在匀强磁场中的运动
高中物理:带电粒子在匀强磁场中的运动【知识点的认识】带电粒子在匀强磁场中的运动1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做匀速直线运动.2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做匀速圆周运动.3.半径和周期公式:(v⊥B)【命题方向】常考题型:带电粒子在匀强磁场中的匀速圆周运动如图,半径为R的圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q>0)、质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)()A. B. C. D.【分析】由题意利用几何关系可得出粒子的转动半径,由洛仑兹力充当向心力可得出粒子速度的大小;解:由题,射入点与ab的距离为.则射入点与圆心的连线和竖直方向之间的夹角是30°,粒子的偏转角是60°,即它的轨迹圆弧对应的圆心角是60,所以入射点、出射点和圆心构成等边三角形,所以,它的轨迹的半径与圆形磁场的半径相等,即r=R.轨迹如图:洛伦兹力提供向心力:,变形得:.故正确的答案是B.故选:B.【点评】在磁场中做圆周运动,确定圆心和半径为解题的关键.【解题方法点拨】带电粒子在匀强磁场中的匀速圆周运动一、轨道圆的“三个确定”(1)如何确定“圆心”①由两点和两线确定圆心,画出带电粒子在匀强磁场中的运动轨迹.确定带电粒子运动轨迹上的两个特殊点(一般是射入和射出磁场时的两点),过这两点作带电粒子运动方向的垂线(这两垂线即为粒子在这两点所受洛伦兹力的方向),则两垂线的交点就是圆心,如图(a)所示.②若只已知过其中一个点的粒子运动方向,则除过已知运动方向的该点作垂线外,还要将这两点相连作弦,再作弦的中垂线,两垂线交点就是圆心,如图(b)所示.③若只已知一个点及运动方向,也知另外某时刻的速度方向,但不确定该速度方向所在的点,如图(c)所示,此时要将其中一速度的延长线与另一速度的反向延长线相交成一角(∠PAM),画出该角的角平分线,它与已知点的速度的垂线交于一点O,该点就是圆心.(2)如何确定“半径”方法一:由物理方程求:半径R=;方法二:由几何方程求:一般由数学知识(勾股定理、三角函数等)计算来确定.(3)如何确定“圆心角与时间”①速度的偏向角φ=圆弧所对应的圆心角(回旋角)θ=2倍的弦切角α,如图(d)所示.②时间的计算方法.方法一:由圆心角求,t=•T;方法二:由弧长求,t=.二、解题思路分析1.带电粒子在磁场中做匀速圆周运动的分析方法.2.带电粒子在有界匀强磁场中运动时的常见情形.直线边界(粒子进出磁场具有对称性)件)形边界(粒子沿径向射入,再沿向射出)3.带电粒子在有界磁场中的常用几何关系(1)四个点:分别是入射点、出射点、轨迹圆心和入射速度直线与出射速度直线的交点.(2)三个角:速度偏转角、圆心角、弦切角,其中偏转角等于圆心角,也等于弦切角的2倍.三、求解带电粒子在匀强磁场中运动的临界和极值问题的方法由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.(1)两种思路①以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;②直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值.(2)两种方法物理方法:①利用临界条件求极值;②利用问题的边界条件求极值;③利用矢量图求极值.数学方法:①利用三角函数求极值;②利用二次方程的判别式求极值;③利用不等式的性质求极值;④利用图象法等.(3)从关键词中找突破口:许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示.审题时,一定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.。
带电粒子在磁场中的运动知识点总结
带电粒子在磁场中的运动知识点总结带电粒子在磁场中的运动可以通过洛伦兹力来描述,洛伦兹力的大小为F=q(v×B),方向垂直于带电粒子的速度和磁场。
1. 磁力对粒子的运动轨迹的影响:- 在匀强磁场中,带电粒子的运动轨迹为圆周,圆心在速度与磁场垂直的平面上,半径为mv/qB,速度方向以半径为轴作右手螺旋运动。
- 在非匀强磁场中,带电粒子的运动轨迹为螺旋线,其螺旋轴垂直于磁场方向,并以瞬时速度方向为轴向作旋转运动。
2. 粒子在磁场中的运动特点:- 磁场只对带电粒子的速度方向产生影响,不会改变其速度大小。
- 磁场对带电粒子的运动不会改变其动能,只是改变其运动方向。
- 当带电粒子的速度与磁场平行时,洛伦兹力为零,粒子不受力,保持直线运动。
- 当带电粒子的速度与磁场平面夹角为0或180度时,洛伦兹力最大,速度方向会发生最大的改变。
3. 粒子在磁场中的运动方向:- 正电荷带电粒子在磁场中受力方向与负电荷带电粒子相反,遵循右手定则。
- 右手定则:将右手伸直,让食指指向带电粒子的速度方向,中指指向磁场方向,则拇指的方向就是粒子受力的方向。
4. 粒子运动的径向速度和纵向速度:- 径向速度指与粒子运动轨迹半径方向相同的速度分量,大小不变,只改变方向。
- 纵向速度指与粒子运动轨迹切线方向相同的速度分量,大小不变,只改变方向。
5. 粒子在磁场中的周期和频率:- 带电粒子在匀强磁场中做圆周运动的周期为T=2π(m/qB),圆周运动的频率为f=1/T。
- 带电粒子在非匀强磁场中做螺旋运动的周期,取决于速度和磁场的空间分布情况。
这些是带电粒子在磁场中运动的关键知识点总结,可以帮助理解和解决相关问题。
带电粒子在磁场中的运动知识点总结
带电粒子在磁场中的运动知识点总结带电粒子在磁场中的运动知识点总结磁场是由具有磁性的物质产生的一种特殊的物理现象。
带电粒子在磁场中的运动是一种经典力学问题,也是研究电磁力学的重要内容之一。
本文将从洛伦兹力和运动方程的角度,总结带电粒子在磁场中的运动知识点。
一、洛伦兹力的定义和表达式当带电粒子运动时,其受到磁场的作用力称为洛伦兹力。
洛伦兹力的大小和方向与带电粒子的电荷量、速度以及磁场的强度和方向有关。
洛伦兹力的表达式为:F = q(v × B),其中F表示洛伦兹力,q表示带电粒子的电荷量,v表示带电粒子的速度,B表示磁场的磁感应强度。
从表达式可以看出,当带电粒子的速度与磁场的方向相垂直时,洛伦兹力最大,其大小为F = qvB。
当带电粒子的速度与磁场的方向平行时,洛伦兹力为零。
二、带电粒子在均匀磁场中的运动1. 带电粒子在均匀磁场中做圆周运动。
当带电粒子的速度与磁场的方向垂直时,洛伦兹力的方向垂直于速度和磁场,使得带电粒子呈圆周运动。
带电粒子沿着圆周运动的半径越小,则速度越大。
2. 带电粒子在均匀磁场中做螺旋线运动。
当带电粒子的速度既有向心分量又有切向分量时,带电粒子在均匀磁场中做螺旋线运动。
螺旋线的轴线平行于磁场方向,而螺旋线的半径和螺旋线的间距则与带电粒子的质荷比有关。
三、带电粒子在非均匀磁场中的运动在非均匀磁场中,带电粒子的运动受到洛伦兹力和离心力的共同作用。
1. 带电粒子在平行磁场中的运动。
当带电粒子的速度与非均匀磁场的方向平行时,洛伦兹力和离心力共同作用,使得带电粒子的运动轨迹偏离直线,呈现偏转或弯曲的状态。
2. 带电粒子在非均匀磁场中的稳定运动。
在某些特殊的非均匀磁场中,带电粒子可以实现稳定的运动。
例如,带电粒子在磁偶极场中做稳定的进动运动。
四、在磁场中运动的带电粒子与其他力的作用在实际情况中,带电粒子在磁场中的运动常常受到其他力的作用,如重力和电场的作用。
1. 在重力作用下的带电粒子运动。
高中物理带电子在磁场中的运动知识点汇总
难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1.产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行.2.洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最人,f=quB:当电荷运动方向与磁场方向有夹角0时,洛伦兹力f=qvB • sm 03.洛伦兹力的方向:洛伦兹力方向用左手定则判断4.洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1.若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,0=0°或180。
时,带电粒子粒子在磁场中以速度u做匀速直线运动.2.若带电粒子的速度方向与匀强磁场方向垂直,即6 = 90。
时,带电粒子在匀强磁场中以入射速度u做匀速圆周运动.V2qvB = m ——①向心力由洛伦兹力提供:RR =—②轨道半径公式:qB_2K R _ 27rm m③周期:V qB ,可见T只与q有关,与V、R无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1•“带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,t = —TI^t = —T有时需要建立运动时间t和转过的圆心角a之间的关系(36°2兀)作为辅助。
圆心的确定,通常有以下两种方法。
①已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P为入射点,M为出射点)。
②已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P为入射点,M为出射点)。
高中物理【磁场对运动电荷的作用】知识点、规律总结
【总结提升】 带电粒子在磁场中做匀速圆周运动的分析方法
考点三 带电粒子在磁场中运动的临界、极值问题
师生互动
分析临界极值问题常用的四个结论
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.
(2)当速率 v 一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间
越长.
(3)当速率 v 变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动
情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等.
(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为
磁场区域圆直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长).
考点四 带电粒子在磁场中运动的多解问题
师生互动
带电粒子在洛伦兹力作用下做匀速圆周运动,由于多种因素的影响,使问题形成多
二、带电粒子在匀强磁场中(不计重力)的运动 1.若 v∥B,带电粒子以入射速度 v 做_匀__速__直__线___运动. 2.若 v⊥B,带电粒子在垂直于磁感线的平面内,以入射速度 v 做__匀__速__圆__周__运动. 3.基本公式 (1)轨迹半径公式:r=mBqv. (2)周期公式:T=2vπr=2qπBm;f=T1=2Bπqm;ω=2Tπ=2πf=Bmq.
【总结提升】 解决多解问题的一般思路 (1)明确带电粒子的电性和磁场方向. (2)正确找出带电粒子运动的临界状态. (3)结合带电粒子的运动轨迹利用圆周运动的周期性进行分析计算.
三类典型的“动态圆”模型
模型 1 “放缩圆”模型的应用
适用 条件
速度方向一定, 大小不同
粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁 场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随 速度的变化而变化
(完整版)高中物理带电粒子在磁场中的运动(提纲、例题、练习、解析)
带电粒子在磁场中的运动【学习目标】1.掌握带电粒子在匀强磁场中做匀速圆周运动的特点和解决此类运动的方法2.理解质谱仪和回旋加速器的工作原理和作用【要点梳理】要点一:带电粒子在匀强磁场中的运动要点诠释:1.运动轨迹带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场中:(1)当v∥B时,带电粒子将做匀速直线运动;(2)当v⊥B时,带电粒子将做匀速圆周运动;(3)当v与B的夹角为θ(θ≠0°,90°,180°)时,带电粒子将做等螺距的螺旋线运动.说明:电场和磁场都能对带电粒子施加影响,带电粒子在匀强电场中只在电场力作用下,可能做匀变速直线运动,也可能做匀变速曲线运动,但不可能做匀速直线运动;在匀强磁场中,只在磁场力作用下可以做曲线运动.但不可能做变速直线运动.2.带电粒子在匀强磁场中的圆周运动如图所示,带电粒子以速度v垂直磁场方向入射,在磁场中做匀速圆周运动,设带电粒子的质量为m,所带的电荷量为q.(1)轨道半径:由于洛伦兹力提供向心力,则有2vqvB mr=,得到轨道半径mvrqB=.(2)周期:由轨道半径与周期之间的关系2rTvπ=可得周期2mTqBπ=.说明:(1)由公式mvrqB=知,在匀强磁场中,做匀速圆周运动的带电粒子,其轨道半径跟运动速率成正比.(2)由公式2mTqBπ=知,在匀强磁场中,做匀速圆周运动的带电粒子,周期跟轨道半径和运动速率均无关,而与比荷qm成反比.注意:mvrqB=与2mTqBπ=是两个重要的表达式,每年的高考都会考查.但应用时应注意在计算说明题中,两公式不能直接当原理式使用.要点二:带电粒子在匀强磁场中做圆周运动的问题分析要点诠释:1.分析方法/Bq 或时间”的基本方法和规律,具体分析为: (1)圆心的确定带电粒子进入一个有界磁场后的轨道是一段圆弧,如何确定圆心是解决问题的前提,也是解题的关键.首先,应有一个最基本的思路:即圆心一定在与速度方向垂直的直线上.通常有两种确定方法:①已知入射方向和出射方向时,可以通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,图中P 为入射点,M 为出射点,O 为轨道圆心).②已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P 为入射点,M 为出射点,O 为轨道圆心).(2)运动半径的确定:作入射点、出射点对应的半径,并作出相应的辅助三角形,利用三角形的解析方法或其他几何方法,求解出半径的大小,并与半径公式mvr Bq=联立求解. (3)运动时间的确定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:360t T α=︒(或2t T απ=).可见粒子转过的圆心角越大,所用时间越长. 2.有界磁场(1)磁场边界的类型如图所示(2)与磁场边界的关系①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长. ③当速率v 变化时,圆周角越大的,运动的时间越长. (3)有界磁场中运动的对称性①从某一直线边界射入的粒子,从同一边界射出时,速度与边界的夹角相等; ②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出. 3.解题步骤带电粒子在匀强磁场中做匀速圆周运动的解题方法——三步法: (1)画轨迹:即确定圆心,几何方法求半径并画出轨迹.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角运动时间相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式.注意:道PM 对应的圆心角α,即αϕ=,如图所示.(2)圆弧轨道PM 所对圆心角α等于PM 弦与切线的夹角(弦切角)θ的2倍,即2αθ=,如图所示. 要点三:质谱仪要点诠释: (1)构造质谱仪由粒子注入器、加速电场、速度选择器、偏转电场和照相底片组成,如图所示.(2)工作原理 ①加速:212qU mv =, ②偏转:2v qvB m r=,由以上两式得:粒子在磁场中作匀速圆周运动的半径12mur B q=。
高考物理 重点难点例析 专题7 带电粒子在磁场中的运动
专题七重点难点1.洛伦兹力:(1)产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行.(2)洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力为零;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,等于q υB ;(3)洛伦兹力的方向:洛伦兹力方向用左手定则判断 (4)洛伦兹力不做功.2.带电粒子在洛伦兹力作用下的运动(1)若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子不受洛伦兹力作用,即F =0,则粒子在磁场中以速度υ做匀速直线运动.(2)若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子所受洛伦兹力F =Bq υ,方向总与速度υ垂直.由洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.求解此类问题的关键是分析并画出空间几何图形——轨迹图. 规律方法【例1】一个长螺线管中通有电流,把一个带电粒子沿中轴线射入(若不计重力影响),粒子将在管中 ( D )A .做圆周运动B .沿轴线来回运动C .做匀加速直线运动D .做匀速直线运动训练题如图所示,一个带负电的滑环套在水平且足够长的粗糙的绝缘杆上,整个装置处于方向如图所示的匀强磁场B 中.现给滑环施以一个水平向右的瞬时冲量,使其由静止开始运动,则滑环在杆上的运动情况可能是 ( ABC )A .始终作匀速运动B .开始作减速运动,最后静止于杆上C .先作加速运动,最后作匀速运动D .先作减速运动,最后作匀速运动【例2】如图所示,一束电子(电量为e )以速度υ垂直射入磁感应强度为B ,宽度为d 的匀强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是30°,则电子的质量是2dBe υ,穿透磁场的时间是 πd3υ.【解析】电子在磁场中运动,只受洛仑兹力作用,故其轨迹是圆弧的一部分,又因为B ⊥υ,故圆心在电子穿入和穿出磁场时受到洛仑兹力指向交点上,由几何知识知,AB 间圆心角θ=30°,OB 为半径.∴r =dsin30°= 2d,又由r =mυBe得m =2dBeυ又∵AB圆心角是穿透时间t = T12,故t =πd3υ.训练题如图(甲)所示,在x≥0区域内有如图(乙)所示的大小不变、方向随时间周期性变化的磁场,设磁场方向垂直于纸面向外时为正方向.现有一质量为m、带电量为+q的离子,在t=0时刻从坐标原点O以速度υ沿与x轴正方向成75°角射入,离子运动一段时间而到达P点,P点坐标为(a,a),此时离子的速度方向与OP延长线的夹角为30°,离子在此过程中只受磁场力作用.(1)若B0 =B1为已知量,试求离子在磁场中运动时的轨道半径R及周期的表达式.(2)若B0为未知量,那么所加最大磁场的变化周期T、磁感应强度B0的大小各应满足什么条件,才能使离子完成上述运动?(写出T、B0各应满足条件的表达式)答案:(1)T=2πm/qB1,R=mv/qB1(2)B0=mv/(2)1/2aq,T≥1(2)1/2πa/3v【例3】如图所示,在y>0的区域内存在匀强磁场,磁场垂直于图中的Oxy平面,方向指向纸外,原点O处有一离子源,沿各个方向射出速率相等的同价负离子,对于进入磁场区域的离子,它们在磁场中做圆弧运动的圆心所在的轨迹,可用图2-7-8给出的四个半圆中的一个来表示,其中正确的是( C )训练题一质点在一平面内运动,其轨迹如图所示,它从A点出发,以恒定速率v0经时间t 到B点,图中x轴上方的轨迹都是半径为R的半圆,下方的都是半径为r的半圆(1)求此质点由A到B沿x轴运动的平均速度;(2)如果此质点带正电,且以上运动是在一恒定(不随时间而变)的磁场中发生的,试尽可能详细地论述此磁场的分布情况,不考虑重力的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点之九:带电粒子在磁场中的运动 一、难点突破策略(一)明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2= ②轨道半径公式:qB mvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。
圆心的确定,通常有以下两种方法。
① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。
② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。
(2)半径的确定和计算:利用平面几何关系,求出该圆的可能半径或圆心角。
并注意以下两个重要的特点:图9-1 图9-2 图9-3① 粒子速度的偏向角ϕ等于回旋角α,并等于AB 弦与切线的夹角(弦切角θ)的2倍,如图9-3所示。
即:t 2ω=θαϕ==。
② 相对的弦切角θ相等,与相邻的弦切角θ/互补,即θ+θ/=180o 。
(3)运动时间的确定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示T 2t T 360t πα=α=或。
注意:带电粒子在匀强磁场中的圆周运动具有对称性。
① 带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等;② 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
应用对称性可以快速地确定运动的轨迹。
例1:如图9-4所示,在y 小于0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B ,一带正电的粒子以速度从O 点射入磁场,入射速度方向为xy 平面内,与x 轴正向的夹角为θ,若粒子射出磁场的位置与O 点的距离为L ,求该粒子电量与质量之比。
【审题】本题为一侧有边界的匀强磁场,粒子从一侧射入,一定从边界射出,只要根据对称规律①画出轨迹,并应用弦切角等于回旋角的一半,构建直角三角形即可求解。
【解析】根据带电粒子在有界磁场的对称性作出轨迹,如图9-5所示,找出圆心A ,向x 轴作垂线,垂足为H ,由与几何关系得: ①带电粒子在磁场中作圆周运动,由 解得 ② ①②联立解得【总结】在应用一些特殊规律解题时,一定要明确规律适用的条件,准确地画出轨迹是关键。
例2:电视机的显像管中,电子(质量为m ,带电量为e )束的偏转是用磁偏转技术实现的。
电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区,如图9-6所示,磁场方向垂直于圆面,磁场区的中心为O ,半径为r 。
当不加磁场时,电子束将通过O 点打到屏幕的中心M 点。
为了让电子束射到屏幕边缘P ,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B 应为多少?图9-4 图9-5【审题】本题给定的磁场区域为圆形,粒子入射方向已知,则由对称性,出射方向一定沿径向,而粒子出磁场后作匀速直线运动,相当于知道了出射方向,作入射方向和出射方向的垂线即可确定圆心,构建出与磁场区域半径r 和轨迹半径R 有关的直角三角形即可求解。
【解析】如图9-7所示,电子在匀强磁场中做圆周运动,圆周上的两点a 、b 分别为进入和射出的点。
做a 、b 点速度的垂线,交点O1即为轨迹圆的圆心。
设电子进入磁场时的速度为v ,对电子在电场中的运动过程有:2mv eU 2=对电子在磁场中的运动(设轨道半径为R )有:R v mevB 2= 由图可知,偏转角θ与r 、R 的关系为:R r2tan=θ联立以上三式解得:2tane mU 2r 1B θ=【总结】本题为基本的带电粒子在磁场中的运动,题目中已知入射方向,出射方向要由粒子射出磁场后做匀速直线运动打到P 点判断出,然后根据第一种确定圆心的方法即可求解。
2. “带电粒子在匀强磁场中的圆周运动”的范围型问题例3:如图9-8所示真空中宽为d 的区域内有强度为B 的匀强磁场方向如图,质量m 带电-q 的粒子以与CD 成θ角的速度V0垂直射入磁场中。
要使粒子必能从EF 射出,则初速度V0应满足什么条件?EF 上有粒子射出的区域?【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。
【解析】粒子从A 点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF 射出,则相应的临界轨迹必为过点A 并与EF 相切的轨迹如图9-10所示,作出A 、P 点速度的垂线相交于O/即为该临界轨迹的圆心。
临界半径R0由dCos θR R 00=+ 有:θ+=Cos 1dR 0;故粒子必能穿出EF 的实际运动轨迹半径R ≥R0即:θ+≥=Cos 1d qB mv R 0 有: )Cos 1(m qBdv 0θ+≥ 。
图9-6图9-7图9-8 图9-9 图9-10由图知粒子不可能从P 点下方向射出EF ,即只能从P 点上方某一区域射出;又由于粒子从点A 进入磁场后受洛仑兹力必使其向右下方偏转,故粒子不可能从AG 直线上方射出;由此可见EF 中有粒子射出的区域为PG ,且由图知:θ+θ+θ=θ+θ=cot d Cos 1dSin cot d Sin R PG 0。
【总结】带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩,运用“放缩法”探索出临界点的轨迹,使问题得解;对于范围型问题,求解时关键寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R 与R0的大小关系确定范围。
例4:如图9-11所示S 为电子射线源能在图示纸面上和360°范围内向各个方向发射速率相等的质量为m 、带电-e 的电子,MN 是一块足够大的竖直挡板且与S 的水平距离OS =L ,挡板左侧充满垂直纸面向里的匀强磁场; ①若电子的发射速率为V0,要使电子一定能经过点O ,则磁场的磁感应强度B 的条件? ②若磁场的磁感应强度为B ,要使S 发射出的电子能到达档板,则电子的发射速率多大?③若磁场的磁感应强度为B ,从S 发射出的电子的速度为m eBL2,则档板上出现电子的范围多大?【审题】电子从点S 发出后必受到洛仑兹力作用而在纸面上作匀速圆周运动,由于电子从点S 射出的方向不同将使其受洛仑兹力方向不同,导致电子的轨迹不同,分析知只有从点S 向与SO 成锐角且位于SO 上方发射出的电子才可能经过点O ;由于粒子从同一点向各个方向发射,粒子的轨迹构成绕S 点旋转的一动态圆,动态圆的每一个圆都是逆时针旋转,这样可以作出打到最高点与最低点的轨迹,如图9-12所示,最低点为动态圆与MN 相切时的交点,最高点为动态圆与MN 相割,且SP2为直径时P 为最高点。
【解析】①要使电子一定能经过点O ,即SO 为圆周的一条弦,则电子圆周运动的轨道半径必满足2LR ≥,由2L eB mv 0≥ 得:eL mv 2B 0≤②要使电子从S 发出后能到达档板,则电子至少能到达档板上的O 点,故仍有粒子圆周运动半径2LR ≥, 由2L eBmv 0≥有:m 2eBLv 0≥③当从S 发出的电子的速度为m eBL 2时,电子在磁场中的运动轨迹半径L 2qB mv R /==作出图示的二临界轨迹,故电子击中档板的范围在P1P2间;图9-11 图9-12对SP1弧由图知L3L)L2(OP221=-=对SP2弧由图知L15L)L4(OP222=-=【总结】本题利用了动态园法寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R 与R0的大小关系确定范围。
3. “带电粒子在匀强磁场中的圆周运动”的极值型问题寻找产生极值的条件:①直径是圆的最大弦;②同一圆中大弦对应大的圆心角;③由轨迹确定半径的极值。
例5:图9-13中半径r=10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切;磁场B=0.33T垂直于纸面向内,在O处有一放射源S可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子;已知α粒子质量为m=6.6×10-27kg,电量q=3.2×10-19c,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t各多少?【审题】本题α粒子速率一定,所以在磁场中圆周运动半径一定,由于α粒子从点O进入磁场的方向不同故其相应的轨迹与出场位置均不同,则粒子通过磁场的速度偏向角θ不同,要使α粒子在运动中通过磁场区域的偏转角θ最大,则必使粒子在磁场中运动经过的弦长最大,因而圆形磁场区域的直径即为粒子在磁场中运动所经过的最大弦,依此作出α粒子的运动轨迹进行求解。
【解析】α粒子在匀强磁场后作匀速圆周运动的运动半径:r2m2.0qBmvR===α粒子从点O入磁场而从点P出磁场的轨迹如图圆O/所对应的圆弧所示,该弧所对的圆心角即为最大偏转角θ。
由上面计算知△SO/P必为等边三角形,故θ=60°此过程中粒子在磁场中运动的时间由即为粒子在磁场中运动的最长时间。