人教版高中数学必修4试题 1.4.2.2正、余弦函数的单调性与最值

合集下载

1.4.2第2课时 正、余弦函数的单调性与最值 课件

1.4.2第2课时 正、余弦函数的单调性与最值 课件
栏目 导引
第一章 三角函数
(4)确定含有正弦函数或余弦函数的较复杂函数的单调性时, 要注意使用复杂函数的判断方法来判断. 2.解析正弦函数、余弦函数的最值 (1)明确正弦、余弦函数的有界性,即|sin x|≤1,|cos x|≤1. (2)对有些函数,其最值不一定就是1或-1,要依赖函数的定 义域来决定. (3)形如y=Asin(ωx+φ)(A>0,ω>0)的函数求最值时,通常利 用“整体代换”,即令ωx+φ=z,将函数转化为y=Asin z的 形式求最值.
第一章 三角函数
栏目 导引
第一章 三角函数
单调减区间为[34π+2kπ,74π+2kπ](k∈Z). 所以原函数 y=2sin(π4-x)的单调增区间为[34π+2kπ,74π+ 2kπ](k∈Z); 单调减区间为[-π4+2kπ,34π+2kπ](k∈Z).
栏目 导引
第一章 三角函数
【名师点评】 正弦、余弦函数单调区间的求解技巧: (1)结合正弦、余弦函数的图象,熟记它们的单调区间. (2)确定函数y=Asin(ωx+φ)(A>0,ω>0)单调区间的方法:采 用“换元”法整体代换,将ωx+φ看作一个整体,可令“z= ωx+φ”,即通过求y=Asin z的单调区间而求出函数的单调 区间.若ω<0,则可利用诱导公式将x的系数转变为正数.
栏目 导引
第一章 三角函数
跟踪训练
1.求函数 y=sin(π3-12x),x∈[-2π,2π]的单调递增区间. 解:y=sin(π3-12x)=-sin(12x-π3). 由 y=sin x 与 y=-sin x 的图象关于 x 轴对称可知,y=sin x 的递增 区间就是 y=-sin x 的递减区间.因此,要求 y=-sin(12x-π3)的递 增区间,只要求出 y=sin(12x-π3)的递减区间即可.

正、余弦函数的单调性与最值

正、余弦函数的单调性与最值

比较三角函数值的大小 比较下列各组数的大小. (1)cos-253π与 cos-147π; (2)sin2 012°和 cos157°.
【思路探索】 利用诱导公式将异名三角函数转化为 同名三角函数,非同一单调区间的角,转化到同一单调区 间上,再利用函数的单调性比较.
【解】 (1)解法一: ∵cos-253π=cos-6π+75π=cos75π, cos-147π=cos-6π+74π=cos74π, ∵π<75π<74π<2π, 又 y=cosx 在[π,2π]上单调递增, ∴cos75π<cos74π,
求函数y=Asin(ωx+φ)(A>0,ω≠0)或y=Acos(ωx+ φ)(A>0,ω≠0)的单调区间,一般将ωx+φ视作整体,代入y =sinx或y=cosx相关的单调区间所对应的不等式,解之即 得.这里实际上采用的是整体的思想,这是研究三角函数 性质的重要数学思想,一般地,ω<0时,y=Asin(ωx+ φ)(Aω≠0)变形为y=-Asin(-ωx-φ),y=Acos(ωx+ φ)(Aω≠0)变形为y=Acos(-ωx-φ),再求函数的单调区 间.所有的这些变形都是为了使x前面的系数为正值.同 时要注意A<0时单调区间的变化.
单调减区间为2kπ+π6,2kπ+76π. (2)函数 y=2sinπ3-2x=-2sin2x-3π,令 2kπ-2π≤2x -π3≤2kπ+2π(k∈Z),得 kπ-1π2≤x≤kπ+152π(k∈Z),∴函数 y=2sin3π-2x的单调减区间为kπ-1π2,kπ+152(k∈Z).令π2 +2kπ≤2x-3π≤32π+2kπ,k∈Z,解得152π+kπ≤x≤1112π+kπ, k∈Z,即原函数的单调递增区间为152π+kπ,1112π+kπ(k∈Z).

正余弦函数的单调性和最值练习

正余弦函数的单调性和最值练习

∴sin-π 12<sin -π 18, ∴g-π 12<g-π 18, ∴f-π 18>f-π 12.
抓基础·新知探究
通技法·互动讲练
提知能·高效测评
数学 必修4
第一章 三角函数
抓基础·新知探究
通技法·互动讲练
提知能·高效测评
[规律方法] 求三角函数值域或最值的常用方法
(1)可化为单一函数 y=Asin(ωx+φ)+k 或 y=Acos(ωx+φ)+k 的最大值为|A| +k,最小值为-|A|+k(其中 A,ω,k 为常数,A≠0,ω≠0).
(2)可化为 y=Asin2x+Bsin x+C 或 y=Acos2x+Bcos x+C(A≠0)的最大、最小 值,利用二次函数在区间[-1,1]上的最大、最小值的求法来求.(换元法)
数学 必修4
第一章 三角函数
抓基础·新知探究
通技法·互动讲练
提知能·高效测评
◎ 变式训练 3.若函数 y=a-bcos x(b>0)的最大值为32,最小值为-12,求函数 y=-4acos bx 的最值和最小正周期.
第一章 三角函数
抓基础·新知探究
通技法·互动讲练
提知能·高效测评
解析: (1)∵函数 f(x)=sin x-1 与 g(x)=sin x 的单调区间相同, ∴f(x)=sin x-1 的增区间为 2kπ-π2 ,2kπ+π2 (k∈Z). 减区间为2kπ+π2 ,2kπ+32π(k∈Z).
数学 必修4
提知能·高效测评
数学 必修4
第一章 三角函数
抓基础·新知探究
通技法·互动讲练
提知能·高效测评
[思想方法] 三角函数相关的恒成立问题 ◎若cos2θ+2msin θ-2m-2<0恒成立,求实数m的取值范围. 【分析】 本题主要考查三角函数的性质与一元二次不等式的知识,可将原 不等式化为sin2θ-2msin θ+2m+1>0,令sin θ=t,由于-1≤sin θ≤1,故-1≤t≤1 ,只要求出使函数f(t)=t2-2mt+2m+1(-1≤t≤1)的最小值大于0的m的取值范围 即可.

高中数学必修4三角函数常考题型:正弦函数、余弦函数的性质(二)

高中数学必修4三角函数常考题型:正弦函数、余弦函数的性质(二)

【知识梳理】正弦函数、余弦函数的性质 函数y =sin x y =cos x 定义域 R 值域[-1,1] 图像单调性 在⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z 上递增; 在⎣⎡⎦⎤π2+2k π,3π2+2k π,k ∈Z 上递减 在[-π+2k π,2k π],k ∈Z 上递增; 在[2k π,π+2k π],k ∈Z 上递减 最值 当x =-π2+2k π,k ∈Z 时,y min =-1; 当x =π2+2k π,k ∈Z 时,y max =1 当x =(2k +1)π,k ∈Z 时,y min=-1; 当x =2k π,k ∈Z 时,y max =1 对称轴 x =π2+k π,k ∈Z x =k π,k ∈Z 对称中心(k π,0),k ∈Z ⎝⎛⎭⎫π2+k π,0,k ∈Z 题型一、正、余弦函数的单调性【例1】 求函数y =2sin ⎝⎛⎭⎫x -π3的单调区间. [解]令z =x -π3,则y =2sin z . ∵z =x -π3是增函数, ∴y =2sin z 单调递增(减)时,函数y =2sin ⎝⎛⎭⎫x -π3也单调递增(减). 由z ∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ), 得x -π3∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ), 即x ∈⎣⎡⎦⎤2k π-π6,2k π+5π6(k ∈Z ), 故函数y =2sin ⎝⎛⎭⎫x -π3的单调递增区间为 ⎣⎡⎦⎤2k π-π6,2k π+5π6(k ∈Z ).同理可求函数y =2sin ⎝⎛⎭⎫x -π3的单调递减区间为 ⎣⎡⎦⎤2k π+5π6,2k π+116π(k ∈Z ). 【类题通法】与正弦、余弦函数有关的单调区间的求解技巧(1)结合正弦、余弦函数的图像,熟记它们的单调区间.(2)确定函数y =A sin(ωx +φ)(A >0,ω>0)单调区间的方法:采用“换元”法整体代换,将ωx +φ看作一个整体,可令“z =ωx +φ”,即通过求y =A sin z 的单调区间而求出函数的单调区间.若ω<0,则可利用诱导公式将x 的系数转变为正数.【对点训练】求函数y =3sin ⎝⎛⎭⎫π3-2x 的单调递减区间.解:∵y =3sin ⎝⎛⎭⎫π3-2x =-3sin ⎝⎛⎭⎫2x -π3, ∴y =3sin ⎝⎛⎭⎫2x -π3是增函数时, y =3sin ⎝⎛⎭⎫π3-2x 是减函数. ∵函数y =sin x 在⎣⎡⎦⎤-π2+2k π,π2+2k π(k ∈Z )上是增函数, ∴-π2+2k π≤2x -π3≤π2+2k π, 即-π12+k π≤x ≤5π12+k π(k ∈Z ). ∴函数y =3sin ⎝⎛⎭⎫π3-2x 的单调递减区间为⎣⎡⎦⎤-π12+k π,5π12+k π(k ∈Z ). 题型二、三角函数值的大小比较【例2】 比较下列各组数的大小:(1)sin 250°与sin 260°;(2)cos 15π8与cos 14π9. [解](1)∵函数y =sin x 在[90°,270°]上单调递减,且90°<250°<260°<270°,∴sin 250°>sin 260°.(2)cos 15π8=cos ⎝⎛⎭⎫2π-π8=cos π8, cos 14π9=cos ⎝⎛⎭⎫2π-4π9=cos 4π9. ∵函数y =cos x 在[0,π]上单调递减,且0<π8<4π9<π, ∴cos π8>cos 4π9,∴cos 15π8>cos 14π9. 【类题通法】比较三角函数值大小的方法(1)比较两个同名三角函数值的大小,先利用诱导公式把两个角化为同一单调区间内的角,再利用函数的单调性比较.(2)比较两个不同名的三角函数值的大小,一般应先化为同名的三角函数,后面步骤同上.【对点训练】比较下列各组数的大小.(1)cos ⎝⎛⎭⎫-π8与cos 13π7; (2)sin 194°与cos 160°.解:(1)cos ⎝⎛⎭⎫-π8=cos π8, cos 13π7=cos ⎝⎛⎭⎫π+6π7=-cos 6π7=cos π7. ∵0<π8<π7<π,且y =cos x 在(0,π)上单调递减, ∴cos π8>cos π7,即cos ⎝⎛⎭⎫-π8>cos 13π7. (2)sin 194°=sin (180°+14°)=-sin 14°,cos 160°=cos(180°-20°)=-cos 20°=-sin 70°.∵0°<14°<70°<90°且y =sin x 在⎝⎛⎭⎫0,π2上单调递增, ∴sin 70°>sin 14°,即-sin 14°>-sin 70°.故sin 194°>cos 160°.题型三、正、余弦函数的最值问题【例3】 求下列函数的值域:(1)y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2; (2)y =cos 2x -4cos x +5.[解](1)由y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2可得 x +π6∈⎣⎡⎦⎤π6,2π3,函数y =cos x 在区间⎣⎡⎦⎤π6,2π3上单调递减,所以函数的值域为⎣⎡⎦⎤-12,32. (2)令t =cos x ,则-1≤t ≤1.∴y =t 2-4t +5=(t -2)2+1,∴t =-1时,y 取得最大值10,t =1时,y 取得最小值2.所以y =cos 2x -4cos x +5的值域为[2,10].【类题通法】求三角函数值域的常用方法(1)求解形如y =a sin x +b (或y =a cos x +b )的函数的最值或值域问题时,利用正、余弦函数的有界性(-1≤sin x ,cos x ≤1)求解.求三角函数取最值时相应自变量x 的集合时,要注意考虑三角函数的周期性.(2)求解形如y =a sin 2x +b sin x +c (或y =a cos 2x +b cos x +c ),x ∈D 的函数的值域或最值时,通过换元,令t =sin x (或cos x ),将原函数转化为关于t 的二次函数,利用配方法求值域或最值即可.求解过程中要注意t =sin x (或cos x )的有界性.【对点训练】求函数f (x )=2sin 2x +2sin x -12,x ∈⎣⎡⎦⎤π6,5π6的值域. 解:令t =sin x ,y =f (x ),∵x ∈⎣⎡⎦⎤π6,5π6,∴12≤sin x ≤1,即12≤t ≤1. ∴y =2t 2+2t -12=2⎝⎛⎭⎫t +122-1,∴1≤y ≤72, ∴函数f (x )的值域为⎣⎡⎦⎤1,72. 【练习反馈】1.函数y =2-sin x 的最大值及取最大值时x 的值为( ) A .y max =3,x =π2B .y max =1,x =π2+2k π(k ∈Z ) C .y max =3,x =-π2+2k π(k ∈Z ) D .y max =3,x =π2+2k π(k ∈Z )解析:选C ∵y =2-sin x ,∴当sin x =-1时,y max =3,此时x =-π2+2k π(k ∈Z ). 2.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin ⎝⎛⎭⎫2x +π2B .y =cos ⎝⎛⎭⎫2x +π2 C .y =sin ⎝⎛⎭⎫x +π2D .y =cos ⎝⎛⎭⎫x +π2 解析:选A 因为函数的周期为π,所以排除C 、D.又因为y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 在⎣⎡⎦⎤π4,π2上为增函数,故B 不符.只有函数y =sin ⎝⎛⎭⎫2x +π2的周期为π,且在⎣⎡⎦⎤π4,π2上为减函数. 3.sin 3π5,sin 4π5,sin 9π10,从大到小的顺序为________. 解析:∵π2<3π5<4π5<9π10<π, 又函数y =sin x 在⎣⎡⎦⎤π2,π上单调递减,∴sin 3π5>sin 4π5>sin 9π10. 答案:sin 3π5>sin 4π5>sin 9π104.若y =a sin x +b 的最大值为3,最小值为1,则ab =________.解析:当a >0时,⎩⎪⎨⎪⎧ a +b =3,-a +b =1,得⎩⎪⎨⎪⎧ a =1,b =2.当a <0时,⎩⎪⎨⎪⎧ a +b =1,-a +b =3,得⎩⎪⎨⎪⎧a =-1,b =2.答案:±25.求函数y =13sin ⎝⎛⎭⎫π6-x ,x ∈[0,π]的单调递增区间. 解:由y =-13sin ⎝⎛⎭⎫x -π6的单调性, 得π2+2k π≤x -π6≤3π2+2k π,k ∈Z , 即2π3+2k π≤x ≤5π3+2k π,k ∈Z . 又x ∈[0,π],故2π3≤x ≤π. 即单调递增区间为⎣⎡⎦⎤2π3,π.。

人教版必修四1.4正弦函数余弦函数性质

人教版必修四1.4正弦函数余弦函数性质
12 2
(2) y sin z 的对称中心为 (k ,0) , k Z
z k
2x k
3
x k
62
对称中心为 ( k ,0) ,k Z
62
练习5
▪ 为函数 y sin(2x ) 的一条对称轴的是( )
3
A.x 4
3
B.x
2
C.x
12
D.x 0
1
3 5
2
2 3
练习3.求下列函数取最值时自变量x的集合,并求出最值。
(1)y cos x 1, x R; (2)y 3sin 2x, x R.
解: 这两个函数都有最大值、最小值.
(1)使函数 y cos x 1, x R取得最大值的x的集合,就是 使函数y cos x, x R 取得最大值的x的集合
2
1
2
3 2
2
5 3 x
2
上时,
曲线逐渐上升,cosα的值由 增大到 。
当 在区间
上时,
曲线逐渐降落,cosα的值由 减小到 。
探究:余弦函数的单调性
1
3 5
2
2 3
2
O
2
1
2
3 2
2余弦函数的周期性知: 在每个闭区间
都是增函数,
其值从-1增大到1 ;
而在每个闭区间
上都是减函数,
(
3 2
,1)
与x轴的交点: (0,0) ( ,0) (2 ,0)
余弦函数 y 图像特征: 1 -
y cos x x [0, 2 ]
-
-1
o
6
2
3
2 3
5
7
6
6
4 3

1.4.2正弦函数、余弦函数的性质课件-高一上学期数学人教A版必修4

1.4.2正弦函数、余弦函数的性质课件-高一上学期数学人教A版必修4

此时x=2kπ-

,k∈Z.
[0,2]
4.若cos x=m-1有意义,则m的取值范围是________.
因为-1≤cos x≤1
要使cos x=m-1有意义,须有-1≤m-1≤1,
所以0≤m≤2.
新知探究
[-1,1]
[-1,1]
思考:y=sin x和y=cos x在区间(m,
n)(其中0<m<n<2π)上都是减函数,
你能确定m的最小值、n的最大值吗?
提示:由正弦函数和余弦函数的单调


性可知m= ,n=π.
题型突破
典例深度剖析
重点多维探究
题型一
[例1]
正弦函数、余弦函数的单调性
(1)函数y=cos x在区间[-π,a]上为增函数,则
a的取值范围是________.
思路点拨
确定a的范围 → y=cos x在区间[-π,a]上为增函数 → y=
5
4
23

5
<cos
=cos
π
.
4
x在[0,π]上是减函数,

17

4
π
)
4
.
三角函数值大小比较的策略




1利用诱导公式,对于正弦函数来说,一般将两个角转
化到

− ,
2 2

3
,
2 2
内;对于余弦函数来说,一般将两个
角转化到[-π,0]或[0,π]内.
2不同名的函数化为同名的函数.
所以函数y=cos2x+2sin x-2,x∈R的值域为[-4,0].
[例3]
(2)已知函数f(x)=asin

人教版高中数学A版必修4习题 1.4.2.2正弦函数、余弦函数的单调性

人教版高中数学A版必修4习题 1.4.2.2正弦函数、余弦函数的单调性

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.函数f (x )=-2sin x +1,x ∈⎣⎡⎦⎤-π2,π的值域是( ) A .[1,3]B .[-1,3]C .[-3,1]D .[-1,1]解析: ∵x ∈⎣⎡⎦⎤-π2,π,∴sin x ∈[-1,1], ∴-2sin x +1∈[-1,3].答案: B2.函数y =|sin x |的一个单调递增区间是( )A .⎝⎛⎭⎫-π4,π4 B .⎝⎛⎭⎫π4,3π4 C .⎝⎛⎭⎫π,3π2 D .⎝⎛⎭⎫3π2,2π 解析: 由y =|sin x |的图象,易得函数y =|sin x |的单调递增区间为⎝⎛⎭⎫k π,k π+π2,k ∈Z ,当k =1时,得⎝⎛⎭⎫π,3π2为函数y =|sin x |的一个单调递增区间. 答案: C3.下列函数中,既为偶函数又在(0,π)上单调递增的是( )A .y =cos |x |B .y =cos |-x |C .y =sin ⎝⎛⎭⎫x -π2D .y =-sin x 2解析: y =cos |x |在⎝⎛⎭⎫0,π2上是减函数,排除A ;y =cos |-x |=cos |x |,排除B ;y =sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x 是偶函数,且在(0,π)上单调递增,符合题意;y =-sin x 2在(0,π)上是单调递减的.答案: C4.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .22D .0解析: 确定出2x -π4的范围,根据正弦函数的单调性求出最小值. ∵x ∈⎣⎡⎦⎤0,π2,∴-π4≤2x -π4≤3π4,∴当2x -π4=-π4时,f (x )=sin ⎝⎛⎭⎫2x -π4有最小值-22. 答案: B二、填空题(每小题5分,共15分)5.已知函数y =3cos (π-x ),则当x =________时,函数取得最大值.解析: y =3cos (π-x )=-3cos x ,当cos x =-1,即x =2k π+π,k ∈Z 时,y 有最大值3. 答案: 2k π+π,k ∈Z6.y =sin x ,x ∈⎣⎡⎦⎤π6,2π3,则y 的范围是________. 解析: 由正弦函数图象,对于x ∈⎣⎡⎦⎤π6,2π3,当x =π2时,y max =1,当x =π6时,y min =12,从而y ∈⎣⎡⎦⎤12,1.答案: ⎣⎡⎦⎤12,17.函数y =sin (x +π)在⎣⎡⎦⎤-π2,π上的单调递增区间为________. 解析: 因为sin (x +π)=-sin x ,所以要求y =sin (x +π)在⎣⎡⎦⎤-π2,π上的单调递增区间,即求y =sin x 在⎣⎡⎦⎤-π2,π上的单调递减区间,易知为⎣⎡⎦⎤π2,π. 答案: ⎣⎡⎦⎤π2,π 三、解答题(每小题10分,共20分)8.比较下列各组数的大小:(1)sin 1017π与sin 1117π; (2)cos 5π3与cos 14π9. 解析: (1)∵函数y =sin x 在⎣⎡⎦⎤π2,π上单调递减,且π2<1017π<1117π<π,∴sin 1017π>sin 1117π. (2)cos 5π3=cos (2π-π3)=cos π3,cos 14π9=cos (2π-4π9)=cos 4π9. ∵函数y =cos x 在[0,π]上单调递减,且0<π3<4π9<π,∴cos π3>cos 4π9,∴cos 5π3>cos 14π9. 9.求下列函数的最大值和最小值:(1)y = 1-12sin x ;(2)y =3+2cos ⎝⎛⎭⎫2x +π3. 解析: (1)∵⎩⎪⎨⎪⎧1-12sin x ≥0,-1≤sin x ≤1,∴-1≤sin x ≤1.∴当sin x =-1时,y max =62; 当sin x =1时,y min =22. (2)∵-1≤cos ⎝⎛⎭⎫2x +π3≤1, ∴当cos ⎝⎛⎭⎫2x +π3=1时,y max =5; 当cos ⎝⎛⎭⎫2x +π3=-1时,y min =1. 能力测评10.函数y =2sin ⎝⎛⎭⎫ωx +π4(ω>0)的周期为π,则其单调递增区间为( ) A .⎣⎡⎦⎤k π-3π4,k π+π4(k ∈Z ) B .⎣⎡⎦⎤2k π-3π4,2k π+π4(k ∈Z ) C .⎣⎡⎦⎤k π-3π8,k π+π8(k ∈Z ) D .⎣⎡⎦⎤2k π-3π8,2k π+π8(k ∈Z ) 解析: 周期T =π,∴2πω=π,∴ω=2,∴y =2sin ⎝⎛⎭⎫2x +π4.由-π2+2k π≤2x +π4≤2k π+π2,k ∈Z ,得k π-38π≤x ≤k π+π8,k ∈Z . 答案: C11.函数y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2的值域为________. 解析: 由y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2可得x +π6∈⎣⎡⎦⎤π6,2π3, 函数y =cos x 在区间⎣⎡⎦⎤π6,2π3上单调递减,所以函数的值域为⎣⎡⎦⎤-12,32.答案: ⎣⎡⎦⎤-12,32 12.求函数y =3-4sin x -4cos 2x 的值域.解析: y =3-4sin x -4cos 2x=3-4sin x -4(1-sin 2x )=4sin 2x -4sin x -1,令t =sin x ,则-1≤t ≤1.∴y =4t 2-4t -1=4⎝⎛⎭⎫t -122-2(-1≤t ≤1). ∴当t =12时,y min =-2, 当t =-1时,y max =7.即函数y =3-4sin x -4cos 2x 的值域为[-2,7].13.(1)求函数y =cos ⎝⎛⎭⎫π3-2x 的单调递增区间; (2)求函数y =3sin ⎝⎛⎭⎫π3-x 2的单调递增区间. 解析: (1)因为y =cos ⎝⎛⎭⎫π3-2x =cos ⎣⎡⎦⎤-⎝⎛⎭⎫2x -π3 =cos ⎝⎛⎭⎫2x -π3, 所以要求函数y =cos ⎝⎛⎭⎫π3-2x 的单调递增区间,只要求函数y =cos ⎝⎛⎭⎫2x -π3的单调递增区间即可.由于y =cos x 的单调递增区间为2k π-π≤x ≤2k π(k ∈Z ),则2k π-π≤2x -π3≤2k π(k ∈Z ),解得k π-π3≤x ≤k π+π6(k ∈Z ). 故函数y =cos ⎝⎛⎭⎫π3-2x 的单调递增区间为⎣⎡k π-π3,k π+ ⎦⎤π6(k ∈Z ). (2)设u =π3-x 2,则y =3sin u . 当π2+2k π≤u ≤3π2+2k π,k ∈Z 时, y =3sin u 随u 增大而减小.又因为u =π3-x 2随x 增大而减小,所以当π2+2k π≤π3-x 2≤3π2+2k π,k ∈Z , 即-7π3-4k π≤x ≤-π3-4k π,k ∈Z , 即-7π3+4k π≤x ≤-π3+4k π,k ∈Z 时, y =3sin ⎝⎛⎭⎫π3-x 2随x 增大而增大. 所以函数y =3sin ⎝⎛⎭⎫π3-x 2的单调递增区间为 ⎣⎡⎦⎤-7π3+4k π,-π3+4k π(k ∈Z ).。

1.4.2正弦函数、余弦函数的最值

1.4.2正弦函数、余弦函数的最值
(2)y 3sin 2x, x R.
解(:2)令t=2x,因为使函数y 3sin t,t R取最大值的t的集合是
{t | t 2k , k Z}

2x
t
2
2k

x k
2
4
所以使函数 y 3sin 2x, x R取最大值的x的集合是 {x | x k , k Z} 4
2
O
2
1
2
3 2
2
5 3
2
x
分析:令 z 2x
2 则 y 3cosz
化未知为已知
• P46 A2最值问题 使原函数取得最大值的集合是
(4)
y
1 2
sin
1 2
x
3
解:令z 1 x
23
x
|
x
3
4k
,k
Z
要使y 1 sin z有最小值, 2
要使y 1 sin z有最大值, 2
2
零点: x k (k Z )
探究:余弦函数的最大值和最小值 y
1
3 5
2
2 3
2
O
2
1
2
3 2
2
5 3
2
x
最大值:当 x 0 2k 时,有最大值 y 1 最小值:当 x 2k 时,有最小值 y 1
零点:x k (k Z )
2
例1.下列函数有最大、最小值吗?如果有,请写出取最大、最 小值时的自变量x的集合,并说出最大、最小值分别是什么.
同理,使函数y 3sin 2x, x R 取最小值的x的集合是 {x | x k , k Z} 4
函数 y 3sin 2x, x R取最大值是3,最小值是-3。

正、余弦函数的单调性与最值例题

正、余弦函数的单调性与最值例题

正、余弦函数的单调性与最值(例题)考点一 单调性1.求函数1sin 23y x π⎛⎫=+ ⎪⎝⎭,[2,2]x ππ∈−的单调递增区间为 .2.设 sin(cos1)a =,cos(cos1)b =,cos1c =,cos(sin1)d =,则下列不等式正确的是 A .b c d a >>>B .b d c a >>>C .a c d b >>>D .a d c b >>>考点二 最值和值域3.下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时自变量x 的集合,并求出最大值、最小值.(1)cos 1y x =+,x ∈R ;(2)3sin 2y x =−,x ∈R .4.已知函数()π26f x x ⎛⎫=− ⎪⎝⎭. (1)求函数()f x 的单调区间;(2)求函数()f x 在区间ππ,42⎡⎤−⎢⎥⎣⎦上的最小值和最大值,并求此时x 的值.考点三 复合函数的单调性与最值5.求使下列函数取得最大值和最小值时的x 的值,并求出函数的最大值和最小值.(1)25sin 4y x x =−++; (2)2cos sin y x x =−,,44x ππ⎡⎤∈−⎢⎥⎣⎦.6.函数()f x =________.7. 函数y =2+cos x 2-cos x的最大值为________.8.函数y =log 12(cos x +√32)的单调递增区间为__________,函数()212log cos 2cos 1y x x =++的值域为_______.考点四 单调性综合9.已知0ω>,函数()sin 3f x x πω⎛⎫=− ⎪⎝⎭在,32ππ⎛⎫ ⎪⎝⎭内单调递减,则ω的取值范围是( ) A .110,3⎛⎤ ⎥⎝⎦ B .511,23⎡⎤⎢⎥⎣⎦ C .10,2⎛⎤ ⎥⎝⎦ D .13,24⎡⎤⎢⎥⎣⎦10.已知0<ω<3,函数()sin 3f x x πω⎛⎫=− ⎪⎝⎭在,32ππ⎛⎫ ⎪⎝⎭内不单调,则ω的取值范围为__________.11.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]62ππ上具有单调性,且2()()()236f f f πππ==−,则()f x 的最小正周期为_________.12.已知函数()sin 1()4f x x a a π⎛⎫=++−∈ ⎪⎝⎭R ,0,2x π⎡⎤∈⎢⎥⎣⎦,定义在非零实数集上的奇函数()g x 在(0,)+∞上是增函数,且(2)0=g .若(())0g f x <恒成立,求实数a 的取值范围.。

高中人教A版数学必修4:第12课时 正弦函数、余弦函数的性质(2)——单调性、最值 Word版含解析

高中人教A版数学必修4:第12课时 正弦函数、余弦函数的性质(2)——单调性、最值 Word版含解析

正弦函数、余弦函数的性质(2)——单调性、最值一、选择题1.已知函数f (x )=sin(x -π2)(x ∈R )下面结论错误的是( ) A .函数f (x )的最小正周期为2π B .函数f (x )在区间[0π2]上是增函数 C .函数f (x )的图象关于直线x =0对称D .函数f (x )是奇函数答案:D解析:f (x )=sin ⎝⎛⎭⎫x -π2=-cos x 所以f (x )是偶函数故D 错. 2.函数y =cos ⎝⎛⎭⎫x +π6x ∈⎣⎡⎦⎤0,π2的值域是( ) A ⎝⎛⎦⎤-32,12 B ⎣⎡⎦⎤-12,32 C ⎣⎡⎦⎤32,1 D ⎣⎡⎦⎤12,1 答案:B解析:由x ∈⎣⎡⎦⎤0,π2得x +π6∈⎣⎡⎦⎤π6,2π3 故y max =cos π6=32y min =cos 2π3=-12所以所求值域为⎣⎡⎦⎤-12,32 3.函数y =|sin x |的一个单调递增区间是( )A ⎝⎛⎭⎫-π4,π4B ⎝⎛⎭⎫π4,3π4 C ⎝⎛⎭⎫π,3π2 D ⎝⎛⎭⎫3π2,2π 答案:C解析:画出y =|sin x |的图象如图.由图象可知函数y =|sin x |的一个递增区间是⎝⎛⎭⎫π,3π2 4.下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°答案:C解析:∵sin168°=sin(180°-12°)=sin12°cos10°=sin(90°-10°)=sin80°由函数y =sin x 的单调性得sin11°<sin12°<sin80°即sin11°<sin168°<cos10°二、填空题7.函数y =sin(x +π)在⎣⎡⎦⎤-π2,π上的单调递增区间为________. 答案:⎣⎡⎦⎤π2,π解析:因为sin(x +π)=-sin x 所以要求y =sin(x +π)在⎣⎡⎦⎤-π2,π上的单调递增区间即求y=sin x 在⎣⎡⎦⎤-π2,π上的单调递减区间易知为⎣⎡⎦⎤π2,π 8.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称那么|φ|的最小值为________.答案:π6解析:令2×43π+φ=k π+π2k ∈Z 则φ=k π-136πk ∈Z 当k =2时|φ|min =π69.函数y =2+cos x 2-cos x的最大值为________. 答案:3解析:由y =2+cos x 2-cos x 得y (2-cos x )=2+cos x 即cos x =2y -2y +1(y ≠-1)因为-1≤cos x ≤1所以-1≤2y -2y +1≤1解得13≤y ≤3所以函数y =2+cos x 2-cos x的最大值为3 三、解答题10.求下列函数的单调递增区间.(1)y =1-sin x 2; (2)y =log 12(cos2x ).解:(1)由题意可知函数y =sin x 2的单调递减区间即为原函数的单调递增区间 由2k π+π2≤x 2≤2k π+32π(k ∈Z ) 得4k π+π≤x ≤4k π+3π(k ∈Z ).∴函数y =1-sin x 2的单调递增区间为[4k π+π4k π+3π](k ∈Z ). (2)由题意得cos2x >0∴2k π-π2<2x <2k π+π2k ∈Z 即k π-π4<x <k π+π4k ∈Z ∵函数y =log 12x 在定义域内单调递减 ∴函数y =cos2x (x ∈(k π-π4k π+π4)k ∈Z )的单调递减区间即为原函数的单调递增区间 ∴x 只需满足2k π<2x <2k π+π2k ∈Z ∴k π<x <k π+π4k ∈Z ∴函数y =log 12(cos2x )的单调递增区间为(k πk π+π4)k ∈Z 11.设a >00≤x <2π若函数y =cos 2x -a sin x +b 的最大值为0最小值为-4试求a 与b 的值并求该函数取得最大值和最小值时x 的值.解:y =cos 2x -a sin x +b =-(sin x +a 2)2+a 24+b +1 由-1≤sin x ≤1a >0知①若0<a 2≤1即0<a ≤2 当sin x =-a 2时y max =a 24+b +1=0当sin x =1时y min =-(1+a 2)2+a 24+b +1=-4 解得a =2b =-2②若a 2>1即a >2 当sin x =-1时y max =-(-1+a 2)2+a 24+b +1=0 当sin x =1时y min =-(1+a 2)2+a 24+b +1=-4 解得a =2b =-2不合题意舍去.综上a =2b =-2当x =3π2时y max =0;当x =π2时y min =-4能力提升12.定义运算a *b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .例如:1] 答案:⎣⎡⎦⎤-1,22 解析:在同一直角坐标系中作出y =sin x 和y =cos x 的图象结合a *b 的新定义可知.f (x )的最小值为-1最大值为22故其值域为⎣⎡⎦⎤-1,22 13.已知ω是正数函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上是增函数求ω的取值范围. 解:由2k π-π2≤ωx ≤2k π+π2(k ∈Z )得 -π2ω+2k πω≤x ≤π2ω+2k πω(k ∈Z ). ∴f (x )的单调递增区间是⎣⎡⎦⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z ). 据题意⎣⎡⎦⎤-π3,π4⊆⎣⎡⎦⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z ). 从而有⎩⎪⎨⎪⎧-π2ω≤-π3π2ω≥π4ω>0解得0<ω≤32 故ω的取值范围是⎝⎛⎦⎤0,32。

高中数学复习:正余弦函数的周期性奇偶性单调性和最值练习及答案

高中数学复习:正余弦函数的周期性奇偶性单调性和最值练习及答案

高中数学复习:正余弦函数的周期性奇偶性单调性和最值练习1.如果函数y =sin (πx +θ)(0<θ<2π)的最小正周期是T ,且当x =2时取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π22.下列是定义在R 上的四个函数图象的一部分,其中不是周期函数的是( ) A . B .C .D .3.定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈[−π2,0)时,f (x )=sin x ,则f (−5π3)的值为( ) A .-12 B .12 C .-√32 D .√324.设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2013)=________.5.下列函数中,最小正周期为π的奇函数是( )A .y =sin (2x +π2)B .y =cos (2x +π2)C .y =sin2x +cos2xD .y =sin x +cos x6.下列命题中正确的是( )A .y =-sin x 为奇函数B .y =|sin x |既不是奇函数也不是偶函数C .y =3sin x +1为偶函数D .y =sin x -1为奇函数7.设f (x )=12sin (2x +φ)(φ是常数).(1)求证:当φ=π2时,f (x )是偶函数;(2)求使f (x )为偶函数的所有φ值的集合.8.函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数.(1)求φ的值.(2)若f(x)图象上的点关于M(3π4,0)对称,①求ω满足的关系式;②若f(x)在区间[0,π2]上是单调函数,求ω的值.9.f(x)=2√3sin(3ωx+π3)(ω>0).(1)若f(x+θ)是周期为2π的偶函数,求ω及θ值;(2)在(1)的条件下求函数f(x)在[−π2,π3]的值域.10.函数y=sin(-2x+π3)在区间[0,π]上的单调递增区间为()A.[5π12,11π12] B.[0,5π12] C.[π6,2π3] D.[2π3,π]11.函数y=lgsin(π6−2x)的单调递减区间是()A.(kπ−π6,kπ+π3)(k∈Z)B.(kπ+π3,kπ+5π6)(k∈Z)C.(kπ−π6,kπ+π12)(k∈Z)D.(kπ−7π12,kπ+5π6)(k∈Z)12.设函数f (x )=sin (ωx +π2)(ω>0)的最小正周期为π,则f (x )( )A .在(0,π2)单调递减B .在(π4,3π4)单调递减C .在(0,π2)单调递增D .在(π4,3π4)单调递增13.下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°14.已知函数f (x )=2sin (2x -π3),x ∈R ,(1)求函数f (x )的最小正周期;(2)求函数f (x )的单调区间.15.已知函数f (x )=√2sin (2x +π4)-1,x ∈R .(1)求函数f (x )的最小正周期;(2)求函数f (x )的单调递增区间;(3)求函数f (x )的最值.16.已知函数f(x)=sin(2x-π3).(1)求f(x)的单调增区间;(2)求f(x)取最大值时x值的集合;(3)函数y=f(x)-m在[0,π2]上有零点,求m的取值范围.17.下列函数中,与函数y=√x3定义域相同的函数为()A.y=1sinxB.y=lnxxC.y=x e xD.y=sinxx18.函数y=cos(x+π6),x∈[0,π2]的值域是()A.[−√32,12] B.[−12,√32] C.[√32,1] D.[12,1]19.已知函数f(x)=2sin(2x+π6)-1(x∈R),则f(x)在区间[0,π2]上的最大值与最小值分别是()A.1,-2 B.2,-1 C.1,-1 D.2,-220.函数y=sin x的定义域为[a,b],值域为[−1,12],则b-a的最大值和最小值之和等于()A.4π3B.8π3C.2π D.4π21.函数y=cosωx(ω>0)在区间[0,1)上至少出现2次最大值,至多出现3次最大值,则ω的取值范围是()A.2π≤ω≤4π B.2π<ω≤4π C.2π<ω≤6π D.2π<ω<6π22.设f(x)=2cos(π4x+π3),若对任意的x∈R,恒有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值是()A.4 B.3 C.2 D.123.函数f(a)=cos2θ+a cosθ-a(a∈[1,2],θ∈[π6,π3])的最小值是()A.√3−23B.cos2θ+cosθ-1 C.3+(√3-1)a D.cos2θ+2cosθ-224.已知f(x)=-2a sin(2x+π6)+2a+b,x∈[π4,3π4],是否存在常数a,b∈Q,使得f(x)的值域为{y|-3≤y≤√3-1}?若存在,求出a,b的值;若不存在,请说明理由.25.已知函数f(x)=√2a sin(x-π4)+a+b.(1)当a=1时,求函数f(x)的单调递减区间;(2)当a<0时,f(x)在[0,π]上的值域为[2,3],求a,b的值.26.(1)求函数y=2-cos x3的最大值和最小值,并分别写出使这个函数取得最大值和最小值的x 的集合;(2)求函数y=cos2x-4cos x+1,x∈[π3,23π]的值域.27.已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f(π6)|对x∈R恒成立,且f(π2)>f (π),求f (x )的单调递增区间.28.函数y =sin (-2x +π4)的单调递增区间是( )A .[2k π+38π,2k π+78π](k ∈Z )B .[k π+38π,k π+78π](k ∈Z )C .[k π-18π,k π+38π](k ∈Z )D .[k π-58π,k π-18π](k ∈Z )29.对于函数y =2sin (2x +π6),则下列结论正确的是( )A .函数的图象关于点(π3,0)对称B .函数在区间[-π3,π6]递增C .函数的图象关于直线x =-π12对称D .最小正周期是π230.已知函数f (x )=log 12cos πx 3,函数g (x )=a sin (π6·x )-2a +2(a >0),x ∈(0,1),若存在x 1,x 2∈(0,1),使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( )A .(12,43)B .(23,1)C .(43,32)D .[12,43]31.函数f (x )=M sin (ωx +φ)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos (ωx +φ)在[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值M ,可以取得最小值-MD.可以取得最大值M,没有最小值32.设f(x)=sin(2x+φ),若f(x)≤f(π6)对一切x∈R恒成立,则:①f(-π12)=0;②f(x)的图象关于点(5π12,0)对称;③f(x)既不是奇函数也不是偶函数;④f(x)的单调递增区间是[kπ+π6,kπ+2π3](k∈Z).以上结论正确的是________(写出所有正确结论的编号).33.已知函数f(x)=√2cos(2x-π4),x∈R.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x的值.34.设函数f(x)=√1-2sinx.(1)求函数f(x)的定义域;(2)求函数f(x)的值域及取最大值时x的值.答案1.如果函数y=sin(πx+θ)(0<θ<2π)的最小正周期是T,且当x=2时取得最大值,那么()A.T=2,θ=π2B.T=1,θ=πC.T=2,θ=πD.T=1,θ=π2【答案】A【解析】由题意得sin (2π+θ)=1,又0<θ<2π,∴θ=π2,最小正周期T =2ππ=2.2.下列是定义在R 上的四个函数图象的一部分,其中不是周期函数的是( ) A .B .C .D .【答案】D【解析】对于D ,x ∈(-1,1)时的图象与其他区间图象不同,不是周期函数.3.定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈[−π2,0)时,f (x )=sin x ,则f (−5π3)的值为( ) A .-12 B .12 C .-√32 D .√32【答案】D【解析】f (−5π3)=f (π3)=-f (−π3)=-sin (−π3)=sin π3=√32. 4.设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2013)=________.【答案】√3【解析】∵f (x )=sin π3x 的周期T =2ππ3=6.∴f(1)+f(2)+f(3)+…+f(2013)=335[f(1)+f(2)+f(3)+f(4)+f(5)+f(6)]+f(2011)+f(2012)+f(2013)=335·(sinπ3+sin23π+sinπ+sin43π+sin53π+sinπ)+f(335×6+1)+f(335×6+2)+f(335×6+3)=335×0+f(1)+f(2)+f(3)=sinπ3+sin23π+sinπ=√3.5.下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+π2)B.y=cos(2x+π2)C.y=sin2x+cos2xD.y=sin x+cos x【答案】B【解析】由于函数y=sin(2x+π2)=cos2x为偶函数,故排除A;由于函数y=cos(2x+π2)=-sin2x为奇函数,且周期为2π2,故B满足条件;由于函数y=sin2x+cos2x=√2sin(2x+π4)为非奇非偶函数,故排除C;由于函数y=sin x+cos x=√2sin(x+π4)为非奇非偶函数,故排除D,故选B.6.下列命题中正确的是()A.y=-sin x为奇函数B.y=|sin x|既不是奇函数也不是偶函数C.y=3sin x+1为偶函数D.y=sin x-1为奇函数【答案】A【解析】y=|sin x|是偶函数,y=3sin x+1与y=sin x-1都是非奇非偶函数.7.设f(x)=12sin(2x+φ)(φ是常数).(1)求证:当φ=π2时,f (x )是偶函数;(2)求使f (x )为偶函数的所有φ值的集合.【答案】(1)证明 当φ=π2时,f (x )=12sin (2x +π2)=12cos2x ,f (-x )=f (x ),f (x )是偶函数.(2)解 由题意:f (-x )=f (x ),可得12sin (-2x +φ)=12sin (2x +φ)对一切实数x 成立,-2x +φ=2x +φ+2k π或-2x +φ=π-(2x +φ)+2k π,k ∈Z ,对一切实数x 成立, 所以φ=k π+π2,k ∈Z ,f (x )为偶函数的φ值的集合是{φ|φ=k π+π2,k ∈Z }.8.函数f (x )=sin (ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数.(1)求φ的值.(2)若f (x )图象上的点关于M (3π4,0)对称,①求ω满足的关系式;②若f (x )在区间[0,π2]上是单调函数,求ω的值.【答案】(1)由f (x )是偶函数,可得f (0)=±1,故sin φ=±1,即φ=k π+π2,结合题设0≤φ≤π,解得φ=π2.(2)由(1)知f (x )=sin (ωx +π2)=cos ωx ,∵f (x )图象上的点关于M (34π,0)对称,∴f (34π)=cos 34ωπ=0,故34ωπ=k π+π2(k ∈Z ),即w =23(2k +1),k =0,1,2,…∵f (x )在区间[0,π2]上是单调函数,可得π2≤12·2πω,即ω≤2,又∵ω=23(2k +1),k =0,1,2,…∴综合以上条件,可得ω=23或ω=2. 9.f (x )=2√3sin (3ωx +π3)(ω>0).(1)若f (x +θ)是周期为2π的偶函数,求ω及θ值; (2)在(1)的条件下求函数f (x )在[−π2,π3]的值域. 【答案】(1)由于f (x )=2√3sin (3ωx +π3),可得f (x +θ)=2√3sin[3ω(x +θ)+π3]=2√3sin (3ωx +3ωθ+π3), 再根据f (x +θ)是周期为2π的偶函数,可得2π3ω=2π,3ωθ+π3=k π+π2,k ∈Z . 求得ω=13,θ=k π+π6,f (x )=2√3sin (x +π3). (2)由x ∈[−π2,π3],可得x +π3∈[-π6,2π3],故当x +π3=-π6时,f (x )取得最小值为-√3,当x +π3=π2时,f (x )取得最大值为2, 故函数f (x )的值域为[-√3,2√3].10.函数y =sin (-2x +π3)在区间[0,π]上的单调递增区间为( ) A .[5π12,11π12] B .[0,5π12] C .[π6,2π3] D .[2π3,π]【答案】A【解析】y =sin (-2x +π3)=-sin (2x -π3), 当2k π+π2≤2x -π3≤2k π+3π2,即k π+5π12≤x ≤k π+11π2时,k ∈Z ,函数单调递增,∴函数在区间[0,π]上的单调递增区间为[5π12,11π12].11.函数y =lgsin (π6−2x)的单调递减区间是( ) A .(k π−π6,k π+π3)(k ∈Z )B .(k π+π3,k π+5π6)(k ∈Z )C .(k π−π6,k π+π12)(k ∈Z ) D .(k π−7π12,k π+5π6)(k ∈Z )【答案】C【解析】令sin (π6−2x)>0,即sin (2x −π6)<0,由此得2k π-π<2x -π6<2k π,k ∈Z , 解得k π-5π12<x <k π+π12,k ∈Z ,由复合函数的单调性知,求函数y =lgsin (π6−2x)的单调递减区间即是求t =sin (π6−2x)=-sin (2x −π6)单调递减区间,令2k π-π2<2x -π6<2k π+π2,解得k π-π6<x <k π+π3,k ∈Z , {x |k π-π6<x <k π+π3,k ∈Z }∩{x |k π-5π12<x <k π+π12,k ∈Z }=(k π−π6,k π+π12)(k ∈Z ).12.设函数f (x )=sin (ωx +π2)(ω>0)的最小正周期为π,则f (x )( ) A .在(0,π2)单调递减 B .在(π4,3π4)单调递减C .在(0,π2)单调递增 D .在(π4,3π4)单调递增【答案】A【解析】∵函数f (x )=sin (ωx +π2)(ω>0)的最小正周期为π,∴π=2πω,ω=2. ∴f (x )=sin (2x +π2), 由2k π+π2≤2x +π2≤2k π+3π2,k ∈Z ,可得k π≤x ≤k π+π2,k ∈Z ,当k =0时,函数f (x )=sin (2x +π2)在(0,π2)单调递减. 13.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11° 【答案】C【解析】∵sin168°=sin (180°-12°)=sin12°,cos10°=sin (90°-10°)=sin80°. 由正弦函数的单调性得sin11°<sin12°<sin80°, 即sin11°<sin168°<cos10°.14.已知函数f (x )=2sin (2x -π3),x ∈R , (1)求函数f (x )的最小正周期; (2)求函数f (x )的单调区间.【答案】(1)根据三角函数的周期公式可得周期T =2π2=π.(2)由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 解得k π-π12≤x ≤k π+5π12,k ∈Z ,故函数的单调递增区间为[k π-π12,k π+5π12],k ∈Z , 由π2+2k π≤2x -π3≤3π2+2k π,解得k π+5π12≤x ≤k π+11π12,k ∈Z ,故函数的单调递减区间为[k π+5π12,k π+11π12],k ∈Z .15.已知函数f (x )=√2sin (2x +π4)-1,x ∈R .(1)求函数f (x )的最小正周期; (2)求函数f (x )的单调递增区间; (3)求函数f (x )的最值.【答案】(1)由周期公式T =2πω,得T =2π2=π,∴函数f (x )的最小正周期为π;(2)令-12π+2k π≤2x +π4≤12π+2k π,k ∈Z , ∴k π-38π≤x ≤k π+18π,k ∈Z ,∴函数的单调递增区间为[k π-38π,k π+18π](k ∈Z ). (3)根据正弦函数的性质可知,-1≤sin (2x +π4)≤1, ∴-√2≤√2sin (2x +π4)≤√2,∴-√2-1≤√2sin (2x +π4)-1≤√2-1, ∴函数的最大值为√2-1,最小值为-√2-1. 16.已知函数f (x )=sin (2x -π3). (1)求f (x )的单调增区间; (2)求f (x )取最大值时x 值的集合;(3)函数y =f (x )-m 在[0,π2]上有零点,求m 的取值范围. 【答案】(1)∵函数f (x )=sin (2x -π3), 令-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 解得-π12+k π≤x ≤5π12+k π,k ∈Z ,∴函数f (x )的增区间为[-π12+k π,5π12+k π],k ∈Z .(2)令2x -π3=π2+2k π,k ∈Z , 解得x =5π12+k π,k ∈Z , 此时f (x )=1.∴f (x )取得最大值时x 的集合是{x |x =5π12+k π,k ∈Z }. (3)当x ∈[0,π2]时,2x -π3∈[-π3,2π3],∴-√32≤sin (2x -π3)≤1,∴函数y =f (x )在x ∈[0,π2]上的值域是[-√32,1],若函数y =f (x )-m 在x ∈[0,π2]上有零点,则m 的取值范围是-√32≤m ≤1.17.下列函数中,与函数y =√x 3定义域相同的函数为( )A .y =1sinx B .y =lnx xC .y =x e xD .y =sinx x【答案】D【解析】∵函数y =√x 3的定义域为{x ∈R |x ≠0},∴对于A ,其定义域为{x |x ≠k π}(k ∈Z ),故A 不满足; 对于B ,其定义域为{x |x >0},故B 不满足; 对于C ,其定义域为{x |x ∈R },故C 不满足; 对于D ,其定义域为{x |x ≠0},故D 满足.18.函数y =cos (x +π6),x ∈[0,π2]的值域是( )A .[−√32,12]B .[−12,√32]C .[√32,1] D .[12,1]【答案】B【解析】∵0≤x ≤π2,∴π6≤x +π6≤2π3.∴cos2π3≤cos (x +π6)≤cos π6,∴-12≤y ≤√32,故选B.19.已知函数f (x )=2sin (2x +π6)-1(x ∈R ),则f (x )在区间[0,π2]上的最大值与最小值分别是( ) A .1,-2 B .2,-1 C .1,-1 D .2,-2 【答案】A【解析】∵0≤x ≤π2,∴π6≤2x +π6≤7π6,∴当2x +π6=π2时,即sin (2x +π6)=1时,函数取得最大值为2-1=1, 当2x +π6=7π6时,即sin (2x +π6)=-12时,函数取得最小值为-12×2-1=-2.20.函数y =sin x 的定义域为[a ,b ],值域为[−1,12],则b -a 的最大值和最小值之和等于( ) A .4π3B .8π3C .2πD .4π 【答案】C【解析】利用函数y =sin x 的图象知(b -a )min =2π3,(b -a )max =4π3,故b -a 的最大值与最小值之和等于2π.21.函数y =cos ωx (ω>0)在区间[0,1)上至少出现2次最大值,至多出现3次最大值,则ω的取值范围是( ) A .2π≤ω≤4π B .2π<ω≤4π C .2π<ω≤6π D .2π<ω<6π 【答案】C【解析】∵函数y =cos ωx (ω>0)的周期为T =2πω, 且在区间[0,1)上至少出现2次最大值,至多出现3次最大值, ∴13≤T <1,即13≤2πω<1, 解得2π<ω≤6π.22.设f (x )=2cos (π4x +π3),若对任意的x ∈R ,恒有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值是( )A .4B .3C .2D .1 【答案】A【解析】∵f (x 1)≤f (x )≤f (x 2),∴x 1、x 2是函数f (x )取最大、最小值时对应的x 的值,故|x 1-x 2|一定是T2的整数倍,∵f (x )=2cos (π4x +π3)的最小正周期T =2ππ4=8,∴|x 1-x 2|=n ×T2=4n (n >0,且n ∈Z ), ∴|x 1-x 2|的最小值为4.23.函数f (a )=cos 2θ+a cos θ-a (a ∈[1,2],θ∈[π6,π3])的最小值是( ) A .√3−23B .cos 2θ+cos θ-1C .3+(√3-1)aD .cos 2θ+2cos θ-2 【答案】D【解析】∵θ∈[π6,π3],∴cos θ-1<0,∴f (a )=cos 2θ+a cos θ-a =(cos θ-1)a +cos 2θ在[1,2]上单调递减, ∴f (a )的最小值为f (2)=cos 2θ+2cos θ-2. 24.已知f (x )=-2a sin (2x +π6)+2a +b ,x ∈[π4,3π4],是否存在常数a ,b ∈Q ,使得f (x )的值域为{y |-3≤y ≤√3-1}?若存在,求出a ,b 的值;若不存在,请说明理由. 【答案】∵π4≤x ≤3π4,∴2π3≤2x +π6≤5π3,∴-1≤sin (2x +π6)≤√32.假设存在这样的有理数a ,b ,则当a >0时,{−√3a +2a +b =−3,2a +2a +b =√3−1,解得{a =1,b =√3−5,(不合题意,舍去)当a <0时,{2a +2a +b =−3,−√3a +2a +b =√3−1,解得{a =−1,b =1,故a,b存在,且a=-1,b=1.25.已知函数f(x)=√2a sin(x-π4)+a+b.(1)当a=1时,求函数f(x)的单调递减区间;(2)当a<0时,f(x)在[0,π]上的值域为[2,3],求a,b的值. 【答案】(1)∵当a=1时,f(x)=√2sin(x-π4)+1+b,∴当x-π4∈[π2+2kπ,3π2+2kπ],k∈Z时,函数f(x)的单调递减区间是[3π4+2kπ,7π4+2kπ],k∈Z.(2)∵f(x)在[0,π]上的值域为[2,3],∴不妨设t=x-π4,x∈[0,π],t∈[-π4,3π4],∴f(x)=g(t)=√2a sin t+a+b,∴f(x)max=g(-π4)=-a+a+b=3,①f(x)min=g(π2)=√2a+a+b=2,②∴由①②解得,a=1-√2,b=3.26.(1)求函数y=2-cos x3的最大值和最小值,并分别写出使这个函数取得最大值和最小值的x 的集合;(2)求函数y=cos2x-4cos x+1,x∈[π3,23π]的值域.【答案】(1)令z=x3,∵-1≤cos z≤1,∴1≤2-cos z≤3,∴y=2-cos x3的最大值为3,最小值为1.当z=2kπ,k∈Z时,cos z取得最大值,2-cos z取得最小值,又z=x3,故x=6kπ,k∈Z.∴使函数y=2-cos x3取得最小值的x的集合为{x|x=6kπ,k∈Z};同理,使函数y=2-cos x3取得最大值的x 的集合为{x |x =6k π+3π,k ∈Z }. (2)∵x ∈[π3,23π],∴-12≤cos x ≤12. ∵y =cos 2x -4cos x +1=(cos x -2)2-3, ∴当cos x =-12时,y max =134; 当cos x =12时,y min =-34,∴y =cos 2x -4cos x +1的值域为[−34,134].27.已知函数f (x )=sin (2x +φ),其中φ为实数,若f (x )≤|f (π6)|对x ∈R 恒成立,且f (π2)>f (π),求f (x )的单调递增区间.【答案】由f (x )≤|f (π6)|对x ∈R 恒成立知,2×π6+φ=2k π±π2(k ∈Z ), 得到φ=2k π+π6或φ=2k π-5π6,k ∈Z .代入f (x )并由f (π2)>f (π)检验,得φ的取值为-5π6,由2k π-π2≤2x -5π6≤2k π+π2,k ∈Z ,得k π+π6≤x ≤k π+23π,k ∈Z , 所以单调递增区间是[k π+π6,k π+2π3](k ∈Z ).28.函数y =sin (-2x +π4)的单调递增区间是( ) A .[2k π+38π,2k π+78π](k ∈Z ) B .[k π+38π,k π+78π](k ∈Z ) C .[k π-18π,k π+38π](k ∈Z ) D .[k π-58π,k π-18π](k ∈Z ) 【答案】B【解析】由于函数y =sin (-2x +π4)=-sin (2x -π4),故函数y =sin (-2x +π4)的单调递增区间为函数y =sin (2x -π4)的减区间.令2k π+π2≤2x -π4≤2k π+3π2,k ∈Z , 求得k π+3π8≤x ≤k π+7π8,k ∈Z ,故所求的函数y =sin (-2x +π4)的单调递增区间是[k π+38π,k π+78π](k ∈Z ).29.对于函数y =2sin (2x +π6),则下列结论正确的是( )A .函数的图象关于点(π3,0)对称B .函数在区间[-π3,π6]递增C .函数的图象关于直线x =-π12对称D .最小正周期是π2【答案】B【解析】由于点(π3,0)不在函数y =2sin (2x +π6)的图象上,故函数图象不关于点(π3,0)对称,故排除A.令2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,解得k π-π3≤x ≤k π+π6,k ∈Z ,故函数的增区间为[-π3,π6],故B 正确.当x =-π12时,函数值y =0,不是最值,故函数的图象不关于x =-π12对称,故排除C.由函数的解析式可得,最小正周期等于T =2π2=π,故D 不正确. 综上可得,只有B 正确.30.已知函数f (x )=log 12cos πx 3,函数g (x )=a sin (π6·x )-2a +2(a >0),x ∈(0,1),若存在x 1,x 2∈(0,1),使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( )A .(12,43)B .(23,1)C .(43,32)D .[12,43]【答案】A【解析】由于x ∈(0,1),可得f (x )的值域为(0,1),函数g (x )=a ·sin (π6x)-2a +2(a >0)的值域为(2-2a,2-3a 2),由于存在x 1,x 2∈(0,1),使得f (x 1)=g (x 2)成立,故(0,1)∩(2-2a,2-3a 2)≠∅,若(0,1)∩(2-2a,2-3a 2)=∅,则有2-2a ≥1或2-3a 2≤0.解得a ≤12或a ≥43,故a 的范围为(12,43).31.函数f (x )=M sin (ωx +φ)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos (ωx +φ)在[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值M ,可以取得最小值-MD .可以取得最大值M ,没有最小值【答案】C【解析】∵函数f (x )在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M .采用特殊值法,令ω=1,φ=0,则f (x )=M sin x ,设区间为[-π2,π2].∵M >0,g (x )=M cos x 在[-π2,π2]上不具备单调性,但有最大值M .32.设f (x )=sin (2x +φ),若f (x )≤f (π6)对一切x ∈R 恒成立,则:①f (-π12)=0;②f (x )的图象关于点(5π12,0)对称;③f (x )既不是奇函数也不是偶函数;④f (x )的单调递增区间是[k π+π6,k π+2π3](k ∈Z ).以上结论正确的是________(写出所有正确结论的编号).【答案】①②③【解析】∵f (x )≤f (π6)对一切x ∈R 恒成立,∴f (x )=sin (2x +φ)在x =π6时取得最大值,即2×π6+φ=π2+2k π,k ∈Z ,得φ=π6+2k π,k ∈Z ,因此函数表达式为f (x )=sin (2x +π6+2k π),∵f (-π12)=sin[2×(-π12)+π6+2k π]=sin2k π=0,故①是真命题;∵f (5π12)=sin (2×5π12+π6+2k π)=sin (π+2k π)=0,∴x =5π12是函数y =f (x )的零点,得点(5π12,0)是函数f (x )图象的对称中心,故②是真命题; ∵函数y =f (x )的图象既不关于y 轴对称,也不关于原点对称,∴f (x )既不是奇函数也不是偶函数,故③是真命题;令-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,得-π3+k π≤x ≤π6+k π,k ∈Z ,∴f (x )的单调递增区间是[-π3+k π,π6+k π](k ∈Z ),故④是假命题.由以上的讨论,可得正确命题为①②③,共3个,故答案为①②③.33.已知函数f (x )=√2cos (2x -π4),x ∈R .(1)求函数f (x )的最小正周期和单调递减区间;(2)求函数f (x )在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x 的值.【答案】(1)f (x )的最小正周期T =2π|ω|=2π2=π. 当2k π≤2x -π4≤2k π+π,即k π+π8≤x ≤k π+5π8,k ∈Z 时,f (x )单调递减,∴f(x)的单调递减区间是[kπ+π8,kπ+5π8],k∈Z.(2)∵x∈[-π8,π2],则2x-π4∈[-3π4,3π4],故cos(2x-π4)∈[-√22,1],∴f(x)max=√2,此时2x-π4=0,即x=π8;f(x)min=-1,此时2x-π4=-3π4,即x=-π4.34.设函数f(x)=√1-2sinx.(1)求函数f(x)的定义域;(2)求函数f(x)的值域及取最大值时x的值.【答案】(1)由1-2sin x≥0,根据正弦函数图象知,定义域为{x|2kπ+5π6≤x≤2kπ+13π6,k∈Z}.(2)∵-1≤sin x≤1,∴-1≤1-2sin x≤3,∵1-2sin x≥0,∴0≤1-2sin x≤3,∴f(x)的值域为[0,√3],当x=2kπ+3π2,k∈Z时,f(x)取得最大值.。

人教版高中数学必修四1.4三角函数的图象与性质1.4.2二含答案

人教版高中数学必修四1.4三角函数的图象与性质1.4.2二含答案

1.4.2 正弦函数、余弦函数的性质(二) 课时目标 1.掌握y =sin x ,y =cos x 的最大值与最小值,并会求简单三角函数的值域或最值.2.掌握y =sin x ,y =cos x 的单调性,并能用单调性比较大小.3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间.正弦函数、余弦函数的性质: 函数 y =sin xy =cos x 图象定义域______ ______ 值域______ ______ 奇偶性______ ______ 周期性最小正周期:______ 最小正周期:______ 单调性在__________________________________ 上单调递增;在__________________________________________________上单调递减 在__________________________________________上单调递增;在______________________________上单调递减 最值 在________________________时,y max =1;在________________________________________时,y min =-1在______________时,y max =1;在__________________________时,y min =-1 一、选择题1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.若α,β都是第一象限的角,且α<β,那么( )A .sin α>sin βB .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定3.函数y =sin 2x +sin x -1的值域为( )A.[]-1,1B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1 D.⎣⎡⎦⎤-1,54 4.函数y =|sin x |的一个单调增区间是( )A.⎝⎛⎭⎫-π4,π4B.⎝⎛⎭⎫π4,3π4 C.⎝⎛⎭⎫π,3π2 D.⎝⎛⎭⎫3π2,2π 5.下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°6.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2) C .y =sin(x +π2) D .y =cos(x +π2) 题 号 1 2 3 4 5 6 答 案二、填空题7.函数y =sin(π+x ),x ∈⎣⎡⎦⎤-π2,π的单调增区间是____________. 8.函数y =2sin(2x +π3)(-π6≤x ≤π6)的值域是________. 9.sin 1,sin 2,sin 3按从小到大排列的顺序为__________________.10.设|x |≤π4,函数f (x )=cos 2x +sin x 的最小值是______. 三、解答题11.求下列函数的单调增区间.(1)y =1-sin x 2; (2)y =log 12(cos 2x ).12.已知函数f (x )=2a sin ⎝⎛⎭⎫2x -π3+b 的定义域为⎣⎡⎦⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.能力提升13.已知sin α>sin β,α∈⎝⎛⎭⎫-π2,0,β∈⎝⎛⎭⎫π,32π,则( ) A .α+β>π B .α+β<πC .α-β≥-32πD .α-β≤-32π 14.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32C .2D .31.求函数y =A sin(ωx +φ)(A >0,ω>0)单调区间的方法是:把ωx +φ看成一个整体,由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z )解出x 的范围,所得区间即为增区间,由2k π+π2≤ωx +φ≤2k π+32π (k ∈Z )解出x 的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断.3.求三角函数值域或最值的常用求法将y 表示成以sin x (或cos x )为元的一次或二次等复合函数再利用换元或配方、或利用函数的单调性等来确定y 的范围.1.4.2 正弦函数、余弦函数的性质(二)答案知识梳理 R R [-1,1] [-1,1] 奇函数 偶函数 2π 2π [-π2+2k π,π2+2k π](k ∈Z ) [π2+2k π,3π2+2k π] (k ∈Z ) [-π+2k π,2k π] (k ∈Z ) [2k π,π+2k π] (k ∈Z ) x =π2+2k π (k ∈Z ) x =-π2+2k π (k ∈Z ) x =2k π (k ∈Z ) x =π+2k π (k ∈Z ) 作业设计1.C 2.D3.C [y =sin 2x +sin x -1=(sin x +12)2-54当sin x =-12时,y min =-54; 当sin x =1时,y max =1.]4.C [由y =|sin x |图象易得函数单调递增区间⎣⎡⎦⎤k π,k π+π2,k ∈Z ,当k =1时,得⎝⎛⎭⎫π,32π为y =|sin x |的单调递增区间.]5.C [∵sin 168°=sin (180°-12°)=sin 12°,cos 10°=sin (90°-10°)=sin 80°由三角函数线得sin 11°<sin 12°<sin 80°,即sin 11°<sin 168°<cos 10°.]6.A [因为函数周期为π,所以排除C 、D.又因为y =cos(2x +π2)=-sin 2x 在⎣⎡⎦⎤π4,π2上为增函数,故B 不符合.故选A.]7.⎣⎡⎦⎤π2,π8.[0,2]解析 ∵-π6≤x ≤π6,∴0≤2x +π3≤2π3. ∴0≤sin(2x +π3)≤1,∴y ∈[0,2] 9.b <c <a解析 ∵1<π2<2<3<π, sin(π-2)=sin 2,sin(π-3)=sin 3.y =sin x 在⎝⎛⎭⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin 1<sin(π-2),即sin 3<sin 1<sin 2.∵b <c <a . 10.1-22解析 f (x )=cos 2x +sin x =1-sin 2x +sin x=-(sin x -12)2+54∵|x |≤π4,∴-22≤sin x ≤22. ∴当sin x =-22时,f (x )min =1-22. 11.解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z , 得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x 2的增区间为[4k π+π,4k π+3π] (k ∈Z ). (2)由题意得cos 2x >0且y =cos 2x 递减.∴x 只须满足:2k π<2x <2k π+π2,k ∈Z . ∴k π<x <k π+π4,k ∈Z . ∴y =log 12(cos 2x )的增区间为⎝⎛⎭⎫k π,k π+π4,k ∈Z . 12.解 ∵0≤x ≤π2,∴-π3≤2x -x 3≤23π, ∴-32≤sin ⎝⎛⎭⎫2x -π3≤1,易知a ≠0. 当a >0时,f (x )max =2a +b =1,f (x )min =-3a +b =-5.由⎩⎨⎧ 2a +b =1-3a +b =-5,解得⎩⎨⎧a =12-63b =-23+123. 当a <0时,f (x )max =-3a +b =1,f (x )min =2a +b =-5. 由⎩⎨⎧ -3a +b =12a +b =-5,解得⎩⎨⎧a =-12+63b =19-123. 13.A [∵β∈⎝⎛⎭⎫π,32π, ∴π-β∈⎝⎛⎭⎫-π2,0,且sin(π-β)=sin β. ∵y =sin x 在x ∈⎝⎛⎭⎫-π2,0上单调递增,∴sin α>sin β⇔sin α>sin(π-β)⇔α>π-β⇔α+β>π.]14.B [要使函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则应有T 4≤π3或34T ≤π4,即2π4ω≤π3或6πω≤π,解得ω≥32或ω≥6. ∴ω的最小值为32,故选B.]附赠材料答题六注意 :规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点:第一,考前做好准备工作。

专题52 高中数学正、余弦函数的单调性与最值专题(原卷版)

专题52 高中数学正、余弦函数的单调性与最值专题(原卷版)

专题52 正、余弦函数的单调性与最值一.正弦函数、余弦函数的图象和性质[-1,1][-1,1](1)形如y =a sin x (或y =a cos x )型,可利用正弦函数、余弦函数的有界性,注意对a 正负的讨论.(2)形如y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )型,可先由定义域求得ωx +φ的范围,然后求得sin(ωx +φ)(或cos(ωx +φ))的范围,最后求得最值.(3)形如y =a sin 2x +b sin x +c (a ≠0)型,可利用换元思想,设t =sin x ,转化为二次函数y =at 2+bt +c 求最值.t 的范围需要根据定义域来确定.题型一 正弦函数、余弦函数的单调性 类型一 求单调区间1.已知函数f (x )=2sin ⎝⎛⎭⎫π4+2x +1,求函数f (x )的单调递增区间.2.已知函数y =cos ⎝⎛⎭⎫π3-2x ,则它的单调减区间为________.3.函数y =1-sin 2x 的单调递增区间.4.求函数y =3sin ⎝⎛⎭⎫π3-2x 的单调递减区间.5.求下列函数的单调区间.(1)y =cos2x ;(2)y =2sin ⎝⎛⎭⎫π4-x ;(3) y =cos ⎝⎛⎭⎫x 2+π36.函数y =sin ⎝⎛⎭⎫3x +π6,x ∈⎣⎡⎦⎤-π3,π3的单调递减区间为________.7.函数y =2sin ⎝⎛⎭⎫x -π3(x ∈[-π,0])的单调递增区间是( ) A.⎣⎡⎦⎤-π,-5π6 B.⎣⎡⎦⎤-5π6,-π6 C.⎣⎡⎦⎤-π3,0 D.⎣⎡⎦⎤-π6,08.求函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π4的单调增区间.9.函数f (x )=sin ⎝⎛⎭⎫x +π6的一个递减区间是( ) A.⎣⎡⎦⎤-π2,π2 B .[-π,0] C.⎣⎡⎦⎤-2π3,2π3 D.⎣⎡⎦⎤π2,2π310.函数y =sin ⎝⎛⎭⎫2x +π3在区间[0,π]的一个单调递减区间是( ) A.⎣⎡⎦⎤0,5π12 B.⎣⎡⎦⎤π12,7π12 C.⎣⎡⎦⎤5π12,11π12D.⎣⎡⎦⎤π6,π2 11.求下列函数的单调递增区间.(1)y =13sin ⎝⎛⎭⎫π6-x ,x ∈[0,π];(2)y =log 12sin x .12.函数y =log 2⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π3的单调递增区间是________.13.求下列函数的单调递增区间(3)y =log 12sin ⎝⎛⎭⎫2x +π4;14.函数f (x )=⎝⎛⎭⎫13|cos x |在[-π,π]上的单调递减区间为( )A.⎣⎡⎦⎤-π2,0 B.⎣⎡⎦⎤π2,πC.⎣⎡⎦⎤-π2,0及⎣⎡⎦⎤π2,π D.⎣⎡⎦⎤-π2,0∪⎣⎡⎦⎤π2,π15.求函数y =1+sin ⎝⎛⎭⎫-12x +π4,x ∈[-4π,4π]的单调减区间.16.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin ⎝⎛⎭⎫2x +π2 B .y =cos ⎝⎛⎭⎫2x +π2 C .y =sin ⎝⎛⎭⎫x +π2 D .y =cos ⎝⎛⎭⎫x +π217.下列函数中,以π2为周期且在区间⎝⎛⎭⎫π4,π2单调递增的是( ) A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x | D .f (x )=sin|x |18.下列函数中,既为偶函数又在(0,π)上单调递增的是( )A .y =cos|x |B .y =cos|-x |C .y =sin ⎝⎛⎭⎫x -π2 D .y =-sin x219.下列函数在⎣⎡⎦⎤π2,π上是增函数的是( )A .y =sin xB .y =cos xC .y =sin2xD .y =cos2x20.设函数f (x )=2sin ⎝⎛⎭⎫ωx +φ+π4(ω>0,|φ|<π2)的最小正周期为π,且是偶函数,则( ) A .f (x )在⎝⎛⎭⎫0,π2单调递减 B .f (x )在⎝⎛⎭⎫π4,3π4单调递减 C .f (x )在⎝⎛⎭⎫0,π2单调递增 D .f (x )在⎝⎛⎭⎫π4,3π4单调递增21.函数y =2sin ⎝⎛⎭⎫ωx +π4(ω>0)的周期为π,则其单调递增区间为( ) A.⎣⎡⎦⎤k π-3π4,k π+π4(k ∈Z) B.⎣⎡⎦⎤2k π-3π4,2k π+π4(k ∈Z) C.⎣⎡⎦⎤k π-3π8,k π+π8(k ∈Z) D.⎣⎡⎦⎤2k π-3π8,2k π+π8(k ∈Z)22.已知函数f (x )=sin(2x +φ),其中φ为实数,且|φ|<π.若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),求f (x )的单调递增区间.类型二 利用单调性求参1.函数y =cos x 在区间[-π,a ]上为增函数,则a 的取值范围是________.2.若函数f (x )=sin ωx (0<ω<2)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于___.3.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π3在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________.4.已知函数f (x )=sin ⎝⎛⎭⎫2x -π6. (1)求函数f (x )图象的对称轴方程;(2)解不等式:f ⎝⎛⎭⎫x +π12≥32.5.若函数f (x )=2sin ⎝⎛⎭⎫ωx +π3(ω>0),且f (α)=-2,f (β)=0,|α-β|的最小值是π2,则f (x )的单调递增区间是() A.⎣⎡⎦⎤2k π-5π6,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ) C.⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ) D.⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z )6.已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)为R 上的偶函数,其图象关于点M (34π,0)对称,且在区间[0,π2]上是单调函数,求φ和ω的值.题型二 利用三角函数的单调性比较大小1.sin250°与sin260°;(2)cos 15π8与cos 14π9.2.比较下列各组数的大小.(1)cos ⎝⎛⎭⎫-π8与cos 13π7;(2)sin194°与cos160°;(3) cos ⎝⎛⎭⎫-7π8与cos 6π73.利用三角函数的单调性,比较下列各组数的大小.(1)sin ⎝⎛⎭⎫-π18与sin ⎝⎛⎭⎫-π10;(2)sin 196°与cos 156°;(3)cos ⎝⎛⎭⎫-235π与cos ⎝⎛⎭⎫-174π.4.比较下列各组数的大小:①cos 15π8,cos 14π9;②cos 1,sin 1.5.比较下列各组数的大小.(1)sin ⎝⎛⎭⎫-376π与sin ⎝⎛⎭⎫493π;(2)cos 870°与sin 980°.6.sin 2π7________sin ⎝⎛⎭⎫-15π8(填“>”或“<”).7.下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°8.sin1,sin2,sin3按从小到大排列的顺序为__________.9.将cos 150°,sin 470°,cos 760°按从小到大排列为_________.10.下列不等式中成立的是( )A .sin ⎝⎛⎭⎫-π8>sin ⎝⎛⎭⎫-π10 B .sin 3>sin 2 C .sin 75π>sin ⎝⎛⎭⎫-25π D .sin 2>cos 111.(1)已知α,β为锐角三角形的两个内角,则以下结论正确的是( )A .sin α<sin βB .cos α<sin βC .cos α<cos βD .cos α >cos β12.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-4,-3]上是增函数,α,β是锐角三角形的两个内角,则f (sin α)与f (cos β)的大小关系是________.题型三 正弦函数、余弦函数的最值问题1.函数y =1-2cos π2x 的最小值,最大值分别是( )A .-1,3B .-1,1C .0,3D .0,12.函数y =2-sin x 的最大值及取最大值时x 的值分别为( )A .y max =3,x =π2B .y max =1,x =π2+2k π(k ∈Z)C .y max =3,x =-π2+2k π(k ∈Z)D .y max =3,x =π2+2k π(k ∈Z)3.y =2cos x 2的值域是( )A .[-2,2]B .[0,2]C .[-2,0]D .R4.y =a cos x +1的最大值为5,则a =________.5.设函数f (x )=A +B sin x ,当B <0时,f (x )的最大值是32,最小值是-12,则A =________,B =________.6.函数f (x )=sin(π6+x )+cos(π3-x )的最大值为( )A .1 B.32C. 3 D .27.函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65 B .1 C.35 D.158.函数y =2sin ⎝⎛⎭⎫π3-x -cos ⎝⎛⎭⎫π6+x (x ∈R)的最小值等于( ) A .-3 B .-2 C .-1 D .- 59.函数y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2的值域是( )A.⎣⎡⎦⎤-32,12 B.⎣⎡⎦⎤-12,32 C.⎣⎡⎦⎤32,1D.⎣⎡⎦⎤12,110.求函数y =3-4cos ⎝⎛⎭⎫2x +π3,x ∈⎣⎡⎦⎤-π3,π6的最大值、最小值及相应的x 值.11.求下列函数的最大值和最小值. f (x )=sin ⎝⎛⎭⎫2x -π6,x ∈⎣⎡⎦⎤0,π212.求下列函数的值域:y =sin ⎝⎛⎭⎫2x -π3,x ∈⎣⎡⎦⎤0,π2;13.求函数y =3+2cos ⎝⎛⎭⎫2x +π3的最值.14.已知函数y =a -b cos ⎝⎛⎭⎫2x +π6(b >0)的最大值为32,最小值为-12. (1)求a ,b 的值;(2)求函数g (x )=-4a sin ⎝⎛⎭⎫bx -π3的最小值并求出对应x 的集合.15.已知函数f (x )=a sin ⎝⎛⎭⎫2x -π3+b (a >0).当x ∈⎣⎡⎦⎤0,π2时,f (x )的最大值为3,最小值是-2,求a 和b 的值.16.求下列函数的最值y =-sin 2x +3sin x +54.17.函数y =cos 2x +2sin x -2,x ∈R 的值域为________.18.求下列函数的最大值和最小值. y =-2cos 2x +2sin x +3,x ∈⎣⎡⎦⎤π6,5π6.19.求函数y =cos 2x -sin x 在x ∈⎣⎡⎦⎤-π4,π4上的最大值和最小值.20.求函数y =2sin 2x +2sin x -12,x ∈⎣⎡⎦⎤π6,5π6的值域.21.求下列函数的值域: y =cos 2x -4cos x +5.22.求函数y =cos 2x +4sin x 的最值及取到最大值和最小值时的x 的集合.23.若f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值是2,则ω=________.24.设函数f (x )=2sin ⎝⎛⎭⎫π2x +π5.若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为( )A .4B .2C .1D .1225.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是________.26.函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的最大值是________.27.已知函数f (x )=2a sin ⎝⎛⎭⎫2x +π6+a +b 的定义域是⎣⎡⎦⎤0,π2,值域是[-5,1],求a ,b 的值.。

1.4.2正余弦函数的单调性和最值导学案

1.4.2正余弦函数的单调性和最值导学案

§1.4.2 正弦函数、余弦函数的单调性和最值【学习目标】1.掌握y =sin x ,y =cos x 的最大值与最小值,并会求简单三角函数的最值.2.掌握y =sin x ,y =cos x 的单调性,并能利用单调性比较三角函数值的大小.3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间.【重点】正弦函数、余弦函数的单调性和最值.【难点】利用正余弦函数的周期性来研究它们的单调性及最值.【教学方法】前置学习检查→精讲点拨,合作探究→反思总结,当堂检测。

【学习过程】一、前置学习(学习要求详见平板)[自我检测]1.在下列区间中,使y =sin x 为增函数的是( )A .[0,π] B.⎣⎢⎡⎦⎥⎤π2,3π2 C.⎣⎢⎡⎦⎥⎤-52π,-32π D .[π,2π] 2.下列函数在区间[0,π]上是单调函数的是( )A .y =sin xB .y =cos 2xC .y =sin 2xD .y =cos x3.利用函数y =f (x )与y =-f (x )的单调性相反,直接写出y =-cos x 的单调递减区间是_______________________;单调递增区间是___________________.4.已知函数f (x )=2sin x -1,当且仅当x =____________时,f (x )有最大值______;当且仅当x =_____________时,f (x )有最小值________.5.函数y =sin x ,x ∈[0,π]的值域为________.二、探究新知探究1、正弦函数的单调性结论:正弦函数在每一个闭区间上都是增函数,其值从-1增大到1;在每一个闭区间上都是减函数,其值从1减小到-1. 探究2、余弦函数的单调性(学生自主探究)结论:余弦函数在每一个闭区间上都是增函数,其值从-1增大到1;在每一个闭区间上都是减函数,其值从1减小到-1. 探究3:正弦、余弦函数的最值结论:正弦函数当且仅当时取得最大值,当且仅当时取得最小值;余弦函数当且仅当时取得最大值,当且仅当时取得最小值。

【高中数学必修四】1.4.2正余弦函数的性质(两课时)

【高中数学必修四】1.4.2正余弦函数的性质(两课时)

7 2
y=cosx
4
x y=sinx
正弦函数y=sinx 定义域 值域
余弦函数y=cosx R [-1,1] 当x= 2kπ (k∈Z)时ymax=1 当x=2kπ +π (k∈Z)时ymin=-1 最小正周期2π
R
[-1,1] 当x=2kπ + 2 (k∈Z)时ymax=1 3 当x=2kπ + 2 (k∈Z)时ymin=-1
3
2

3 2



2
o
-1
2

3 2
2
5 2
3
7 2
y=cosx
4
x y=sinx
正弦函数y=sinx 定义域 值域
余弦函数y=cosx R [-1,1] 当x= 2kπ (k∈Z)时ymax=1 当x=2kπ +π (k∈Z)时ymin=-1
R
[-1,1] 当x=2kπ + 2 (k∈Z)时ymax=1 3 当x=2kπ + 2 (k∈Z)时ymin=-1
分析:先用诱导公式化到同一单调区间内
正弦、余弦函数的单调性
1 例3、求函数y sin x , x 2 ,2 3 2 的单调增区间。
分析:复合函数的换元法
y
1
4
5 2
正 弦 函 数 与 余 弦 函 数 的 性 质
7 2
3
2

正弦、余弦函数的周期
例3.求下列函数的周期 1 y 3 cos x, x R
2 y sin 2 x, x R
1 3 y 2 sin x , x R 6 2
正弦、余弦函数的周期

1.4.2正弦函数、余弦函数的性质2(奇偶性、单调性及最值)

1.4.2正弦函数、余弦函数的性质2(奇偶性、单调性及最值)

作业:P40练习3,5,6.
函 数 y= sinyx (k∈z)
y= cosx y(k∈z)
பைடு நூலகம்性质
定义域 值域
周期性 奇偶性 单调性
最值
对称中心 对称轴
0
2 -1 2
3 2 x
2
2
0
-1 2
3 x
2
R
R
[-1,1]
周期为T=2kπ
奇函数
在x∈[2kπ-
π
2
π
, 2kπ+ 2
]
上都是增函数
在x∈[2kπ+
(1)
sin(
18
)与
sin(
10
);
(2) cos(
23
5
)与
cos(
17
4
).
解:cos(
23
5
) cos
23
5
cos
3
5

cos(
17
4
)
cos
17
4
cos
4
.
Q
0
4
3
5
,
且 y=cosx 在[0, π] 上是减函数,
cos
4
cos
3
5
,

cos(
17
4
)
cos(
23
5
).
例4.求函数 y sin(1 x ),x∈[-2π,2π]的单调递
-2
y
1
- o
-1
2
3
4
5 6 x
sin(-x)=- sinx (xR)
y=sinx (xR) 是奇函数

1.4.2 第2课时正弦余弦函数的单调性

1.4.2 第2课时正弦余弦函数的单调性

第一章 三角函数
抓基础·新知探究
通技法·互动讲练
提知能·高效测评
解析: (1)∵函数 f(x)=sin x-1 与 g(x)=sin x 的单调区间相同, ∴f(x)=sin x-1 的增区间为 2kπ-π2 ,2kπ+π2 (k∈Z). 减区间为2kπ+π2 ,2kπ+32π(k∈Z).
数学 必修4
数学 必修4
第一章 三角函数
抓基础·新知探究
通技法·互动讲练
提知能·高效测评
题型三 求正弦、余弦函数的最值(值域) 已知函数 f(x)=sin x-1.
(1)写出 f(x)的单调区间; (2)求 f(x)的最大值和最小值及取得最值时 x 的集合; (3)比较 f-π 18与 f-π 12的大小.
数学 必修4
答案: B
数学 必修4
第一章 三角函数
抓基础·新知探究
通技法·互动讲练
提知能·高效测评
2.函数 y=sinx+π2 ,x∈R 在(
)
A.-π2 ,π2 上是增函数
B.[0,π]上是减函数
C.[-π,0]上是减函数
D.[-π,π]上是减函数
数学 必修4
第一章 三角函数
抓基础·新知探究
通技法·互动讲练
第一章 三角函数
抓基础·新知探究
通技法·互动讲练
提知能·高效测评
(2)∵函数 g(x)=sin x,
π 当 x=2kπ+ 2 (k∈Z)时,取最大值 1,
当 x=2kπ+32π(k∈Z)时,取最小值为-1.
∴函数
f(x)=sin
x-1,当
π x=2kπ+ 2 (k∈Z)时,取最大值
0,当
x=2kπ+32
∴sin-π 12<sin -π 18, ∴g-π 12<g-π 18, ∴f-π 18>f-π 12.

必修四1-4-2正弦函数、余弦函数的性质

必修四1-4-2正弦函数、余弦函数的性质

课前探究学习
课堂讲练互动
活页规范训练
方法三:观察法(图象法). 三种方法各有所长,要根据函数式的结构特征,选择适当方法 求解,为了避免出现错误,求周期之前要尽可能将函数化为同 名同角三角函数,且函数的次数为 1.
课前探究学习
课堂讲练互动
活页规范训练
2.确定函数 y=Asin(ωx+φ)(A>0,ω>0)单调区间的方法 π π (1)把 ωx+φ 看成一个整体,由 2kπ-2≤ωx+φ≤2kπ+2(k∈Z) π 解出 x 的范围,所得区间即为增区间,由 2kπ+ ≤ωx+φ≤2kπ 2 3 + π(k∈Z)解出 x 的范围,所得区间即为减区间. 2 (2)在求函数 y=Asin (ωx+φ)或 y=Acos (ωx+φ)的单调区间时, 当 ω<0 时,必须利用诱导公式转化成-ω>0 后再进行求解.
课前探究学习 课堂讲练互动 活页规范训练
自学导引 1.函数的周期性 (1)对于函数 f(x), 如果存在一个非零常数 T, 使得当 x 取定义域 内的每一个值时,都有
f(x+T)=f(x) ,那么函数 f(x)就叫周
期函数,非零常数 T 叫做这个函数的周期. (2)如果在周期函数 f(x)的所有周期中存在一个 最小的正数 , 那么这个最小正数叫做 f(x)的最小正周期.
π 解 (1)法一 令 z=2x+3,∵x∈R,∴z∈R. 函数 f(x)=sin z 的最小正周期是 2π, 就是说变量 z 只要且至少要增加到 z+2π, 函数 f(x)=sin z(Z∈R)的值才能重复取得, π π 而 z+2π=2x+ +2π=2(x+π)+ ,所以自变量 x 只要且至少 3 3 要增加到 x+π, 函数值才能重复取得, 从而函数 (x∈R)的周期是 π.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4.
2.2正、余弦函数的单调性与最值
基础知识和技能训练(九)
1.函数y =cos2x 在下列哪个区间上是减函数( )
A.⎣⎢⎡⎦
⎥⎤-π4,π4 B.⎣⎢⎡⎦⎥⎤
π4,3π4 C.⎣
⎢⎡
⎦⎥⎤0,π2 D.⎣⎢⎡⎦
⎥⎤π2,π 解析 ∵y =cos2x , ∴2k π≤2x ≤π+2k π(k ∈Z ), 即k π≤x ≤π
2+k π(k ∈Z ).
∴⎣
⎢⎡
⎦⎥⎤k π,k π+π2(k ∈Z )为y =cos2x 的单调递减区间. 而⎣
⎢⎡

⎥⎤0,π2显然是上述区间中的一个.
答案 C
2.函数y =cos ⎝
⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是( ) A.⎝ ⎛⎦⎥⎤
-32,12
B.⎣⎢⎡⎦⎥⎤
-12,32
C.⎣⎢⎡⎦
⎥⎤
32,1 D.⎣
⎢⎡⎦
⎥⎤
12,1 解析 由0≤x ≤π2,得π6≤x +π6≤2π
3, ∴-12≤cos ⎝ ⎛⎭⎪⎫x +π6≤3
2,选B.
答案 B
3.设M 和m 分别表示函数y =1
3cos x -1的最大值和最小值,则M +m 等于( )
A.23 B .-23 C .-43
D .-2
解析 依题意得M =13-1=-23,m =-1
3-1 =-4
3,∴M +m =-2. 答案 D
4.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11°
解析 cos10°=sin80°,sin168°=sin12°. sin80°>sin12°>sin11°, 即cos10°>sin168°>sin11°. 答案 C
5.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡

⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦
⎥⎤
π3,π2上单调递减,则ω=( ) A.23
B.32
C. 2
D. 3
解析 由题意知函数f (x )在x =π
3处取得最大值, ∴ωπ3=2k π+π2,ω=6k +3
2,k ∈Z .故选B. 答案 B
6.若a 为常数,且a >1,0≤x ≤2π,则函数y =sin 2x +2a sin x 的最大值为( )
A .2a +1
B .2a -1
C .-2a -1
D .a 2
解析 令sin x =t ,则-1≤t ≤1,原函数变形为y =t 2+2at =(t +a )2-a 2.∵a >1,∴当t =1时,y max =12+2a ×1=2a +1,故选A.
答案 A
7.函数y =sin2x ,x ∈R 的最大值是________,此时x 的取值集合是________.
解析 ∵x ∈R ,∴y =sin2x 的最大值为1,此时2x =2k π+π
2,x =k π+π
4(k ∈Z ).
答案 1 ⎩⎨⎧⎭
⎬⎫
x |x =k π+π4,k ∈Z 8.函数y =13sin ⎝ ⎛⎭⎪⎫
π6-x (x ∈[0,π])的单调递增区间为__________.
解析 由y =-13sin ⎝ ⎛⎭⎪⎫x -π6的单调性,得π2+2k π≤x -π6≤3π
2+2k π,
即2π3+2k π≤x ≤5π
3+2k π.
又x ∈[0,π],故2π
3≤x ≤π.
即递增区间为⎣⎢⎡⎦⎥⎤
2π3,π.
答案 ⎣⎢⎡⎦
⎥⎤
2π3,π 9.若f (x )=2sin ωx (0<ω<1)在区间⎣⎢⎡
⎦⎥⎤0,π3上的最大值为2,则ω=________.
解析 由2sin ωx ≤2,知sin ωx ≤22,又0<ω<1,0≤x ≤π
3,∴0≤ωx ≤π4,∴0≤x ≤π4ω,令π4ω=π3,得ω=3
4.
答案 34
10.函数y =2sin 2x +2cos x -3的最大值是________. 解析 y =2sin 2x +2cos x -3=-2cos 2x +2cos x -1= -2⎝ ⎛⎭⎪⎫cos x -122-12≤-1
2. 答案 -12
11.已知ω>0,函数f (x )=2sin ωx 在⎣⎢⎡⎦
⎥⎤
-π3,π4上递增,求ω的范
围.
解 由-π2+2k π≤ωx ≤π
2+2k π知,2k π-π2ω≤x ≤2k π+π2
ω. 令k =0知-π2ω≤x ≤π
2ω,


⎪⎬⎪⎫-π2ω≤-π3,
π2ω≥π4,ω>0
⇒0<ω≤32. ∴ω的取值范围是⎝ ⎛⎦⎥⎤0,32. 12.已知函数f (x )=2sin ⎝


⎪⎫2x -π3.
(1)求f (x )的单调递增区间;
(2)求f (x )的最大值及取得最大值时相应的x 的值. 解 (1)由2k π-π2≤2x -π3≤2k π+π
2(k ∈Z ), 得k π-π12≤x ≤k π+5π
12(k ∈Z ).
∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ). (2)当sin ⎝

⎭⎪⎫2x -π3=1时,f (x )有最大值2. 此时2x -π3=2k π+π2(k ∈Z ),即x =k π+5π
12(k ∈Z ).
13.已知函数f (x )=2a sin ⎝ ⎛⎭⎪⎫2x -π3+b 的定义域为⎣⎢⎡⎦⎥⎤0,π2,值域为[-5,1],求a 和b 的值.
解 ∵0≤x ≤π2,∴-π3≤2x -π3≤2π
3. ∴-3
2≤sin ⎝ ⎛⎭
⎪⎫2x -π3≤1.
当a >0时,则⎩⎨

2a +b =1,
-3a +b =-5,
∴⎩⎨

a =12-63,
b =-23+12 3.
当a <0时,则⎩⎨

-3a +b =1,
2a +b =-5,
∴⎩⎨

a =-12+63,
b =19-12 3.。

相关文档
最新文档