大气水分及其相变

合集下载

《大气中的水分》课件

《大气中的水分》课件

降水的过程和类型
降水的过程和类型是理解气候变化和天气预报的关键。
降水是指从大气中降落到地面的水滴、冰晶、雪、雹等水汽凝结物的总称。根据降水的物理状态和形 成机制,可以将降水分为雨、雪、冰雹、霜、露等类型。这些不同类型的降水过程和形成机制各不相 同,对气候变化和天气预报有重要影响。
降水对气候的影响
大气中水分的未来变化
REPORTING
温室效应与水汽的关系
温室效应是指大气层能够让阳光透进来照射地面,却阻止地 面热量散发出去的自然现象。水汽是温室气体之一,能够吸 收和重新辐射热量,对地球温度起着重要的调节作用。
随着工业化进程的加速,温室气体排放量不断增加,导致大 气中水汽含量升高,加剧了温室效应,进而引起全球气候变 化。
吸收光谱
水汽的吸收光谱呈现带状 分布,主要吸收中心位于 620-780纳米和11001800纳米的红外波段。
水汽的辐射特性
辐射特性定义
辐射光谱
水汽分子能够发射特定波长的电磁辐 射,这种特性称为水汽的辐射特性。
水汽的辐射光谱呈现带状分布,主要 发射中心位于620-780纳米和11001800纳米的红外波段。
降水
水滴或冰晶等降水物从云层降 落到地面。
地表径流
地表水通过河流、湖泊等途径 流入海洋。
PART 02
水汽的吸收与辐射
REPORTING
水汽的吸收特性
吸收特性定义
水汽分子能够吸收特定波 长的电磁辐射,这种特性 称为水汽的吸收特性。
吸收机制
水汽分子通过振动和转动 跃迁吸收电磁辐射,主要 吸收红外波段和微波波段 的辐射。
汽含量的增加。
水汽变化对未来气候的影响
降水模式的改变
大气中水汽含量的变化会影响降水模式的分布和强度,可能导致某 些地区出现极端天气现象,如暴雨、干旱等。

气象气候学-第1节(大气的一般特性)

气象气候学-第1节(大气的一般特性)
由于气温高,且距地较远,受地球引力作用很小, 所以大气质点中某些高速运动的分子不断地向星际空 间散逸,散逸层也由此而得名。
暖层(中间层顶到800km)
①温度随高度增加迅速上升: 据探测,在300km高度上,气温可达1000℃以上,这是 因为所有波长<0.175μm的紫外线辐射,都被该层中的大 气物质所吸收的缘故。 ②空气处于高度电离状态: 因而这层也称为电离层。它们都能反射无线电波,对 无线电通讯具有重要意义,而且有极光现象出现。
年变化:与温度的变化相似,最高值出现在温度最高、蒸 发最强的7-8月,最低值出现在温度低、蒸发最弱的1-2月。
三、大气水分及其相变 (一)空气湿度
2、空气湿度的时间变化 相对湿度: 日变化:高温时,相对湿度小; 低温时,相对湿度大。
年变化:冬季最大,夏季最小。但季风气候区, 相对湿度夏季大,而冬季小。
水点和冰晶 云
露点温度
凝结高度
降温至水汽 饱和
降水
降水
3)人工影响降水:认为补充某些形成降水的必要条件,促 进云滴迅速凝结或碰撞并增大形成云滴,降落到地面。 冷云催化:冷云由冰晶或冷却水滴组成,或二者混合组 成的云,这种云形成降水主要通过冰水转移,使云滴增 大——人工增加足够的冰晶:加入干冰(二氧化碳),形 成低温区自生冰晶;投入人工冰核(如碘化银、氯化汞), 造成冰水共存。 暖云催化:暖云的形成主要取决于云中有无大小水滴共 存的环境和升降运动的碰撞过程——提供大小水滴:向 云中播入氯化钠、氯化钾等吸湿性物质,吸收水汽,使 云内形成溶液云滴。
降水
4)降水的种类:
对流雨、气旋雨、锋面雨、台风雨和地形雨
1. 地形雨
3 44
2. 对流雨 4 1
235 3
6

第四章 大气中的水分

第四章 大气中的水分

Ei E过冷却水面-E冰面
冰分子脱出冰面所受 的束缚比水分子脱出 水面的束缚大
E冰面 E过冷却水面 100%
冰晶和过冷却水滴共存情况在云中很普遍 冰晶效应 如果实际水汽压处于两者的饱和水汽压之间:
es (过冷却水滴) ea (实际水汽) es (冰晶)
蒸发
凝华
水滴不断蒸发而减小,冰晶因不断凝华而 增大,在冰和水之间水汽转移现象。 冰晶效应:这种由于冰水共存引起冰水间的 水汽转移的作用
E>e 未饱和 蒸发 E=e 饱和 动态平衡 E<e 过饱和 凝结
4
水 融解线
蒸发线
升华线
水的三种相态分别存在于不同的温度和压强条 件下: (1)水只存在于0℃以上的区域,冰只存在于0℃ 以下的区域,水汽虽然可存在于0℃以上及以下的区 域,但其压强却被限制在一定值域下。
蒸发过程:较大动能水分子脱出液面使液面温 度降低。如果保持其温度不变,必须自外界供给热 量,这部分热量等于蒸发潜热L,L 与温度t有如下 的关系:
第四章 大气中的水分
凝结
水汽输送
凝结
降水
蒸发 植物蒸腾

降水
地表径流 地下径流
蒸发
海洋
下渗
地球上水分循环过程对地-气系统的热量平衡和 天气变化起着非常重要的作用
(一) 蒸发和凝结的基本原理
大气中 (二) 地表面和大气中的凝结现象 的水分
(三) 降水及人工影响天气
(一)蒸发和凝结的基本原理
1、水相变化
辐射雾多发生 在夜长、气温低的 冬季。只要满足条 件,在大部分地区 均可形成。
29
(4)混合冷却:当温差较大,且接近饱和的两 团空气水平混合后,也可能产生凝结。由于饱和水 汽压随温度的改变呈指数曲线形式,就可能使混合 后气团的平均水汽压比混合气团平均温度下的饱和 水汽压大。

5_农业气象学_水分

5_农业气象学_水分

w
mw V
青岛农业大学农学与植保学院
农业气象学
第四章 水分
比湿:单位质量湿空气中所含的水汽质量。
(用 q 表示;单位为 g〃g-1或kg〃kg-1)
mw q m w md
青岛农业大学农学与植保学院
农业气象学
第四章 水分
空气密度:单位体积空气中所含的干空气和水汽质量之和。 (用 ρa 表示;单位为 kg 〃 m-3)
第四章 水分
第四章 水分
大气中的水份是大气组成成分中最富于变化的部分。
1. 空气湿度的表示方法和变化规律
2. 水面蒸发、农田蒸散及变化规律 3. 成云致雨的条件和降水特征、水分利用率
青岛农业大学农学与植保学院
农业气象学
第四章 水分
第一节 大气湿度
一、水的相变
1.水相变化的物理过程 2.水相变化中的蒸发潜热 L=2500-2.4t < 2450 J/g >
ρa:空气密度,
0.622 L a(esw ea) P
从周围空气中获得的热量
a Cp (ta tw)
Cp:空气质量热容,J/g〃℃
青岛农业大学农学与植保学院
农业气象学
第四章 水分
0.622 L a Cp (ta tw) a (esw ea ) P 0.622 L Cp (ta tw) (esw ea ) P Cp P ea esw (ta tw) 0.622 L Cp P 湿度常数 ( , Psychrometer constant) 0.622 L
当空气中水汽含量一定时,在压力不变的情况下,降低温度, 使空气达到饱和时的温度,称为露点温度。
例题:已知北京某年初夏ta=30℃,

气象学-大气水分

气象学-大气水分

空气湿度第一节第二节第三节蒸发与蒸腾水汽凝结与大气降水退出第四节水分与农业第四章水分二三第一节空气湿度(air humidity)空气湿度的表示方法空气湿度的时空变化一水的相变一、水的相变水汽是大气中唯一能发生相变的气体,水的三相为水汽、水、冰。

•水相变化的物理过程从分子运动学的观点看,水相变化是各相之间分子交换的过程。

•水相变化中的三种过程在水和水汽共存的系统中,存在三种过程:蒸发过程、凝结过程和动态平衡。

气象学上用空气湿度表示大气中水汽含量的多少二、空气湿度的表示方法1.水汽压(water vapour pressure)水汽压(e):空气中水汽产生的压强。

水汽压可以直接表示空气中水汽含量的多少。

水汽压单位:百帕(hPa),毫米汞柱mmHg饱和水汽压:空气中水汽达到饱和状态时的水汽压(saturation/equilibrium vapour pressure),用E或e表示。

s(1)物态同温度下冰面E冰<E水饱和水汽压E的影响因素云中,冰晶与过冷却水滴常常并存,若E冰<e<E水,则水滴将蒸发而逐渐缩小,冰晶将不断凝华而增大,水分子不断从水滴向冰晶转移,这就是“冰晶效应”E受物态、蒸发面形状、水溶液浓度、温度等因素影响。

凝结增长大小水滴共存(2)蒸发面形状当蒸发面曲率半径<1μm,与水分子半径相近时,蒸发面形状会影响E的大小。

(3)云中水滴大小云中水滴大小不一,曲率不同,若实际水汽压介于大小水滴的E之间时(E大<e<E小),小水滴因蒸发而缩小,大水滴因凝结而增大。

凝结增长(4)蒸发面浓度当蒸发面浓度的不同,也会影响E的大小。

因为浓度大的液体表面水分子占据的面积小,单位时间内逸出的水分子就少。

饱和水汽压与温度关系曲线饱和水汽压(E)温度(℃)4.饱和差(saturation deficit/deficiency)饱和差(d):同温度下的饱和水汽压与空气中实际水汽压之差。

第四章 大气中的水分

第四章 大气中的水分

空气中常见的降温过程:
(1)绝热冷却 云、雨、雪、雹等。 (2)辐射冷却 露、霜、辐射雾等。 (3)接触冷却(平流冷却) 平流雾、雾凇V等。 (4)混合冷却:两团温差大、但都接近饱和而未饱 和的空气混合后有可能达到饱和。 低云、雾。
17
温度(℃)
-30 0.5
-20 1.2
-10 2.9
0 6.1
按云的外形、结构特点和成因:分为11属,29类。

高云族:云底高度6000米以上,冰晶,白色。一般不降水 中云族:云底高度2000-6000米,水滴、过冷却水滴、冰 晶。有时降水 低云族:云底高度2000米以下,水滴、水滴或冰晶。 云型 层状云 低 雨层云 层积云 层云 淡积云 浓积云 积雨云 碎云 中 高层云 高 卷层云、卷云
e 100% E
5
2.年变化
干燥而全年的绝对湿度a变化不大的地区:与T的 年变化相反,冬季最大,夏季最小。 季风气候区:冬季寒冷干燥,夏季炎热湿润,与气 温一致。
我国 最大 江南 春末夏初 华南 春(初春) 华北 夏季 西北 冬季 律) 最小 秋季 秋季 春季 夏季(不受季风影响,符合一般规
6
第二节 蒸发和蒸散
24
雾的种类(根据成因):雾可分为多种类型,常见 的有辐射雾和平流雾。
⑴辐射雾:局部地区在晚上辐射冷却,t≤td而形成的 雾,日出后消散 有利条件:晴朗、微风、湿度大、大气层结稳定的夜 间 特点: ①季节性强(冬半年),常出现在秋冬季节; ②明显日变化; ③地方性特点:局地性、范围小。 “十雾九晴” :辐射雾,预示着晴天
纯净空气--水汽自生凝结过程 凝结(华)核:能起到水汽凝结(华)核心作用的大气 气溶胶质粒,包括固体、液体或亲水气体。 作用机制:

大气中水分

大气中水分

三、空气湿度的垂直分布
通过蒸发(蒸腾)作用,水汽进入大气,随空气的垂
直运动向上输送,高度高愈度高愈,水高汽:愈少,因此,在对流层 中水汽压和绝对湿度水随高汽度含的量升减高小而减小。
从地面上升到1实.5~际2水.0汽Km高压度减处小,e就减小到近地面 的1/2左右,5Km处约绝为近对地湿面度的减1/小10。相对湿度随高度的 分 随布高比度较 增复加杂而,减相难小对以,湿用气简温度单随?的高?规度?律增?说加明而?。降?这低是,因使为饱水和汽水压汽
土壤的坡度、坡向等有关。
4、抑制土壤水分蒸发的措施: 根据土壤水分蒸发所处的阶段,采取不同的措施。
第一阶段:松土以切断土壤毛细管 第二阶段:镇压结合中耕松土 第三阶段:考虑灌溉措施
三、植物蒸腾 通过植物体表蒸发水分的过程称为蒸腾
(transpiration)。
蒸腾主要是通过叶片气孔来实现的。
蒸腾速度主要取决于三个基本条件:小气候条 件、植物的形态结构、植物的生理类型。
一、大气中的水汽含量及其表示方法
(一)水汽压(e)---- hPa(百帕)
大气中水汽所产生的分压强叫水汽压 (vapour pressure)。
水汽压的大小和空气中水汽含量的多少有关, 当空气中的水汽含量增多时,水汽压就相应地增大, 反之,水汽压减小。所以,用水汽压的大小可表示 空气中水汽含量的多少。
一、大气中的水汽含量及其表示方法
饱和水汽密度也随温度的升高而迅速增大。 由于绝对湿度的直接测量比较困难,而水汽压 值简单易测,所以在实际工作中,常用水汽压代 替绝对湿度。
一、大气中的水汽含量及其表示方法
(四)相对湿度(r)--天气预报湿度的指标
空气的实际水汽压与同温度下饱和水汽压之百分

气象学与气候学-大气中的水分-蒸发和凝结

气象学与气候学-大气中的水分-蒸发和凝结

E
E e19.9t / 273t 0
5
饱和水汽压随温度的升高而增大 高温时的饱和水汽压比低温时要大 随着温度的升高,饱和水汽压按指数规律迅速 增大
6
重要推论:
空气温度的变化对蒸发和凝结有重要影响
高温时,饱和水汽压大,空气中所能容纳的水 汽含量增多,因而能使原来已处于饱和状态的 蒸发面会因温度升高而变得不饱和,蒸发重新 出现;
气象学与气候学
大气中的水分-蒸发和凝结
1
一.水相变化
1、水的三态和相变原理 (1)大气中的水分,可以以固态、液态、气
态存在,水分处于哪种形态,取决于其温度。 (2)相变原理 (principle of phase transformation) 水的相态变化,实质上是水分子运动状态
的反映。
2
2.水相变化判据
(一)空气要达到饱和或超饱和状态 (e≥E) 途径:1、增加大气中的水汽含量
2、空气冷却使T<Td,减小E 绝热冷却:空气上升 辐射冷却:夜间地面降温 平流冷却:暖空气流到冷水面上
10
三、大气中水汽的凝结条件
(二)有充足的凝结核 1、来源: 土壤微粒、风化岩石、火山微粒 工业、失火烟尘 海水飞溅时泡沫中的盐粒 流星、陨石燃烧后的微尘 。 2、作用 增大水滴半径,降低E,快速饱和, 增大水滴体积, 下降时不易蒸发掉 。
11
End
12
同样,可以得到冰面上的水相变化判据
4
二.饱和水汽压
(一)饱和水汽压与温度的关系
(1)定义: 在一定的温度条件下,一定体积 的空气所能容纳的水汽分子的数量是有一定 限度的,如果水汽含量恰好达到此限度,就 称为饱和空气,饱和空气中水汽所产生的压 力,就称为饱和水汽压。

气象学 第七章

气象学 第七章

年变化:同气温年变化,最高在7月,最 低在1月。
二、相对湿度的日变化和年变化
日变化:一般与气温日变 化反相,最大值出现在清 晨,最小值出现在14~15 时。 年变化:一般与气温年变 化反相,最小在7月,最 大在1月;但我国大部份 地区的相对湿度最大在7 月,最小在1月,这主要 是因为这些地区是由季风 气候控制的。
由热力学第一定律有 L U v U w E( v v v w ) U v U w R w T dL dU v dU w R w dT dU v c vvdT, dU w c w dT, c pv c vv R w 整理可得 dL (c pv c w )dT 积分上式0 L L 0 (c pv c w )( T T0 ) ( L L ,T0 T ) 将L 0 2.5 10 6 J kg 1 , c pv 1.863 10 3 J kg 1 K 1 , c w 4.19 10 3 J kg 1 K 1 , T0 273 K代入上式可得 L 2.5 10 6 2.327 10 3 t J kg 1 同理可得融解潜热L f 和升华潜热L S L f 3.34 10 5 2.076 10 3 t J kg 1 L S 2.83 10 6 0.251 10 3 t J kg 1
北半球不同纬度水量平衡各分量的平均 值见表 水量平衡方程各分量的大小是变化的, 只要改变下垫面的构造和特征,就能使 水量平衡的各个分量发生变化,如修建 水库、植树造林。
纬度 °N
80-90
S海洋(%)
93.4
T气(K)
249.6
70-80 60-70 50-60 40-50 30-40 20-30 10-20 0-10

5、水分

5、水分
1、蒸散的计算公式: A、水分平衡法 Pi+△ Sw+-R0-D-ET=0 适用范围:大范围、长时间的蒸散计 算
B、桑斯威特法(气候学法)
ETP:每月的可能蒸散,ld是实际日长, Nm是一个月的日数,tm为月平均气温 桑斯威特法是计算当地可能蒸散的平均 量的公式
C、彭曼法(气象学法)
E0:开阔水面蒸发量,其大小主要 是由开阔水面的净辐射Rn和空气的干燥 力Ea有关,其贡献大小与湿度常数r和该 温度下饱和水汽压的斜率S有关,其中
三、降水 定义:降水是指降落到地面的液态或者 固态水 1、降水的形成 云滴增大是使云变成降水的关键因 素,云滴增大主要通过凝结增长过程和云滴 碰并增大的 2、降水的种类 A、雨:降落到地面的液态水,按 性质可分为 1、连续性降水。多为雨层云 的高层云,时间长、尺度中
2、阵性降水 。一般为积雨云,降水时间短、 强度大 3、毛毛雨。多为层云和层积云 B、雪:从云中降到地面的各种类型冰 晶的集合物如果地面气温高于零度,可能会 出现雨夹雪 C、霰:白色不透明而疏松的小冰球 D、冰雹:从去中降落的冰球或者冰块 3、降水的特性 1、降水量:指单位时间落到单位面积 上未蒸 发的水层厚度 2、降水强度:单位时间内的降水量
三、蒸腾 阻抗公式:
蒸腾潜热
蒸腾系数: 指植物形成单位重量干物质所消耗 的水量Kt 一般抗干旱作物蒸腾系数低,水份 利用率高;而一般作物则蒸腾系数高, 水分利用率低
四、蒸散
可能蒸散: 在一个平坦开阔的地表,其上生成 有旺盛且完全覆盖地面的矮小绿色作物, 在无热平流干扰,且永远有充分供水条 件下的农田蒸散 ETp
近地面气层的凝结物的雾 定义:当近地层的温度降到露点温度 下,空气中的水汽凝结成小水滴或者凝华 成冰晶,弥漫于空气中,使水平能见度小 于1000米的天气现象 条件:1近地面水汽充足 2有冷却过程 3有凝结核 4大气层稳定

第二节 大气水分与降水

第二节  大气水分与降水

三、水汽凝结现象
1、地面凝结现象
——当近地面层空气冷却至露点温度以下时, 水汽会凝结在地面或地面物体上。
◆露 如果露点温度高于 0 ℃,水汽凝结为液态, ◆霜 称为露。露的水量虽然很小,胆对植物的生 如果露点温度低于 0 ℃,水汽凝结为固态, 雾凇 雾凇和雨凇通常都形成于树枝、电线上。 ★露和霜的形成条件:近地面层空气湿度要大; 霜期的长短对农业有重要意义。入冬后第一个 长却十分有利,尤其是干旱区和干热天气情 称为霜; 有利于辐射冷却的天气条件;地面或地物热传 霜日叫初霜日;最末一个霜日较终霜日。初霜 雨凇 严重时可压断电线、折损树木。特别是 是一种白色固体凝结物,有过冷雾滴附着与 况下,露常有维持植物生命的功效。 ◆霜冻 导不良。 日至终霜日的持续时间称为霜期。一般说来纬 雨凇的破坏性更大,坚硬的冰层使被覆 地面物体或树枝迅速冻结而成,俗称“树 是形成在地面或地物迎风面上的,透明的或毛玻璃状 是指温度下降到足以引起农作物受害或死 度越高霜期越长,海拔越高霜期越长。霜期越 盖的庄稼糜烂、牲畜无草可吃,道路变 的紧密冰层,俗称“冰凌”。多半在温度为0~-6℃时, 挂”。多出现于寒冷而湿度高的天气条件下。 亡的低温。 长对农业生产越不利。 滑,农牧业和交通运输业受损。 有过冷却雨、毛毛雨接触物体表面形成;或是经过长 雾凇和霜的形状相似,但形成过程有别。
3、湿度的空间分布 相对湿度的空间分布特征取决于 纬度和海陆分布状况。 赤道地带终年高温多雨,而高纬 度地带则全年低温,所以相对湿度都 较高≥80%。副热带区域,相对湿度 较低,约50%。 通常,相对湿度大陆小海洋大。 在大陆,距离海洋越近,相对湿度越 大;距离海洋越远,相对湿度越小。
二、水相变化
2、蒸发量
• ◆蒸发量:因蒸发而消耗的水量,以水层厚度 mm 表示。蒸发 1 mm 厚的水,相当于 1 m2 • 面积上蒸发 1000g 的水量。 • ◆蒸发速率:单位时间从单位面积上蒸发出来 的水分质量,单位为 g/cm2 · 。 s • ——蒸发量变化与气温变化基本一致,即每天 午后最大日出前最小;夏季大冬季小;海洋大、 大陆小。降水多的地方蒸发量也大;干旱区蒸 发能力强,但蒸发量小。

气象学与气候学 第三章(1)

气象学与气候学  第三章(1)

有充足的凝结核:
1、来源:土壤微粒、风化岩石、火山微粒;工 业、失火烟尘;海水飞溅泡沫中的盐粒;流星、陨 石燃烧后的微尘。 2、作用: ①增大水滴的半径,降低饱和水汽压,快速饱和 ②增大水滴的体积,下降中不易蒸发掉 例:无核冰晶:3—5倍的饱和水汽压才能凝结;有 核冰晶:相对湿度小于100%也可以凝结
压 强 8 C K

6
2 A 3 O
4 B’ B 2
1
水汽
-16
-12
-8
-4
0
4℃
二、饱和水汽压
蒸发、凝结、动态平衡状态,实有水汽压e 与对应的饱和水汽压E进行比较。 饱和水汽压和蒸发面的温度、性质(水面、 冰面,溶液面等)、形状(平面、凹面、凸 面)之间,有密切的关系。
1饱和水汽压与温度的关系
第二节 地表面和大气中的凝结物
要求
1、熟练掌握露、霜、雾淞、雨淞、雾、云等的概 念;雾的形成条件、云的形成条件、分类。 2.掌握各类雾的形成、云的特点。
一、地面的水汽凝结物
1.露与霜 2.雾凇与雨凇
露与霜

露:温度在0以上,水汽凝结为液态, 称为露;(夏季最多) 露的水量很小,但对植物生长却十分有 利,尤其在干旱地区和干热天气情况下, 露常有维持植物生命的功效;


霜:温度在0以下,水汽凝结为固态,称
为霜;(常见于冬季) 无霜期长短对农业有重要意义;一般说来, 纬度愈高,无霜期愈短;纬度相同,海拔愈 高,无霜期愈短.山地阳坡无霜期长于阴坡; 低洼地段无霜期比平坦开阔地段短;
农业上要预防的是霜冻而不是霜,霜和露都是好天气的标志: 露 水见晴天;霜重风晴天
露和霜的形成条件
1水相变化的物理过程
水汽浓度不大,单位时间内跑出水面 的水分子比落回水中的水汽分子多, 系统中的水就有一部分变成了水汽, 这就是蒸发过程,水分子落回水面的 过程叫凝结过程。

自然地理学复习笔记-

自然地理学复习笔记-

第四章气候第一节大气的一般特性一、概述(如气温、湿度、压强等)和大气现象(如风、雨、雪等)的综合,是大气中的短期过程。

成各种风、雨、云、雾、雪、霜、冰灯千变万化的物理现象,叫气象。

大气环流、下垫面性质和人类活动在长时间相互作用下,在某一段时间内大量天气过程的综合,它既包括多年天气平均状况,又包含个别年份的极端天气状况。

气候是一定时段内由大量天气过程综合而得出的长期天气过程,其变化周期长。

二、大气的组成和结构1、大气的组成低层大气由多种气体及悬浮在其中的液态固态杂质组成,主要包括干洁空气、水汽、杂质等①干洁空气:大气中不含水汽的和杂质的整个混合气体,称干洁空气,其主要成分是氮、氧、氩,此外还有少量的二氧化碳、臭氧和氢、氖、氦氪、氙灯稀有气体。

②水汽:水汽与干洁空气混合在一起,成为实际的大气主要成分之一,只要聚集在大气的低层,向高层迅速减少,来自于江河湖海及潮湿地面的水分蒸发和植物蒸腾。

③杂质:大气中悬浮着这种固体杂质和液体微粒(小水滴或小冰晶)称气体溶胶粒子④大气污染:由于人类活动的影响,是局部甚至全球范围内大气成分发生了对生物体有害的变化,称大气污染。

主要污染物有粉尘、烟尘、SO2,NO2,CO,CO2,H2S,HC等,其污染员主要是工业废气、汽车尾气、家庭炉灶和人们在生活中排放的各种废气,以及农药、化肥使用等。

2、大气的结构1)对流层:大气圈的最底层,自地面到8~18km,厚度最薄并随唯独、季节而变化,对流层质量最大,水汽最多,是天气变化最主要和最复杂的一层,对人类活动和地球生物的影响最大,与自然地理环境关系最密切。

对流层的基本特征:①气温随高度的增加而降低:由于对流层主要从地面得到热量,因此愈接近地面空气受热愈多,气温就愈高,离地面愈远,气温就愈低。

在不同地区,不同季节,不同高度,气温随高度的降低值是不同的,平均每上升100米,气温下降约0.65°C。

②具有强烈的垂直对流运动:由于地面的加热不均的影响,产生对流运动,对流运动的强度主要随纬度、季节的变化而不同,一般低纬较强,高纬较弱,夏季较强,冬季较弱。

大气中的水分资料

大气中的水分资料

蒸发受气象因子和地理环境影响。蒸发面温度 蒸发受气象因子和地理环境影响。 越高,蒸发越快、蒸发量越大。 越高,蒸发越快、蒸发量越大。蒸发量变化与 气温变化基本一致, 气温变化基本一致,即每天午后最大日出前最 夏季大冬季小;海洋大、大陆小。 小;夏季大冬季小;海洋大、大陆小。
蒸 发 面 的 影 响
地理纬度的影响
地球上主要水体的平均更新周期: 地球上主要水体的平均更新周期: 更新最快———— 大气水 更新最快 更新最慢———— 冰川 更新最慢
2、水相变化与潜热交换
蒸发——由水变成水汽 蒸发——由水变成水汽; 由水变成水汽; 凝结——由水汽变成水 由水汽变成水; 凝结——由水汽变成水; 冻结——由水变成冰 由水变成冰; 冻结——由水变成冰; 融解——由冰变成水 由冰变成水; 融解——由冰变成水; 凝华——由水汽直接变成冰 由水汽直接变成冰; 凝华——由水汽直接变成冰; 升华——由冰直接变成水汽 由冰直接变成水汽。 升华——由冰直接变成水汽。 ◆水的相变过程伴随着能量转化和交换,这 水的相变过程伴随着能量转化和交换, 种能量称为潜热( 种能量称为潜热(能)。
3、蒸发及其影响因素
当 e < E 时,出现蒸发; 出现蒸发; 则出现凝结。 当 e > E 时,则出现凝结。 ◆蒸发量:因蒸发而消耗的水量,以水层厚度 蒸发量:因蒸发而消耗的水量, mm 表示。蒸发 1 mm 厚的水,相当于 1 m2 表示。 厚的水, 1000g 的水量。 面积上蒸发 1000g 的水量。 ◆蒸发速率:单位时间从单位面积上蒸发出来 蒸发速率: 的水分质量, 的水分质量,单位为 g/cm2 · s 。 ——蒸发受气象因子和地理环境影响 ——蒸发受气象因子和地理环境影响。蒸发面 蒸发受气象因子和地理环境影响。 温度越高,蒸发越快、蒸发量越大。 温度越高,蒸发越快、蒸发量越大。蒸发量变 化与气温变化基本一致, 化与气温变化基本一致,即每天午后最大日出 前最小;夏季大冬季小;海洋大、大陆小。 前最小;夏季大冬季小;海洋大、大陆小。

大气中的水分

大气中的水分

13
→ 为什么饱和水汽压随温度升高而迅速增大?
✓ 温度越高,水分子平均动能越大,单位时间脱出水面的分子越多;只有当水面上水汽密度增大到更大值时, 落回水面的分子数才和脱出水面的分子数相等。
✓ 温度越高,水汽分子平均动能越大,而水汽压是水汽重量及其碰撞器壁的结果,故也随之增大。
2020/12/8
14
2020/12/8
74
积雨云的云底(悬球状云)
2020/12/8
75
积云性层积云:云块较大,呈灰白色、暗灰色,多为条状,顶部具有积云特征。由衰退的积云或积雨云扩展、平衍 而成; 也可由傍晚地面四散的受热空气上升而直接形成。
饱和水汽压判据
eρwRwT
Nn 蒸发未饱和 ?
Nn 动态平衡 饱和
Nn
凝结过饱和
2020/12/8
水 和
水 汽
E e E e
蒸发未饱和 动态平衡 饱和
Ee 凝结过饱和
冰 和 水 汽
Es e Es e
蒸发未饱和 动态平衡 饱和
Es e 凝结过饱和 5
C
• 水相平衡图
O B′
B
→ O点:三相共存点,t0 = 0.0076℃,E0 = 6.11hPa → K点:临界点,tk=374,Ek=2.2×105hPa。
2020/12/8
46
2020/12/8
• 形成辐射雾的有利天气条件是什么?
→ 空气中有充足的水汽; → 天气晴朗少云; → 风力微弱(1—3m/s); → 大气层结稳定。
47
• 形成平流雾的有利天气条件是什么?
→下垫面与暖湿空气的温差较大; →暖湿空气的湿度大; →适宜的风向(由暖向冷)和风速(2~7m/s); →层结较稳定。

大气中水分

大气中水分
的水变为水汽逸出土壤表面,是通过两种不同的形 式完成的。
大家好
1、土壤水分蒸发的形式:
A、土壤水沿毛管上升到土壤表面后才能进行蒸发,进 入大气。


地表面为蒸发面
这种形式蒸发快
大家好
29
B、土壤水分先在土壤中蒸发,变为水汽,再通过土壤
孔隙扩散出土表进入大气。

。。。
地表面 蒸发面
蒸发面因土壤水多少深浅不同,这种形式蒸发慢
大家好
一、大气中的水汽含量及其表示方法
对一团空气而言,在运动过程中,只要其内部没 有水相的转变,则水汽质量不发生变化,气块的 比湿保持不变。
在讨论空气的上升或下降运动时,通常用比湿表 示空气湿度,在讨论水汽输送时,比湿梯度是重 要的物理量。
大家好
二、空气湿度的变化
从下垫面蒸发出来的水汽,进入近地气层,然后通 过对流、乱流和分子扩散作用向上输送,平流在水平方 向的输送,因此影响空气湿度变化的主要因子是蒸发速 度与空气运动影响水汽交换强度,两者都随气温而变化。 由于气温具有周期性的日、年变化,因此,空气湿度也 具有周期性的日、年变化。在近地气层中以绝对湿度和 相对湿度的日、年变化最为显著。
大家好
一、大气中的水汽含量及其表示方法
(六)露点温度(Td)-----℃ 当空气中的水汽含量和气压不变时,降温使水汽
压 达 到 饱 和 时 的 温 度 称 为 露 点 温 度 (dew-point temperature),简称露点。
Td 的高低反映了空气中水汽含量的多少,空气 温度降低到露点温度及其以下,是导致水汽凝结的重 要条件之一。
蒸腾速度主要取决于三个基本条件:小气候条 件、植物的形态结构、植物的生理类型。
蒸腾速度在一定限度内,随温度的增大而增大, 随饱和差的增大而增大,随风速的增大而增大。植 物的地面覆盖密度、根密度和深度,气孔的大小及 张开程度和干旱时根系的吸水能力等都会不同程度 地影响到蒸腾速度。

气象第三章

气象第三章

第三章大气中的水分地球上的水分就是通过蒸发、凝结和降水等过程循环不已。

在自然界中,常有一种或数种处于不同物态的物质所组成的系统。

在几个或几组彼此性质不同的均匀部分所组成的系统中,每一个均匀部分叫做系统的一个相。

单位时间内跑出水面的水分子比落回水中的水汽分子多,系统中的水就有一部分变成了水汽,这就是蒸发过程。

动态平衡时的水汽称为饱和水汽,当时的水汽压称为饱和水汽压E。

水相变化的判据:e与E的大小的比较,若水汽压大于饱和水汽压,则过饱和。

O的横坐标为0℃水只存在于0℃以上的区域,冰只存在于0℃以下的区域,水汽虽然可存在于0℃以上及以下,但其压强却被压制在一定范围内。

图中,OA、OB分别表示水与水汽、冰与水汽两相共存的情况。

OA又称蒸发线,表示水与水汽处于动态平衡时水面上饱和水汽压与温度的关系线上K点所对应的温度和水汽压是水汽的临界温度和临界压力,高于临界温度时就只有水汽存在了,因此蒸发线在K点中断。

OB为升华线,表示水汽与冰平衡时冰面上饱和水汽压和温度的关系。

OC是融解线,表示冰与水达到平衡时,压力与温度的关系。

可以看出COK区域为水。

凝结时,由于水汽分子变为液态水,分子间的位能减小,因而有热能释放出来。

这种凝结时释放出来的热量叫做凝结潜热。

它与同温下的蒸发潜热数量上相等。

蒸发潜热(L)是指在恒定温度下,使某物质由液相转变为气相所需要的热量。

L与温度之间有关系:L =(2500-2.4t)×103(J/kg)当t=0℃时,L=2.5×106 J/kg 当温度变化不大时,L变化很小,故取L=2.5×106J/kg同理,冰升华为水汽有两个过程,冰变为水,水变为水汽,故升华潜热Ls为融解潜热(3.34×105 J/kg)和蒸发潜热的和,故Ls=2.8×106 J/kg饱和水汽压与蒸发面的温度、性质(水面、冰面,溶液面)、形状(凸面、凹面、平面)之间有密切的关系。

大气层含水量对天气变化的影响分析

大气层含水量对天气变化的影响分析

大气层含水量对天气变化的影响分析天气变化是我们生活中经常遇到的事情,它给我们的衣食住行带来了很多挑战。

而大气层含水量作为天气变化的重要因素之一,对天气变化有着深远的影响。

本文将从大气层含水量的影响机制、天气变化与大气层含水量的关系以及对生态环境的影响三个方面进行分析。

首先,我们来了解一下大气层含水量的影响机制。

大气层含水量主要通过水汽的蒸发和降水的过程来调节。

当气温升高时,水面上的水分会蒸发成水汽,使大气层含水量增加;而当温度下降时,水汽会凝结成云、雨水等形式,从而降低大气层含水量。

此外,风的影响也十分重要。

风的吹动会带走大气层中的水汽,使大气层含水量减少。

因此,大气层含水量的变化与气温、降水以及风速有着密切的关系。

接下来,我们看看天气变化与大气层含水量的关系。

天气的变化有时会伴随着大气层含水量的变化。

例如,当大气层含水量较高时,气温升高,天空阴云密布,通常会出现降水现象;而当大气层含水量较低时,气温较低,天空晴朗无云,降水几率较小。

此外,大气层含水量的变化还会影响到气温的变化。

较高的大气层含水量会导致大气层的温度增加,从而使地面温度上升;而较低的大气层含水量则会导致温度下降。

因此,天气变化与大气层含水量密切相关,大气层含水量的变化会直接影响到天气的变化。

此外,大气层含水量的变化对生态环境也有一定的影响。

大气层含水量的增加会导致降水增加,进而改变地表水资源分布格局和土壤湿度。

这对作物生长和生态环境有着重要影响。

例如,在降水增加的地区,农作物的生长条件会改善,但同时也容易导致水浸灾害的发生。

而大气层含水量的减少则会使地表水资源减少,导致区域干旱等问题。

在干旱的地区,植被容易受到影响,生态环境逐渐退化。

因此,大气层含水量的变化会对生态系统的稳定性产生一定影响。

综上所述,大气层含水量作为天气变化的重要因素之一,对天气变化以及生态环境都有着重要的影响。

了解大气层含水量的影响机制、掌握天气变化与大气层含水量的关系,有助于我们更好地理解和预测天气变化,同时也有助于我们更好地保护和管理生态环境。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档