第二章 固体电介质的击穿特性
第8课-固体电介质的击穿
电介质的耐热等级
介质热老化的程度主要决定于温度及介质经受 热作用的时间。为此国际电工委员会按照材料 的耐热程度划分耐热等级。如
Y 90 A 105 E 120 B 130 F 155 H 180 C >180℃
根据这个绝缘耐热等级可以进行设备运行负荷 的最佳经济性设计
电介质的耐寒性
耐寒性则是绝缘材料在低温下保证安全 运行的最低许可温度,否则,固体可能 变脆、开裂,液体可能凝固。如10、25、 40 号变压器油分别表示其凝固温度为 10、-25、-40℃
3). 热击穿
例:实验曲线分A、B两个范围 在A范围内:击穿电压和介质温度无关,属于电击穿性质 在B范围内:当温度超过某临界值后,击穿电压随介质温 度的增加而下降,这表明击穿已涉及到明显的热过程
Ub (kV)(有效值)
50 40 30 20 10 0 0 20 40 60 A B
80 100 120 140 θ cr
击穿电压为一分钟耐压的百分比数 (%)
500 450 400 350 300 区域B 区域A 250 Φ 50 200 150 100 50 0 Φ 100 μs
A、B 区:击穿属于电击穿 C 区: D 区: 属于热击穿 为电化学击穿、 电老化,击穿时 间在几十个小时 以上,甚至几年
区域C
15.3
固有击穿理论:单位时间内传导电子从电场中获 得的能量和因碰撞而失去的能量不平衡引起破坏,
称之为固有击穿理论
电子崩击穿理论:当上述平衡破坏后,电子整体 上得到加速,与晶格产生碰撞电离,反复碰撞形 成电子崩,电场作用下给电子注入能量激增,导 致介质结构破坏,称之为电子崩击穿理论
电击穿的特点
时间影响:电压作用时间短,击穿电压高 介质特性:如果介质内含气孔或其它缺陷,对电 场造成畸变,导致介质击穿电压降低 电场均匀度:电场的均匀程度影响极大 累积效应:在极不均匀电场及冲击电压作用下,介质有 明显的不完全击穿现象,不完全击穿导致绝缘性能逐渐 下降的效应称累积效应。介质击穿电压会随冲击电压施 加次数的增多而下降 无关因素:击穿电压和介质温度、散热条件、介质厚 度、频率等因素都无关
第二章 液体、固体介质的电气特性..
中国石油大学胜利学院
高பைடு நூலகம்压技术
第一篇 各类电介质在高电场下的特性
第二章
电介质的等效电路
I I1 I 2 I 3
2.介质损耗角正切
介质损耗有两种:极化损耗、电导损耗 直流电压下只有电导损 耗 交流电压下既有电导损耗,还有周 期性极化引起的极化损耗。 介质损耗角 =功率因素角 的余角 介质损耗角的正切tg称为介质损耗因数
P UIcos UI R UIC tg U C p tg
3、杂质的影响
一般来说杂质的含量越高,液体介质击穿电压降低 的越多。油中主要的杂质就是水分。
另外还有其他固体杂质, 比如含纤维量:纤维的含量即 使很少,对击穿电压油很大影 响。
4、油量的影响
三、减少杂质影响的方法
由于油中杂质对油隙的工频击穿电压有很大的影响, 所以从工程角度考虑,应设法减少杂质的影响,提高油的 品质。 1、提高油品质的方法 (1)过滤 将油中在压力下连续通过滤油机中的大量滤油层,油 中杂质(包括纤维、碳粒、树脂、油泥等)被滤纸阻挡, 油中大部分的水分和有机酸等也被滤纸纤维吸附,从而大 大提高油的品质。 (2)祛气 常用的方法是先将油加热,在真空中喷成雾状,油中 所含水分和气体即挥发并被抽走,然后在真空条件下将油 注入电气设备中。
球盖形电极;
对经过过 滤处理、脱气 和干燥后的油 及220KV以上 电力设备内的 油,应采用球 盖形电极进行 试验
固体电介质的击穿特性
一、固体电介质的击穿过程
1. 固体电介质击穿特性的划分
击穿电压为一分钟耐压的百分比数(%) 15.3
500
450 400
350
300 250
区域A 区域B Φ50
200
区域C
150 100
Cathode
- +- ++ -
+
+
+
+
Anode
+
+
时,散出的热量Q与介质中最高温度tm的关系
θ 12 3
4 b
a
0 t0 ta
tk
tb
tm
不同外施电压下介质发热散热与介质温度的关系
曲线 1:
发热永远大于散热,介质温度将不断升高,在电压U1 下最终必定发生热击穿
θ 12 3 4 b
a
0 t0 ta
tk
tb
tm
不同外施电压下介质发热散热与介质温度的关系
(c)
异极性空间电荷的积累
概念:电介质在外加电场的 作用下,在金属电极与电介 质之间的界面上积聚了与施 加在该电极上的电压极性相 反的电荷,这些电荷称为异 极性空间电荷
特点:异极性空间电荷增强 金属电极与介质间的界面场 强,结果可导致介质整体击 穿电压的降低,如(b)所示 。当极性翻转时,可导致击 穿电压升高,如(c)所示
平衡点
ta<t<tb : 不 会 发 生 热 击 穿 ,介质温度将稳定在ta
不同外施电压下介质发热散热 与介质温度的关系
曲线 2:
与直线4相切,U2为临界热击穿电压;tk为临界热击穿温 度
最全的高电压技术各章节选择判断题汇总及答案附期末测试
高电压技术各章选择判断题汇总及答案附期末测试第一章电介质的极化、电导和损耗1.单选题用于电容器的绝缘材料中,所选用的电介质的相对介电常数()。
A 应较大B 应较小C 处于中间值D 不考虑这个因素A2.单选题偶极子极化()。
A 所需时间短B 属于弹性极化 C 在频率很高时极化加强D 与温度的关系很大D3.单选题电子式极化()。
A 所需时间长B 属于弹性极化C 在频率很高时极化加强D 与温度的关系很大B4.单选题离子式极化()。
A 所需时间长B 属于弹性极化C 在频率很高时极化加强D 与温度的关系很大B5.单选题极化时间最长的是()。
A 电子式极化 B 离子式极化 C 偶极子极化 D 空间电荷极化D6.单选题极化时伴随有电荷移动的是()。
A 电子式极化 B 离子式极化C 偶极子极化D 夹层极化D7.单选题夹层极化中电荷的积聚是通过电介质的()进行的。
A 电容B 电导C 电感D 极化B8.单选题相对介电常数是表征介质在电场作用下()的物理量。
A 是否极化B 损耗C 击穿D 极化程度D9.单选题对于极性液体介质,温度较低时,随温度的升高,极化()。
A 减弱B 增强C 先减弱再增强D 不变 B10.单选题用作电容器的绝缘介质时,介质的相对介电常数应()。
A 大些B 小些C 都可以D 非常小A11.单选题用作一般电气设备的绝缘时,介质的相对介电常数应()。
A 大些B 小些C 都可以D 非常小B12.单选题表征电介质导电性能的主要物理量为()。
A 电导率B 介电常数C 电阻D 绝缘系数A13.单选题电介质的电导主要是()引起的。
A 自由电子B 自由离子C 正离子D 负离子B14.单选题金属导体的电导主要是()引起的。
A 自由电子B 自由离子C 正离子D 负离子A15.单选题通常所说的电介质的绝缘电阻一般指()。
A 表面电阻B 体绝缘电阻C 表面电导D 介质电阻B16.单选题直流电压(较低)下,介质中流过的电流随时间的变化规律为()。
《高电压技术》作业集参考答案(专本科函授)
6.扩散7.改善电场分布、削弱气隙中的游离过程8.固体介质9.20℃、101.310.低11.增大12.250/250013.空间电荷14.增大三、简答题1.答:(1)因棒极附近场强很高,不论棒的极性如何,当外加电压达到一定值后,此强场区内的气体首先发生游离。
当棒具有正极性时,间隙中出现的电子向棒极运动,进入强电场区,引起碰撞游离,形成电子崩。
在放电达到自持、爆发电晕之前,在间隙中存在大量游离过程。
当电子崩达到棒极后,其中的电子就进入棒极,而正离子仍留在空间,相对来说缓慢地向板极移动。
即在棒极附近,积聚起正空间电荷,从而减少了紧贴棒极附近的电场,而加强了游离区外部空间的电场。
这样,棒极附近的电场被削弱,难以形成流柱,这就使得自持放电也即电晕放电难以形成,所以电晕起始电压高,击穿电压低。
(2)当棒具有负极性时,阴极表面形成的电子立即进入强电场区,形成电子崩。
当电子崩中的电子离开强电场区后,电子就不再能引起游离,而以越来越慢的速度向阳极运动。
电子崩中的正离子逐渐向棒极运动而消失于棒极,但由于其运动速度较慢,所以在棒极附近总是积聚着正空间电荷。
而在其后则是较分散的负空间电荷。
负空间电荷由于浓度小,对外电场的影响不大,而正空间电荷将使电场参考答案第一章电介质的极化、电导和损耗一、单项选择题:1. D2. D3. B二、填空题:1. 增大了2.电子式极化、离子式极化、偶极子式极化、空间电荷极化(夹层式极化)3.在电场作用下极化程度的物理量4.电子式极化、离子式极化5.偶极子式极化、空间电荷极化(夹层式极化)6.大些7.离子性、电子性8. 电导强弱程度9.电场强度、温度、杂质10.体积电导、表面电导11.电导损耗、极化损耗12.电导13.δωCtg U 214.电导三、简答题1.答:电介质的电导为离子性电导,随着温度的升高,分子的热运动加剧,分子之间的联系减弱,介质中离解出的离子数目增多,所以电导率增大。
而导体的电导是电子性电导,温度升高,分子的热运动加剧,电子在电场作用下定向运动时遇到的阻力增大,所以电导率降低。
液体和固体电介质的击穿特性
三、提高液体电介质击穿电压的方法
1. 提高以及保持油的品质 采用过滤等手段消除液体中的杂质,并且防止液体与空气接触从空气中吸收 水分。该方法能够避免形成杂质“小桥”,从而达到提高击穿电压的目的。 2. 复盖层 在金属表面紧贴一层固体绝缘薄层,使“小桥”不能直接接触电极,从而在 很大程度上减小了泄漏电流,阻断了“小桥”热击穿的发展。适用于油本身品质较 差,电场较均匀、电压作用时间较长的情况。在变压器中常利用较薄的绝缘纸包裹 高压引线和绕组导线。
➢ 电压作用时间为数十到数百微秒时,杂质的影响 还不能显示出来,仍为电击穿,这时影响油隙击 穿电压的主要因素是电场的均匀程度;
➢ 电压作用时间更长时,杂质开始聚集,油隙的击 穿开始出现热过程,于是击穿电压再度下降,为 热击穿。
现在您正浏览在第19页,共51页。
5、油压的影响
不论电场均匀度如何,工业纯变压器油的工频击穿电 压总是随油压的增加而增加,这是因为油中气泡的电离电 压增高和气体在油中的溶解度增大的缘故。
现在您正浏览在第8页,共51页。
(三)工程用变压器油的击穿过程及其特点
可用气泡击穿理论来解释击穿过程,它依赖于气泡的形 成、发热膨胀、气泡通道扩大并积聚成小桥,有热的过程,属 于热击穿的范畴。
由于水和纤维的εr很大,易沿电场方向极化定向, 并排列成杂质小桥。
发生两种情况:
现在您正浏览在第9页,共51页。
现在您正浏览在第27页,共51页。
击穿理论——(3)电化学击穿理论
介质劣化的结果。
介质的局部区域发生局部放电,这种放电并不立即形成贯穿性通道
,而是非完全击穿,它使介质引起化学离解,形成树枝状通道,这 些树枝状通道,随时间推移不断伸长,使绝缘进一步劣化,最终发 展到整个电介质击穿。
第二章_液体、固体电介质的电气性能
对串、并联电路,有:P1=P2
CP
CS
1tg2
一般tgδ<<1,即tg2δ 0,
所以CP≈CS=C,则 P=P1=P2=U2ωCtgδ
4.电介质的损耗及其影响因素 影响电介质损耗的因素主要有温度、频率和电
压。不同的电介质所具有的损耗形式不同,从而温 度、频率和电压对电介质损耗的影响也不同。 5.介质损耗在工程实际中的应用
固体电介质的表面电导主要由表面吸附的水分
和污物引起,介质表面干燥、清洁时电导很小。介
质吸附水分的能力与自身结构有关。 有亲水性介质
和憎水性介质。
所以,介质的绝缘电阻实际上是体积电阻和表
面电阻两者的并联值
R RV RS RV RS
RS---表面泄漏电阻
RV---体积泄漏电阻
5.影响电介质电导的主要因素
IEC规定的电工绝缘材料的耐热等级(最高持续温度):
Y(O) A
E
B
F
H
C
90 105 120 130 155 180 220℃
如果材料使用温度超过上述规定,绝缘材料 就将迅速老化,寿命大大缩短。实验表明,对A级 绝缘,温度每增加8℃,则寿命缩短一半左右,这 通常称为热老化的8℃原则。对B级和H级绝缘材料 而言,当温度每升高10℃和12℃时,寿命也将缩 短一半。
1.介电常数
组合绝缘的相对介电 常数ε为
S
(1 x) x S
x
s --固体电介质的相对介电常数
x --浸渍介质的相对介电常数
2.介质损耗
组合绝缘的组合绝缘的总介质损失角正切为
tg1(t1g xS xS )x 1(t1g xxxS )x
tg S --固体电介质的介质损失角正切
高电压技术
第一章气体的绝缘特性1.电介质在电气设备中作为绝缘材料使用,按其物质形态,可分为三类:气体电介质液体电介质固体电介质在电气设备中又分为:外绝缘:一般由气体介质(空气)和固体介质(绝缘子)联合构成。
内绝缘:一般由固体介质和液体介质联合构成。
2、一些基本概念:①气体介质的击穿——当加在气体间隙上的电场强度达到某一临界值后,间隙中的电流会突然剧增,气体介质会失去绝缘性能而导致击穿的现象,也称为气体放电。
②放电电压UF——在间隙距离及其它相关条件一定的条件下,加在间隙两端刚好能使其击穿的电压。
由于相关条件的变化,这个值有一定的分散性。
③击穿场强——指均匀电场中击穿电压与间隙距离之比。
这个参数反映了某种气体介质耐受电场作用的能力,也即该气体的电气强度,或称气体的绝缘强度。
④平均击穿场强——指不均匀电场中击穿电压与间隙距离之比。
3.大气击穿的基本特点固体介质中的击穿将使介质强度永久丧失;而气体和液体击穿发生击穿时,一般只引起介质强度的暂时降低,当外加电压去掉后,绝缘性能又可以恢复,故称为自恢复绝缘。
§1.1 气体介质中带电质点的产生和消失一、气体原子的激发与游离产生带电质点的物理过程称为游离,是气体放电的首要前提。
1、几个基本概念①激发—-原子在外界因素(如电场、温度等)的作用下,吸收外界能量使其内部能量增加,从而使核外电子从离原子核较近的轨道跃迁到离原子核较远的轨道上去的过程(也称为激励)。
②游离—-中性原子由外界获得足够的能量,以致使原子中的一个或几个电子完全脱离原子核的束缚而成为自由电子和正离子(即带正电的质点)的过程(也称为电离)。
2、游离的基本形式①碰撞游离a 、当带电质点具有的动能积累到一定数值后,在与气体原子(或分子)发生碰撞时,可以使后者产生游离,这种由碰撞而引起的游离称为碰撞游离。
b 、发生条件:——气体分子(或原子)的游离能c 、碰撞游离的特点碰撞游离是气体放电过程中产生带电质点的极重要的来源。
电介质的击穿
④ 附着——电子与中性原子、分子碰撞,由于原子有 较大的电子亲合力而形成负离子,放出能 量。
A e A ui ( AB) e ( AB) ui
11
气体介质的电击穿
外电场使自由电子加速运动,动能增加并与原子(粒子) 发生碰撞,当核外电子所获能量大于克服原子核束缚所需 能量时,引起碰撞电离。
碰撞电离系数:一个电子在电场力作用下,走过单位距 离所产生的碰撞电离次数。又称汤逊第 一电离系数 单位:1/米
电子自由行程x:电子在两次碰撞间所走过的路程。 自由行程愈大电子获得能量愈大 碰撞电离次数增加碰撞电离系数增大
12
气体介质的电击穿
碰撞电离条件:
1 m 2
2
qEx ui
强度。Ap 为的极限值 离子碰撞电离系数——汤逊第二电离系数, 由于离子质量大, ,故对载流子贡献小。
14
气体介质的电击穿
光致电离
频率为的光照射气体时,当光子能量大于气体分
子电离能时:
h ui
可引起气体光致电离:
A h A e
光的来源: ①由外来射线产生,短波射线才有电离气体能力。 ②分子从激发态回到基态,或异性离子复合时产生光子。
X绝H缘4P改子)1-2剖善与40面措电耐图污施极型:的布置X缘,H子即P电1电-2场4场0分耐的布污图均型匀绝度有X绝关H缘P。子1-2电40位耐分污布型图 改善沿面电场分布,避免表面沾污,延长沿面距离。
33
实验观察结果:
气体介质的电击穿
• 正电极附近形成分枝状通道 • 负电极附近形成直通道 • 放电脉冲宽度随电压增加而增大
气体介质的电击穿
高电压工程课件
间的全部电容为
CCaCCggCCbb CaCb
•高电压工程
•20
高电压工程基础
如果电极间加上瞬时值为u的交变电压,当介 质的tanδ很小时,则Cg上分配到的电压瞬时值为
ug
u Cb Cg Cb
•高电压工程
•21
高电压工程基础
当ug随u增加达 到气隙放电电压Ug时, 气隙发生放电,放电
Cg每次放电时,其放电电荷量为:
Q rC gC C aa C C bb(U gU r)(C gC b)(U gU r)
Qr称为真实放电量,但由于Cg、Cb和Ca实际上都 是无法测定的,所以Qr也无法测定。
•高电压工程
•25
高电压工程基础
由于气隙放电使气隙上电压下降 U =Ug﹣Ur,必引 起Cb上的电压增加 U。随着Cb上电压的增加,需要补
式中 A——比例常数
单位时间内散出的热量Q2:
Q2 (tto)S
σ——散热系数;
S ——散热面积。
介质的发热和散热与温度的关系
•高电压工程
•6
高电压工程基础
热击穿的主要特点: 1)击穿电压随环境温度的升高呈指数规律
下降; 2)击穿电压直接与介质的散热条件相关。 ➢ 介质厚度 ➢ 加压时间 ➢ 电压频率或介损
(约大一个数量级)。
•高电压工程
•31
高电压工程基础
二、气泡击穿理论
不论由于何种原因使液体中存在气泡时,由
于在交变电压下两串联介质中电场强度与介质介
电常数成反比,气泡中的电场强度比液体介质高,
而气体的击穿场强又比液体介质低得多,所以总
是气泡先发生电离,这又使气泡的温度升高,体
高电压技术(第二章)
容易沿电场方向极化定向,排列成杂质小桥:
1. 如果杂质小桥尚未接通电极,则纤维等杂质与油串联,由于
度显著增高并引起电离,于是油分解出气体,气泡扩大,电 离增强,这样发展下去必然会出现由气体小桥引起的击穿。
纤维的 r大以及含水分纤维的电导大,使其端部油中电场强
Emax
利用系数: Eav r0 R = ln Emax R r0 r0
Emin
0
r0
三. 影响液体介质击穿电压的因素
1.电压形式的影响 击穿电压跟电压的作用时间和电压上升 率有关 2. 含水量、含气量 3. 温度
4. 杂质的影响
5. 油量的影响
水分和油温
Ub(kV)
悬浮状水滴在油中是十分有 40 害的,如右图,当含水量为 万 分之几时,它对击穿电压就有明 20 显的影响,这意味着油中已出现 悬浮状水滴;含水量达0.02%时 击穿电压已下降至约15kV,比 0 0.02 0.04 含水量(%) 不含水分时低很多 。含水量继 标准油杯实验 续增大击穿电压下降已不多,因为只有一定数量的水分能悬 浮于水中,多余的会沉淀到油底部。 潮湿的油由0℃开始 上升时,一部分水分从悬浮状态转为 害处较小的溶解状态,使击穿电压上升;超过80 ℃后,水开始 汽化,产生气泡,引起击穿电压下降,从而在60 ℃~80℃间出 现最大值
与周围环境温度无关。
2. 热击穿:由于固体介质内部热不稳定性造成。
电压作用下 介质损耗, 使介质发热 发热大于散 热时,介质温 度不断升高 介质分解、 熔化、碳化 或烧焦
热击穿
特点:
(1)在电压作用下,产生的电导电流和介质极化引起介质损耗, 使介质发热. (2)热击穿电压随环境温度的升高而下降,热击穿电压直接与 散热条件有关
固体电介质的击穿
若试样厚度t与下凹部分最小厚度d之比足够大(比值 不小于5~10),则击穿往往发生在足够均匀电场的最小 厚度处。
但并非所有的 固体电介质都能实 现,例如云母、有 机薄膜等介质困难 就较大。对于这类 固体电介质,通常 采用简单电极试样 系统。
图3-17 获得均匀电场的电极试样系统
导电通道的温度将不断上升,导
致热击穿。
图3-15 发热与散热曲线
可见,曲线2是介质热稳定状态和不稳定状态的 分界线,所以电压U2确定为热击穿的临界电压,tc为 热击穿的临界温度。
相应于切点c的热击穿 临界电压
Uc 0.2S 40ed e2 T0 (3-31)
图3-15 发热与散热曲线
2. 均匀固体电介质热击穿电压的确定
认为电场作用时间很短,以致导热过程可以忽略不 计时,则热平衡方程为
cv
dTE2
dt
(3-32)
如知道 EE(t)及 (T,E),即可由上式求出
温度到达介质热破坏临界温度时的热击穿场强。
假设施加于介质的脉冲电场为斜角波形电场,即
E ( Ec )t tc
(3-33)
式中,Ec ——热击穿场强;tc ——至击穿的时间。
按击穿发生的判定条件的不同,电击穿理论可分为两大 类:
➢以碰撞电离开始作为击穿判据。称这类理论为碰撞电离
理论,或称本征电击穿理论。
➢以碰撞电离开始后,电子数倍增到一定数值,足以 破坏电介质结构作为击穿判据。称这类理论为雪崩击
穿理论。
1. 本征电击穿理论
在电场E的作用下,电子被加速,因此电子单位 时间从电场获得的能量可表示为
一般在电场不太强的情况下,介质的电导率可表示为
高电压技术-第二版-张一尘-习题答案
第一章1—1 气体中带电质点是通过游离过程产生的。
游离是中性原子获得足够的能量(称游离能)后成为正、负带电粒子的过程。
根据游离能形式的不同,气体中带电质点的产生有四种不同方式:1.碰撞游离方式在这种方式下,游离能为与中性原子(分子)碰撞瞬时带电粒子所具有的动能。
虽然正、负带电粒子都有可能与中性原子(分子)发生碰撞,但引起气体发生碰撞游离而产生正、负带电质点的主要是自由电子而不是正、负离子。
2.光游离方式在这种方式下,游离能为光能。
由于游离能需达到一定的数值,因此引起光游离的光主要是各种高能射线而非可见光。
3.热游离方式在这种方式下,游离能为气体分子的内能。
由于内能与绝对温度成正比,因此只有温度足够高时才能引起热游离。
4.金属表面游离方式严格地讲,应称为金属电极表面逸出电子,因这种游离的结果在气体中只得到带负电的自由电子。
使电子从金属电极表面逸出的能量可以是各种形式的能。
气体中带电质点消失的方式有三种:1.扩散带电质点从浓度大的区域向浓度小的区域运动而造成原区域中带电质点的消失,扩散是一种自然规律。
2.复合复合是正、负带电质点相互结合后成为中性原子(分子)的过程。
复合是游离的逆过程,因此在复合过程中要释放能量,一般为光能。
3.电子被吸附这主要是某些气体(如SF6、水蒸汽)分子易吸附气体中的自由电子成为负离子,从而使气体中自由电子(负的带电质点)消失。
1—2 自持放电是指仅依靠自身电场的作用而不需要外界游离因素来维持的放电。
外界游离因素是指在无电场作用下使气体中产生少量带电质点的各种游离因素,如宇宙射线。
讨论气体放电电压、击穿电压时,都指放电已达到自持放电阶段。
汤生放电理论的自持放电条件用公式表达时为γ(eαs-1)=1此公式表明:由于气体中正离子在电场作用下向阴极运动,撞击阴极,此时已起码撞出一个自由电子(即从金属电极表面逸出)。
这样,即便去掉外界游离因素,仍有引起碰撞游离所需的起始有效电子,从而能使放电达到自持阶段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、电介质的其它性能
热性能 机械性能
吸潮性能
化学性能及抗生物性
1. 热性能
耐热性:指保证电介质可靠安全运行的最高允 许温度 热劣化:电介质在稍高的温度下,长时间后发 生绝缘性能的不可逆变化
寿命: 在一定温度下,电介质不产生热损坏 的时间称为寿命
短时耐热性: 长期耐热性:给定寿命下,电介质不产生热损 坏的最高允许温度
10 -1 1
10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12
时间(μs)
电工纸板的击穿电压 与电压作用时间的关系
2. 电击穿
电击穿理论建立在固体电介质中发生碰撞电离基 础上,固体电介质中存在少量传导电子,在电场 加速下与晶格结点上的原子碰撞,从而击穿 电击穿理论本身又分为两种解释碰撞电离的理论
Cathode
+
Anode
-
- - - - - -
+
+
- - - - - -
-
x t=0 ( a )
x Charge formation ( b )
x Polarity reversed ( c )
异极性空间电荷的积累
概念:电介质在外加电场的 作用下,在金属电极与电介 质之间的界面上积聚了与施 加在该电极上的电压极性相 反的电荷,这些电荷称为异 极性空间电荷 特点:异极性空间电荷增强 金属电极与介质间的界面场 强,结果可导致介质整体击 穿电压的降低,如(b)所示 。当极性翻转时,可导致击 穿电压升高,如(c)所示
区域 A : 击穿时间小于 10s 的区域,此范围内击穿电压 随击穿时间的缩短而提高。 类似于气体介质击穿的伏秒 特性
区 域 B : 击 穿 时 间 在 100.2 s 范围的区域,此范围内击 穿电压恒定,与时间无关 这两个区域内的击穿都具有 电击穿的性质
区域C
15.3
s
min
278h
10 -1 1
Cathode
+
Anode
x t=0 ( a )
-
+ + + + + +
+
+
+ + + + + +
-
x Charge formation ( b )
x Polarity reversed ( c )
薄膜中的空间电荷效应
同极性的空间电荷效应 在薄膜中具有特殊性,当 介质中空间电荷的量超过 某一定值时,虽然同极性 的空间电荷对施加电压的 电极起到削弱界面场强的 作用,但由于大量的空间 电荷积聚对另外一方的电 极和介质界面的电场分布 得到有效的加强,从而导 致介质的整体击穿电压的 下降
电击穿的特点
时间影响:电压作用时间短,击穿电压高 介质特性: 如果介质内含气孔或其它缺陷,对电场造成 畸 变,导致介质击穿电压降低 电场均匀度:电场的均匀程度影响极大 累积效应: 在极不均匀电场及冲击电压作用下,介质有 明显的不完全击穿现象,导致绝缘性能逐渐下降,称为 累积效应。介质击穿电压会随冲击电压施加次数的增多 而下降
第二章 固体电介质的击穿
主要内容
固体电介质的击穿过程
有机绝缘材料的电树老化
影响固体电介质击穿电压的主要因素
电介质击穿过程的空间电荷效应
电介质的其它性能
气、固、液三种电介质中,固体密度最大,耐电强度最高 空气的耐电强度一般在3 — 4 kV/mm左右; 液体的耐电强度在10 — 20 kV/mm; 固体的耐电强度在十几 — 几百kV/mm
4. 电化学击穿 (电老化)
概念:在电场的长时间作用下逐渐使介质的物 理、化学性能发生不可逆的劣化,最终导致击 穿,这过程称电老化 电老化的类型:电离性老化、电导性老化和电 解性老化。前两种主要在交流电压下产生,后 一种主要在直流电压下产生
二、有机绝缘材料的树老化
树老化类型:电树老化和水树老化 树老化的原因 电离性老化:介质夹层或介质内部存在气隙或气泡,在交 变场下气隙或气泡的场强比邻近固体介质内的场强大得多 ,而气体的起始电离场强比固体介质低得多,所以在该气 隙或气泡内容易发生电离。气隙或气泡的电离,造成邻近 绝缘物的分解、破坏(表现为变酥、炭化等形式),并沿电 场方向逐渐向绝缘层深处发展,在有机绝缘材料中会呈树 枝状发展,称作“电树枝” 电导性老化:在两电极之间的绝缘层中存在液态导电物质 (例如水),当该处场强超过某定值时,该液体会沿电场方 向逐渐深入到绝缘层中,形成近似树枝状的痕迹,称作“ 水树枝”
曲线 1:
发热永远大于散热,介质温度将不断升高,在电压 U1 下最终必定发生热击穿
θ 1 2 3 4
b
a 0 t0 ta tk tb tm
不同外施电压下介质发热散热与介质温度的关系
曲线 3:
tta 时:曲线在直线4之下 ,不发生热击穿,介质温度 逐渐升高并稳定在ta,称ta 为稳定热平衡点 t>tb 时:情况类似曲线1, 最终发生热击穿 t=tb 时:发热等于散热, 但因扰动使 t 大于 tb ,则介 质温度上升,回不到tb,直 至热击穿。称tb为不稳定热 平衡点 ta<t<tb :不会发生热击穿 ,介质温度将稳定在ta
树枝老化的一般形状
Tree-like
树枝状
Bush-like
灌木丛状
chestnut-like
栗子状
电介质中的树枝老化
树老化的研究
难点
设备中树老化 无法观测 微观形态控制 树枝老化观察 微观形态和树枝 老化二者的观测
特征
试品薄膜化 控制微观结构 绝缘缺陷模拟 树枝老化监测 树枝老化研究
三、影响固体介质击穿电压主要因素
固有击穿理论 电子崩击穿理论
A(E,α,T0)=B(α,T0)
A(E,α,T0):电场作用下单位时间内电子获得的能量 B(α,T0):电场作用下单位时间内电子碰撞损失的能量 E:电场,α:标志电子的状态因子,T0:晶格温度 固有击穿理论:在某一场强值内,上述关系式成立,获 得和失去的能量平衡,超过则不成立,引起破坏,称之 为固有击穿理论 电子崩击穿理论:当上述平衡破坏后,电子整体上得到 加速,与晶格产生碰撞电离,反复碰撞形成电子崩,电 场作用下给电子注入能量激增,导致介质结构破坏,称 之为电子崩击穿理论
Ub = 0.342×
h (t k t0 ) f 0 r tg 0 ( h + 2 )
当发热因素 f,r ,t0,tg0上升或增加时,Ub将下降;
当散热因素σ,λ上升时,热击穿电压Ub将上升
在发生热击穿时,采取加厚绝缘的办法并不一定能起到提 高电介质击穿电压的作用,因而是不经济的
10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12
时间(μs)
电工纸板的击穿电压 与电压作用时间的关系
1. 固体电介质击穿特性的划分 区域 C : 击穿电压随击穿前 时间的增加而明显下降,具 有热击穿的特点 区域D :C区以外
Dc Electric strength
Effect of Homo space charge
Effect of Heteroace charge number →Large
空间电荷在实际中的问题
电气电子设备中极性转换对器件的危害 直流输电中极性转换对电缆的危害
电介质的耐热等级
介质热老化的程度主要决定于温度及介质经受热作用的 时间。为此国际电工委员会按照材料的耐热程度划分耐 热等级。如 Y
90
A
105
E
120
B
130
F
155
H
180
C
>180℃
根据这个绝缘耐热等级可以进行设备运行负荷的最佳经 济性设计
电介质的耐寒性
耐寒性是绝缘材料在低温下保证安全运行的最 低许可温度,否则,固体可能变脆、开裂,液 体可能凝固。如10、25、40号变压器油分别表 示其凝固温度为-10、-25、-40℃
固体电介质的击穿过程最复杂,且击穿后是唯一不可恢复 的绝缘
普遍规律:任何介质的击穿总是从电气性能最薄弱的缺陷 处发展起来的,这里的缺陷可指电场的集中,也可指介质 的不均匀性
一、固体电介质的击穿过程
1. 固体电介质击穿特性的划分
击穿电压为一分钟耐压的百分比数 (%)
500 450 400 350 300 区域B 区域A 250 Φ 50 200 150 100 50 0 Φ 100 μs
电压作用时间 场均匀程度 温度 电压种类 局部放电 累积效应 受潮 机械负荷 二次效应如空间电荷等
四、电介质击穿过程的空间电荷效应
电介质中空间电荷: 由于外加电场的作用等 原因,在介质内部积聚了电荷,称作空间电 荷 空间电荷效应: 由于空间电荷的作用引起的 一系列变化。在电介质中,空间电荷的直接 作用是改变了介质中的电场分布。这种电场 畸变的结果导致了介质击穿电压的变化
2. 机械性能 有脆性、塑性和弹性三种 3. 吸潮性能 在潮湿地区要选用吸湿性小、憎水性强的材料。 一般而言,非极性电介质吸湿性低,极性电介质吸湿 性较强 4. 化学性能及抗生物性 化学性能指材料的化学稳定性如耐腐蚀性气体、 液体溶剂等 抗生物性指材料抗霉菌、昆虫的性能,在湿热地 区尤为重要
a 0 t0 ta tk tb tm
θ
1 2 3 4
b
不同外施电压下介质发热散热 与介质温度的关系
曲线 2:
与直线 4 相切, U2 为临界热击穿电压; tk 为临界热击穿温 度
θ 1 2 3 4
b
a 0 t0 ta tk tb tm