中国石油大学(华东)渗流力学实验报告 镜像反映实验
中国石油大学华东-渗流实验-地层油高压物性测定实验报告
中国石油大学渗流物理实验报告实验日期: 成绩: 班级: 石工1 学号: 姓名: 教师:同组者:地层油高压物性测定实验一.实验目的1.掌握地层油高压物性仪的结构及工作原理。
2.掌握地层油的饱和压力、单次脱气的测定方法。
3.掌握地层油溶解气油比、体积系数、密度等参数的确定方法。
4.掌握落球法测量地层油粘度的原理及方法。
二.实验原理(1) 绘制地层油的体积与压力的关系曲线,在泡点压力前后,曲线的斜率不同,拐点处对应的压力即为泡点压力。
(2) 使PVT筒内的压力保持在原始压力,保持压力不变,将PVT筒内一定量的地层油放入分离瓶中,记录放油的地下体积。
从量气瓶中测量分出气体体积,测量分离瓶中脱气油的体积,便可计算地层油的溶解气油比、体积系数等数据。
(3) 在地层条件下,钢球在光滑的盛有地层油的标准管中自由下落,通过记录钢球的下落时间,由下式计算原有的粘度:μ=k(ρ1-ρ2)t其中—μ—原油动力粘度,mPa·s;t—钢球下落时间,s;ρ1,ρ2—钢球和原油的密度,g/cm;k—粘度计常数。
三.实验流程图1 高压物性实验流程图四.实验步骤(一)泡点压力的测定1. 粗测泡点压力。
从地层压力起退泵降压(以恒定的速度退泵),并注意观察压力表指针变化,当压力表指针降低速度减慢或不下降甚至回升时,停止退泵。
压力表指针稳定后的压力数值即为粗测饱和压力值。
2. 细测泡点压力(1) 升压至地层压力,让析出的气体完全溶解到油中。
从地层压力开始降压,每降低一定压力(如1.0MP)记录压力稳定后的体积(注意升压、降压过程中应不断搅拌PVT 筒);(2) 当压力降至泡点压力以下时,每降低一定体积(如3ml),记录稳定以后的压力(泡点压力前后至少安排四个测点)。
(3) 最后一点测完后,升压到地层压力,进行搅拌,使分出的气体重新溶解到原油中,为原油脱气做好准备。
(二)一次脱气(1) 将PVT筒中的地层原油加压至地层压力,搅拌原油样品使温度、压力均衡,记录泵的读数。
液体粘度及流变性测定
中国石油大学(华东)渗流物理实验报告实验日期:成绩:班级:石工1205 学号:姓名:教师:同组者:流体粘度及流变性测定实验一.实验目的1.学会旋转粘度计使用方法,测定脱气原油在不同温度和剪切速度下的粘度;2.掌握粘度随温度变化的规律。
二.实验原理旋转粘度计由电机经变速带动转子作恒速转动。
当转子在某种液体中旋转时,液体会产生作用在转子上的粘性力矩。
液体的粘度越大,该粘性力矩越大;反之,液体的粘度越小,该粘性力矩也越小。
该作用在转子上的粘性力矩由传感器检测出来,经仪器所带的微电脑处理后,可得出被测液体的粘度。
三、实验流程(1)粘度计机头水准泡(2)液晶显示屏(3)外罩(4)转子保护架(5)主机底座(6)微型打印机(7)粘度计机头(8)操作键盘(9)转子连接头(10)转子(11)主机底座水平调节旋钮(使水准泡居中)图1 旋转粘度计结构图图2微电脑操作界面图3毛细管粘度计四.实验步骤1.将脱气原油置于直径不小于70mm,高度不低于125mm的双层杯中。
2.通过水浴准确控制原油的温度。
3.调整仪器水平:将仪器的水准器气泡调至居中。
4.估计原油的粘度范围,选择适宜的转子和转速。
若估计不出原油的大致粘度时,应视为较高粘度。
选用由小到大的转子(转子号由高到低)和由慢到快的转速。
原则上高粘度的液体选用小转子(转子号高);低粘度的液体选用大转子(转子号低),快转速。
为保证测量精度,测量时量程百分比读数应在10%~100%之间。
如测量显示值闪烁,表示溢出或不足,应更换量程。
5.缓慢调节升降旋钮,调整转子在原油中的高度,直至转子的液面标志(凹槽中部)和液面相平为至。
6.选择好转子和转速档位后,按“确定”键,转子开始旋转,仪器开始进行测量。
五、实验数据处理1、利用旋转粘度计测流体粘度(1).记录脱气原油在不同温度和剪切速度下的粘度表1 不同温度及转速下粘度记录表(2).绘制原油粘度与温度之间的关系曲线图4、原油粘度与温度之间的关系曲线2、利用毛细管粘度计测流体粘度T‘=(T1 +T2+T3+T4)/4=149.275sμ=ρc T‘=4.12 mPas六、小结之前在课堂上已经学过了液体粘度的变化规律,尤其是受温度影响时随着温度的增加,液体体积膨胀,分子间距离增加,同时分子运动速度增大,液体分子间引力减小,粘度降低。
镜像反映
中国石油大学 渗流物理 实验报告实验日期:成绩:班级: 学号: 姓名:教师:同组者:镜像反映实验一、实验目的1、通过本实验加深对镜像反映原理的理解。
2、了解有限边界对油井产量的影响。
3、掌握测量等势线的一种方法。
二、实验原理直线供给边界附近一口井的产量计算公式为:wr d PKh Q 2ln2μπ∆=(1) 式中,d —油井到供给边界的距离。
电流与电压的关系式为:wmm m r d Uh I 2ln 2∆=πρ (2) 式(1)是在供给边界无限长的条件下推导出来的,而实际供给边界是有限长的。
绘制井至供给边界的距离与油井产量的关系曲线,并与理论计算结果进行对比,由此即可分析边界对油井常量的影响。
图1 直线供给边缘附近一口井的反映三、实验流程(自行设计)镜像反映实验电路图图2 镜像反映实验电路图 1-电解槽 2-铜丝(模拟井)3-供给边界电压法测定等压线实验电路图图3 电压法测定等压线实验电路 1-电解槽 2-铜丝(模拟井)3-供给边界四、实验步骤(自行设计)(1)首先确定模拟油藏的相关参数及模拟系统的有关参数的大小。
(2)按图1所示连接好电路。
+-+-220V变压器调压器10V测量电压;V生产井探针+-+-220V变压器调压器10V测量电压;V(3)打开电源,顺时针旋转变压器旋钮,将电源电压调到所需值(注意:不要高于36伏)。
(4)慢慢移动探针,测定不同距离下生产井的电流值。
(5)连接好图2所示电路,旋动调压器的旋钮,使测量电压0为一固定值(如8伏),计录模拟井及边界的坐标。
(6)依次移动探针,改变探针到边界的距离,纪录相等电压下探针的坐标及此时与生产井间的电压。
五、实验数据与处理结果记录表实验仪器编号: 3# 水槽尺寸: 85*125cm表1 产量与距离关系记录表地层参数:r w = 0.15m ,h= 10m ,L= 225m ,μ= 5mPa ·s ,K= 0.1m μm ² , P =1MPa模型参数:r wm = 0.08cm ,h m = 5.33cm ,L m = 120cm ,ρ= 1530μs/cm ,T=16℃ 边界坐标X m 0= 41.1cm △U=10V序号 1 2 3 4 5 6 7 8 10 d m (cm) 1510203040506070X m (cm) 86.00 82.00 77.00 67.00 57.00 47.00 37.00 27.00 17.00 D (m ) 1.883.755.637.509.3811.26 13.13 15.01 16.89I(mA) 118.00 85.70 77.40 68.50 63.70 59.50 56.00 52.60 49.00 Q (m 3/d ) 25.01 18.16 16.40 14.52 13.50 12.61 11.87 11.15 10.38 Q e (m 3/d ) 33.73 22.49 19.66 17.47 16.40 15.72 15.23 14.85 14.54 e(%)25.86 19.23 16.58 16.91 17.69 19.78 22.06 24.92 28.58其中:d 为测量距离,D 为实际距离;Q 为实验流量,Qe 为理论流量。
中国石油大学华东-渗流实验-泥页岩膨胀性测定实验报告
中国石油大学渗流物理实验报告实验日期: 成绩: 班级: 学号: 姓教师:名:同组者:泥页岩膨胀性测定一.实验目的1.了解高温高压泥页岩膨胀仪的结构、工作原理及使用方法;2.掌握粘土矿物吸水膨胀的机理及膨胀率的计算方法。
二.实验原理随着测试液与粘土矿物接触时间的增加,粘土膨胀,高度增加,由容栅传感器感应出的试样轴向的位移信号,通过计算机系统将膨胀量随时间的关系曲线记录下来,显示在屏幕上。
当粘土矿物的膨胀量基本稳定时,最大的膨胀量与粘土样品的初始高度之比为最大膨胀率。
泥页岩膨胀率计算公式:其中:E—膨胀率,%;ht—粘土样品在t时刻的高度,mm;h0—粘土样品的初始高度,mm。
三.实验仪器及流程图1 高温高压泥页岩膨胀仪原理示意图图2 主测杯结构示意图(简要介绍实验仪器)主要试验仪器:主要试验仪器:氮气瓶(氮气压力大于5Mpa)、管汇、高温高压泥页岩膨胀仪、数据控制及显示系统等。
各仪器的主要指标:各仪器的主要指标:气源压力为5Mpa;工作温度≤120℃;工作压力为3.5Mpa;测试量程为15mm;试样模内径为25mm;测量分辨率为0.001mm。
四.实验步骤1、样品制备l) 样品烘干将土样或泥页岩样粉(过100 目筛) 在105C条件下烘干4 小时以上,冷却至室温,放置于干燥器内备用。
2) 样品压制(1)将带孔托垫放入模内,上面放- -张泸纸,用游标卡尺测量深度hl:(2)用天平称取5~10eg 样品装入压模内,用手拍打压模,使其中样品端面平整,并在表面再放一张谑纸;(3)将压棒置于模内,轻轻左右旋转下推,与样品接触; 将组好的岩样模置于油压机平台上,加压至4MPa,5 分钟后他压; 取出压棒,倒置压模,倒出岩样表层的土样,用游标卡尺测量深度h2,至」比岩样制好,岩样长度h0=h1-h2。
2、膨胀率测试l.将制备好的粘土试样(同岩样模- -起)从主测杯底部装入主测杯内,同时注意主测杯成部放置密封聞,紧固主测杯下6 个固定螺钉。
镜像反应实验
式中, d —油井到供给边界的距离。 电流与电压的关系式为:
I 2 hm U (4-2) 2d m ln rwm
式(4-1)是在供给边界无限长的条件下推导出来的,而实际供给边界是有限 长的。绘制井至供给边界的距离与油井产量的关系曲线,并与理论计算结果进行对 比,即可分析井距边界的距离对油井产量的影响程度。
6 47.0 40.0 38.4 9.76 19.66 50.36
7 37.0 50.0 35.9 9.12 18.90 51.75
8 27.0 60.0 33.5 8.51 18.32 53.55
9 17.0 70 31.1 7.90 17.85 55.74
1、计算不同位置处生产井产量,绘制井至供给边界的距离与油井产量的关 系曲线,分析生产井产量与其到供给边界的距离的关系 1)相应几何参数 Cl 可求得 Cl =
d=dm/ Cl =1cm/ 5.3333 103 =1.88m
re d / 2 0.94m
△P=△U/ C p =10Vห้องสมุดไป่ตู้(1V/(0.1MPa))=10 (0.1MPa)
Qe
2Kh
P ln
re rw
2 0.1 1000 5
10 684 .8137cm 3 / s 59.17m 3 / d 0.94 ln 0.15
3)流动相似系数 C 流量相似系数
K
=
1.275 10 -2 5 =0.06375[ ( A s 0.1MPa) / cm3 V 0.1
C q C l C C p 5.33 10 3 0.06375 1 3.4 10 4 A /(cm 3 / s )
2019年径向流实验报告word版本 (12页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==径向流实验报告篇一:中国石油大学华东渗流力学径向流实验报告中国石油大学渗流力学实验报告实验日期: 201X/12/11 成绩:班级:石工(理科)1202学号: 12090413 姓名:李佳教师:同组者:史家明不可压缩流体平面径向稳定渗流实验一、实验目的1、平面径向渗流实验是达西定律在径向渗流方式下的体现,通过本实验加深对达西定律的理解;2、要求熟悉平面径向渗流方式下的压力降落规律,并深刻理解该渗流规律与单向渗流规律的不同,进而对渗透率突变地层、非均质地层等复杂情况下的渗流问题及其规律深入分析和理解。
二、实验原理平面径向渗流实验以稳定渗流理论为基础,采用圆形填砂模型,以流体在模型中的流动模拟水平均质地层中不可压缩流体平面径向稳定渗流过程。
保持填砂模型内、外边缘压力恒定,改变出口端流量,在稳定条件下测量填砂模型不同位置处的水头高度,可绘制水头高度或压力随位置的变化曲线(压降漏斗曲线);根据平面径向稳定渗流方程的解计算填砂模型的流动系数及渗透率。
三、实验流程实验流程见图2-1,圆形填砂模型18上部均匀测压管,供液筒内通过溢流管保持液面高度稳定,以保持填砂模型外边缘压力稳定。
图2-1 平面径向流实验流程图1-测压管(模拟井);2~16-测压管(共16根);18―圆形边界(填砂模型);19-排液管(生产井筒);20—量筒; 21—进水管线;22—供液筒;23-溢流管;24—排水阀;25—进水阀;26—供水阀。
四、实验操作步骤1、记录填砂模型半径、填砂模型厚度,模拟井半径、测压管间距等数据。
2、打开供水阀“26”,打开管道泵电源,向供液筒注水,通过溢流管使供液筒内液面保持恒定。
3、关闭排水阀“24”,打开进水阀“25”向填砂模型注水。
4、当液面平稳后,打开排水阀“24”,控制一较小流量。
流动状态 中国石油大学(华东)流体力学实验报告DOC
中国石油大学(华东)工程流体力学实验报告实验日期:成绩:班级:学号:姓名:教师:李成华同组者:实验六、流动状态实验一、实验目的h)及断面的平均流速;1.测定液体运动时的沿程水头损失(fh—v)曲线图,找出下临界点并计算雷诺数的值。
2.在双对数坐标上绘制流态(f二、实验装置本室验的装置如图所示。
本实验所用的设备有流态实验装置、量筒、秒表、温度计及粘温表。
在图1-6-1横线上正确填写实验装置各部分的名称图1-6-1流态实验装置1.稳压水箱;2.进水管;3.试验管路;4. 试验管路;5.压差计;6流量调节阀;7.回流管线;8.试验台;9. 蓄水箱;10. 抽水泵;11.出水管三、实验原理 填空1.液体在同一管道中流动,当 速度 不同时有层流、紊流两种流动状态。
的特点是质点互不掺混,成线状流动。
在 紊流 中流体的各质点相互掺混,有脉动现象。
不同的流态,其 沿程水头损失 与断面平均速度的关系也不相同。
层流的沿程水头损失与断面平均流速的一次方 成正比;紊流的沿程水头损失与断面平均速度的m 次方成正比 (m= 1.75~2 ) 。
层流与紊流之间存在一个过渡区,它的沿程水头损失与断面平均流速关系与层流、紊流的不同。
2.当稳压水箱一直保持溢流时,实验管路水平放置且管径不变,流体在管内的流动为稳定流 ,此种情况下v 1=v 2。
那么从A 点到B 点的沿程水头损失为h f ,可由能流量方程导出:221122f 12121212()()22()()p v p v h z z g gp p z z h h hγγγγ=++-++=+-+=-=∆h 1、h 2分别是A 点、B 点的测压管水头,由 压差计 中的两个测压管读出。
3.雷诺数(Reynolds Number )判断流体流动状态。
雷诺数的计算公式为:Dv Re ν=D —圆管内径;v —断面平均速度;ν—运动粘度系数当c Re Re <(下临界雷诺数)为层流,c Re =2000~2320;当cRe Re '>(上临界雷诺数)为紊流,c Re '=4000~12000之间。
平面径向流
中国石油大学渗流力学实验报告实验日期:2012.12.11 成绩:班级:学号:姓名:教师:同组者:实验二不可压缩流体平面径向稳定渗流实验一、实验目的1、平面径向渗流实验是达西定律在径向渗流方式下的体现,通过本实验加深对达西定律的理解;2、要求熟悉平面径向渗流方式下的压力降落规律,并深刻理解该渗流规律与单向渗流规律的不同,进而对渗透率突变地层、非均质地层等复杂情况下的渗流问题及其规律深入分析和理解。
二、实验原理平面径向渗流实验以稳定渗流理论为基础,采用圆形填砂模型,以流体在模型中的流动模拟水平均质地层中不可压缩流体平面径向稳定渗流过程。
保持填砂模型内、外边缘压力恒定,改变出口端流量,在稳定条件下测量填砂模型不同位置处的水头高度,可绘制水头高度或压力随位置的变化曲线(压降漏斗曲线);根据平面径向稳定渗流方程的解计算填砂模型的流动系数及渗透率。
三、实验流程实验流程见图2-1,圆形填砂模型18上部均匀测压管,供液筒内通过溢流管保持液面高度稳定,以保持填砂模型外边缘压力稳定。
图2-1 平面径向流实验流程图1-测压管(模拟井);2~16-测压管(共16根);18―圆形边界(填砂模型);19-排液管(生产井筒);20—量筒;21—进水管线;22—供液筒;23-溢流管;24—排水阀;25—进水阀;26—供水阀。
四、实验步骤1、记录填砂模型半径、填砂模型厚度,模拟井半径、测压管间距等数据。
2、打开供水阀“26”,打开管道泵电源,向供液筒注水,通过溢流管使供液筒内液面保持恒定。
3、关闭排水阀“24”,打开进水阀“25”向填砂模型注水。
4、当液面平稳后,打开排水阀“24”,控制一较小流量。
5、待液面稳定后,测试一段时间内流入量筒的水量,重复三次。
;6、记录液面稳定时各测压管内水柱高度。
7、调节排水阀,适当放大流量,重复步骤5、6;在不同流量下测量流量及各测压管高度,共测三组流量。
8、关闭排水阀24、进水阀25,结束实验。
中国石油大学(华东)镜像反映实验 实验报告 完整版
中国石油大学 渗流力学 实验报告实验日期: 2013.5. 成绩:班级: 石工10-班 学号: 10021 姓名: 教师:同组者:镜像反映实验一、实验目的1、通过本实验加深对镜像反映原理的理解。
2、了解有限边界对油井产量的影响。
3、掌握测量等势线的一种方法。
二、实验原理直线供给边界附近一口井的产量计算公式为:22lnwKh PQ d r πμ∆=(4-1) 式中,d —油井到供给边界的距离。
电流与电压的关系式为:22ln m m wmh UI d r πρ∆=(4-2) 式(4-1)是在供给边界无限长的条件下推导出来的,而实际供给边界是有限长的。
绘制井至供给边界的距离与油井产量的关系曲线,并与理论计算结果进行对比,由此即可分析边界对油井常量的影响。
三、实验流程图4-1 镜像反映实验电路图 1-电解槽 2-铜丝(模拟井) 3-供给边界图4-2 电压法测定等压线实验电路图 1-电解槽 2-铜丝(模拟井) 3-供给边界四、实验操作步骤(1)首先确定模拟油藏的参数的大小:渗透率、供给半径、井半径、油层厚度、流体粘度、生产压差,计算油井产量;确定模拟系统的有关参数的大小:模拟油藏供给半径、最大电流、最大电压。
(2)计算相似系数:eL emr C r =,q I C Q =,p U C P ∆=∆, 计算/Cr Cp Cq =,)1r l C C C ρ=⋅。
(3)由C kρρμ=,计算4CuSO 溶液的电导率,溶液厚度m L h C h =,具体方10V5V探针生产井法见示例。
(4)根据电导率值,从4CuSO 溶液浓度与电导率关系曲线中查出4CuSO 与蒸馏水配制比例,然后进行配制。
(5)配制完毕,测定溶液实际电导率值,计算相似系数。
(6)将调压器旋钮旋至“0”位置,按图4-1所示连接好电路。
(7)打开电源,顺时针旋转变压器旋钮,将电源电压调到所需值(注意:不要高于36伏)。
(8)顺时针慢慢旋动调压器的旋钮,使电压值从低到高变化(最高测量电压<10伏),并测定各个电压值下生产井的电流值。
中国石油大学华东渗流力学实验报告之水电模拟实验
中国石油大学渗流力学实验报告实验日期:2013.11.18 成绩:_________班级:石工11-13学号:11021626姓名: 李华教师: 霸天—同组者:小—实验三水电模拟渗流实验一、水电模拟原理1、水电相似原理利用电场模拟地层流体的渗流规律,机理在于流体通过多孔介质流动的微分方程与电荷通过导体材料流动的微分方程之间的相似性,即水-电相似原理。
多孔介质中流体的流动遵守达西定律:grad (p)(3-1) 式中,v—流速,m/s;q—流量,cm3/s; A —渗流截面积,cm2;K —渗透率,J m2;J—流体粘度,mPa £;P—压力,O.lMPa。
通过导体的电流遵守欧姆定律:、二」grad (U) (3-2)S式中,「为电导率,是电阻率的倒数,西门子/cm ;U —电压,伏;、:-电流密度,安培/cm2;I-电流,安培,S-导体截面积,cm2。
均质地层不可压缩流体通过多孔介质稳定渗流连续性方程:div.£ grad (P)j = 0 (3-3) 均匀导体中电压分布方程:div ' grad(U) = 0 (3-4) 对比方程上述方程可以看出:电场与渗流场可用相同的微分方程进行描述,因此,不可压缩流体的稳定渗流问题可用稳定电场进行模拟。
于是可以用电位分布来描述渗流场的压力分布,用电流来描述流量或流速,电阻描述渗流阻力。
2、水电相似准则物理模拟模型各参数与油层原型相应参数之间存在比例关系,称为相似系数。
各相似系数之间满足一定的约束条件,称为相似准则。
水电模拟各相似系数定义如下:1)几何相似系数模型的几何参数与油层的相应几何参数的比值。
即:(3-5) 任意点的几何相似系数必须相同。
2)压力相似系数模型中两点之间的电位差与地层中两相应点之间的压差的比值。
即:2U \C p m(3-6)Po3)阻力相似系数模型中的电阻与油层中相应位置渗流阻力的比值。
即:(3-7) 4)流动相似系数模型中电解质溶液的电导率与地层流体流度的比值。
渗流力学实验-岩石的润湿性
中国石油大学 渗流物理 实验报告实验日期: 成绩:班级: 姓名: 教师:同组者:岩石润湿性测定实验一.实验目的1.了解光学投影法测定岩石润湿角的原理及方法; 2.加深对岩石润湿性的认识。
二.实验原理1.光学投影法测定岩石润湿角液体对固体表面的润湿情况可以通过直接测定接触角来确定。
将待测矿物磨成光面,浸入油(或水)中,如图1所示,在矿物光面滴一滴水(或油),直径约1~2mm ,然后通过光学系统将一组光线投射到液滴上,将液滴放大、投影到屏幕上,直接测出润湿角,或测量液滴的高度h 和它与岩石接触处的长度D ,按下式计算接触角θ:D htg22=θ式中, θ—润湿角,°;h —液滴高度,mm ;D —液滴和固体表面接触的弦长,mm 。
图1 投影法润湿角示意图HARKE-SPCA接触角测定仪器三.实验步骤1.旋转仪器后面的光源旋钮,顺时针旋转,看到光源亮度逐渐增强。
2.打开接触角软件图标。
3.开启视频。
4.调整滴液针头。
初次使用接触角测定仪对焦比较繁琐,首先向下移动滴液针头,停在变倍显微镜水平线以上的位置,然后旋转固定在上下移动器上的水平移动旋钮,左右调整针头,当软件图像显示窗口出现针头虚影时停止。
5.调整调焦手轮,直到图像清晰。
6.将显微镜放大倍数调整到1.5倍。
7.将吸液管吸满液体安装在固定夹上。
旋转测微头,液体将缓缓流出,形成液滴。
8.用脱脂巾擦干针头上的液体,再在工作台上放置被测的固体试样。
最好是长条的20×60mm左右。
9.点击配置栏,在试验设置对话框,在相关栏添入相关数值。
10.上升移动工作台至界面上红色水平线的下方(1mm左右),见图4。
11.旋转测微头,当针头流出大约3-5ul左右的液体时停止。
12.旋转工作台升降手轮,使试样表面接触液滴,然后下降一点。
液滴显示在视窗内,见图5。
13.点击开始试验绿色三角形图标,试验将按照设置的时间间隔自动拍摄图像,直至完毕。
14.关闭视频,点击软件界面下面的电影图片任意一张,图片将显示在大窗口中,见图6。
径向流实验报告
篇一:中国石油大学华东渗流力学径向流实验报告中国石油大学渗流力学实验报告实验日期: 2014/12/11 成绩:班级:石工(理科)1202学号: 12090413 姓名:李佳教师:同组者:史家明不可压缩流体平面径向稳定渗流实验一、实验目的1、平面径向渗流实验是达西定律在径向渗流方式下的体现,通过本实验加深对达西定律的理解;2、要求熟悉平面径向渗流方式下的压力降落规律,并深刻理解该渗流规律与单向渗流规律的不同,进而对渗透率突变地层、非均质地层等复杂情况下的渗流问题及其规律深入分析和理解。
二、实验原理平面径向渗流实验以稳定渗流理论为基础,采用圆形填砂模型,以流体在模型中的流动模拟水平均质地层中不可压缩流体平面径向稳定渗流过程。
保持填砂模型内、外边缘压力恒定,改变出口端流量,在稳定条件下测量填砂模型不同位置处的水头高度,可绘制水头高度或压力随位置的变化曲线(压降漏斗曲线);根据平面径向稳定渗流方程的解计算填砂模型的流动系数及渗透率。
三、实验流程实验流程见图2-1,圆形填砂模型18上部均匀测压管,供液筒内通过溢流管保持液面高度稳定,以保持填砂模型外边缘压力稳定。
图2-1 平面径向流实验流程图1-测压管(模拟井);2~16-测压管(共16根);18―圆形边界(填砂模型);19-排液管(生产井筒);20—量筒; 21—进水管线;22—供液筒;23-溢流管;24—排水阀;25—进水阀;26—供水阀。
四、实验操作步骤1、记录填砂模型半径、填砂模型厚度,模拟井半径、测压管间距等数据。
2、打开供水阀“26”,打开管道泵电源,向供液筒注水,通过溢流管使供液筒内液面保持恒定。
3、关闭排水阀“24”,打开进水阀“25”向填砂模型注水。
4、当液面平稳后,打开排水阀“24”,控制一较小流量。
5、待液面稳定后,测试一段时间内流入量筒的水量,重复三次。
;6、记录液面稳定时各测压管内水柱高度。
7、调节排水阀,适当放大流量,重复步骤5、6;在不同流量下测量流量及各测压管高度,共测三组流量。
流体静力学 中国石油大学(华东)流体力学实验报告
中国石油大学(华东)工程流体力学实验报告实验日期:成绩:班级:学号:姓名:教师:李成华同组者:实验一、流体静力学实验一、实验目的:填空1.掌握用液式测压计测量流体静压强的技能;2.验证不可压缩流体静力学基本方程,加深对位置水头、压力水头和测压管水头的理解;3. 观察真空度(负压)的产生过程,进一步加深对真空度的理解;4.测定油的相对密度;5.通过对诸多流体静力学现象的实验分析,进一步提高解决实际问题的能力。
二、实验装置1、在图1-1-1下方的横线上正确填写实验装置各部分的名称,本实验的装置如图所示。
1. 测压管;2. 带标尺的测压管;3. 连通管;4. 通气阀;5. 加压打气球;6. 真空测压;7. 截止阀;8. U型测压管;9. 油柱;10. 水柱;11. 减压放水阀图1-1-1 流体静力学实验装置图2、说明1.所有测管液面标高均以 标尺(测压管2) 零读数为基准;2.仪器铭牌所注B ∇、C ∇、D ∇系测点B 、C 、D 标高;若同时取标尺零点作为 静力学基本方程 的基准,则B ∇、C ∇、D ∇亦为B z 、C z 、D z ;3.本仪器中所有阀门旋柄 均以顺 管轴线为开。
三、实验原理 在横线上正确写出以下公式1.在重力作用下不可压缩流体静力学基本方程 形式之一:const=+γpz (1-1-1a )形式之二:h p p γ+=0 (1-1b )式中 z ——被测点在基准面以上的位置高度;p ——被测点的静水压强,用相对压强表示,以下同; 0p ——水箱中液面的表面压强;γ——液体重度;h ——被测点的液体深度。
2. 油密度测量原理当U 型管中水面与油水界面齐平(图1-1-2),取其顶面为等压面,有01w 1o p h H γγ== (1-1-2) 另当U 型管中水面和油面齐平(图1-1-3),取其油水界面为等压面,则有02w o p H H γγ+= 即02w 2o w p h H H γγγ=-=- (1-1-3)h 1wh 2图1-1-2 图1-1-3由(1-1-2)、(1-1-3)两式联解可得: 21h h H +=代入式(1-1-2)得油的相对密度o d211d h h h w o o +==γγ (1-1-4) 根据式(1-1-4),可以用仪器(不用额外尺子)直接测得o d 。
镜像反映实验(附带实验总结)
实验四 镜像反映实验一、实验目的1、通过本实验加深对镜像反映原理的理解。
2、了解有限边界对油井产量的影响。
3、掌握测量等势线的一种方法。
二、实验原理直线供给边界附近一口井的产量计算公式为:22lnwKh PQ d r πμ∆=(4-1) 错误!未找到引用源。
式中,d —油井到供给边界的距离。
电流与电压的关系式为:22ln m m wmh UI d r πρ∆=(4-2) 式(4-1)是在供给边界无限长的条件下推导出来的,而实际供给边界是有限长的。
绘制井至供给边界的距离与油井产量的关系曲线,并与理论计算结果进行对比,即可分析井距边界的距离对油井产量的影响程度。
中国石油大学(渗流力学)实验报告实验日期: 2013-06-06 成绩:班 级: 石工10-班 学号: 1002 姓名: 教师: 张同组者:三、实验流程图4-1 镜像反映实验电路图1-电解槽2-铜丝(模拟井)3-供给边界(铜片)图4-2 电压法测定等压线实验电路图1-电解槽 2-铜丝(模拟井) 3-供给边界(铜片)四、实验操作步骤1.镜像反映1)确定模拟油藏参数,计算相似系数; 2)配制NaCl 溶液,测定溶液电导率,计算Cp ; 3)按照图4-1连接电路,调整量程;4)记录初始位置,不断摇动手柄测量不同距离对应的电流值。
2.电压法测定等压线1)按图4-2连接电路,记录初始井位、边界位置;2)从生产井开始,沿某一方向移动探针,隔一定距离记录一个电压值和对应的坐标值(x ,y )。
五、原始数据记录1、产量与距离关系记录表(1#实验台)地层参数:r w=0.15m ,h=10m , L=205.7m ,μ=5mPa.s ,K= 0.1μm 2。
模型参数:r wm =0.875mm ,h m =5.83cm ,L m =120cm ,ρ=878μs/m 。
边界坐标X m 0=6.6cm △U=5V △P= 5(0.1MPa )由相似原理有: 31083.51007.205120-⨯=⨯==L L C m l则:cm r C r w l wm 75.810015.01083.53=⨯⨯⨯==-cm h C h l m 83.5100101083.53=⨯⨯⨯==-2、 等压线数据记录表模拟井位坐标0m x =16.3 cm ,0m y =49.2 cm ,实际井位坐标x =27.96 m ,y = 84.39 m六、数据处理与要求1、计算不同位置处生产井产量,绘制井至供给边界的距离与油井产量的关系曲线,分析生产井产量与其到供给边界的距离的关系,并与理论结果进行对比。
中国石油大学华东-渗流实验-岩石碳酸盐含量测定实验报告
中国石油大学渗流物理实验报告实验日期: 成绩: 班级: 学号: 姓名: 教师:同组者:岩石碳酸盐含量测定实验(GMY-Ⅱ型碳酸盐含量测定仪)一.实验目的1.加深了解碳酸盐含量的概念和意义。
2.掌握测定碳酸盐含量的原理和方法。
二.实验原理实验原理:岩石中的碳酸岩主要是方解石(CaCO3)和白云岩(CaMg(CO3)2);反应容器体积一定,一定量的岩样与足量的稀盐酸反应,产生CO2气体,容器内压力增加。
岩样中的碳酸盐含量越多,容器中生成的CO2气体的压力就越大。
·CaCO3+2HCl=H2O+CaCl2+CO2CaMg(CO3)2+4HCl=2H2O+CaCl2+MgCO3+2CO2首先用一定质量的纯碳酸钙与足量的稀盐酸反应,记录反应后的压力(或绘制纯碳酸钙的质量与产生气体压力的关系曲线),然后取一定质量的岩样与足量的盐酸反应,记录产生的气体的压力。
由于气体的压力与纯碳酸盐的质量成正比,由此可计算岩样中折算含碳酸钙的量(岩样中的碳酸钙、碳酸镁和白云岩都与盐酸反应):m纯/ m岩样= p1/p2y=p2 m纯/ p1 m岩样m纯——纯碳酸钙的质量,g;m岩样——岩样的质量,g;y——岩样中碳酸盐的质量分数,%;p1,p2——分别为碳酸钙及岩样反应后的气体压力。
三.实验流程(a)流程图(b)控制面板图1 GMY-Ⅱ型碳酸盐含量测定仪四.实验步骤1、称取纯碳酸钙0.2g左右,放入样品伞中,量取20ml5%的稀盐酸,放入反应杯中。
2、打开放空阀,将投样开关旋至“ON”位置(插孔内具有磁性)上,将盛有纯碳酸钙的样品伞插入反应杯盖下方的小孔中,把盛有盐酸的反应杯旋入反应杯盖,使之密封,关闭放空阀,记录初始压力读数P0。
3、将投样控制开关旋至“OFF”位置,插孔失去磁性,样品伞掉入盐酸中,发生酸盐反应,调节磁力搅拌器的调速开关,调至合适的转速。
4、观察压力显示,当压力稳定不变时,记录压力值P1,得到气体压力P1=1'P -P0。
水电模拟渗流实验
中国石油大学 渗流力学 实验报告实验日期: 成绩:班级: 学号: 姓名: 教师: 同组者:实验三 水电模拟渗流实验一、实验目的1. 掌握水电模拟的实验原理、实验方法,学会计算相似系数。
2. 测定圆形定压边界中心一口直井生产时产量与压差的关系,并与理论曲线进行对比,加深对达西定律的理解。
3. 测定生产井周围的压降漏斗曲线,加深对压力场的分布的认识。
二、实验流程及原理实验电路如图1所示。
图1中拔下电流表与可变电阻相连的一端,使其与测量电源的低压端连接,电流表另一端与带铜丝的导线2连接,如图1所示。
改变调压器,由测量电压表读出供给边缘与生产井2之间的电压值,由电流表读出电流值。
1 - 电解槽2 - 铜丝(模拟井)3 - 供给边界图1 圆形恒压边界中心一口直井电路图三、计算原理圆形恒压边界中心一口直井(完善井)稳定生产时产量计算公式:e fw2πlnKh P PQ r R r μ∆∆==(1) 地层中任一点压力分布公式:w e w wln ln ln P rP P A B rr r r ∆=+⋅=+(2) 由相似原理可知,模拟模型中电压与电流同样满足上述关系式: 完“井”“产量”公式:m em m wm2πln h U UI r R r ρ∆∆==(3) 改变电压ΔU ,并测得相应的电流值I 。
由此可得到ΔU -I 关系曲线(理论上应为直线)。
任一点电压分布公式:m wm m m mem wm wmln ln ln r UU U A B r r r r ∆=+=+(4) 固定ΔU 值,测得r m 处的电位值U ,由此可得“压降”漏斗曲线。
由“完善井” 电压与电流的关系及相似系数C p 、C q ,可以求出完善井压差(P e -P w )与流量的关系:流量:q I Q C =; 压差:e w pU P P C ∆-= (5) 由模拟条件下任意半径r m 处的电位值U ,可求得实际地层中任意半径r 处的压力P ,即可求得地层中的压力分布:压力:pUP C =; 对应半径:m l r r C = (6)式(2)的压力及半径均用式(6)处理,可求得实际地层中任意点的压力分布。
平面径向流
61.75
61.60
61.55
62.00
62.25
62.05
62.25
62.40
62.20
62.20
62.55
62.90
62.75
62.80
63.00
280.0
52.53
317.0
59.57
327.0
61.60
3
12.50
46.75
46.95
46.65
46.65
47.70
48.00
47.80
6656.65
101.90
73.01
5.32
P
5894.70
5899.60
5904.50
5889.80
5897.15
66.27
9.89
P
4439.40
4449.20
443ቤተ መጻሕፍቲ ባይዱ.40
4429.60
4439.40
50.87
半径cm
8.88
流量cm3/s
测压管序号
6
7
8
9
平均值
渗透率
平均渗透率k/um2
2.08
96.73
9.89
P
4689.30
4708.90
4718.70
4718.70
4708.90
71.28
不同半径r/cm
4.44
8.88
13.32
17.76
渗透率K/
73.01
88.93
98.94
102.41
由表2-5,砂体的均匀性良好,砂体的渗透率随着半径r的增大而增大,但总的来说砂体的总体渗透率的均匀性良好。
中国石油大学(华东)渗流力学实验报告 水电模拟实验
水电模拟渗流实验一、实验目的1.掌握水电模拟的实验原理、实验方法,学会计算相似系数。
2.测定圆形定压边界中心一口直井生产时产量与压差的关系,并与理论曲线进行对比,加深对达西定律的理解。
3.测定生产井周围的压降漏斗曲线,加深对压力场的分布的认识。
二、实验原理1、水电相似原理利用电场模拟地层流体的渗流规律,机理在于流体通过多孔介质流动的微分方程与电荷通过导体材料流动的微分方程之间的相似性,即水-电相似原理。
多孔介质中流体的流动遵守达西定律:()q Kv grad p A μ==- (1) 式中,v —流速,m/s ;q —流量,cm 3/s ;A —渗流截面积,cm 2;K —渗透率,2m μ;μ—流体粘度,s mPa ⋅;P —压力,0.1MPa 。
通过导体的电流遵守欧姆定律:()Igrad U Sδρ==- (2) 式中,ρ为电导率,是电阻率的倒数,西门子/cm ;U —电压,伏;δ-电流密度,安培/cm 2;I-电流,安培,S-导体截面积,cm 2。
均质地层不可压缩流体通过多孔介质稳定渗流连续性方程:()0K div grad P μ⎛⎫= ⎪⎝⎭(3) 均匀导体中电压分布方程:()()0div grad U ρ= (4)对比方程上述方程可以看出:电场与渗流场可用相同的微分方程进行描述,因此,不可压缩流体的稳定渗流问题可用稳定电场进行模拟。
于是可以用电位分布来描述渗流场的压力分布,用电流来描述流量或流速,电阻描述渗流阻力。
2、水电相似准则物理模拟模型各参数与油层原型相应参数之间存在比例关系,称为相似系数。
各相似系数之间满足一定的约束条件,称为相似准则。
水电模拟各相似系数定义如下:1)几何相似系数模型的几何参数与油层的相应几何参数的比值。
即:()()ml oL C L =(5) 任意点的几何相似系数必须相同。
2)压力相似系数模型中两点之间的电位差与地层中两相应点之间的压差的比值。
即:()()m p oU C P ∆=∆ (6)3)阻力相似系数模型中的电阻与油层中相应位置渗流阻力的比值。
中国石油大学(华东)智慧树知到“石油工程”《渗流力学》网课测试题答案卷1
长风破浪会有时,直挂云帆济沧海。
住在富人区的她中国石油大学(华东)智慧树知到“石油工程”《渗流力学》网课测试题答案(图片大小可自由调整)第1卷一.综合考核(共10题)1.根据达西定律渗流量与()成反比。
A.渗流截面积B.液体粘度C.岩石的渗透率D.压力差2.非活塞式水驱油井排见水后,井底处含水饱和度一直为前缘含水饱和度不变。
()A.正确B.错误3.下列说法正确的是()。
A.均质水平等厚无限大地层等产量两汇时两点连线上渗流速度最快B.均质水平等厚无限大地层等产量两汇时两点对称轴为分流线C.均质水平等厚无限大地层等产量一源一汇时两点连线上渗流速度最快D.均质水平等厚无限大地层等产量一源一汇时两点对称轴为分流线4.幂积分函数-Ei(-y)的值随y值的增加而增加。
()A.正确B.错误5.复杂边界进行镜像反映时,对井有影响的边界都必须进行映射。
()A.正确B.错误6.渗流数学模型必须包括的内容有()。
A.连续性方程B.运动方程C.状态方程D.初边值条件7.井以变产量生产时可看成同一井位多口不同时刻投产井的叠加。
()A.正确B.错误8.等值渗流阻力法中全井排的内阻相当于井排中所有井内阻串联的结果。
()A.正确B.错误9.在渗流过程中毛管力一般表现为阻力。
()A.正确B.错误10.是一个简化式,因为它没有考虑()。
A.毛管力和惯性力B.重力和粘滞力C.毛管力和重力D.重力和惯性力第1卷参考答案一.综合考核1.参考答案:B2.参考答案:B3.参考答案:BC4.参考答案:B5.参考答案:A6.参考答案:ABD7.参考答案:A长风破浪会有时,直挂云帆济沧海。
住在富人区的她8.参考答案:B9.参考答案:B10.参考答案:C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
镜像反映实验
一、实验目的
1、通过本实验加深对镜像反映原理的理解。
2、了解有限边界对油井产量的影响。
3、掌握测量等势线的一种方法。
二、实验原理
直线供给边界附近一口井的产量计算公式为:
22ln
w
Kh P
Q d r πμ∆=
式中,d —油井到供给边界的距离。
电流与电压的关系式为:
22ln m m wm
h U
I d r πρ∆=
上式是在供给边界无限长的条件下推导出来的,而实际供给边界是有限长的。
绘制井至供给边界的距离与油井产量的关系曲线,并与理论计算结果进行对比,即可分析井距边界的距离对油井产量的影响程度。
图1 直线供给边缘附近一口井的反映
三、实验流程
图2 镜像反映实验电路图
1-电解槽2-铜丝(模拟井)3-供给边界
图3 电压法测定等压线实验电路图
1-电解槽2-铜丝(模拟井)3-供给边界
四、实验步骤
1、测量产量与距离的关系
(1)将调压器旋钮旋至“0”位置,按图1所示连接好电路。
确定边界坐标。
(2)打开电源,顺时针旋转变压器旋钮,将电源电压调到所需值(小于10伏即可)。
(3)从边界向另一边移动铜丝并应用万用表测得电流,测八组。
将数据记录于实验表格。
2、测量产量与压差的关系
(1)将调压器旋钮旋至“0”位置,将一外接电压表一端与测针相连,另一端接零线如图2所示。
记录生产井位置。
(2)打开电源,顺时针旋转变压器旋钮,将电源电压调到所需值(小于10伏即可)。
(3)从边界的一边开始,测量压差为9、8、7V时的探针的位置,每个电压
测量至少8组数据,将数据记录于表格。
注意:井附近数据点密一些,往外疏一些。
并且在测量7V 的位置时,要注意测量井的另一侧的等压差的位置,以便绘制出合理的等压线。
五、数据记录与处理
1、计算相似系数 实验仪器编号:5
水槽尺寸:85⨯125cm
地层参数:r w =0.15m ;h=10m ;L=225m ; k= 0.1μm 2 ;μ=5mPa ﹒s 模型参数:r em = 35cm ;r wm =0.08cm ;h m = 5.33cm ;ρ=866μs/cm (1)流动相似系数:63866105
=
0.0433[A 0.1/(cm )]0.1
C s MPa V k ρρμ-⨯⨯==
(2)几何相似系数:0.35165.625187.5
em l e r C r =
== 1
100.0533 5.33cm 187.5
m l h C h m ==
⨯== (3)阻力相似系数:31187.5
4330.254[cm /(A 0.1)]0.0433
r l C V s MPa C C ρ=
== (4)压力相似系数:仍设1/0.1p U
C V MPa P
∆=
=∆, (5)流量相似系数:431
/ 2.3110(A s/cm )4330.254
q p r C C C -===⨯
2、产量与距离关系
边界坐标:x m0=87.4cm ∆U=10V 以第一组数据为例 (1)计算实际距离
2/C 110187.5 1.875m l d d m -==⨯⨯=
(2)计算实际产量
3
334
59.210256.35/=22.15/2.3110
q I Q cm s m d C --⨯===⨯ (3)计算理论产量
33220.1100010
390.40/33.73/22 1.85ln 5ln
0.15
e w kh P Q cm s m d d r ππμ∆⨯⨯⨯=
===⨯⨯
(4)计算两者偏差
33.7322.15
100%100%34.34%33.73
t t Q Q e Q --=
⨯=⨯= 同理,可以计算其他地层压力下的真实流量与理论流量,计算结果记于表1
表1 产量与距离关系数据表
做出测量Q —d 关系曲线如图
图4 Q —d 关系曲线
通过曲线以及计算数据我们发现真实值与理论值差距较大,真实值偏小,其原因可能为所配制的NaCl 的电导率测量值偏大或者实验中的导线的电阻等原因使总电阻变大,进而使电流变小,从而导致产量降低,因此最终导致流量出现误差。
但流量的倒数与距离表现出对数关系。
3、等压线的绘制
模拟经纬坐标x m0=41.3cm, y m0=43.1cm,实际井位坐标x= 77.44m,y=80.81m 边界坐标(x=41.3cm,y=80.7cm ) ∆U=10V 以第一组数据为例进行计算 (1)根据几何相似系数计算坐标
-239.410==73.871187.5m l x x m C ⨯= -273.110==137.061187.5
m l x y m C ⨯=
(2)计算压力
9/90.11/0.1p V
P U C MPa V MPa
∆=∆=
=⨯
同理计算井眼坐标与各压力下坐标以及压力值,记录于下表
表2 等压线数据记录表
实验中只测量了井眼与边界的一个方位,通过对称的方法,还原等压线图如下:
图5 等压线图
六、思考题
生产井距供给边界的距离如何影响产量的实验值与理论值之间的偏差?
答:在表1中观察,可以看到偏差随着距离的增加呈现先减小后增大的趋势。
影响产量偏差的原因主要有两个:
(1)导线的电阻实际不可忽略,但在实验中被忽略。
随着距离变大,实际电阻越来越大,被忽略的电阻所占比例减小,从而在开始阶段会出现随着距离的增加偏差减小的现象;
(2)实际边界非无限长,由于在实验中边界的长度有限,随着距离的增加,尤其是当测量点快接近实际边界控制范围时,实际压差影响不到,故流量误差变大。
总之,影响产量误差是在两个原因下相互作用而形成,最终呈现偏差随着距离的增加呈现先减小后增大的趋势。