工程力学-平面任意力系平衡方程
平衡方程应用6

15
§3—2 平衡方程及其应用
解(1)选取研究对象 ,画受力图
FAC
FCA
16
§3—2 平衡方程及其应用
2、建立坐标系列出平衡方程
∑F x=0 , -W cos45°-FAC-FT cos15°-FAB cos75°=0 ∑Fy =0, -W sin 45°+FTsin15°+ F2 平衡方程及其应用
二力矩式:
Fx 0 FAx FB cos45 0
M A 0 Fa M FB sin 45 3a 0 M B 0 FAy 3a F 2a M 0
12
§3—2 平衡方程及其应用
三力矩式:
M A 0 Fa M FB sin 45 3a 0 M B 0 FAy 3a F 2a M 0 M D 0 FAx 3a Fa M 0
M A 0 W1maxa W (e b) 0 W (e b) W1 max 375 kN a
361 kN W1 375kN
25
§3—2 平衡方程及其应用
(2) 取起重机为研究对象,画出受力图,取y轴 向上为正,列出平衡方程
M A 0 W1a FBb W (e b) F (l b) 0
13
§3—2 平衡方程及其应用
3-2-2、平面力系的几种特殊情形 1、平面汇交力系
Σ FX=0 Σ Fy=0
14
§3—2 平衡方程及其应用
例题3-3起重架可借饶过滑轮A的绳索将重 W=20KN的重物吊起,滑轮A用AB及AC两杆支承。 设两杆的自重及滑轮A的大小,自重均不计, 求杆AB,AC的受力。
3第三章平面任意力系

固定端(插入端)约束
说明: ①认为Fi 这群力在同一平面内; ② 将Fi向A点简化得一力和一力偶; ③FA方向不定可用正交分力FAx, Fay 表示; ④ FAy, FAx, MA为固定端约束反力;
⑤ FAx, FAy限制物体平动, MA为限
制转动。
11
MO
§3-2 平面一般力系的简化结果 合力矩定理 y 简化结果:主矢 F ' R ,主矩 M O 。
∴ 力的直线方程为:
MO
x
FR '
x
O
x
670.1 x 232.9 y 2355 0
2355 当 y 0, x 3.5 m 670 .1
18
FR
§3-3 平面一般力系的平衡条件与平衡方程
F' 0 R MO 0
为力平衡,没有移动效应。 为力偶平衡,没有转动效应。
P
45
0
M A (F i ) 0 :
FC sin45 AC P AB 0
B
FAy
FAx
y
A
C
FAx 20.01kN ,
FAy 10.0kN
FC
x
FC 28.3kN
或: M C ( F i ) 0 : FAy AC P CB 0
22
o
例:求横梁A、B处的约束力。已知 M Pa, q, 解:1)AB杆 q M B A 2)受力分析
主矩MO 方向:方向规定 +
Fiy tg 方向: tg FRx Fix
1
FRy
1
大小: M O M O ( Fi ) , (与简化中心有关),(因主矩等于各力对简化中心取矩 的代数和)
工程力学第4章

(4) 结果分析或校核。
第4章 平面任意力系
例4-2 摇臂吊车如图4-9(a)所示。横梁AB的A端为固定 铰链支座,B端用拉杆BC与立柱相连。已知梁的重力G1=4kN, 载荷G2=12 kN,横梁长l=6m,α=30°,求当载荷距A端距 离x=4 m时, 拉杆BC的受力和铰支座A的约束反力。
第4章 平面任意力系
3. 平面力偶系是特殊的力系,根据力偶的性质,在基本方程 中的投影方程自然满足,所以只有一个方程,
MO (F) 0
第4章 平面任意力系
4.2.3
(1) 根据题意,选取适当的研究对象;对所选研究对 象进行受力分析并画受力图。
(2) 选取适当的直角坐标系。坐标轴应与较多的未知 反力平行或垂直。一般情况下,水平和垂直的坐标轴可以不画, 但其它特殊方向的坐标轴必须画出。
第4章 平面任意力系
(3) 该力系上述的三种简化结果,从形式上是不同的, 但都与原力系等效。所以,三种情况的简化结果是等效的。
第4章 平面任意力系
4.1.3 固定端约束
固定端约束是工程中一种常见的约束。如图4-6所示,夹紧 在卡盘上的工件(图(a)),固定在刀架上的车刀(图(b)), 嵌入墙中的雨罩(图(c))等都属于固定端约束。由约束的性质 可知, 固定端约束能限制物体沿任何方向的移动,也能限制物 体在约束处的转动。所以,固定端A处的约束反力可用两个正
主矢FR′的大小和方向分别为:
FR' (FRx )2 (FRy )2 2002 1502 250N
tan FRy 150 0.75
FRx 200
第4章 平面任意力系
第三章力系的平衡介绍

工 程 力 学
§3-2
平面力系的平衡条件
F1 Fn F3
1、平面任意力系的平衡方程 F2 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零。
0 FR
第 三 章 力 系 的 平 衡
Mo 0
平面任意力系
FR ( Fx ) 2 ( Fy ) 2
M O M O (F )
2
0
F
x
0,
F
y
0,
F
z
0
即:汇交力系的平衡条件是力系中所有各力在各个坐
标轴中每一轴上的投影的代数和分别等于零。
工 程 力 学
三、空间平行力系的平衡方程
第 三 章 力 系 的 平 衡
F
z
0,
M (F ) 0, M (F ) 0
x
y
工 程 力 学
四、空间力偶系的平衡方程
第 三 章 力 系 的 平 衡
工 程 力 学
例:如图所示为一种起吊装置的结构简图。图中尺寸d , 载荷F, <FAD =60均为已知。若不计各杆自重,试求杆AF与杆AD在各 自的约束处所受的约束力。
第 三 章 力 系 的 平 衡
工 程 力 学
第 三 章 力 系 的 平 衡
工 程 力 学
例:滑轮支架系统如图所示。已知G,a,r,θ ,其余物体重 量不计,试求A和B的约束力。
工 程 力 学
3、平面汇交力系的平衡方程
F
x
0,
F
y
0
4、平面力偶系的平衡条件
第 三 章 力 系 的 平 衡
M 0
即:力偶系各力偶力偶矩的代数和等于零。
工 程 力 学
工程力学C-第4章 平面任意力系

l 2
q( x) xdx 2l h 3 q( x)dx
0 l 0
l
例 题7:
均匀分布载荷 q =4kN/m ,自由端B作用有集 中力F = 5kN,与铅垂线夹角α=25°,梁长 l = 3m。求固定端的反力。 解: 梁AB ——研究对象
x
M A (Fi ) 0 : M Q l F cos l 0 (Q ql 4 3 12kN) A
2
1 2 M A Fl cos ql 31.59kN m 转向如图 2
F
F
xi
0:
0:
FAx F sin 0
FAx F sin 2.113kN
FAy Q F cos 0
实际方向与图中相反
yi
FAy Q F cos 16.53kN 方向如图
n
平衡方程
平面任意力系平衡的解析条件:所有各力在两个任选的坐标轴 上的投影的代数和分别等于零,以及各力对于任意一点矩的代 数和也等于零。
例 1:
固定端约束
既不能移动,又不能转动的约束—— 固定端约束 固定约束的特点
利用平面力系的简化结果,将端部的分布
力向端部的一点A点简化,得FA、MA。
FA MA
A
B
b
因此,P2必须满足:
Pe P l P (e b) 1 P2 ab a
FNA
FNB
例 题 6 细杆AB 搁置在两互相垂直的光滑斜面上,如图所 示。已知:杆重为P,重心C 在杆AB的中心,两 斜面的几何关系如图。求:杆静止时与水平面的 夹角θ和支点 A、B 的反力。 解: 细杆AB —— 研究对象 设杆AB长 l ,取图示坐标系。
工程力学教学课件 第3章 平面任意力系

A
MA
FAx
A
简 化
2021/7/22
FAy
11
一、简化结果分析
3.2
平
面 任
F1
A1
F2
O A n A2
M O FR'
O
意
Fn
力
系 的 简 化
1 . F R ' 0 ,M o 0
2 . F R ' 0 ,M O 0
结 果
3 . F R ' 0 ,M O 0 4 . F R ' 0 ,M O 0
的 简 化
此时主矩与简化中心的位置无关。
3、主矢不等于零,主矩等于零 (F R ' 0 ,M O 0 )
结 果
此时平面力系简化为一合力,作用在简化
中心,其大小和方向等于原力系的主矢,即
FRF
2021/7/22
13
一、简化结果分析
3.2 4、主矢和主矩均不等于零 (F R ' 0 ,M O 0 )
平
此时还可进一步简化为一合力。
面
任
FR'
FR'
FR
FR
意 力
O M O O
O
d
O
O
O
d
系 的 简 化
FR'' M O m O ( F R ) F R d F R 'd 于是
d M
F
由主矩的定义知:M O m O (F i)
O ' R
结 所以:
m O (F R ) m O (F i)
果 结论:平面任意力系的合力对作用面内任一点之矩
杆所受的力。
A
45
工程力学-材料力学-第03章 平面任意力系(邱清水)

3.1
(2 M O F M 2 F2 cos 60 2 F3 3F4 sin 30 2.5 kN m
由于主矢和主矩都不为零,故最后合成结果是一个合力 FR,合力到O点的距离为
d M O FR 0.421 m
A B C
附加条件:A,B,C 三点不共线直
为什么要附加条件?
3.2 平面任意力系的平衡条件和平衡方程
平面平行力系的平衡方程:
如果选Oxy坐标系的y轴与各力平
行,则不论力系是否平衡,各力在x轴
上的投影恒等于零。 于是,平面平行力系的平衡的数 目只有两个 即
F 0 M F 0
y O
或
M F 0 M F 0
A B
3.2 平面任意力系的平衡条件和平衡方程
3.平面任意力系平衡方程的应用
力系平衡方程主要用于求解单个物体或物体系统平衡时 的未知约束力,也可用于求解物体的平衡位置和确定主动 力之间的关系。 应用平衡方程解题的大致步骤如下: 1)选取研究对象,画出受力分析图; 2)选取坐标系,列出平衡方程; 3)求解方程组。
2
FRy arctan FRx
F F F arctan F
2
2
2
x
y
y
x
3.1 平面任意力系的简化.主矢与主矩 3.固定端(或插入端)约束
图(a)为固定端约束在计算时所用的简图。物体在固嵌部分所 受力是比较复杂的(图(b)),但当物体所受主动力为一平面 力系时,这些约束力亦为平面力系,可将它们向A点简化得一 力和一力偶(图(c))。这个力可用两个未知正交分力来代替。 因此,在平面力系情形下,固定端A处的约束作用可简化为两 F 个约束力 F Ax , Ay和一个约束力偶 M A (图(d))。
平面任意力系平衡方程的基本形式例题分析

《工程力学》课程习题-例题分析学习项目二(平面任意力系的合成与平衡)平面任意力系平衡方程的基本形式1、起重设备重G1=10kN,可绕铅直轴AB转动;起重机的挂钩上挂一重为G2=40k N的重物,如图所示。
起重机的重心C到转动轴的距离为,其它尺寸如图所示。
求在止推轴承A和轴承B处的反作用力。
解:以起重机为研究对象,它所受的主动力有G1和G2。
由于对称性,约束反力和主动力都在同一平面内。
止推轴承A处有两个约束反力F Ax、F Ay,轴承B处只有一个与转轴垂直的约束反力F B,约束反力方向如图所示。
上述力形成平面一般力系,取坐标系如图所示,列平衡方程,即∑F x=0 F Ax+F B =0∑F y=0 F Ay-G1-G2=0∑M A(F i)=0 -F B×5-G1×-G2×=0联立以上方程,得F Ay=G1+G2=50 kNF B =--=-31kNF Ax =-F B =31kNF B 为负值,说明其方向与假设的方向相反,即应指向左。
2、防洪用弧形闸门有对称的两个支架和铰链支座。
已知闸门重G =1100kN ,静水总压力2P 2G B V A (F i )=0 B V ×2G×=0得 V B = kN 取x 、y 轴方向如图b ,列投影方程由∑F x =0 05531sin 25531sin 21='︒-'︒+-G V R P B得 R 1=由∑F y =0 05531c 25531cos 2='︒-'︒+os G V R B得R2=反力的方向如图b所示。
静力学:第三章-平面任意力系(1)详解

合力
合力
3.3 平面任意力系的平衡
平面任意力系平衡的充要条件:力系的主矢和对任
意点的主矩都等于零。
平面任意力系的平衡方程:
一般式
二矩式
三矩式
Fx Fy
0 0
MO 0
F x
0
M A 0
M B 0
M A 0 M B 0 M C 0
两个取矩点连线, 不得与投影轴垂直
三个取矩点, 不得共线
解得: P3max=350kN
P3
P1
P2
75kN P3 350kN A
B
FA
FB
当 P3=180kN 时(平面平行力系):
M A 0 4 P3 2 P1 14 P2 4 FB 0 P3
P1
P2
Fy 0 FA FB P1 P2 P3 0
解得: FA=210kN FB=870kN
平面任意力系的平衡方程只有三个,只能求三 个未知数。
三个特例:
平面汇交力系: Fx 0, Fy 0 平面力偶系: M o 0
平面平行力系: Fy 0, M o 0 或者 M A 0, M B 0
3.4 物体系统的平衡
静定问题:系统未知量数目等于独立的平衡方程数目。 超静定问题(静不定问题):系统未知量数目超过独
其中:M B M B (F ) Fd
3.2 平面任意力系向作用面内一点简化
主矢:矢量和 FR Fi 主矩: 代数和 M O M O (Fi )
主矢与简化中心无关,而主矩一般与简化中心有关.
主矩简化什么情况下与简化位置无关?
平面任意力系应用:平面固定端约束
=
=
平面任意力系的简化结果
(1) FR 0, M O 0
工程力学第二章(力系的平衡)

{
平衡方程其他形式: 平衡方程其他形式:
Σ Fx = 0 Σ MA(F)= 0 Σ MB(F)= 0 Σ MA(F)= 0 Σ MB(F)= 0 Σ MC(F)= 0
A
B
x
A、B 连线不垂直于x 轴 连线不垂直于x
(两矩式) 两矩式)
{
C B A C
(三矩式) 三矩式)
A、B、C三点不 在同一条直线上
l FC C B F
∑F x
y
∑M ( F) = 0,
A
F cos 45 ⋅l − F ⋅ 2l = 0 C
y FAy AF
Ax
l C FC
l x
45
B F
3、解平衡方程,可得 解平衡方程,
FC = 2 F cos 45 = 28.28 kN
FAx = − FC ⋅ cos 45 = −2 F = −20 kN
平面任意力系平衡方程讨论: 平面任意系平衡方程讨论:
{
x
Σ Fx = 0 Σ Fy = 0 Σ MO= 0
请思考:x , y 的选择是否有一定任意性? 请思考: 的选择是否有一定任意性?
x y y x
y
例4 支架的横梁AB与斜杆DC彼此以铰链C连 支架的横梁AB与斜杆 彼此以铰链 与斜杆DC彼此以铰链C
FBC cos 60 − G − Fcos 30 = 0
FBC = 74.5 kN
联立求解得 FAB = −5.45 kN
约束力F 为负值, 约束力FAB为负值,说明该力实际指向与 图上假定指向相反,即杆AB实际上受 实际上受拉 图上假定指向相反,即杆AB实际上受拉力。
解析法的符号法则: 解析法的符号法则:
平面任意力系平衡的充分必要条件: 平面任意力系平衡的充分必要条件:
工程力学3—力系的平衡条件和平衡方程

第3章 力系的平衡条件与平衡方程 章
受力分析的最终的任务是确定作用在构件上的所有未知力, 受力分析的最终的任务是确定作用在构件上的所有未知力 , 作为对工程构件进行强度设计、刚度设计与稳定性设计的基础。 作为对工程构件进行强度设计、 刚度设计与稳定性设计的基础 。 本章将在平面力系简化的基础上, 本章将在平面力系简化的基础上 , 建立平衡力系的平衡条件 和平衡方程。 和平衡方程。并应用平衡条件和平衡方程求解单个构件以及由 几个构件所组成的系统的平衡问题, 几个构件所组成的系统的平衡问题,确定作用在构件上的全部 未知力。此外本章的最后还将简单介绍考虑摩擦时的平衡问题。 未知力。此外本章的最后还将简单介绍考虑摩擦时的平衡问题。 “平衡”不仅是本章的重要概念,而且也工程力学课程的重要 平衡”不仅是本章的重要概念, 概念。 对于一个系统,如果整体是平衡的, 概念 。 对于一个系统 , 如果整体是平衡的 , 则组成这一系统的 每一个构件也平衡的。对于单个构件,如果是平衡的, 每一个构件也平衡的 。 对于单个构件 , 如果是平衡的 , 则构件 的每一个局部也是平衡的。 这就是整体平衡与局部平衡的概念。 的每一个局部也是平衡的 。 这就是整体平衡与局部平衡的概念 。
M =m1 +m2 +m3 +m4 =4×(15)=60Nm
由力偶只能与力偶平衡的性质, 由力偶只能与力偶平衡的性质, 与力N 组成一力偶。 力NA与力 B组成一力偶。 根据平面力偶系平衡方程有: 根据平面力偶系平衡方程有
NB ×0.2 m1 m2 m3 m4 = 0
∴N A = N B =300 N
∴N B =
60 =300N 0.2
[例4] 图示结构,已知M=800N.m,求A、C两点的约束反力。 例 图示结构,已知 , 、 两点的约束反力。 两点的约束反力
工程力学第3章

1第三章力系的平衡§3–1 平面力系的平衡方程§3–2 空间力系的平衡方程§3–3 物体系统的平衡方程§3–4 静定与静不定的基本概念§3-1 平面力系的平衡方程由于=0 为力平衡M O =0 为力偶也平衡所以平面任意力系平衡的充要条件为:力系的主矢F R 和主矩M O 都等于零,即:)()(22=+=∑∑Y X F R 0)(==∑i O O F m M 1、平面任意力系的平衡方程R F=∑X 0)(=∑i A F m 0)(=∑i B F m ②二矩式条件:x 轴不AB连线⊥0)(=∑i A F m 0)(=∑i B F m 0)(=∑i C F m ③三矩式条件:A ,B ,C 不在同一直线上上式有三个独立方程,只能求出三个未知数。
=∑X 0=∑Y 0)(=∑i O F m ①一矩式①平面汇交力系=∑xF 0=∑yF2、平面特殊力系的平衡方程②平面力偶系=∑M ③平面平行力系=∑y F 0)(=∑F M O 0)(=∑F MB0)(=∑F M A AB 不x 轴⊥[例] 已知:P , a , 求:A 、B 两点的支座反力?解:①选AB 梁研究②画受力图(以后注明解除约束,可把支反力直接画在整体结构的原图上))(=∑i A F m 由32 ,032PN a N a P B B =∴=⋅+⋅-0=∑X 0=A X 0=∑Y 3,0PY P N Y A B B =∴=-+解除约束,0==∑A X X 由022;0)(=⋅-+⋅⋅+⋅=∑a P m aa q a R F m B A 0=∑Y 0=--+∴P qa R Y B A )kN (122028.01628.02022=⨯+-⨯-=+--=P a m qa R B )kN (24128.02020=-⨯+=-+=B A R qa P Y [例] 已知:P =20kN, m =16kN·m, q =20kN/m, a =0.8m求:A 、B 的支反力。
平面任意力系的平衡方程及应用

平面任意力系的平衡方程及应用
2. 平行力系的平衡方程
对于平面平行力系, 若投影轴垂直于各力作 用线,无论力系是否平 衡,力系中的各力向该 轴的投影恒为零,因此, 平衡方程组中不应含有 向该轴的投影式子,如 图3-3所示。
图3-3
平面任意力系的平衡方程及应用
平面平行力系的平衡方程组为
(3-6) 使用式(3-6)解题时,投影轴y与力系中的各力的作用线不能 垂直。平面平行力系有两个独立的平衡方程,因此最多能求解两个 未知量。 平面平行力系的平衡方程组还有一种表达式:
平面任意力系的平衡方程及应用
平面任意力系的平衡方程还有另外两种表达形式:二矩式与三矩式。 二矩式平衡方程:
(3-4) 式(3-4)有两个力矩式子和一个投影式子,该方程组的适用条件为x轴与 A、B两点的连线不能垂直。 三矩式平衡方程:
(3-5) 式(3-5)有三个力矩式子,该方程组的适用条件为A,B,C三点不共线。
工程力学
平面任意力系的平衡方程及应用
1.1 平面任意力系的平衡方程及应用 1. 一般情况下的平衡方程
平面任意力系向一点简化可得到一个主矢R和一个主矩M,当主矢和 主矩同时为零时,力系平衡。所以平面任意力系平衡的充分必要条件是R =0,M=0,于是,力系的平衡方程为
(3-3)
式(3-3)说明:平面任意力系平衡时,力系中各力在两个坐标轴投 影的代数和均为零,力系中的各力对其作用面内任一点的力矩代数和也 为零。由于方程中含有一个力矩式子,因此这一方程组称为一矩式。
平面任意力系的平衡方程及应用
在解决实际问题时,可以先以整体为研究对象,解出一部 分未知力,再以单个物体或小系统为研究对象,求出剩下的未 知力;也可以分别以系统中的单个物体为研究对象,求解问题。 选择研究对象时,以选择已知力和未知力共同作用的物体为好, 还要尽量使计算过程简单,尽可能避免解联立方程组。另外还 应注意一点,在以整体为研究对象时,系统内各物体间的相互 作用力是内力,相互抵消,不体现出来;而若以单个物体为研 究对象时,内力则转化成外力,必须考虑。
工程力学第四章2

FAy
A
P
P
B 6m 6m
6m
FBx
FBy
CF Cx
取[左]受力分析
∑MC=0
FAx·6–FAy·6+3P=0
P
FAx
FAy
A
F Cy
F Ax
P = 2
FBx
P = 2
[左] 左
上固定销子C,可在杆 的光滑直槽中滑动, 例:图示杆BE上固定销子 可在杆 的光滑直槽中滑动,已知: 图示杆 上固定销子 可在杆AD的光滑直槽中滑动 已知: L=0.2m,M1=200N·m,α = 300,求:结构平衡时 2。 结构平衡时M , ,
iy
ix iy
=0 =0
平面平行力系的平衡方程 (设各力线都 // y轴): 轴
∑F = 0 ∑ m (F ) = 0
o i
5
例:图示导轨式汽车提升机构,已知提升的汽车重P=20kN, 图示导轨式汽车提升机构,已知提升的汽车重 , 求:导轨对A、B轮的约束反力(不计摩擦)。 导轨对 轮的约束反力(不计摩擦)。 轮的约束反力
∑MC=0, –F·a–3a · FD=0 ∑Fiy=0, –F+ FD+FC=0 FD=F/3, FC=2F/3, 3a C FC 3a A E D FD B FEX FAY FEY D [AD] FD FC [CB] E
FEY’ FCX
B
取[AD]
3 ∑ M A = 0, 3aFD − a ⋅ 2 FEx = 0 2 2 FEx = F, A 3
F
60cm
F FA P P
A
400cm
FB B
力偶仅 能被力 偶平衡
i FA·400–P·60=0; 解: ∑Mi=0: ; 得:FA=3kN FB=FA ∑Fx=0; F= P ∑Fy=0;
工程力学 第三章 平面任意力系

M O FR d
合力矩定理:
M o ( FR ) M O M O ( Fi )
3.1.5 平面任意力系的简化结果分析 ⑶平衡的情形
FR 0 M O 0
平衡
与简化中心的位置无关
例3-1 已知作用在梁AB上的 两力a=3m,求合力大小及作 用线位置。 解:
⑴大小: FR=30KN ⑵方向: 铅垂向下 ⑶作用线位置: A
Fy 0 F1 sin F2 sin F3 sin 0
平面平行力系的方程为两个,有两种形式:
Fy 0 M A 0
各力不得与投影轴垂直
M A 0 M B 0
两点连线不得与各力平行
例3-10已知: P 700kN, P2 200kN, AB=4m; 1
3.2.1 平面任意力系的平衡条件 平面任意力系平衡的充要条件是:
力系的主矢和对任意点的主矩都等于零
FR 0 M O 0
3.2.2 平面任意力系的平衡方程
FR ( Fx ) ( Fy )
2
2
M O M O ( Fi )
Fx 0 Fy 0 M O 0
d.方程要标准
例3-4 已知: AC=CB= l,P=10kN;求:铰链A和DC杆 受力。
解:取AB梁,画受力图.
Fx 0 FAx FC cos 45 0 Fy 0 FAy FC sin 45 P 0 M A 0 FC cos 45 l P 2l 0 解得: FC 28.28kN, FAx 20kN, FAy 10kN
例 3-5 已知: 1 4kN, P2 10kN, 尺寸如图; P 求:BC杆受力及铰链A受力。
工学工程力学力系的平衡

一般式,
M M
A( B(
F F
) )
或0
0
二力矩式
Fy 0
M
O
(
F
)
0
条件:AB连线不能平行 于力的作用线
例题
均质杆AB和BC在B端固结成60°角,A端用绳悬挂,已知 BC=2AB,求当刚杆ABC平衡时,BC与水平面的倾角ɑ。
塔式起重机
已知: G1, G2, a,b,e,L 求:起重机满载时不向右和空
MA 0
FT sin 300 6 4P2 3P1 0
解得
FT 17.33kN FAy 5.33kN
例题
可否列下面的方程:
Fix
0
M A 0
M B 0
FAx FT cos 30o 0 FT sin 30o 6 4P2 3P1 0 6FAy 3P1 2P2 0
代入(1)式 FB 375N FAy 325N
例题
2m
求图示伸出梁的支座反力。
F1 =5KN
m o =8KN·m
q =2KN/m
F2 =20KN
A
2m
3m
B 2m
q1 =4KN/m 2m
例题
求如图所示悬臂梁的支座反力.
力系的平衡
• 平面平行力系
选y轴或者x轴与力系的作用线平行,则
有 X 0或者Y 0,只有两个独立的平衡方程.
(3)选择恰当的平衡方程、投影轴和力矩中心, 求解未知力。
例题
水平梁AB中点C作用着力F,其大小等于2 kN,方向与梁 的轴线成60º角,支承情况如图a 所示,试求固定铰链支座 A和活动铰链支座B的约束力。梁的自重不计。
A C
a
a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4)FR=0 M0=0 力系处于平衡状态。
例3-1 图示物体平面A、B、C三点构成一等边三角形,三点分别作
用F力,试简化该力系。
解:1.求力系的主矢
F x F F cos60o F cos60o 0
Fy 0 F sin 60o F sin 60o 0
y
C
F M0 F
上作用F力,集中力偶M0=Fa,=45°,试求杆件AB的约束力。
A
M0=Fa
C
B
F
解:1.取AB杆为研究对象画受力图
2.列平衡方程求约束力
Da a
FAx
A
M0=Fa
C
FAy FC
B F
aa
M A (F ) 0 : FC sin 45 a F 2a M 0 0
FC
2Fa a
Fa 2/2
MC (F) 0:
FAx
2
3a 3
F
a
M0
0
FAy 0 FAx 3F
C aa
一 矩
MA(F) 0: Fx 0 :
二 矩
MA(F) 0: MB(F) 0:
三 矩
MA(F) 0: MB(F) 0:
2 3a
式 Fy 0 :
式 Fx 0 :
式 M C (F8) 0 :
3
本课节小结
A F
B x
FR ( Fx )2 ( Fy )2 0
2.选A点为简化中心,求力系的主矩
M0
M A (F)
F
sin 60
AB
F
AB 2
简化结果表明该力系是一平面力偶系。
4
二、平面任意力系的平衡方程
1.平衡条件 平面任意力系平衡的必充条件为FR=0 M0=0。即
2.平衡方程
FR ( Fx )2 ( Fy )2 0
第三章 平面任意力系
◆ 课题3–1 ◆ 课题3–2 ◆ 课题3–3 ◆ 课题3–4
平面任意力系平衡方程 固定端约束 均布载荷求力矩 物体系统的平衡 考虑摩擦时构件的平衡
1
◆课题3–1 平面任意力系平衡方程
旧课复习:
F1 FR12
F3
O
FR F2
M1 M2 MR M3
1.平面汇交力系
平面汇交力系总可以合成为一个合力FR 。
Fx
结论:
平面任意力系向平面任意点简化,得到一主矢FR‘和一主矩M0
主矢的大小等于原力系中各分力在坐标轴投影代数和的平方和 再开方,作用在简化中心上,其大小和方向与简化中心的选取无关。
主矩的大小等于各分力对简化中心力矩的代数和。其大小和方 向与简化中心的选取有关。
3
3.简化结果的讨论
1)FR≠0 M0≠0 主矢FR和主矩MO也可以合成为一个合力FR。 2)FR≠0 M0=0 主矢FR就是力系的合力FR。 3)FR=0 M0≠0 力系为一平面力偶系。在这种情况下,主矩的
2.建立坐标系列平衡方程
A
B
aaa
y M0 A FAx FAy
F
Bx FB
M A (F ) 0 : FB 3a F 2a M 0 0
Fx 0 :
FB
2Fa 3a
Fa
F 3
FAx 0
Fy 0 :
FAy
FB
F
FAy
0
F
FB
2F 3
5
例3-3 图示支架由杆AB、CD组成,A、C、D处均为光滑铰链,在AB
2F
Fx 0 :
FAx FCcos45o 0
FAx FCcos45o
2F
2 F 2
Fy 0 :
FAy FC sin 45 F 0
FAy FC sin 45 F
2F
2 2
F
0
6
例3-4 图示为高炉加料小车的平面简图。小车由钢索牵引沿倾角
为α的轨道匀速上升,已知小车的重量G和尺寸a、b、h、,不计 小车和轨道之间的摩擦,试求钢索拉力FT和轨道对小车的约束力。
M Fd
2
◆ 课题3–1 平面任意力系平衡方程
一、平面任意力系的简化
简化中心 F1
OA
F3 C
B
F2 = F3
F1
M1 O
M2 F2 =
M3
M0 O
FR
1.主矢FR
2.主矩M0
FR ( Fx)2 ( Fy)2 ( Fx )2 ( Fy )2 M0 M MO(F)
tan Fy
x 解:1.取小车为研究对象画受力图
FT
2.建立坐标系列平衡方程求约束力
Fx 0 : FT G sin 0
y
FB
FT G sin
Fy 0 :
G FA
MA(F) 0: FB (a b) FT h G sin h G cos a 0
FA FB G cos 0
FB
M A (F ) 0 : FB sin 30 2a F a M 0 0 FB 2F
Fx 0 : FAx FBcos30o 0
FAx FBcos30o 3F
Fy 0 : FAy FB sin 30 F 0
FAy 0
Ca
a
M A (F ) 0 : FB sin 30 2a F a M 0 0 FB 2F
M0 MO(F) 0
Fx 0 Fy 0
M 0 (F ) 0
为使求解简便,坐标轴一般选 在与未知力垂直的方向上,矩心可 选在未知力作用点(或交点)上。
三、应用举例
例3-2 图示杆件AB, 在杆件上作用力F,集中力偶M0=Fa,求杆
件的约束力。
解:1.取AB为研究对象画受力图
M0
F
G cos a
ab
FA
G
cos
FB
G cos
G
cos
ab
a
G
cos
ab
b
7
四、平衡方程的其它形式
例3-5 图示支架由杆AB、BC组成,A、C、D处均为光滑铰链,在AB
上作用F力,集中力解偶M:0=1F.a取,AB=杆3为0°研,究试对求象杆画件受A力B的图约束力。
A
F M0
B
2.平衡方程求约束力
M B (F ) 0 : FAy 2a F a M0 0
FAy 0
A
F M0
B
Fx 0 : FAx FBcos30o 0
FAx FBcos30o 3F
M A (F ) 0 : FB sin 30 2a F a M 0 0 FB 2F
FAx FAy
FB
M B (F ) 0 : FAy 2a F a M0 0
FR ( Fx )2 ( Fy )2
2.平面力偶系 平面力偶系总可以合成为一个合力偶,
其合力偶矩等于各分力偶矩的代数和 。
MR M
3.力线平移定理
F
F'
力向作用线外任一点平移,得到一个
M' =Fd 平移力和一个附加力偶。
B d A= B d A
平移力与原力大小相等,附加力偶矩
等于原力对平移点的力矩。