最新六年级数学培优提高含详细答案
最新苏教版小学六年级数学上册期中综合拓展培优提升测评试卷(附答案及答题卡)
最新苏教版小学六年级数学上册期中综合拓展培优提升测评试卷(附答案及答题卡)时间:90分钟 满分:100分注意事项:1.亲爱的同学:答题前填写好自己的学校、班级、姓名等信息。
2.请将答案正确填写在答题区域,注意书写工整,格式正确,卷面整洁。
3.经过两周的认真学习,你一定又掌握了不少新的知识,你作好准备了吗?现在就让我们带着希望、带着微笑来挑战自己吧!相信你会做得很棒!记住:要细心哦! 4.考试结束,将本试卷和答题卡一并交回一.用心思考,正确填空。
(满分20分,每小题2分)1.(2分)如图是一块铁皮,沿虚线弯折后可以焊接成一个无盖的长方体铁盒(接头处忽略不计)。
这个无盖铁盒的表面积是 2dm ,容积是 L 。
2.(2分)一个长方体,如果高增加2厘米,就变成一个正方体.这时,表面积比原来增加56平方厘米.原来长方体的体积是 立方厘米。
3.(2分)1只小熊的重量等于2只小狗的重量,4只小兔的重量又等于2只小狗的重量,一只小熊8千克,一只小狗重 千克,一只小兔重 千克。
4.(2分)大象的寿命是x 年,海龟的寿命比大象的2倍多20年。
海龟的寿命是 年。
如果海龟的寿命是180年,可列方程为 。
5.(2分)一个长方体的饼干盒,长10厘米,宽6厘米,高12厘米。
如果围着它贴一圈商标纸(上、下面不贴),这张商标纸的面积至少有 平方厘米。
6.(2分)一本书有150页,看了它的35,看了 页,还剩下 没看。
7.(2分)成人体内血液约是体重的113,儿童体内血液约是体重的112,血液中约含有1225的水。
李叔叔的体重是78kg ,他的血液中约含有 千克水。
8.(2分)一个三角形的一个内角的度数是60︒,另两个内角的度数的比是1:2,这个三角形是 三角形.9.(2分)如果a 与b 互为倒数,且2b ac=,那么c = 。
10.(2分)57kg黄豆可以榨油528kg,,照这样计算,1kg黄豆可以榨油kg,榨1千克油需要kg黄豆。
最新苏教版小学六年级数学下册综合培优提升检测试卷(附答案及答题卡)
注意事项:1.亲爱的同学:答题前填写好自己的学校、班级、姓名等信息。
2.请将答案正确填写在答题区域,注意书写工整,格式正确,卷面整洁。
3.经过两周的认真学习,你一定又掌握了不少新的知识,你作好准备了吗?现在就让我们带着希望、带着微笑来挑战自己吧!相信你会做得很棒!记住:要细心哦!4.所有题目必须在答题卡上作答,在试卷上作答无效。
一、用心思考,正确填空。
(共20分)1.(2分)要想清楚地看出各年级人数的多少,可以选择( )统计图;要想清楚的反映学校各年级人数与总人数之间的关系,可以选择( )统计图。
2.(2分)一个圆柱和一个圆锥底面积相等,高也相等。
(1)如果圆柱的体积是4.71立方分米,那么圆锥的体积是( )立方分米。
(2)如果圆锥的体积是4.71立方分米,那么圆柱的体积是( )立方分米。
3.(2分)如图正方体、圆柱和圆锥的底面积相等,高也相等。
如果圆锥的高是10分米,那么圆柱的底面积是( )平方分米,正方体的体积是( )立方分米。
4.(2分)笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数,有22只脚。
那么笼中鸡有( )只,兔有( )只。
5.(2分)车棚里停有自行车和三轮车共9辆,车轮共有19个。
车棚里自行车有( )辆,三轮车有( )辆。
6.(2分)《中华人民共和国国旗法》规定国旗的规格尺寸:长与宽的比是3∶2,阳光小学升旗仪式用的国旗长144厘米,宽是( )厘米。
7.(2分)地图上2000米的距离在平面图上画10厘米,这幅地图的比例尺是( );在一幅比例尺为1∶1000000的地图上,量得甲、乙两地之间的距离是5.6厘米,甲、乙两地之间的实际距离是( )千米。
8.(2分)表示两个比相等的式子叫作( ),判断两个比能否组成比例是看其比值是否( )。
9.(2分)将图形放大或缩小时,图形的形状( ),图形的大小( )。
(填“不变”或“改变”)10.(2分)如图是某度假村占地分布情况统计图,看图回答问题。
人教版六年级毕业培优提升达标练(含参考答案)
人教版六年级毕业培优提升达标练一、仔细填空.(每题4分,共60分)1.计算:76×(﹣)+23×(+)﹣53×(﹣)=。
2..3.要使等式(15×□﹣60)÷5=□成立,其中□=。
4.30÷6=5,要使商不变,除数增加12,被除数应。
5.三个连续自然数的和的倒数是,其中最小的自然数是。
6.甲乙两数的最大公约数是7,最小公倍数是105,已知甲数是21,乙数是。
7.一列火车前3个小时行驶了360千米,然后将速度提高了10%,又行驶了2小时,那么火车一共行驶了千米.8.给10个学生发铅笔,每人3支还剩下一些,每人4支又不够.剩下的和不够的同样多,有支铅笔。
9.小华和小敏共有铅笔25支,如果小华用去4支,小敏用去3支,那么小华还比小敏多2支,小华原来有铅笔支.10.已知A+B=95,且A和B都是整数,当AB的积最大时,A是,B是。
11.已知小强比小刚早出生6年,今年小强的年龄是小刚年龄的2倍少3岁,那么两人今年的年龄之和是岁。
12.如图,B、C分别是正方形边上的中点,已知正方形的周长是80厘米.阴影部分的面积是平方厘米。
13.A,B表示两个数,A※B=,那么10※(6※9)=。
14.城中小学四年级有四个班.已知一班、二班共81人,二班、三班共83人,三班、四班共86人,一班比四班多2人,一班人,二班人,三班人,四班人。
15.用580张纸订成每本16页的练习本,最多可装本合格的练习本;把这些合格练习本按2:3:4分给甲乙丙三人,甲得本。
二、谨慎选择.(每题2分,共10分)7816.把米的绳子,平均分成7份,每份是1米的()A.B.C.D.17.一个三角形,三个内角度数分别是45°、45°、90°,这个三角形()A.没有对称轴B.有一条对称轴C.有两条对称轴D.有三条对称轴18.a≠0,且a×=×b=c÷,那么下列排列正确的是()A.a<b<c B.c<b<a C.c<a<b19.只有三条对称轴的平面图形是()A.正方形B.圆C.正方体D.正三角形20.修一段公路,7人11天可以完成;照这样计算,如果要提前4天完成,应增加()人.A.4 B.7 C.11 D.18三、判断题.(对的打√,错的打×,每题1分,共5分)21.一个数除以5就是求这个数的是多少。
最新小学六年级数学培优训练含答案
最新小学六年级数学培优训练含答案一、培优题易错题1.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):日期一二三四五六日增减数/辆+4-1+2-2+6-3-5(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,比原计划增加了,增加了561-560=1辆.【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.2.操作探究:已知在纸面上有一数轴(如图所示),(1)操作一:折叠纸面,使数字1表示的点与﹣1表示的点重合,则﹣3表示的点与________表示的点重合;(2)操作二:折叠纸面,使﹣1表示的点与5表示的点重合,回答以下问题:①10表示的点与数________表示的点重合;(3)②若数轴上A、B两点之间距离为15,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?【答案】(1)3(2)﹣6(3)解:由题意可得,A、B两点距离中心点的距离为15÷2=7.5,∵中心点是表示2的点,∴A、B两点表示的数分别是﹣5.5,9.5.【解析】【解答】解:(1)因为折叠纸面,使数字1表示的点与﹣1表示的点重合,可确定中心点是表示0的点,所以﹣3表示的点与3表示的点重合,故答案为:3;(2)①因为折叠纸面,使﹣1表示的点与5表示的点重合,可确定中心点是表示2的点,所以10表示的点与数﹣6表示的点重合,故答案为:﹣6;【分析】(1)先求出中心点,再求出对应的数即可;(2)①求出中心点是表示2的点,再根据对称求出即可;②求出中心点是表示2的点,求出A、B到表示2的点的距离是7.5,即可求出答案.3.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)收工时,检修小组在A地的哪一边,距A地多远?(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km),答:检修小组在A地东边,距A地19千米(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3=65×3=195(升),∵195>180,∴收工前需要中途加油,195-180=15(升),答:应加15升.【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,为0则在A处;(2)先求出这组数的绝对值的和与3的乘积,再与180比较,若大于180就需要中途加油,否则不用.4.炒股员小李上星期日买进某公司股票1000股,每股28元,下表为本周内该股票的涨跌情况(单位:元)(2)本周内最高价和最低价各是多少钱?(3)已知小李买进股票时付了1.5‰的手续费(a‰表示千分之a),卖出时需付成交额1.5‰的手续费和1‰的交易税,如果他在周六收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:由上表可得:28+4-6-1-2.5=22.5元∴星期四收盘时,每股是22.5元(2)解:由题意得:星期一股价最高,为28+4=32元星期四股价最低,由(1)知22.5元∴本周内股价最高为32元,最低为22.5元(3)解:由题意得:买入时交易额为 28×1000=28000元买入手续费为 28000×1.5‰=42元卖出时交易额为29×1000=29000元卖出手续费和交易税共29000×(1.5‰+1‰)=72.5元总收益=29000-28000-(42+72.5)=885.5元因此,如果小李在周六收盘前将全部股票卖出,他将收益885.5元【解析】【分析】(1)由表格可知星期四收盘价格=28+4-6-1-2.5,计算可求得;(2)分别算出这几天的股市价格,比较可得答案;(3)分别算出买入时交易额、买入手续费、卖出时交易额、卖出手续费和交易税,则总收益=卖出时交易额-买入时交易额-买入手续费-卖出手续费和交易税,代入计算可得.5.有甲、乙、丙三个容器,容量为毫升.甲容器有浓度为的盐水毫升;乙容器中有清水毫升;丙容器中有浓度为的盐水毫升.先把甲、丙两容器中的盐水各一半倒入乙容器搅匀后,再把乙容器中的盐水毫升倒入甲容器,毫升倒入丙容器.这时甲、乙、丙容器中盐水的浓度各是多少?【答案】解:列表如下:甲乙浓度溶液浓度溶液开始第一次第二次丙浓度溶液开始第一次第二次【解析】【分析】在做有关浓度的应用题时,为了弄清楚溶质质量、溶液质量的变化,尤其是变化多次的,常用列表的方法,使它们之间的关系一目了然。
北师大版六年级上册数学培优提升卷(一二单元)(含答案)
北师大版六年级上册数学培优提升卷(一二单元)一、填空。
1.有一个直径是6厘米的半圆形铁片,这个铁片的周长是()厘米,面积是()平方厘米.2.____米的公路修了后还剩1500米;售价160元的商品降价后是()元.3.要修一条长3千米的公路,已经修了全长的13,还剩()千米没修。
4.冰融化成水后,体积减少110,是把()看作单位“1”,你想到的等量关系式是()。
5.15比()少13,()比10多32.6.25kg增加12kg是()kg;25kg增加12是()kg。
7.如图,边长为4厘米的正方形内画了一个最大的圆。
这个圆的半径是()厘米,直径是()厘米,面积是()平方厘米。
8.一根绳子长6米,先用去它的16,再用去16米,这时还剩()米。
9.一瓶橙汁的净含量是350m1,第一次喝了它的17,第二次喝了它的15,两次一共喝了()mL.10.一个直径是10厘米的半圆,周长是()厘米,面积是()平方厘米。
11.一个圆的周长是25.12 cm,把它分成若干等份后,拼成一个近似的长方形(如图),这个长方形的周长是()cm。
圆为弧的扇形的圆心角是() 。
12.以14二、判断。
1.半径为2cm的圆,面积和周长数值相等,单位不同。
()2.已知半圆的半径是r,则其周长是πr+2r。
(),则六年级学生收3.四年级学生收集易拉罐185个,若六年级学生比四年级多收集35集296个。
()4.同一圆中,两个端点都在圆上的线段中,直径最长。
()5.把一个圆分成5份,每一份都是扇形。
()三、选择。
1.如图中,直角三角形的面积是20平方厘米,圆的面积是()平方厘米。
A.31.4 B.62.8 C.125.6 D.无法计算2.一个圆的周长与直径的比值是()。
A.3.14 B.πC.2πD.无法确定3.在边长是8cm的正方形彩纸中剪半径是2cm的圆,最多能剪()个。
A.16 B.8 C.5 D.44.下面是我国珍贵的历史文化遗产《易经》中的太极图,它是数形结合的典范。
最新小学六年级数学培优训练含详细答案
最新小学六年级数学培优训练含详细答案一、培优题易错题1.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。
(3)解:由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150.∴当小红累计购物超过150元时,在甲商场的实际花费少.当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.当小红累计购物150元时,甲、乙商场花费一样【解析】【解答】解:(1)在甲商场:271,0.9x+10;在乙商场:278,0.95x+2.5.【分析】(1)根据提供的方案列出代数式;(2)根据(1)中的代数式利用费用相同可得关于x的方程,解方程即可;(3)列不等式得出x的范围,可选择商场.2.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):城市悉尼纽约时差/时+2-121日上午10时,悉尼时间是________.(2)上海、纽约与悉尼的时差分别为________(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数).(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.【答案】(1)12(2)-2,-14(3)解:10时45分+14时55分+12时=37时40分.故飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40【解析】【解答】(1)10+(+2)=12时,即当上海是10月1日上午10时,悉尼时间是12时.( 2 )12-10=2;-12-2=-14;故上海、纽约与悉尼的时差分别为-2,-14.【分析】(1)根据表格得到悉尼时间是10+(+2);(2 )由表格得到上海与悉尼的时差是2,纽约与悉尼的时差-12-2;(3)根据题意得到10时45分+14时55分+12时,得到飞机降落上海浦东国际机场的时间.3.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是________数(填“无理”或“有理”),这个数是________;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是________;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?【答案】(1)无理;﹣2π(2)4π或﹣4π(3)解:①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π【解析】【解答】解:(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣2π;故答案为:无理,﹣2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.4.古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”,而把1,4,9,16,…这样的数称为“正方形数”.(1)第5个“三角形数”是________,第n个“三角形数”是________,第5个“正方形数”是________,第n个“正方形数”是________.(2)除“1”以外,请再写一个既是“三角形数”,又是“正方形数”的数________.(3)经探究我们发现:任何一个大于1的“正方形数”都可以看做两个相邻“三角形数”之和. 例如:①4=1+3;②9=3+6;③16=6+10;④________;⑤________;…请写出上面第4个和第5个等式.(4)在(3)中,请探究n2=________+________。
小学六年级数学培优专题训练含答案
小学六年级数学培优专题训练含答案一、培优题易错题1.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。
(3)解:由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150.∴当小红累计购物超过150元时,在甲商场的实际花费少.当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.当小红累计购物150元时,甲、乙商场花费一样【解析】【解答】解:(1)在甲商场:271,0.9x+10;在乙商场:278,0.95x+2.5.【分析】(1)根据提供的方案列出代数式;(2)根据(1)中的代数式利用费用相同可得关于x的方程,解方程即可;(3)列不等式得出x的范围,可选择商场.2.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?【答案】(1)解:(+5)+(–3)+(+10)+(–8)+(+12)+(–6)+(–10)=0所以小李最后回到出发点1楼.(2)解:54×2.8×0.1=15.12(度)所以小李办事时电梯需要耗电15.12度.【解析】【分析】(1)根据有理数的加法列出算式并进行计算即可得出结果;(2)利用所给数据的绝对值的和计算总的层数,然后根据每层高2.8m,电梯每上或下1m 需要耗电0.1度利用乘法可得结果.3.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):日期一二三四五六日增减数/辆+4-1+2-2+6-3-5(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,比原计划增加了,增加了561-560=1辆.【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.4.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点.若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.(1)写出图中格点四边形DEFG对应的S,N,L.(2)已知任意格点多边形的面积公式为S=N+aL+b,其中a,b为常数.当某格点多边形对应的N=82,L=38,求S的值.【答案】(1)解:根据图形可得:S=3,N=1,L=6(2)解:根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,,解得a ,∴S=N+ L﹣1,将N=82,L=38代入可得S=82+ ×38﹣1=100【解析】【分析】(1)按照所给定义在图中输出S,N,L的值即可;(2)先根据(1)中三角形与四边形中的S,N,L的值列出关于a,b的二元一次方程组,解方程组求得a,b的值,从而求得任意格点多边形的面积公式,代入所给N,L的值即可求得相应的S的值.5.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)收工时,检修小组在A地的哪一边,距A地多远?(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km),答:检修小组在A地东边,距A地19千米(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3=65×3=195(升),∵195>180,∴收工前需要中途加油,195-180=15(升),答:应加15升.【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,为0则在A处;(2)先求出这组数的绝对值的和与3的乘积,再与180比较,若大于180就需要中途加油,否则不用.6.在浓度为的盐水中加入一定量的水,则变为浓度的新溶液.在这种新溶液中加入与前次加入的水量相等的盐,溶液浓度变为 .求 .【答案】解:设原来的盐水为100克,加入的水(或盐)重a克。
人教版六年级数学第五单元(圆)培优提高卷(含答案)
14.一个半径是4分米的半圆,它的周长是()分米。
A.10.56B.10.28C.20.56D.30.56
15.大圆半径是小圆半径的2倍,大圆面积比小圆面积多12cm2,小圆面积是()。
A.12cm2B.8cm2C.4cm2
16.如图中,圆的面积和平行四边形的面积相等,已知平行四边形的底是4厘米,圆的半径是()厘米。
人教版六年级数学第五单元(圆)培优提高卷
一、填空题
1.一个圆的半径是10分米,这个圆的直径是分米,周长是分米,面积是平方分米。
2.根据给出圆的条件,求出圆的面积。
圆
半径
直径
面积
A
4cm
( )
B
9cm
( )
C
6cm
( )
D
20cm
( )
3.看图填空。
(1)
圆的半径是,直径是。
(2)
圆的半径是;长方形的宽是,长是。
27.一块圆形菜地原来的周长是18.84米,现在周围加宽2米,这块菜地的面积增加多少平方米?
28.国际奥委会会旗上的图案是由代表五大洲的五个圆环组成.现在在某体育馆前的草坪上要修剪出此图案,已知每个圆环的内、外半径分别是4米和5米,图中两两相交成的小曲边四边形(重叠部分)的面积相等,每个为1平方米,已知修剪每平方米的人工费用为10元,求修剪出此图案要花费多少人工费?
7.在长为3分米,宽为2分米的长方形内画一个最大的圆,这个圆的面积是( )。
8.如图,将一个圆转化成一个近似的长方形后,周长比原来增加了8厘米,原来圆的面积是( )平方厘米。
9.如图,横截面半径是0.2米的圆柱形油桶,从车厢的后端滚到前端共要5周。车厢长( )米。
六年级数学培优题含答案
六年级数学培优题含答案一、培优题易错题1.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.【答案】2;6【解析】【解答】根据题意知,x<4且x≠3,则x=2或x=1,∵x前面的数要比x小,∴x=2,∵每一行从左到右、每一列从上到下分别依次增大,∴9只能填在右下角,5只能填右上角或左下角,5之后与之相邻的空格可填6、7、8任意一个,余下的两个数字按从小到大只有一种方法,∴共有2×3=6种结果,故答案为:2,6【分析】根据题意得到x=2或x=1,由每一行从左到右、每一列从上到下分别依次增大,得到x只能=2,9只能填在右下角,5只能填右上角或左下角,得到结果.2.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?【答案】(1)解:找规律:4=4×1=22-02, 12=4×3=42-22, 20=4×5=62-42, 28=4×7=82-62,…,2012=4×503=5042-5022,所以28和2012都是神秘数(2)解:(2k+2) 2-(2 k) 2=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数(3)解:由(2)知,神秘数可以表示成4(2k+1),因为2 k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为2 n +1和2 n -1,则(2 n +1) 2-(2n-1)2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.【解析】【分析】(1)根据规律得到28=4×7=82-62, 2012=4×503=5042-5022,得到28和2012这两个数是神秘数;(2)由(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k +1),因此由这两个连续偶数构造的神秘数是4的倍数;(3)神秘数可以表示成4(2k+1),因为2k +1是奇数,因此神秘数是4的倍数,但一定不是8的倍数;两个连续奇数的平方差是8的倍数,因此这两个连续奇数的平方差不是神秘数.3.某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):(1)写出该厂星期一生产工艺品的数量.:(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺品厂在本周实际生产工艺品的数量.(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.【答案】(1)解:由表格可得周一生产的工艺品的数量是:300+5=305(个),答:该厂星期一生产工艺品的数量是305个.(2)解:本周产量最多的一天是星期六,最少的一天是星期五,∴(16+300)-【(-10)+300】=26(个),答:本周产量最多的一天比最少的一天多生产26个工艺品.(3)解:2100+【5+(-2)+(-5)+15+(-10)+16+(-9)】=2100+10=2110(个).答:该工艺品厂在本周实际生产工艺品的数量是2110个.(4)解:(+5)+(-2)+(-5)+(15)+(-10)+(+16)+(-9)=10(个).根据题意得该厂工人一周的工资总额为:2100×60+50×10=126500(元).答:该工艺厂在这一周应付出的工资总额是126500元.【解析】【分析】(1)根据表格中将300与5相加可求得周一的产量.(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与300相加求出产量最高的量;同理用星期五对应的数字与300相加求出产量最低的量,两者相减即可求出所求的个数.(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为0,且根据同号及异号两数相加的法则计算后,再加上2100即可得到工艺品一周的生产个数.(4)用计划的2100乘以单价60元,加超额的个数乘以50元,即为一周工人工资的总额.4.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.5.如果,那么我们规定 .例如:因为,所以 .(1)根据上述规定,填空:________, ________, ________.(2)若记,, .求证: .【答案】(1)3;0;-2(2)解:依题意则∵∴【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,故答案为:3;0;-2【分析】根据新定义的算法计算出根指数即可;由新定义的算法,得到同底数幂的乘法,底数不变,指数相加;证明出结论.6.服装厂买来一批布料,如果全部用来做上衣,刚好可以做60件。
小学六年级数学培优专题训练含详细答案
小学六年级数学培优专题训练含详细答案一、培优题易错题1.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.2.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):1日上午10时,悉尼时间是________.(2)上海、纽约与悉尼的时差分别为________(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数).(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.【答案】(1)12(2)-2,-14(3)解:10时45分+14时55分+12时=37时40分.故飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40【解析】【解答】(1)10+(+2)=12时,即当上海是10月1日上午10时,悉尼时间是12时.( 2 )12-10=2;-12-2=-14;故上海、纽约与悉尼的时差分别为-2,-14.【分析】(1)根据表格得到悉尼时间是10+(+2);(2 )由表格得到上海与悉尼的时差是2,纽约与悉尼的时差-12-2;(3)根据题意得到10时45分+14时55分+12时,得到飞机降落上海浦东国际机场的时间.3.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。
苏教版六年级上册数学培优提升卷(一、二单元)(含答案)
苏教版六年级上册数学培优提升卷(一、二单元)一、选择题1.如果a 与b 互为倒数,那么54a b ⨯的结果是( )。
A .120B .1C .15D .14 2.小雨用35时拼成了一幅智力拼图,求拼6幅智力拼图要用的时间,正确列式是( )。
A .35×6 B .35+6 C .6-353.下面算式结果大于1的是( )。
A .156⨯ B .713612⨯ C .13121213⨯ D .12113⨯ 4.一个冰箱的体积( )它所能容纳的物体的体积。
A .大于B .小于C .等于D .无法确定5.一个正方体的棱长缩小为原来的一半,体积就缩小为原来的( )。
A .18 B .14 C .12 D .不变6.把两个棱长是3分米的正方体拼成一个长方体,拼成的长方体的表面积是( )平方分米。
A .108B .96C .90D .647.用3个棱长都是10厘米的正方体拼成一个长方体,这个长方体的表面积是( )平方厘米.A .1800B .1400C .1600D .15008.用一根48cm 长的铁丝做一个棱长是整厘米数的长方体框架,铁丝无剩余,接头处忽略不计,这个框架的长、宽、高可能分别是( )。
(单位cm )A .5、3、4B .2、2、4C .1、1、2D .6、6、12 二、判断题1.一个书包的原价是40元,打八折后的价格是32元。
( )2.7米的17和8米18不一样长。
( )3.一个棱长10米的正方体,它的体积和表面积相等。
( )4.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.( )5.观察一个长方体,一次最多可以看到它的2个面。
( )三、填空题1.用两个棱长是3cm的小正方体拼成一个长方体,这个长方体的表面积是( )2cm,体积是( )3cm。
2.5.08平方千米=( )公顷3600平方米=( )公顷680000m³=( )km3 3.一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是( )。
最新小学六年级数学培优训练含答案
最新小学六年级数学培优训练含答案一、培优题易错题1.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是________数(填“无理”或“有理”),这个数是________;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是________;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?【答案】(1)无理;﹣2π(2)4π或﹣4π(3)解:①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π【解析】【解答】解:(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣2π;故答案为:无理,﹣2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.2.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点.若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.(1)写出图中格点四边形DEFG对应的S,N,L.(2)已知任意格点多边形的面积公式为S=N+aL+b,其中a,b为常数.当某格点多边形对应的N=82,L=38,求S的值.【答案】(1)解:根据图形可得:S=3,N=1,L=6(2)解:根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,,解得a ,∴S=N+ L﹣1,将N=82,L=38代入可得S=82+ ×38﹣1=100【解析】【分析】(1)按照所给定义在图中输出S,N,L的值即可;(2)先根据(1)中三角形与四边形中的S,N,L的值列出关于a,b的二元一次方程组,解方程组求得a,b的值,从而求得任意格点多边形的面积公式,代入所给N,L的值即可求得相应的S的值.3.在浓度为的盐水中加入一定量的水,则变为浓度的新溶液.在这种新溶液中加入与前次加入的水量相等的盐,溶液浓度变为 .求 .【答案】解:设原来的盐水为100克,加入的水(或盐)重a克。
六年级数学培优提高含答案
六年级数学培优提高含答案一、培优题易错题1.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。
(3)解:由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150.∴当小红累计购物超过150元时,在甲商场的实际花费少.当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.当小红累计购物150元时,甲、乙商场花费一样【解析】【解答】解:(1)在甲商场:271,0.9x+10;在乙商场:278,0.95x+2.5.【分析】(1)根据提供的方案列出代数式;(2)根据(1)中的代数式利用费用相同可得关于x的方程,解方程即可;(3)列不等式得出x的范围,可选择商场.2.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):日期一二三四五六日增减数/辆+4-1+2-2+6-3-5(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,比原计划增加了,增加了561-560=1辆.【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.3.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正方向.当天航行路程记录如下:(单位:千米)14,﹣9,-18,﹣7,13,﹣6,10,﹣5问:(1)B地在A地的何位置;(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油?【答案】(1)解:∵14-9-18-7+13-6+10-5=-8,∴B在A正西方向,离A有8千米(2)解:∵|14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82千米,∴82×0.5-29=12升.∴途中要补油12升【解析】【分析】(1)根据题意得到B地在A地14-9-18-7+13-6+10-5=-8处,即正西方向,离A有8千米;(2)根据距离的意义得到各个数的绝对值的和,再求出耗油量,得到途中需补充的油量.4.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。
最新小学六年级数学培优专题训练含详细答案
最新小学六年级数学培优专题训练含详细答案一、培优题易错题1.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有18x+16×2x=400,解得x=8,2x=2×8=16.答:装橙子的箱子8个,则装梨的箱子16个(2)解:设有x个小孩,依题意得:3x+7=4x﹣3,解得x=10,则3x+7=37.答:有10个小孩,37个苹果(3)解:设无风时飞机的航速为x千米/小时.根据题意,列出方程得:(x+24)× =(x﹣24)×3,解这个方程,得x=840.航程为(x﹣24)×3=2448(千米).答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。
(2)利用两种分法的苹果数是相同的,列出方程求解出小孩数和苹果数。
(3)利用逆风和顺风的路程是相同的,列出方程求出速度,再利用速度和时间求出航程。
2.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?【答案】(1)解:(+5)+(–3)+(+10)+(–8)+(+12)+(–6)+(–10)=0所以小李最后回到出发点1楼.(2)解:54×2.8×0.1=15.12(度)所以小李办事时电梯需要耗电15.12度.【解析】【分析】(1)根据有理数的加法列出算式并进行计算即可得出结果;(2)利用所给数据的绝对值的和计算总的层数,然后根据每层高2.8m,电梯每上或下1m 需要耗电0.1度利用乘法可得结果.3.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点.若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.(1)写出图中格点四边形DEFG对应的S,N,L.(2)已知任意格点多边形的面积公式为S=N+aL+b,其中a,b为常数.当某格点多边形对应的N=82,L=38,求S的值.【答案】(1)解:根据图形可得:S=3,N=1,L=6(2)解:根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,,解得a ,∴S=N+ L﹣1,将N=82,L=38代入可得S=82+ ×38﹣1=100【解析】【分析】(1)按照所给定义在图中输出S,N,L的值即可;(2)先根据(1)中三角形与四边形中的S,N,L的值列出关于a,b的二元一次方程组,解方程组求得a,b的值,从而求得任意格点多边形的面积公式,代入所给N,L的值即可求得相应的S的值.4.有,两个桶,分别盛着水和某含量的酒精溶液.先把桶液体倒入桶,使桶中的液体翻番;再将桶液体倒入桶,使桶中的液体翻番.此时,,两桶的液体体积相等,并且桶的酒精含量比桶的酒精含量高.问:最后桶中的酒精含量是多少?【答案】解:因为最后桶的酒精含量高于桶,所以一开始桶盛的是酒精溶液.设一开始桶中有液体,桶中有.第一次从桶倒入桶后,桶有,桶剩;第二次从桶倒入桶,桶有,桶剩.由,得.再设开始桶中有纯酒精,则有水.将酒精稀释过程列成表(如图):由题意知,,解得.所以最后桶中的酒精含量是.桶桶纯酒精:水纯酒精:水初始状态第一次桶倒入桶第二次桶倒入桶液,B桶中是水。
最新六年级数学培优提高含答案
最新六年级数学培优提高含答案一、培优题易错题1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。
2.用“⊕”定义一种新运算:对于有理数a和b,规定a⊕b=2a+b,如1⊕3=2×1+3=5 (1)求2⊕(﹣2)的值;(2)若[()⊕(﹣3)]⊕ =a+4,求a的值.【答案】(1)解:原式=2×2+(﹣2)=2(2)解:根据题意可知:2[(a+1)+(﹣3)]+ =a+4,2(a﹣2)+ =a+4,4(a﹣2)+1=2(a+4),4a﹣8+1=2a+8,2a=15,a= .【解析】【分析】(1)根据定义的新运算,进行计算。
(2)根据题目中定义的新运算,写出算式,计算出a的值3.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正方向.当天航行路程记录如下:(单位:千米)14,﹣9,-18,﹣7,13,﹣6,10,﹣5问:(1)B地在A地的何位置;(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油?【答案】(1)解:∵14-9-18-7+13-6+10-5=-8,∴B在A正西方向,离A有8千米(2)解:∵|14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82千米,∴82×0.5-29=12升.∴途中要补油12升【解析】【分析】(1)根据题意得到B地在A地14-9-18-7+13-6+10-5=-8处,即正西方向,离A有8千米;(2)根据距离的意义得到各个数的绝对值的和,再求出耗油量,得到途中需补充的油量.4.如果,那么我们规定 .例如:因为,所以 .(1)根据上述规定,填空:________, ________, ________.(2)若记,, .求证: .【答案】(1)3;0;-2(2)解:依题意则∵∴【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,故答案为:3;0;-2【分析】根据新定义的算法计算出根指数即可;由新定义的算法,得到同底数幂的乘法,底数不变,指数相加;证明出结论.5.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒。
最新六年级数学培优提高含详细答案
最新六年级数学培优提高含详细答案一、培优题易错题1.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.2.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.3.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。
(1)2★5;(2)(-2)★(-5).【答案】(1)解:2★5=2×5-2-52+1=-16(2)解:(-2)★(-5)=(-2)×(-5)-(-2)-(-5)2+1=-12【解析】【分析】根据新运算定义得到算式,再根据有理数的运算法则计算即可,先算乘方,再算乘除,再算加减,如果有括号先算括号里面的.4.已知:如图,这是一种数值转换机的运算程序.(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为;若第1次输入的数为12,则第5次输出的数为________.(2)若输入的数为5,求第2016次输出的数是多少.(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由.【答案】(1)4、6(2)解:5+3=8,8× =4,4× =2,2× =1,1+3=4,∴若输入的数为5,则每次输出的数分别是8、4、2、1、4、2、1,…,(2016−1)÷3=2015÷3=671 (2)∴第2016次输出的数是2(3)解:当x为奇数时,有 (x+3)+3=x,解得x=9(舍去),× (x+3)=x,解得x=1,当x为偶数时,有 × × x=x,解得x=0,× x+3=x,解得x=4,×( x+3)=x,解得x=2,综上所述,x=0或1或2或4【解析】【解答】解:(1)∵1+3=4,∴第1次输出的数为1,则第2次输出的数为4.×12=6,6× =3,3+3=6,6× =3,3+3=6,∴第1次输入的数为12,则第5次输出的数为6.【分析】(1)根据运算程序得到第1次输出的数为1,第2次输出的数为3+1,第1次输入的数为12,则第5次输出的数(12÷2÷2+3)÷2+3;(2)根据题意由输入的数为5,每次输出的数分别是8、4、2、1、4、2、1···,得到3次一循环,求出第2016次输出的数;(3)根据运算程序得到当x为奇数时和为偶数时,求出所有x的值.5.有两种溶液,甲溶液的酒精浓度为,盐浓度为,乙溶液中的酒精浓度为,盐浓度为.现在有甲溶液千克,那么需要多少千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等?【答案】解:甲溶液中酒精:1×10%=0.1(千克),盐:1×30%=0.3(千克),0.3-0.1=0.2(千克);0.2÷40%=0.5(千克)答:需要加入0.5千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等。
最新小学六年级数学培优专题训练含详细答案
最新小学六年级数学培优专题训练含详细答案一、培优题易错题1.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)星期一二三四五每股涨跌+2.4﹣0.8﹣2.9+0.5+2.1(1)星期四收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:星期一二三四五每股涨跌+2.4﹣0.8﹣2.9+0.5+2.1实际股价37.436.633.734.236.3星期四收盘时,每股是34.2元(2)解:本周内最高价是每股37.4元,最低价每股33.7元(3)解:买入总金额=1000×35=35000元;买入手续费=35000×0.15%=52.5元;卖出总金额=1000×36.3=36300元;卖出手续费=36300×0.15%=54.45元;卖出交易税=36300×0.1%=36.3元;收益=36300﹣(35000+52.5+54.45+36.3)=1156.75元【解析】【分析】(1)根据表中的数据,列式计算,就可求出星期四收盘时每股的价格。
(2)根据表中的数据,先求出每天收盘时的每股的价格,从而就可得出本周内最高价股价和最低股价。
(3)根据题意分别求出买入总金额、买入手续费、卖出总金额、卖出手续费、卖出交易税,再求出收益,就可得出答案。
2.用火柴棒按下图中的方式搭图形.(1)按图示规律填空:图形符号①②③④⑤火柴棒根数________________________________________(2)按照这种方式搭下去,搭第n个图形需要________根火柴?【答案】(1)4;6;8;10;12(2)2n+2【解析】【解答】解:(1)填表如下:图形符号①②③④⑤火柴棒根数4681012( 2 )搭第n个图形需要(2n+2)根火柴.【分析】(1)由已知的图形中的火柴的根数可知,相邻的图形依次增加两根火柴,所以①火柴根数为4;②火柴根数为6;③火柴根数为8;④火柴根数为10;⑤火柴根数为12;(2)由(1)可得规律:2+2n.3.某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):(1)写出该厂星期一生产工艺品的数量.:(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺品厂在本周实际生产工艺品的数量.(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.【答案】(1)解:由表格可得周一生产的工艺品的数量是:300+5=305(个),答:该厂星期一生产工艺品的数量是305个.(2)解:本周产量最多的一天是星期六,最少的一天是星期五,∴(16+300)-【(-10)+300】=26(个),答:本周产量最多的一天比最少的一天多生产26个工艺品.(3)解:2100+【5+(-2)+(-5)+15+(-10)+16+(-9)】=2100+10=2110(个).答:该工艺品厂在本周实际生产工艺品的数量是2110个.(4)解:(+5)+(-2)+(-5)+(15)+(-10)+(+16)+(-9)=10(个).根据题意得该厂工人一周的工资总额为:2100×60+50×10=126500(元).答:该工艺厂在这一周应付出的工资总额是126500元.【解析】【分析】(1)根据表格中将300与5相加可求得周一的产量.(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与300相加求出产量最高的量;同理用星期五对应的数字与300相加求出产量最低的量,两者相减即可求出所求的个数.(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为0,且根据同号及异号两数相加的法则计算后,再加上2100即可得到工艺品一周的生产个数.(4)用计划的2100乘以单价60元,加超额的个数乘以50元,即为一周工人工资的总额. 4.已知:如图,这是一种数值转换机的运算程序.(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为;若第1次输入的数为12,则第5次输出的数为________.(2)若输入的数为5,求第2016次输出的数是多少.(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由.【答案】(1)4、6(2)解:5+3=8,8× =4,4× =2,2× =1,1+3=4,∴若输入的数为5,则每次输出的数分别是8、4、2、1、4、2、1,…,(2016−1)÷3=2015÷3=671 (2)∴第2016次输出的数是2(3)解:当x为奇数时,有 (x+3)+3=x,解得x=9(舍去),× (x+3)=x,解得x=1,当x为偶数时,有 × × x=x,解得x=0,× x+3=x,解得x=4,×( x+3)=x,解得x=2,综上所述,x=0或1或2或4【解析】【解答】解:(1)∵1+3=4,∴第1次输出的数为1,则第2次输出的数为4.×12=6,6× =3,3+3=6,6× =3,3+3=6,∴第1次输入的数为12,则第5次输出的数为6.【分析】(1)根据运算程序得到第1次输出的数为1,第2次输出的数为3+1,第1次输入的数为12,则第5次输出的数(12÷2÷2+3)÷2+3;(2)根据题意由输入的数为5,每次输出的数分别是8、4、2、1、4、2、1···,得到3次一循环,求出第2016次输出的数;(3)根据运算程序得到当x为奇数时和为偶数时,求出所有x的值.5.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点.若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.(1)写出图中格点四边形DEFG对应的S,N,L.(2)已知任意格点多边形的面积公式为S=N+aL+b,其中a,b为常数.当某格点多边形对应的N=82,L=38,求S的值.【答案】(1)解:根据图形可得:S=3,N=1,L=6(2)解:根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,,解得a ,∴S=N+ L﹣1,将N=82,L=38代入可得S=82+ ×38﹣1=100【解析】【分析】(1)按照所给定义在图中输出S,N,L的值即可;(2)先根据(1)中三角形与四边形中的S,N,L的值列出关于a,b的二元一次方程组,解方程组求得a,b的值,从而求得任意格点多边形的面积公式,代入所给N,L的值即可求得相应的S的值.6.古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”,而把1,4,9,16,…这样的数称为“正方形数”.(1)第5个“三角形数”是________,第n个“三角形数”是________,第5个“正方形数”是________,第n个“正方形数”是________.(2)除“1”以外,请再写一个既是“三角形数”,又是“正方形数”的数________.(3)经探究我们发现:任何一个大于1的“正方形数”都可以看做两个相邻“三角形数”之和.例如:①4=1+3;②9=3+6;③16=6+10;④________;⑤________;…请写出上面第4个和第5个等式.(4)在(3)中,请探究n2=________+________。
最新苏教版小学六年级数学下册第三单元培优检测提升卷(含答案)
最新苏教版小学六年级数学下册第三单元培优检测提升卷(含答案)时间:90分钟满分:100分学校: __________姓名:__________班级:__________考号:__________注意事项:1.答题前填写好自己的班级、姓名等信息。
2.请将答案正确填写在答题区域,注意书写工整。
一、选择题1.六(2)班有男生40人,男生和女生人数的比是10∶9,全班有()人。
A.70 B.74 C.76 D.782.预防“新冠”使用的酒精溶液,用无水乙醇和蒸馏水按照3∶1的体积进行配制,现有蒸馏水360L,需配备()L无水乙醇。
A.1080 B.120 C.90 D.1803.一个长方形的周长是48厘米,长和宽的比是5∶3。
它的面积是()平方厘米。
A.135 B.270 C.540 D.67.54.一次数学竞赛共有10道题,每做对1题得8分,做错或不做1题倒扣4分,丫丫在这次竞赛中总分是44分,她做对了()道题。
A.3 B.9 C.7 D.65.鸡兔同笼,一共有288只脚,并且兔子比鸡多15只,那么笼子里有()。
A.鸡35只,兔50只B.鸡50只,兔38只C.鸡28只,兔43只D.鸡38只,兔53只6.小熊遮住了甲、乙的一部分(如图),原来的甲、乙相比,()。
A.乙比甲长B.甲比乙长C.甲和乙一样长D.无法比较二、填空题7.( )吨的15是75吨;比75吨多15是( )吨;比75吨多15吨是( )。
8.用60厘米的铁丝围成一个等腰三角形,它的腰和底的比是2∶1,则底长( )厘米。
9.57吨大豆可以榨油16吨,要榨1吨油需要( )吨大豆。
这种大豆的出油率是( )%。
10.一个三角形三个内角度数的比是2∶2∶5,这是一个( )三角形,它的底角是( )度,顶角是( )度。
11.我国古代数学名著《孙子算经》中记载了一道数学趣题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”翻译成现代汉语就是鸡和兔在同一个笼子里,从上面数有35个头,从下面数有94只脚,则鸡有( )只,兔有( )只。
人教版 六年级数学上册 第三单元 培优提升卷(含答案)
人教版六年级数学上册第三单元培优提升卷一、选择题1.a和b互为倒数,则a7÷7b的得数是()。
A.ab B.49 C.149D.无法计算2.如果,甲数×=乙数×(甲、乙两数均不为0),那么甲数()乙数.A.>B.<C.= D.无法比较3.“五一班有女生15人,恰好占全年级人数的112”,根据条件,可选择的问题是().A.五一班有多少人?B.全年级有多少人?C.全年级女生有多少人?D.五一班男生有多少人?4.甲数的35与乙数的一半相等,甲数和乙数的大小关系是什么?()A.甲>乙B.甲<乙C.甲=乙D.无法确定5.一台拖拉机13小时耕地19公顷,1小时耕地()。
A.14公顷B.15公顷C.16公顷D.13公顷二、判断题1.1袋10kg的面粉,每天吃掉15kg,可以吃50天。
( ) 2.一个数除以0.1就相当于把这个数扩大10倍。
( )3.男生人数比女生多14,女生人数则比男生少14。
( )4.甲数比乙数多25,乙数就比甲数少25.( )5.a、b都是不为0的自然数,已知a×34=b×45,则a>b.( )三、填空题1.34吨的25是( )吨,( )小时的13是56小时。
2.一件商品促销打八折后是180元。
这条信息中的等量关系是( ),这件商品原价( )元。
3.妈妈上班坐的10路公交车刷卡付费优惠后每人每次是45元,妈妈一次性往公交卡充100元,那么妈妈可以坐( )次10路公交车。
4.( )+34=( )-34=( )×34=( )÷34=1。
5.一个水箱倒入6立方米的水,水的体积占水箱容积的34,这个水箱的容积是( )立方米。
6.一列火车的速度是每小时180千米,一辆小汽车的速度是这列火车的49,是一架喷气式飞机的112。
这辆汽车每小时行( )千米,这架飞机每小时飞行( )千米。
7.吨的是( )吨;( )小时的13是小时.8.甲桶油比乙桶油多,正好多3千克.乙桶装有( )千克油.9.把9米长的绳子平均分成19段,每段长( ),每段是7米的( ).10.一桶油倒出3.2千克,就会剩下这桶油的23,这桶油的质量是( )千克。
最新六年级数学培优提高含答案
最新六年级数学培优提高含答案一、培优题易错题1.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):日期一二三四五六日增减数/辆+4-1+2-2+6-3-5(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,比原计划增加了,增加了561-560=1辆.【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.4.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开始 桶中有液体 , 桶中有 .第一次从 桶倒入 桶后, 桶有
;第二次从 桶倒入 桶, 桶有
, 桶剩
, 桶剩 .由
,得
.
再设开始 桶中有纯酒精 ,则有水
.将酒精稀释过程列成表酒精含量是
.
初始状态 第一次 桶倒入 桶
桶 纯酒精:水
桶 纯酒精:水
第二次 桶倒入 桶
2.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年 宫在学校东 300m 处. 商场在学校西 200m 处,医院在学校东 500m 处.若将马路近似地看 做一条直线,以学校为原点,向东方向为正方向,用 1 个单位长度表示 100m.
(1)在数轴上表示出四家公共场所的位置.
a=40 所以 x=30+0.6×40-40=14 答:x 的值是 14。 【解析】【分析】 设原来的盐水为 100 克,加入的水或(盐)重 a 克,根据混合后的浓度 是 10%列出一个方程,化简这个方程得到 x 与 a 的关系。然后根据加入盐后的浓度是 30% 列出另一个方程,把这个方程中 x 的值代换成 a,解方程求出 a 的值,进而求出 x 的值。
【解析】【分析】根据浓度的意义求出甲溶液中酒精和盐分别有多少千克。假设乙溶液也 有 1 千克,然后分别计算出乙溶液中盐和酒精的含量,试算后确定乙溶液的重量即可。
8.有两种溶液,甲溶液的酒精浓度为 ,盐浓度为 ,乙溶液中的酒精浓度为 , 盐浓度为 .现在有甲溶液 千克,那么需要多少千克乙溶液,将它与甲溶液混和后所得 的溶液的酒精浓度和盐浓度相等? 【答案】 解:甲溶液中酒精:1×10%=0.1(千克),盐:1×30%=0.3(千克),0.3-0.1=0.2 (千克);
从图中可以直观地看出:甲 15 天的工作量和乙 12 天的工作量相等,即甲 5 天的工作量等 于乙 4 天的工作量。于是可用“乙工作 4 天”等量替换题中“甲工作 5 天”这一条件。这样这 项工程就相当于乙独做需要(20+4)天。用乙的工作效率乘 4 再除以 5 即可求出甲的工作 效率,用总工作量除以工作效率和即可求出合作完成的天数。
7.有两种溶液,甲溶液的酒精浓度为 ,盐浓度为 ,乙溶液中的酒精浓度为 , 盐浓度为 .现在有甲溶液 千克,那么需要多少千克乙溶液,将它与甲溶液混和后所 得的溶液的酒精浓度和盐浓度相等? 【答案】 解:甲中酒精:1×10%=0.1(千克),盐:1×30%=0.3(千克); 1 千克乙中酒精:1×50%=0.5(千克),盐:1×10%=0.1(千克); 0.5÷2=0.25(千克),0.1÷2=0.05(千克),0.1+0.25=0.35 (千克),0.3+0.05=0.35(千 克) 答:需要 0.5 千克乙溶液, 将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等。
【解析】【分析】 因为最后 A 桶的酒精含量高于 B 桶,所以一开始 A 桶盛的是酒精溶 液,B 桶中是水。设一开始 A 桶中有液体 x,B 桶中有 y,然后分别表示出两次操作后溶液 的量,并根据两种液体体积相等得到一个等式,再求出两桶溶液的容量比。然后运用列表 的方法确定 A 桶中酒精的含量即可。
0.2÷40%=0.5(千克) 答:需要加入 0.5 千克乙溶液, 将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相 等。
【解析】【分析】由于乙溶液中不含盐,所以只需要计算出甲溶液中酒精比盐少多少千 克,用酒精少的重量除以乙溶液的酒精浓度即可求出需要加入乙溶液的质量。
9.甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整数 天做完,若按乙、丙、甲的顺序轮流去做,则比计划多用半天;若按丙、甲、乙的顺序轮 流去做,则也比原计划多用半天.已知甲单独做完这件工作要 天,且三个人的工作效率 各不相同,那么这项工作由甲、乙、丙三人一起做,要用多少天才能完成? 【答案】 解:
=
=
= (天)
答:要用 天才能完成。 【解析】【分析】 首先应确定按每一种顺序去做的时候最后一天由谁来完成。如果按甲、 乙、丙的顺序去做,最后一天由丙完成,那么按乙、丙、甲的顺序和丙、甲、乙的顺序去 做时用的天数将都与按甲、乙、丙的顺序做用的天数相同,这与题意不符;如果按甲、 乙、丙的顺序去做,最后一天由乙完成,那么按乙、丙、甲的顺序去做,最后由甲做了半
4.服装厂买来一批布料,如果全部用来做上衣,刚好可以做 60 件。如果全部用来做裤
子,刚好可以做 90 条。现要用这批布料来做一件上衣和一条裤子组成的套装,可以做多少 套?
【答案】 解:1÷( + )
=1÷ =36(套) 答:可以做 36 套。 【解析】【分析】把这批布料看作单位“1”,然后用分数表示出做一件上衣用布占总数的几 分之几,再表示出做一条裤子用布占总数的几分之几,然后用 1 除以一件上衣和一条裤子 共用几分之几即可求出共做的套数。
这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.
【答案】(1)解:设购进甲种手机 部,乙种手机
部,
根据题意,得
解得:
元.
答:销商共获利
元.
(2)解:A: 设每部甲种手机的进价为 元,每部乙种手机的进价 根据题意,得
元,
解得:
答:求甲,乙两种手机每部的进价分别为:3000 元,2000 元.
5.在浓度为 的盐水中加入一定量的水,则变为浓度 的新溶液.在这种新溶液中加入 与前次加入的水量相等的盐,溶液浓度变为 .求 . 【答案】 解:设原来的盐水为 100 克,加入的水(或盐)重 a 克。
x=10+0.1a
因为: x+a=30+0.6a
则:10+0.1a+a=30+0.6a 1.1a-0.6a=30-10 0.5a=20
(2)列式计算青少年宫与商场之间的距离.
【答案】(1)解:如图所示:
(2)解:由题意可得:300-(-200)=500 或︱-200-300︱=500. 答:青少年宫与商场之间的距离是 500 m 【解析】【分析】(1)根据题意画出学校为原点的数轴,在数轴上表示出四家公共场所的 位置;(2)根据题意青少年宫与商场之间的距离是 300-(-200),再根据减去一个数等于 加上这个数的相反数,求出青少年宫与商场之间的距离.
B:乙种手机:
部,甲种手机
部,
设每部甲种手机的进价为 元,每部乙种手机的进价
元,
根据题意,得
解得:
答:求甲,乙两种手机每部的进价分别为:2000 元,3000 元. 【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列 出,然后解方程得到结果。(2)A 根据进价加利润等于甲和乙的售价,列出方程 B 先求出甲 乙的部数,表示出甲乙的标价,列出关系式,50 部甲×甲的标价+10 部甲×甲标价的八折 +40 部乙×乙的标价=利润率乘以成本,即可解出结果。
天来完成,这样有
, 可得
;而按丙、甲、乙的顺序去
做,最后由乙做了半天来完成,这样有
, 可得
.那
么
, 即甲、乙的工作效率相同,也与题意不合。所以按甲、乙、丙的顺序去
做,最后一天是由甲完成的。那么有
,可
得
,
。这样就可以根据工作效率之间的关系分别求出乙和丙的工作效
率,用总工作量除以三队的工作效率和即可求出一起做完成的时间。
最新六年级数学培优提高含详细答案
一、培优题易错题
1.规定一种新的运算:a★ b=a×b-a-b2+1,例如 3★ (-4)=3×(-4)-3-(-4)2+1.请计算 下列各式的值。 (1)2★ 5; (2)(-2)★ (-5). 【答案】(1)解:2★ 5=2×5-2-52+1=-16 (2)解:(-2)★ (-5)=(-2)×(-5)-(-2)-(-5)2+1=-12 【解析】【分析】根据新运算定义得到算式,再根据有理数的运算法则计算即可,先算乘 方,再算乘除,再算加减,如果有括号先算括号里面的.
3.某手机经销商购进甲,乙两种品牌手机共 100 部.
(1)已知甲种手机每部进价 1500 元,售价 2000 元;乙种手机每部进价 3500 元,售价 4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少
元?
(2)已经购进甲,乙两种手机各一部共用了 5000 元,经销商把甲种手机加价 50%作为标
10.一项工程,如果甲先做 5 天,那么乙接着做 20 天可以完成;如果甲先做 20 天,那么 乙接着做 8 天可以完成.如果甲、乙合作,那么多少天可以完成? 【答案】 解:甲做 5 天的工作量乙需要 4 天,乙独做需要:20+4=24(天),
甲的工作效率: 合做:
, (天)。
答:如果甲、乙合作, 天可以完成。 【解析】【分析】 如图:
价,乙种手机加价 40%作为标价.
从 A,B 两种中任选一题作答:
A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利 1570 元.
求甲,乙两种手机每部的进价.
B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行
销售的情况下,乙种手机很快售完,接着甲种手机的最后 10 部按标价的八折全部售完.在
6.有 , 两个桶,分别盛着水和某含量的酒精溶液.先把 桶液体倒入 桶,使 桶中 的液体翻番;再将 桶液体倒入 桶,使 桶中的液体翻番.此时, , 两桶的液体体 积相等,并且 桶的酒精含量比 桶的酒精含量高 .问:最后 桶中的酒精含量是多 少? 【答案】 解:因为最后 桶的酒精含量高于 桶,所以一开始 桶盛的是酒精溶液.设一