人教版七年级下册数学相交线与平行线(一)
七年级下册数学平行线与相交线
![七年级下册数学平行线与相交线](https://img.taocdn.com/s3/m/dfd6ab4ad5bbfd0a7956739c.png)
第一讲 两条直线的位置关系知识点一 :相交线、平行线的概念(1)相交线平行定义:若两条直线只有一个公共点,我们称这两条直线为相交线 (2)平行线定义:在同一平面内,不相交的两条直线叫做平行线(3)两套直线的位置关系:在同一平面内,两条直线的位置关系有相交和平行两种 (4)两条直线是指不重合的两条直线注意:1、两条直线在同一平面内2、我们有时说两条射线或线段平行,实际上是指它们所在的直线平行 知识点二:关于对顶角的定义和性质定义 对顶角:像这样直线AB 与直线CD 相交于O ,∠1与∠2有公共顶点,它们的两边互为反向延长线,这样的两个角叫做对顶角.注意:对顶角的判断条件:⎪⎩⎪⎨⎧无公共边有公共顶点两条直线相交另外,从对顶角的定义还可知:对顶角总是成对出现的,它们是互为对顶角;一个角的对顶角只有一个。
性质 同角或等角的对顶角相等。
一般题型 下列说法中,正确的是( ). A .有公共顶点,并且相等的角是对顶角 B .如果两个角不相等,那么它们一定不是对顶角 C .如果两个角相等,那么这两个角是对顶角 D .互补的两个角不可能是对顶角 练习 1、如图2-1,共有________对对顶角.图2-1知识点三: 互为余角、互为补角的概念及其性质定义:互为余角:如果两个角的和是直角,则这两个角互为余角. 互为补角:如果两个角的和是平角,则这两个角互为补角 钝角没有余角注意: 互为余角、互为补角只与角的度数有关,与角的位置无关. 性质 同角或等角的余角相等,同角或等角的补角相等一般例题 ⑴∵1∠和2∠互余,∴=∠+∠21_____(或2_____1∠-=∠) ⑵∵1∠和2∠互补,∴=∠+∠21_____(或2_____1∠-=∠)练习1、若∠α=50º,则它的余角是 ,它的补角是 。
若∠β=110º,则它的补角是 ,它的补角的余角是 。
2若∠1与∠2互余,∠3和∠2互补,且∠3=120º,那么∠1= 。
人教版数学初一下册第五章 相交线与平行线 5.3.2:命题、定理、证明(1)课件
![人教版数学初一下册第五章 相交线与平行线 5.3.2:命题、定理、证明(1)课件](https://img.taocdn.com/s3/m/faf893c6d1f34693daef3e87.png)
如果两个角是同旁内角,那么这两个角互补;
(5)对顶角相等.如果两个角是对顶角,那么这两个角相等.
16
知识点一:命题
学以致用
2、改写成“如果……那么……”的形式。并指出下列各命题 的题设和结论,
①、内错角相等; ②、两条平行线被第三直线所截,同位角相等; ③、同角的余角相等; ④、同平行于一直线的两直线平行; ⑤、直角三角形的两个锐角互余; ⑥、等角的补角相等; ⑦、正数与负数的和为0。
①如果一个数能被4整除,那么它也能被2整除。 ②如果两个角互补,那么它们是邻补角。
③相等的角是对顶角.
1
2
1 2
20
知识点二:真命题和假命题
归纳总结
判断一个命题真假的方法:
利用已有的知识,通过观察、验证、推理、举 反例等方法。
判断一个命题是假命题的方法:
判断一个命题是假命题,只要举出一个例子, 说明该命题不成立就可以了,这种方法称为举反例。
,那么..."的形式,会区分命题的题设和结论。 2.知道真命题和假命题的概念,会通过举反例判 断一个命题是假命题.
重点难点 重点:命题的概念以及真命题和假命题的概念.
难点:区分命题的题设和结论.
3
知识点一:命题
新知探究
刚刚我们复习了平行线的性质与判定,这些语句都对某 一件事情作出判断,如:同位角相等,两条直线平行.
(2)题设是“两直线平行”,结论是“同位角相等”;
(3)题设是“两个角是邻补角”,结论是“这两个角互补”.
13
知识点一:命题
互动探究
先独立完成导学案互动探究2,再同桌相互交流, 最后小组交流;
人教版初中七年级数学下册第五章《相交线与平行线》经典题(含答案解析)(1)
![人教版初中七年级数学下册第五章《相交线与平行线》经典题(含答案解析)(1)](https://img.taocdn.com/s3/m/9b635c7de53a580217fcfe7e.png)
一、选择题1.下列语句是命题的是( )A .平分一条线段B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗?B解析:B【分析】根据命题的定义分别进行判断.【详解】A.平分一条线段,为描述性语言,不是命题;B.直角都相等,是命题;C.在直线AB 上取一点,为描述性语言,不是命题;D.你喜欢数学吗?是疑问句,不是命题.故选:B .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.2.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180°D 解析:D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 3.如图,直线12l l ,130∠=︒,则23∠+∠=( )A .150°B .180°C .210°D .240°C解析:C【分析】 根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【详解】解:作直线l 平行于直线l 1和l 212////l l l1430;35180︒︒∴∠=∠=∠+∠=245∠=∠+∠2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=故选C.【点睛】本题主要考查平行线的性质,关键在于等量替换的应用,两直线平行同旁内角互补,两直线平行内错角相等.4.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm A解析:A【分析】 由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm ,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.5.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④C解析:C【分析】 根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.6.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④D解析:D【分析】 根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB ∥CD ,不符合题意;②∵∠3=∠4,∴BC ∥AD ,符合题意;③∵AB ∥CD ,∴∠B+∠BCD =180°,∵∠ADC =∠B ,∴∠ADC+∠BCD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; ④∵AB ∥CE ,∴∠B+∠BCD =180°,∵∠BCD =∠BAD ,∴∠B+∠BAD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; 故能推出BC ∥AD 的条件为②③④.故选:D .【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.7.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°C解析:C【分析】 如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠,11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键. 8.如图,在Rt ABC △中,90,BAC ︒∠=3,AB cm =4AC cm =,把ABC 沿着直线BC 的方向平移2.5cm 后得到DEF ,连接AE ,AD ,有以下结论:①//AC DF ;②//AD BE ;③ 2.5CF cm =;④DE AC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个D解析:D【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小可对①②③进行判断;根据∠BAC=90°及平移的性质可对④进行判断,综上即可得答案.【详解】∵△ABC 沿着直线BC 的方向平移2.5cm 后得到△DEF ,∴AB//DE ,AC//DF ,AD//CF ,CF=AD=2.5cm ,故①②③正确.∵∠BAC=90°,∴AB ⊥AC ,∵AB//DE DE AC ∴⊥,故④正确.综上所述:之前的结论有:①②③④,共4个,故选D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.9.如图,已知AB CD ∕∕,AF 交CD 于点E ,且,40BE AF BED ⊥∠=︒,则A ∠的度数是( )A .40︒B .50︒C .80︒D .90︒B【分析】直接利用垂线的定义结合平行线的性质得出答案.【详解】解:∵,40BE AF BED ⊥∠=︒,∴50FED ∠=︒,∵AB CD ∕∕,∴50A FED ∠=∠=︒.故选B .【点睛】此题主要考查了平行线的性质以及垂线的定义,正确得出FED ∠的度数是解题关键. 10.如图,A 、P 是直线m 上的任意两个点,B 、C 是直线n 上的两个定点,且直线m ∥n .则下列说法正确的是( )A .AC=BPB .△ABC 的周长等于△BCP 的周长 C .△ABC 的面积等于△ABP 的面积D .△ABC 的面积等于△PBC 的面积D解析:D【分析】 根据平行线之间的距离及三角形的面积即可得出答案.【详解】解:∵A 、P 是直线m 上的任意两个点,B 、C 是直线n 上的两个定点,且直线m ∥n , 根据平行线之间的距离相等可得:△ABC 与△PBC 是同底等高的三角形,故△ABC 的面积等于△PBC 的面积.故选D .【点睛】本题考查平行线之间的距离;三角形的面积.二、填空题11.已知A ∠与B (A ∠,B 都是大于0°且小于180°的角)的两边一边平行,另一边垂直,且227A B ∠-∠=︒,则A ∠的度数为_________.或【分析】分两种情况:①如图1作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B=∠BEF ∠A=∠AEF 根据∠A+∠B=求出∠A=;②如图2作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B+∠BEF=∠A 解析:39︒或99︒.【分析】分两种情况:①如图1,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B=∠BEF ,∠A=∠AEF ,根据∠A+∠B=90︒,227A B ∠-∠=︒,求出∠A=39︒;②如图2,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B+∠BEF=180︒,∠A+∠AEF=180︒,根据∵∠AEB=∠AEF+∠BEF=90︒,227A B ∠-∠=︒,计算得出答案.【详解】分两种情况:①如图1,作EF ∥BD ,∴∠B=∠BEF ,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A=∠AEF ,∴∠A+∠B=∠AEF+∠BEF=90︒,∵227A B ∠-∠=︒,∴∠A=39︒;②如图2,作EF ∥BD ,∴∠B+∠BEF=180︒,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A+∠AEF=180︒,∴∠A+∠AEB+∠B=360︒,∵∠AEB=∠AEF+∠BEF=90︒,∴∠A+∠B=270︒,∵227A B ∠-∠=︒,∴∠A=99︒;故答案为:39︒或99︒..【点睛】此题考查平行线的性质,平行公理的推论,根据题意作出图形,引出恰当的辅助线解决问题是解题的关键.12.在平面内,若OA ⊥OC ,且∠AOC ∶∠AOB =2∶3,则∠BOC 的度数为_______________;45°或135°【分析】根据垂直关系可得∠AOC=90°再由∠AOC :∠AOB=2:3可得∠AOB 然后再分两种情况进行计算即可【详解】解:如图∠AOC 的位置有两种:一种是∠AOC 在∠AOB 内一种是在解析:45°或135°根据垂直关系可得∠AOC=90°,再由∠AOC :∠AOB=2:3,可得∠AOB ,然后再分两种情况进行计算即可.【详解】解:如图,∠AOC 的位置有两种:一种是∠AOC 在∠AOB 内,一种是在∠AOB 外.∵OA ⊥OC ,∴∠AOC=90°,①当∠AOC 在∠AOB 内,如图1,∵∠AOC :∠AOB=2:3,∴∠BOC=12∠AOC=45°, ②当∠AOC 在∠AOB 外,如图2,∵∠AOC :∠AOB=2:3,∴∠AOB=32∠AOC=135°, ∴∠BOC=360°-∠AOB-∠AOC=135°.故答案为:45°或135°.【点睛】此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.13.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式______.【分析】过作过作根据平行线的性质可知然后根据平行线的性质即可求解;【详解】如图过作过作∴∴∵∴∴∴∴∴故答案为:【点睛】本题考查了平行线的性质两直线平行同位角相等两直线平行内错角相等正确理解平行线的解析:90x y z +-=︒过C 作//CN AB ,过D 作//DM AB ,根据平行线的性质可知//////AB CN DM EF ,然后根据平行线的性质即可求解;【详解】如图,过C 作//CN AB ,过D 作//DM AB ,∴//////AB CN DM EF ,∴1x =∠,23∠∠=,4z ∠=,∵90BCD ∠=︒,∴1290∠+∠=︒,∴390x +∠=︒,∴3490x z +∠+∠=︒+,∴90x y z +=︒+,∴90x y z +-=︒.故答案为:90x y z +-=︒.【点睛】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;14.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___ 130cm2【分析】根据平移的性质可知梯形EFGH ≌梯形ABCD 那么GH=CDBC=FG 观察可知梯形EFMD 是两个梯形的公共部分那么阴影部分的面积就等于梯形MGHD 再根据梯形的面积计算公式计算即可【解析:130cm 2.【分析】根据平移的性质可知梯形EFGH ≌梯形ABCD ,那么GH=CD ,BC=FG ,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD ,再根据梯形的面积计算公式计算即可.【详解】解:∵直角梯形EFGH 是由直角梯形ABCD 平移得到的,∴梯形EFGH ≌梯形ABCD ,∴GH=CD ,BC=FG ,∵梯形EFMD 是两个梯形的公共部分,∴S 梯形ABCD -S 梯形EFMD =S 梯形EFGH -S 梯形EFMD ,∴S 阴影=S 梯形MGHD =12(DM+GH )•GM=12(28-4+28)×5=130(cm 2). 故答案是130cm 2.【点睛】本题考查了图形的平移,解题的关键是知道平移前后的两个图形全等. 15.如图,1∠与2∠是对顶角,110α∠=+︒,250∠=︒,则α=______.40°【分析】先根据对顶角相等的性质得出∠1=∠2即可求出α的度数【详解】解:∵∠1与∠2是对顶角∠2=50°∴∠1=∠2∵∠2=50°∴α+10°=50°∴α=40°故答案为:40°【点睛】本题考 解析:40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,110α∠=+︒,∠2=50°,∴∠1=∠2,∵110α∠=+︒,∠2=50°,∴α+10°=50°,∴α=40°.故答案为:40°.【点睛】本题考查了对顶角相等的性质以及角度的计算.16.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.40【解析】根据平行线的性质先求出∠BEF 和∠CEF 的度数再求出它们的差就可以了解:∵AB ∥EF ∴∠BEF=∠ABE=70°;又∵EF ∥CD ∴∠CEF=180°-∠ECD=180°-150°=30°解析:40【解析】根据平行线的性质,先求出∠BEF 和∠CEF 的度数,再求出它们的差就可以了. 解:∵AB ∥EF ,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.17.运动会上裁判员测量跳远成绩时,先在距离踏板最近的跳远落地点上插上作为标记的小旗,再以小旗的位置为赤字的零点,将尺子拉直,并与踏板边缘所在直线垂直,把尺子上垂足点表示的数作为跳远成绩.这实质上是数学知识____________在生活中的应用.垂线段最短【分析】根据题干跳远落点视为一个点直尺垂直踏板边缘可理解为作垂线然后用数学语言描述出来即可【详解】根据题意可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用注意在书写答案解析:垂线段最短【分析】根据题干,跳远落点视为一个点,直尺垂直踏板边缘可理解为作垂线,然后用数学语言描述出来即可.【详解】根据题意,可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用,注意在书写答案时,尽量用“数学化”的语言来描述.18.如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为_____.120°【分析】先根据平行线的性质得到∠GEC=90°再根据垂线的定义以及平行线的性质进行计算即可【详解】过点E作EG∥AB则EG∥CD由平行线的性质可得∠GEC=90°所以∠GEB=90°﹣30°解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.19.如图,a∥b,∠1=80°,∠2=45°,∠3=_____.55°【分析】根据平行线的性质和对顶角的性质即可得到结论【详解】解:∵a∥b∴∠1+∠3+∠4=180°∵∠2=∠4∠2=45°∴∠4=∠2=45°∵∠1=80°∴∠3=180°-45°-80°=5解析:55°【分析】根据平行线的性质和对顶角的性质即可得到结论.【详解】解:∵a∥b,∴∠1+∠3+∠4=180°,∵∠2=∠4,∠2=45°,∴∠4=∠2=45°∵∠1=80°,∴∠3=180°-45°-80°=55°,故答案为:55°.【点睛】本题考查了平行线的性质和对顶角的性质,熟记性质并准确识图是解题的关键. 20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.(n ﹣1)×180【分析】分别过P1P2P3作直线AB 的平行线P1EP2FP3G 由平行线的性质可得出:∠1+∠3=180°∠5+∠6=180°∠7+∠8=180°∠4+∠2=180°于是得到∠1+∠ 解析:(n ﹣1)×180【分析】分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.在ABC 中,AB AC =,直线l 经过点A ,且与BC 平行.仅用圆规完成下列画图.(保留画图痕迹,不写作法)(1)如图①,在直线l 上画出一点P ,使得APC ACB ∠=∠;(2)如图②,在直线l 上画出所有的点Q ,使得12AQC ACB ∠=∠.解析:(1)见解析;(2)见解析【分析】(1)以C 为圆心,以CA 为半径画弧,交点即为所求;(2)以A 为圆心,以AC 为半径画弧,交点即为所求.【详解】(1)如图所示,点P 即为所求,理由如下:CP CA =,//l BC ,则APC CAP ACB ∠=∠=∠.(2)如图所示,点12Q Q 、即为所求,理由如下:1AC AQ =,//l BC ,则11112AQ C ACQ BCQ ACB ∠=∠=∠=∠; 12CQ CQ =,则1221CQ Q CQ Q ∠=∠.【点睛】本题考查了基本作图,熟记等腰三角形的性质,平行线的性质是解题的关键.22.如图,已知在每个小正方形的网格图形中,ABC的顶点都在格点上,,,A B C为格点.(1)先将ABC先向左平移2个单位,再向上平移3个单位,请在图中画出平移后DEF,(点A,B,C所对应的顶点分别是D,E,F)(2)求出DEF的面积;(3)连结AD,BE,直接说出AD与BE的关系(不需要理由).解析:(1)见解析;(2)8;(3)AD=BE且AD∥BE【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点D、E、F,再依次连接即可;(2)根据三角形的面积公式计算;(3)根据平移的性质回答.【详解】解:(1)如图,△DEF即为所作;(2)S△DEF=1442⨯⨯=8;(3)如图,由平移可知:AD=BE且AD∥BE.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.如图,已知:AD BC ⊥于D,EG BC ⊥于G,AD 平分BAC ∠.求证:1E ∠∠=.下面是部分推理过程,请你填空或填写理由.证明:∵AD BC EG BC ⊥⊥,(已知),∴ADC EGC 90∠∠==︒(垂直的定义),∴AD //EG ( )∴21∠=∠( ),3∠= ( ).又∵AD 平分BAC ∠(已知),∴23∠∠=( ),∴1E ∠∠=( )解析:同位角相等,两直线平行;两直线平行,内错角相等;∠E ;两直线平行,同位角相等;角平分线的定义;等量代换.【分析】根据垂直的定义、平行线的判定与性质、角平分线的定义以及等量代换进行解答即可.【详解】证明:∵AD BC EG BC ⊥⊥,(已知),∴ADC EGC 90∠∠==︒(垂直的定义),∴AD //EG (同位角相等,两直线平行)∴21∠=∠(两直线平行,内错角相等),3∠=∠E (两直线平行,同位角相等).又∵AD 平分BAC ∠(已知),∴23∠∠=(角平分线的定义),∴1E ∠∠=(等量代换).【点睛】本题主要考查了垂直的定义、平行线的判定与性质和角平分线的定义等知识点,灵活应用平行线的判定与性质成为解答本题的关键.24.如图,DE 平分∠ADF ,DF ∥BC ,点E ,F 在线段AC 上,点A ,D ,B 在一直线上,连接BF .(1)若∠ADF =70°,∠ABF =25°,求∠CBF 的度数;(2)若BF 平分∠ABC 时,求证:BF ∥DE .解析:(1)∠CBF =45°;(2)见解析.【分析】(1)根据平行线的性质和已知条件即可求出∠CBF 的度数;(2)根据平行线的性质可得∠ABC =∠ADF ,再根据BF 平分∠ABC ,DE 平分∠ADF ,可得∠ADE =∠ABF ,再根据同位角相等,两直线平行即可证明BF ∥DE .【详解】解:(1)∵DF ∥BC ,∴∠ABC =∠ADF =70°,∵∠ABF =25°,∴∠CBF =70°﹣25°=45°;(2)证明:∵DF ∥BC ,∴∠ABC =∠ADF ,∵BF 平分∠ABC ,DE 平分∠ADF ,∴∠ADE 12=∠ADF ,∠ABF 12=∠ABC , ∴∠ADE =∠ABF ,∴BF ∥DE .【点睛】 本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质. 25.如图,已知12∠=∠,C D ∠=∠,求证:A F ∠=∠.解析:证明见解析【分析】根据平行线的判定与性质即可得证.【详解】解:∵12∠=∠,∴//BD CE ,∴C ABD ∠=∠,∵C D∠=∠,∴D ABD∠=∠,∴//AC DF,∴A F∠=∠.【点睛】本题考查平行线的判定与性质,熟练运用平行线的判定与性质定理是解题的关键.26.如图,已知,AB//CD,EF交AB,CD于G、H,GM、HN分别平分∠AGF,∠EHD.试说明GM//HN.解析:证明见解析.【分析】首先根据平行线的性质可得∠BGF=∠DHE,再根据角平分线的性质可证明∠1=∠2,然后根据内错角相等,两直线平行可得HN∥GM.【详解】证明:∵AB∥CD,∴∠AGF=∠DHE,∵GM、HN分别平分∠AGF,∠EHD,∴∠1=12∠AGF,∠2=12∠DHE,∴∠1=∠2,∴GM∥HN.【点睛】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理与性质定理.27.试用举反例的方法说明下列命题是假命题.例如:如果ab<0,那么a+b<0.反例:设a=4,b=-3,ab=4⨯(-3)=-12<0,而a+b=4+(-3)=1>0,所以这个命题是假命题.(1)如果a+b>0,那么ab>0.(2)如果a是无理数,b也是无理数,那么a+b也是无理数.解析:(1)见解析;(2)见解析.【分析】(1)此题是一道开放题,可举的例子多,但只举一例就可.如果a+b>0,那么ab>0;所举的反例就是,a、b一个为正数,一个为负数,且正数的绝对值大于负数.(2)可利用平方差公式找这样的无理数,比如1±2,两数相加就是有理数.【详解】解:(1)取a=2,b=-1,则a+b=1>0,但ab=-2<0.所以此命题是假命题.(2)取a=1+2,b=1-2,a 、b 均为无理数.但a+b=2是有理数,所以此命题是假命题.【点睛】本题主要锻炼了学生的逆向思维.在证明几何题的过程中,有时需从反例上先去判断,然后再证明.28.如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,FO ⊥CD 于点O ,若∠BOD ∶∠EOB=2∶3,求∠AOF 的度数.解析:45︒.【分析】设2BOD x ∠=,从而可得3EOB x ∠=,先根据角平分线的定义3EOC EOB x ∠=∠=,再根据平角的定义可得求出x 的值,然后根据垂直的定义可得90DOF ∠=︒,最后根据平角的定义即可得.【详解】设2BOD x ∠=,则3EOB x ∠=,∵OE 平分BOC ∠,∴3EOC EOB x ∠=∠=,180BOD EOB EOC ∠+∠+∠=︒,233180x x x ∴++=︒,解得22.5x =︒,45BOD ∴∠=︒,FO CD ⊥,90DOF ∴∠=︒,又180BOD DOF AOF ∠+∠+∠=︒,4590180AOF ∴︒+︒+∠=︒,解得45AOF ∠=︒.【点睛】本题考查了角平分线的定义、平角的定义、垂直的定义等知识点,熟练掌握并理解各定义是解题关键.。
人教版初中数学七年级下 相交线和平行线知识点总结
![人教版初中数学七年级下 相交线和平行线知识点总结](https://img.taocdn.com/s3/m/cbd1852b11a6f524ccbff121dd36a32d7375c73e.png)
人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。
本文将对其中的重点知识点进行总结。
5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。
其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。
2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。
垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。
3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。
画法可采用“一靠二移三画”的方法。
4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。
记忆时应结合图形进行理解。
本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。
在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。
垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。
它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。
点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。
线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。
平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。
判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。
平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。
同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。
人教版七年级下册数学《平行线的性质》相交线与平行线研讨说课教学课件
![人教版七年级下册数学《平行线的性质》相交线与平行线研讨说课教学课件](https://img.taocdn.com/s3/m/c06b2eefd1d233d4b14e852458fb770bf68a3b36.png)
5.3.1 平行线的性质
第2课时
课件
平行性质
平行线性质1: 两直线平行,同位角相等 平行线性质2: 两直线平行,内错角相等
同旁内角之间又有什么关系呢?
1
【相关概念】性质3:两直线平行,同旁内角互补
如图,已知:AB// CD ,那么∠ 3与∠ 2有什么关系? 例如:∵AB//CD,
D. 100°
1 【例题讲解】性质3:两直线平行,同旁内角互补
【例2】如图, AB//CD,AD//BC.
求证:∠A=∠C.
证明:∵AB//CD(已知), ∴∠A+∠D=180°(两直线平行,同旁内角互补). ∵AD//BC(已知), ∴∠C+∠D=180°(两直线平行,同旁内角互补). ∴∠A=∠C(同角的补角相等).
答:∠2 =110º.因为AB∥CD, ∠1和∠2是内错角, 根据两直线平行,内错角相等, 得到∠1=∠2. 因为∠1=110º,所以∠2 =110º.
例题
如图,平行线AB,CD被直线AE所截.
(2)从∠1=110º.可以知道∠3是多少度吗?为什么?
答:∠3 =110º.因为AB∥CD, ∠1和∠3是同位角, 根据两直线平行,同位角相等, 得到∠1=∠3. 因为∠1=110º,所以∠3 =110º.
练习
已知:如图,∠AGD=∠ACB,∠1=∠2,CD与EF平行吗?为什 么? 答:CD∥EF.
理由如下: ∵ ∠AGD =∠ACB , ∴ GD∥BC. ∵∠1和∠3是内错角, ∴∠1=∠3(两直线平行,内错角相等). ∵∠1=∠2, ∴∠2=∠3. ∵∠2和∠3是同位角, ∴ CD∥EF(同位角相等,两直线平行).
1B 3
2
《平移》相交线与平行线PPT精品课件
![《平移》相交线与平行线PPT精品课件](https://img.taocdn.com/s3/m/37d8d722326c1eb91a37f111f18583d048640f5a.png)
A.(2) B.(3)
C.(4)
D.(5)
课堂检测
3.如图所示,已知三角形ABC平移后得到三角形DEF,则下列
说法中,不正确的是( C ).
A.AC=DF
B.BC∥EF
C.平移的距离是线段BD的长 D.平移的距离是线段AD的长
课堂检测
4.如图所示,将△ABC沿水平向右的方向平移,得到△EAF,
若AB=5,BC=3,AC=4,则平移的距离是( C ).
上)且相等; 3.各对应点所连线段平行(或在
同一直线上)且相等. 1.关键在于按要求作出对应点;
2.然后,顺次连接对应点即可.
平移的方向、距离都相同.
(4)确定一个图形平移的方向和距离,只需确定其上一个点平
移的方向和距离即可.
探究新知
考 点 1 平移现象的识别
下列现象:(1)水平运输带上砖块的运动;(2)高楼电梯上
平移
上下下迎接乘客;(3)健身做呼啦圈运动;(4)火车飞驰在
平移
旋转
一段平直的铁轨上;(5)沸水中气泡的运动.
课堂检测
能力提升题
如何将平行四边形ABCD平移,使点A移动到点E,画出平移后
的图形.
E
F
A
B
H G
D
C
四边形 EFGH 就是四边形ABCD平移后的图形.
课堂检测 拓广探索题
(1)如图所示,图①是将线段AB向右平移1个单位长度,图②是将 线段AB折一下再向右平移1个单位长度,请在图③中画出一条有 两个折点的折线向右平移1个单位长度的图形. (2)若长方形的长为a,宽为b, 请分别写出三个图形中除去阴 影部分后剩余部分的面积. (3)如图④,在宽为10m,长为40m的长方形菜地上有一条弯曲的 小路,小路宽为1m,求这块菜地的面积.
新人教七年级数学下册_第五章_相交线与平行线_全章讲与练
![新人教七年级数学下册_第五章_相交线与平行线_全章讲与练](https://img.taocdn.com/s3/m/64255d66561252d380eb6edc.png)
第五章相交线与平行线第一节、知识梳理:相交线与平行线一、学习目标1.理解对顶角、邻补角的概念,掌握其性质,会用其性质进行有关推理和计算;2.掌握垂线、垂线段、点到直线的距离的概念;3.掌握“三线八角”的内容.二、学习重点与难点学习重点:1.邻补角、对顶角以及点到直线距离的概念;2.掌握两直线平行的三个判定方法.学习难点: 1.对顶角的性质、垂线性质;2.灵活运用平行线的判定方法来解题.三、知识概要1.要正确理解邻补角、对顶角的含义:(1)判断两个角是否是邻补角,关键要看这两个角的两边,其中一边是公共边,另外两边是互为反向延长线;(2)邻补角是成对的,是具有特殊位置关系的两个互补的角;(3)判断两个角是否是对顶角,看这两个角是不是有公共顶点且有相同的邻补角,只有符合这两个条件时,才能确定这两个角是对顶角.2.垂线、垂线段和点到直线的距离是三个不同的概念,不要混淆:(1)两条直线互相垂直是两条直线相交的特殊情况,特殊在交角都为直角,垂线是其中一条直线对另一条直线的称呼;(2)垂线是直线,垂线段是一条线段,是图形.(3)点到直线的距离是垂线段的长度,是一个数量,不能说成垂线段是距离.3.两条直线的位置关系,是在两条直线在“同一平面内”的前提下提出来的,它们的位置关系只有两种:一是相交(有一个公共点),二是平行(没有公共点):(1)识别同位角、内错角、同旁内角的关键是要抓住“三线八角”,只有“三线”出现且必须是两线被第三线所截才能出现这三类角;(2)判定两条直线平行时要正确判断出是什么角,什么关系,由此可以推出哪两条直线平行.四、知识链接1.本周相交线、平行线是以前学的直线的位置关系的延伸.2.通过内错角、同位角、同旁内角等角度的比较得到平行线.而由平行线又可得到下周的平行线性质.五、中考视点平行与相交线中的垂直是经常考的内容.一般考其基础知识,以填空选择为主.平行线的性质与平移一、学习目标1.掌握平行线的性质并会应用.2.理解命题并会判断.3.理解平移的定义并会应用平移的特征.二、知识概要1.平行线的性质性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.2.两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.对于这个概念,应注意三点:(1)两条直线必须是平行的;(2)第三条直线同时垂直于它们;(3)距离是线段的长度,是个具体的数,而不是线段这个图形.3.关于命题判断一件事情的语句叫做命题.每个命题都是由条件和结论两部分组成的.4.平移的概念在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动就称做为平移. 5.平移的基本特征平移的基本特征是:经过平移,对应点所连的线段平行(或在同一条直线上)且相等,对应线段平行且相等,对应角相等.三、重点难点学习重点:1.平行线的性质及其应用.2.平移的特征.学习难点:1.命题的判断.2.平移变换及其性质应用.四、知识链接平行线的性质与判定定理有互逆性,平移变换及性质是研究动态几何的基础内容之一.五、中考视点平行线的知识是每年必考的内容,在填空选择中经常直接考平行线的性质.在解答题中经常与其他知识联系,综合考查.平移知识也是考的比较多的内容,尤其是在做辅助线时经常用到.第二节、教材解读:理解“三线八角”当两条直线AB和CD被第三条直线EF所截(如图),可得到八个角.根据位置特征不同,把∠1和∠5、∠2和∠6、∠4和∠8、∠3和∠7这样的称作同位角;把∠4和∠6、∠3和∠5这样的称作内错角;把∠4和∠5、∠3和∠6这样的称作同旁内角.在数学中也常把与同位角、内错角、同旁内角相关的问题称作“三线八角”问题.1.所谓同位角也就是位置特征相同,如∠1和∠5同在“左上”(AB和CD左侧,EF上方);∠2和∠6同在“左下”(AB和CD左侧,EF下方);∠4和∠8同在“右上”(AB和CD右侧,EF上方);∠3和∠7同在“右下”(AB和CD右侧,EF下方).2.所谓内错角是指在两条被截直线之内,在第三条直线左右错开的位置的角,如∠4和∠6在AB和CD之内,而在EF左右两边错开的角;∠3和∠5在AB和CD之内,而在EF左右两边错开的角.3.所谓同旁内角是指在第三条直线同旁,而在两条被截直线之内的位置的角,如∠4和∠5同在EF 上边而在AB和CD之内;∠3和∠6同在EF 下边而在AB和CD之内.第三节、错解剖析【例1】填空:从直线外一点到这条直线的 ____,叫做点到直线的距离.错解:垂线段.【思考与分析】点到直线的距离是指垂线段的长度,它是一个数量而不是图形.错误的原因是概念不清.正解:垂线段的长度.【例2】判断正误:有公共端点且没有公共边的两个角是对顶角.错解:正确.【思考与分析】此题错在没有抓住对顶角概念的实质,出现了扩大概念实质和概念外延的错误,把一些不是对顶角的角看成了对顶角,如下图中∠1和∠2有公共顶点且没有公共边,但它们不是对顶角.错误的原因是概念不清.正解:如果一个角与另一个角有公共端点且两边分别是这个角的两边的反向延长线,那么这两个角叫对顶角.【例3】如图,若AB∥CD,CD∥EF,则AB∥EF.理由是什么?错解:等量代换.【思考与分析】上面的回答把相等和平行混为一谈,相等说的是两个量的大小关系,平行说的则是两条直线的位置关系,完全不是一码事,所以,平行线的传递性是不能用"等量代换"来表达的.错误的原因是位置关系和数量关系混淆正解:平行于同一条直线的两条直线平行.【例4】判断正误:同一平面内不相交的两条线是平行线.错解:正确.【思考与分析】平行线是讲同一平面内两条直线的位置关系.不相交的两条射线或线段有可能延长或反向延长后相交.错误的原因是没有分清“三线”的区别和联系.正解:同一平面内不相交的两条直线是平行线.【例5】判断正误:不相交的两条直线是平行线.错解:正确.【思考与分析】在同一平面内不相交的两条直线是平行线,但在空间里很容易找到不相交的两条直线,而且它们并不平行,错误的原因是思考不周.正解:在同一平面内不相交的两条直线是平行线.第四节、思维点拨【例1】已知,如图,直线AB、CD相交于O,OE平分∠BOD且∠AOE=150°,你能求出∠AOC的度数吗?【思考与分析】观察图形我们可知,∠AOE与∠BOE是邻补角,所以∠BOE的度数可求,又由OE是∠BOD的角平分线可求得∠BOD=2∠BOE,而∠AOC与∠BOD是对顶角,故∠AOC 可求.解:∵ AB是直线(已知),∴∠AOE与∠BOE 是邻补角(邻补角定义).∴∠AOE+∠BOE=180°(补角定义).又∠AOE=150°(已知),∴∠BOE=180°-∠AOE=180°-150°=30°(等式性质).∵ OE平分∠BOD(已知),∴∠BOD=2∠BOE(角平分线定义).即∠BOD=2×30°=60°.∵∠AOC与∠BOD是对顶角(由图可知),∴∠AOC=∠BOD(对顶角相等).∴∠AOC=60°.反思:在思考过程中抓住角平分线DE与各个角的关系是解题的关键.【例2】如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是().A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′思考与解: ∵OE⊥AB,∴∠AOE=90°.∵OF平分∠AOE,∵∠1与∠3是对顶角,∴∠1=∠3.∴B正确.∵∠AOD与∠1互为补角.∴C正确.∵∠1=15°30′,∴∠1的余角=90°-15°30′=74°30′.∴D不正确.故选D.【小结】我们在做这类选择题时,首先把题中条件与图形一一对应,然后看每个结论是否与条件冲突.【例3】已知,如图,直线AB、CD互相垂直,垂足为O,直线EF过点O,∠DOF=32°,你能求出∠AOE的度数吗?【思考与分析】我们由AB⊥CD可知∠AOC=90°,因此,∠AOE与∠EOC 互余.又因为∠EOC与∠DOF是对顶角,于是∠EOC=32°,于是∠AOE可求.解法一:∵直线CD与EF交于O(已知),∴∠EOC=∠DOF (对顶角相等).∵∠DOF=32°(已知),∴∠EOC=32°(等量代换).∵AB、CD互相垂直(已知),∴∠AOC=90°(垂直定义).∴∠AOE+∠EOC=90°.∴∠AOE=90°-∠EOC=90°-32°=58°.解法二:∵直线AB、CD互相垂直(已知),∴∠BOD=90°(垂直定义).∴∠BOF+∠DOF=90°.∵∠DOF=32°(已知),∴∠BOF=90°-∠DOF=58°.∵直线AB与直线EF交于点O(已知),∴∠AOE=∠BOF(对顶角相等).∴∠AOE=58°.反思:第一种解法先用对顶角后用互余,第二种解法先用互余后用对顶角,我们在平时做题时也应该多想多做,多角度分析解决问题.【例4】如图3,直线AB与CD相交于点F,EF⊥CD,则∠AFE与∠DFB之间的关系是______.【思考与分析】我们由所给的条件EF⊥CD,得∠CFE=90°,也就是说∠AFE+∠AFC=90°,又根据对顶角相等,得∠AFC=∠DFB,所以∠AFE+∠DFB=90° .本题也可利用平角的定义来解,即由∠AFE+∠DFB+∠EFD=180°,又因为∠EFD=90°,所以∠AFE+∠DFB=90°.解:∠AFE与∠DFB互为余角(或∠AFE+∠DFB=90°).【小结】这类题目的特点是有条件而无结论,要从所给的条件出发,通过分析、比较、猜想,寻找多种解法和结论,再进行说理证明.这类题目具有较强的探索性,思维空间较大且灵活,突破了死记概念的传统模式.【例5】平行直线AB和CD与相交直线EF、GH相交,图中的同旁内角共有()对.A. 4对B. 8对C. 12对D. 16对【思考与解】我们可将原图分解为八个“三线八角”即“直线AB和CD 被直线EF所截”、“直线AB和CD 被直线GH所截”、“直线EF和GH被直线AB所截”、“直线EF和GH被直线CD所截”、“直线AB和EF被直线GH所截”、“直线EF和CD 被直线GH所截”、“直线AB和GH被直线EF所截”、“直线GH和CD 被直线EF所截”.每一个“三线八角”都有两对同旁内角,故原图中共有16对,因此选择D.【小结】解这类问题,关键是如何用图形分解法把图形分成若干个“三线八角”.【例题】(1)如图1,在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度数是°.(2)已知:如图2,直线AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE 的平分线相交于点P.你能说明∠P=90°吗?(3)如图3,已知AB∥CD,∠C=75°,∠A=25°,则∠E的度数为 .【思考与解】(1)解法一:由题意我们知BD∥AC.所以∠ABD+∠BAC=180°.所以∠CBD=180°-50°-90°=40°.解法二:由题意我们知∠C=90°-∠A=90°-50°=40°.又因为BD∥AC. 所以∠CBD=∠C=40°.(2)因为AB∥CD.所以根据平行线的性质得:∠BEF+∠EFD=180°.又因为EP、FP分别平分∠BEF和∠EFD.所以∠P=180°-(∠1+∠2)= 180°-90°=90°.(3)因为AB∥CD. 所以∠BFE=∠C=75°.所以∠AFE=180°-∠BFE= 180°-75°=105°.所以∠E=180°-∠A-∠AFE=180°-25°-105°=50°反思:我们在做这类题的时候,一定要想是不是这样做最简单,是不是只有这一种解法?【例6】如图1,如果∠B=∠1=∠2=50°,那么∠D= .【思考与分析】我们通过观察图形,由∠B=∠1=∠2=50°可得AB∥DC、AD∥BC,再利用其性质同旁内角互补可得∠D的度数.解:因为∠B=∠1,所以AB∥DC,所以∠B+∠BCD=180°,∠BCD=130°.又因为∠B=∠2,所以AD∥BC,所以∠BCD+∠D=180°,∠D=50°.反思:我们解题时用的是同旁内角互补.还可以利用∠D=∠1=∠B=50°.也可以利用∠D=∠2=∠B=50°.大家可以试一试.【例7】如图2,直线l1、l2分别与直线l3、l4相交,∠1与∠3互余,∠3的余角与∠2互补,∠4=125°,则∠3= .思考与解:因为∠1与∠3互余,∠3的余角与∠2互补,所以∠1+∠2=180°.所以l1∥l2.所以∠3=∠5=180°-∠4=55°.反思:我们难以理解的是为什么∠1+∠2=180°?我们可由题意列式∠1+∠3=90°,90°-∠3+∠2=180°.两个式子相加可得∠1+∠2=180°.在解决有关平行问题的时候,有时需要添加必要的辅助线,而添加平行线作为辅助线,更是解决此类问题好的帮手.下面举几例说明.【例8】如图1所示,直线a∥b,∠ACF=50°,∠ABE=28°,求∠A的大小.【思考与分析】要求∠A的大小,关键是确定辅助线的位置.于是我们会想到过点A作AD∥b,这样利用平行线的知识即可求解.解:过点A作AD∥b,则∠DAC=∠ACF=50°.又因为a∥b,所以AD∥a.所以∠DAB=∠ABE=28°.所以∠BAC=∠DAC-∠DAB=50°-28°=22°,即∠A的大小是22°.反思:在解题时我们做AD∥b,那么是不是必须要做辅助线呢?我们继续思考:∠A在△ABG中,∠ABE也在△ABG中且等于28°,那么只要求出∠AGB的度数,就可求∠A的度数.【例9】如图2,AB∥CD,EO与FO相交于点O,试猜想∠AEO、∠EOF、∠CFO之间的关系,并说明理由.【思考与分析】由于∠BEO、∠EOF、∠DFO三个角的位置较散,设法通过辅助线使之相对集中,我们可以考虑AB∥CD,可以过点O作MN∥AB,这样即可找到三个角之间的关系了.由此猜想∠AEO+∠CFO+∠EOF=360°.解:过点O作MN∥AB.因为AB∥CD,所以CD∥MN.所以∠AEO+∠EOM=180°,∠MOF+∠CFO=180°.所以∠AEO+∠CFO+∠EOF=∠AEO+∠EOM+∠MOF+∠CFO=180°+180°=360°.反思:我们解这道题是用的两组同旁内角之和.其实我们还可以连结EF,正好把这三个角分成一组同旁内角和一个三角形的三个内角.由同旁内角和三角形内角和可得出同样的结论.【例10】如图3,已知AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D.试探索β与2α的数量关系,并说明你的理由.【思考与分析】我们由已知条件AB∥ED可知α=∠A+∠E=180°,于是只需知道β=∠B+∠C+∠D的大小即可探索出β与2α的数量关系.此时可以过点C作CF∥AB,从而求出β=∠B+∠C+∠D=360°,即有β=2α.解:猜想β=2α.理由是:过C作CF∥AB,因为 AB∥ED,所以∠α=∠A+∠E=180°.又因为AB∥ED,所以CF∥DE,即(∠B+∠1)+(∠2+∠D)=360°.故β=2α.【小结】这道题的思路与我们做的上题是相同的,也可以连结BD来解.第五节、竞赛数学在竞赛试题中,平行和垂直是做为基础知识应用在一些综合性的题目之中,单独出题的情况很少,但当平行和垂直的性质与实际情况结合时,往往也会被做为新题型来考查.【例1】请说明在同一平面内三条直线的位置关系及交点个数.【思考与分析】本题有多种分类,如以两条直线的位置关系分类,再考虑第三条直线的位置;又如以三条直线交点的个数分类等.下面我们就第二种分类加以说明.解:(1)如图1,三条直线互相平行,此时交点个数为0;(2)如图2,三条直线相交于同一点,此时交点个数为1;(3)如图3,三条直线两两相交且不交于同一点,此时交点个数为3;(4)如图4,其中两条直线平行,都与第三条直线相交,此时交点个数为2.综上所述,平面内三条直线的交点个数为0或1或2或3个.(如果按第一种情况进行分类研究,又该如何呢?请大家思考一下.)反思:求解中(2)、(3)两种情况称为三条直线两两相交.当题目中图形不全或不确定时,我们一定要注意分类.【例2】(1)请你在平面上画出6条直线(没有三条共点),使得它们中的每条直线都恰与另3条直线相交,并简单说明画法.(2)能否在平面上画出7条直线(任意3条都不共点),使得它们中的每条直线都恰与另3条直线相交,如果能,请画出一例,如果不能,请简述理由.【思考与分析】“6条直线相交且任意3条都不共点”,要解决这个问题,我们可以首先画出两条相交直线,这样可以发现若不出现3条直线共点可以出现平行线.对于(2)中所求,可以根据(1)得到的结论先对其进行推理,不要盲目的画图.解:(1)在平面上任取一点A,过A作两直线m1与n1.在n1 上取两点B、C,在m1上取两点D、G.过B作m2∥m1,过C作m3∥m1,过D作n2∥n1,过G作n3∥n1,这时m2、m3、n2、n3交得E、F、H、I四点,如图所示.由于彼此平行的直线不相交,所以,图中每条直线都恰与另3条直线相交.(2)在平面上不能画出没有3线共点的7条直线,使得其中每条直线都恰与另外3条直线相交.理由如下:假设平面上可以画出7条直线,其中每一条都恰与其它3条相交,因两直线相交只有一个交点,又因没有3条直线共点,所以每条直线上恰有与另3条直线交得的3个不同的交点.根据直线去数这些交点,共有3×7=21个交点,但每个交点分属两条直线,被重复计数一次,所以这7条直线交点总数为因为这与交点个数应为整数矛盾.所以,满足题设条件的7条直线是画不出来的.反思:本题在说明理由时应用了假设法.利用假设推导出结果是否与题中条件冲突.这与我们以后要学的反证法相类似.【例3】平行直线AB和CD与相交直线EF、GH相交,图中的同旁内角共有()对.A. 4对B. 8对C. 12对D. 16对【思考与解】我们可将原图分解为八个“三线八角”即“直线AB和CD 被直线EF所截”、“直线AB和CD 被直线GH所截”、“直线EF和GH被直线AB所截”、“直线EF和GH被直线CD所截”、“直线AB和EF被直线GH所截”、“直线EF和CD 被直线GH所截”、“直线AB和GH被直线EF所截”、“直线GH和CD 被直线EF所截”.每一个“三线八角”都有两对同旁内角,故原图中共有16对,因此选择D.【小结】解这类问题,关键是如何用图形分解法把图形分成若干个“三线八角”.【例4】有10条公路(假设公路是笔直的,并且可以无限延伸),无任何三条公路交于同一个岔口,现有31名交警,刚好满足每个岔口有且只有一名交警执勤,请你画出公路示意图.【思考与解】我们可以把公路想象成直线,岔口想象成交点,由警察的人数及题意可知,10条直线刚好有31个交点.根据前面所学知识,平面上的10条直线,若两两相交,最多出现45个交点,现在只要求出现31个交点,就要减去14个交点,这种情况下,通常采取两种办法:(1)多条直线共点;(2)出现平行线.根据题意,方法(1)不能实现,所以想到使用平行线.在某一方向上有5 条直线互相平行,则减少10个交点,若6条直线平行,则可减少15个交点,所以这个方向上最多可取5条平行线,这时还有4个点要去掉,换一个方向取3条平行线,即可再减少3个交点,这时还剩下2条直线与1个要减去的点,只须让其在第三个方向上互相平行即可,如图所示:【小结】本题考查我们对知识的综合应用能力,在做题时,要牢牢把握平行线的性质,与图形结合,从简单的图形推理找出问题的入手点.【例5】把正方形ABCD边AD平移得到EF,作出平移后的正方形能有几种作法?【思考与分析】据题意,平移是指正方形整体平移,只有一个.我们根据以前学过的作图方法和本周学的平移作图,作法有如下几个:作法1:过E作EF的垂线,截取EG=EF,过G点作EF的平行线,截取GH=EF(注意截取方向),连接FH就得到平移后的正方形.如图(1).作法2:过E、F分别作EF的垂线,截取EG=EF,FH=EF(注意截取方向),连接GH,就得到平移后的正方形.如图(1).作法3:过F作EF的垂线,截取FH=EF,过H点作EF的平行线,截取GH=EF(注意截取方向),连接EG就得到平移后的正方形.如图(1).作法4:过E作AC的平行线,过F作BD的平行线,截取EH=AC,FG=BD(注意截取方向).连接EG,GH,HF,就得到平移后的正方形.如图(2).作法5:连接EA,FD,过B点作EA的平行线,过C作FD的平行线.截取BG=EA,CH=FD (注意截取方向).如图(3).连接EG,GH,HF,就得到平移后的正方形.【小结】平移变换不改变图形的形状、大小和方向.连结对应点的线段平行且相等.要描述一个平移变换,必须指出平移的方向和移动的距离.【例6】电脑游戏上有一种俄罗斯方块的游戏,游戏规则:在所给各种各样的方块中,通过平移、旋转的方式,罗列方块使之排满每一横行,每排满一行,便消去一行,得100分,依次类推(本题特殊规定,只准平移),小方块在屏幕顶端居中出现(奇数列时居中偏左).现在电脑屏幕上显示(如图所示).(1)若按规定,想得分,甲方块需要怎样平移,才可能直接得分或为以后打下得分基础?乙方块呢?(2)若你把甲方块放到左侧,发现屏幕已暗示出丙方块为形状,在这种情况下,丙方块只需如何移动,便可得多少分?(注:屏幕上一共有10行10列)【思考与分析】第(1)题观察甲方块与底部方块的特点,我们可得出平移方式.第(2)题将丙方块通过平移嵌入空隙之中,即可得分.解:(1)甲方块可左移3个单位,下移7个单位放到屏幕左侧;乙方块需向右平移3个单位,下移8个单位,放到屏幕右侧.(可用其他平移方式)(2)丙方块下移7个单位,便可排满2行,得200分.【小结】解本题的关键是将各个方块通过平移嵌成一个长方形,需根据方块和现有图形选择合理的平移方式.【例7】如图1,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD 之间的关系又是如何?【思考与分析】若P点在C、D之间运动时,我们只要过点P作出l1的平行线即可知道∠APB=∠PAC+∠PBD;若点P在C、D两点的外侧运动时(P点与点C、D不重合),则可以分为如图2和如图3两种情形,同样分别过点P作出l1或l2的平行线,即有∠APB=∠PBD -∠PAC或∠APB=∠PAC-∠PBD.解:若P点在C、D之间运动时,则有∠APB=∠PAC+∠PBD.理由是:如图1,过点P作PE∥l1,则∠APE=∠PAC,又因为l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,所以∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.若点P在C、D两点的外侧运动时(P点与点C、D不重合),则有两种情形:(1)如图2,有结论:∠APB=∠PBD-∠PAC.理由是:过点P作PE∥l1,则∠APE=∠PAC,又因为l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,所以∠APB=∠BPE-∠APE,即∠APB=∠PBD-∠PAC.(2)如图3,有结论:∠APB=∠PAC-∠PBD.理由是:过点P作PE∥l2,则∠BPE=∠PBD,又因为l1∥l2,所以PE∥l1,所以∠APE=∠PAC,所以∠APB=∠APE-∠BPE,即∠APB =∠PAC-∠PBD.【小结】我们做这类题的时候可以发现:点的移动带动角的位置变化,角的位置变化决定了角之间的关系.因此我们可以利用分类思想来分析题意,解决多种情况的讨论.第六节、本章训练基础训练题一、选择题(每题5分,共35分)1.两条平行线被第三条直线所截,那么一组同位角的平分线的关系是().A.互相垂直B.互相平行C.相交但不垂直D.不能确定2.下列说法正确的是().A.相等的角是对顶角B.两直线平行,同位角相等C.同旁内角互补D.两直线平行,同位角互补3.如图1所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,那么∠BDC等于().A.78°B.90°C.88°D.92°4.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是().A.①B.②和③C.④D.①和④5.船向北偏东50°方向航行到某地后,依原航线返回,船返回时方向应该是()A.南偏西40°B.北偏西50°C.北偏西40°D.南偏西50°6.线段AB是由线段CD经过平移得到的,那么线段AC与BD的关系为().A.平行B.相交C.相等D.平行且相等7.如果两个角有一条边在同一条直线上,而另一条边互相平行,那么这两个角的关系是().A.相等B.互补C.相等或互补D.没有关系二、填空题(每题5分,共35分)8. a∥b,a∥c则_______∥_______,根据______.9.经过平移后的图形与原来图形的______.和______.分别相等,图形的______.和______.没有发生改变.10.在同一平面上,如果AB⊥EF,AC⊥EF,那么点C与直线AB的位置关系是______.11.把△ABC向右平移4cm得△A1B1C1,再把△A1B1C1向下平移3cm得△A2B2C2,若把△A2B2C2看成是由△ABC经一次平移得到的,请量一量,其平移的距离是______.cm.12.船的航向从正北方向依逆时针方向驶向西南方向,它转了_____度.13.已知梯形ABCD,AD∥BC,BC=6,AD=3,AB=4,CD=2,AB平移后到DE处,则△CDE的周长是_____14.如果△ABC经过平移后得到△DEF,若∠A=41°,∠C=32°,EF=3cm,则∠E=______,BC= ______ cm三、解答题(每题10分,共30分)15.如图,AC⊥AB,∠1=30°,∠B=60°,(1)你能确定AD与BC平行吗?(2)能确定AB平行于CD吗?16.如图,AD平分∠EAC,AD∥BC,你能确定∠B与∠C的数量关系吗?17.如图所示,AB∥CD,AD∥BC,∠A的2倍与∠C的3倍互补,求∠A和∠D的度数.答案一、 1.B 2.B 3.C 4.A 5.D 6.D 7.C二、 8. b,c,平行于同一条直线的两条直线平行9. 对应角、对应边,形状、大小10. 在直线AB上11. 512. 13513. 914. 107°,3三、15.【思考与分析】通过观察图形并结合题中条件我们可以得到:∠ACB=180°-∠BAC -∠ABC=180°-90°-60°=30°.由此可得AD∥BC.但是由题中条件我们求不出∠D或者∠ACD,因此不能判定AB与CD是否平行.解:(1)因为∠BAC=90°,∠B=60°,且∠BAC+∠B+∠ACB=180°,所以∠ACB=180°-∠BAC-∠B=180°-90°-60°=30°.所以AD∥BC(内错角相等,两直线平行).(2)不能确定.因为求不出∠D或者∠ACD,找不到两直线平行的判定条件,所以AB与CD不一定平行.16.【解题思路】我们通过观察图形并结合题中条件可知,要想知道∠B与∠C的数量关系,就得利用AD∥BC,从而得到∠B=∠1,∠C=∠2.只要∠1=∠2,那么∠B=∠C.而题中给出了AD平分∠EAC,正好得到∠1=∠2!解:因为AD∥BC,所以∠B=∠1(两直线平行,同位角相等).所以∠C=∠2(两直线平行,内错角相等).又因为AD平分∠EAC,所以∠1=∠2.所以∠B=∠C.17.【思考与分析】经过仔细分析我们可知,题目要求∠A和∠D的度数,而条件只给出了∠A和∠C的关系.因此,分清∠A、∠C和∠D三者之间的关系是解题的关键.解:因为AB∥CD,所以∠A+∠D=180°.所以∠A=180°-∠D.因为AD∥BC,所以∠C+∠D=180°.所以∠C=180°-∠D.所以∠A=∠C.再由2∠A+3∠C=180°解得∠A=∠C=36°.所以∠D=144°.提高训练题一、填空题1. 直线l1,l2在同一平面内不相交,则它们的位置关系是.2. 若直线l1// l2,l2// l3,则 ____ // ____,其理由是.3. 若直线l1//l2,一条射线与l1有交点,那么这条射线与l2的位置关系是___________ .二、选择题1. 下列哪种情况,直线l1和l2不一定是平行线()A. l1和l2是不相交的两条直线B. l1和l2都平行于直线l3C. 在同一平面内l1和l2没有一个公共点D. 在同一平面内,l1⊥l3,l2⊥l32. 若∠1与∠2的关系为内错角,∠1=40°,则∠2等于()A. 40°B. 140°C. 40°或140°D. 不确定3. 下列说法正确的是()A.若两个角相等,则这两个角是对顶角B.若两个角是对顶角,则这两个角是相等C.若两个角不是对顶角,则这两个角不相等D.所有的对顶角相等三、解答题1. 如图,已知三角形ABC,分别过A,B,C三点作它们的对边BC,CA,AB的平行线.。
人教版七年级下数学《命题、定理、证明》相交线与平行线PPT课件
![人教版七年级下数学《命题、定理、证明》相交线与平行线PPT课件](https://img.taocdn.com/s3/m/7a48783a6d175f0e7cd184254b35eefdc8d315a0.png)
作用
线段的基本事实:两点间线段最短.
平行线的判定-基本事实:同位角相等,两直线平行.
平行线的基本事实:经过直线外的一点有且仅有 一条直线与已知直线平行.
定理:有些真命题它们的正确性是经过推理证实的, 也可以作为继续推理的依据.
作用 学过的定理: (1)补角的性质:同角或等角的补角相等.
(2)余角的性质:同角或等角的余角相等.
3.下列说法正确的是__①__④__⑤___ ① -3是9的平方根; ②25的平方根是5; ③ -36的平方根是-6; ④平方根等于0的数是0; ⑤64的算术平方根是8.
4.下列说法不正确的是___B___ A.0的平方根是0 B. 22 的平方根是2 C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
第五章 相交线与平行线
命题、定理、证明
知识回顾
前面, 我们学过一些对某一件事情作出判断的语句, 例如:
(1)如果两条直线都与第三条直线平行, 那么这两条直线 也互相平行;
(2)两条平行线被第三条直线所截, 同旁内角互补;
(3)对顶角相等;
(4)等式两边加同一个数, 结果仍是等式.
你能说明其中的条件 和结论分别是什么吗?
情景导入
操场上,裁判员向老师汇报训练成绩.
小刚的百米成 绩有进步,已 达到9秒9.
好!继续努 力,争取跑
进9秒.
获取新知 知识点一:命题的概念、形式和分类
能对一件事情作出判断的语句, 叫做命题.
备注: 1.只要能作出判断,无论判断的结果是对还是错 如对顶角相等(对);互补的角是邻补角(错); 2.常见的不能作出判断的情况 表示动作,或疑问句,或类似感叹句,或表示选择
没有,因为一个数的平方不可能是负数.
最新人教版初中数学七年级数学下册第一单元《相交线与平行线》测试题(有答案解析)(1)
![最新人教版初中数学七年级数学下册第一单元《相交线与平行线》测试题(有答案解析)(1)](https://img.taocdn.com/s3/m/e887f1e90912a216157929bf.png)
一、选择题1.在下列命题中,为真命题的是( )A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相平行 2.下列命题中是真命题的有( )①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行;④图形B 由图形A 平移得到,则图形B 与图形A 中的对应点所连线段平行(或在同一条直线上)且相等;A .1个B .2个C .3个D .4个 3.下列命题中,假命题是( ) A .对顶角相等B .同角的余角相等C .面积相等的两个三角形全等D .平行于同一条直线的两直线平行 4.如图,直线,a b 被直线c 所截,下列条件中不能判定a//b 的是( )A .25∠=∠B .45∠=∠C .35180∠+∠=︒D .12180∠+∠=︒ 5.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( )A .1个B .2个C .3个D .4个 6.下列命题中,属于真命题的是( ) A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b7.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个8.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠9.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A .56°B .36°C .44°D .46° 10.把一张有一组对边平行的纸条,按如图所示的方式析叠,若∠EFB =35°,则下列结论错误的是( )A .∠C 'EF =35°B .∠AEC =120° C .∠BGE =70°D .∠BFD =110° 11.如图,下列条件中,不能判断AD ∥BC 的是( )A .∠FBC =∠DABB .∠ADC +∠BCD =180° C .∠BAC =∠ACED .∠DAC =∠BCA 12.如图,A 、P 是直线m 上的任意两个点,B 、C 是直线n 上的两个定点,且直线m ∥n .则下列说法正确的是( )A .AC=BPB .△ABC 的周长等于△BCP 的周长 C .△ABC 的面积等于△ABP 的面积D .△ABC 的面积等于△PBC 的面积二、填空题13.如图,64BCA ∠=︒,CE 平分ACB ∠,CD 平分ECB ∠,//DF BC 交CE 于点F ,则CDF ∠的度数为_________°.14.阅读下面材料:在数学课上,老师提出如下问题:如图,需要在A 、B 两地和公路l 之间修地下管道.请你设计一种最节省材料的修路方案:小丽设计的方案如下:如图,(1)连接AB ;(2)过点A 画线段AC ⊥直线l 于点C ,所以线段BA 和线段AC 即为所求.老师说:“小丽的画法正确”请回答:小丽的画图依据是___.15.如图,斜边长12cm ,∠A=30°的直角三角尺ABC 绕点C 顺时针方向旋转90°至''A B C 的位置,再沿CB 向左平移使点B'落在原三角尺ABC 的斜边AB 上,则三角尺向左平移的距离为_____.(结果保留根号)16.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移2个单位后,得到A B C ''',连接A C ',则A B C ''的周长为________.17.把命题“两直线平行,同位角相等”改写成“若…,则…”__.18.过直线AB 上一点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC =50°时,则∠BOD 的度数__.19.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB =10,DO =4,平移距离为6,则阴影部分面积为__20.如图,∠AOB =60°,在∠AOB 的内部有一点P ,以P 为顶点,作∠CPD ,使∠CPD 的两边与∠AOB 的两边分别平行,∠CPD 的度数为_______度.三、解答题21.如图,直线AB ,CD 相交于点O ,OA 平分EOC ∠.(1)若70EOC ∠=︒,求BOD ∠的度数;(2)若:4:5∠∠=EOC EOD ,求BOC ∠的度数.22.作图题:如图,A 为射线OB 外一点.(1)连接OA ;(2)过点A 画出射线OB 的垂线AC ,垂足为点C (可以使用各种数学工具) (3)在线段AC 的延长线上取点D ,使得CD AC =;(4)画出射线OD ;(5)请直接写出上述所得图形中直角有 个.23.填空(请补全下列证明过程及括号内的依据)已知:如图,12,B C ∠=∠∠=∠.求证:180B BFC ︒∠+∠=证明:∵12∠=∠(已知),且1CGD ∠=∠(__________________________),∴2CGD ∠=∠(_______________________________),∴//CE BF (____________________________),∴∠___________C =∠(_________________________),又B C ∠=∠(已知),∴∠_________________B =∠(等量代换),∴//AB CD (_________________), ∴180B BFC ︒∠+∠=(_________________________).24.如图,已知AC BC ⊥,CD AB ⊥,DE AC ⊥,1∠与2∠互补,判断HF 与AB 是否垂直,并说明理由(填空).解:垂直,理由如下:∵DE AC ⊥,AC BC ⊥,∴90AED ACB ==︒∠∠(垂直的意义)∴//DE BC (_____)∴1DCB ∠=∠(_____)∵1∠与2∠互补(已知)∴DCB ∠与2∠互补∴_________//________(_____)∴BFH CDB ∠=∠(_____)∵CD AB ⊥∴90CDB ∠=︒∴90HFB ︒∠=∴HF AB ⊥.25.如图,已知:∠DGA=∠FHC ,∠A=∠F .求证:DF ∥AC .(注:证明时要求写出每一步的依据)26.直线AB 、CD 相交于点O ,OE 平分AOD ∠,90FOC ,50BOF ∠=︒,求AOC ∠与AOE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、平行于同一条直线的两条直线互相平行,此项是真命题;C 、两直线平行,同旁内角互补,此项是假命题;D、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.2.B解析:B【分析】根据补角和邻补角的定义可判断①,根据平行公理可判断②,根据平行线的性质和判定可判断③,根据平移的性质可判断④,进而可得答案.【详解】解:两个角的和等于平角时,这两个角互为补角,故命题①是假命题;过直线外一点有且只有一条直线与已知直线平行,故命题②是假命题;两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行,故命题③是真命题;图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等,故命题④是真命题.综上,真命题有2个.故选:B.【点睛】本题考查了真假命题、平行线的判定和性质以及平移的性质等知识,属于基础题型,熟练掌握上述知识是解题的关键.3.C解析:C【分析】根据对顶角的性质对A进行判断;根据余角的性质对B进行判断;根据三角形全等的判断对C进行判断;根据平行线的传递性对D进行判断.【详解】解:A、对顶角相等,所以A选项为真命题;B、同角的余角相等,所以B选项为真命题;C、面积相等的两个三角形不一定全等,所以C选项为假命题;D、平行于同一条直线的两条直线平行,所以D选项为真命题.故选:C.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4.D解析:D【分析】根据平行线的判定定理逐项判断即可.【详解】解:A. 由2∠和5∠是同位角,则25∠=∠ ,可得a//b ,故该选项不符合题意;B. 由4∠和5∠是内错角,则45∠=∠,可得a//b ,故该选项不符合题意;C. 由∠3和∠1相等,35180∠+∠=︒,可得a//b ,故该选项不符合题意;D. 由∠1和∠2是邻补角,则12180∠+∠=︒不能判定a//b ,故该选项满足题意. 故答案为D .【点睛】本题主要考查了平行线的判定,掌握同位角相等,两直线平行;同旁内角互补,两直线平行是解答本题的关键.5.B解析:B【分析】根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形; ③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选B .【点睛】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.6.C解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.7.B解析:B【分析】根据同位角的概念对每个图形一一判断,选出正确答案即可.【详解】图1:1∠与2∠是同位角;图2:1∠与2∠不是同位角;图3:1∠与2∠不是同位角;图4:1∠与2∠是同位角;只有图1、图4中1∠与2∠是同位角.故选:B .【点睛】本题主要考查同位角的概念,熟记同位角的概念是解题关键.8.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A 、正确,符合不等式的性质;B 、正确,符合不等式的性质.C 、正确,符合不等式的性质;D 、错误,例如a=2,b=0;故选D .【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.9.D解析:D【分析】依据l 1∥l 2,即可得到∠1=∠3=44°,再根据l 3⊥l 4,可得∠2=90°-44°=46°.【详解】解:如图,∵l1∥l2,∴∠1=∠3=44°,又∵l3⊥l4,∴∠2=90°-44°=46°,故选:D.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.10.B解析:B【分析】根据平行线的性质即可求解.【详解】A.∵AE∥BF,∴∠C'EF=∠EFB=35°(两直线平行,内错角相等),故A选项不符合题意;B.∵纸条按如图所示的方式析叠,∴∠FEG=∠C'EF=35°,∴∠AEC=180°﹣∠FEG﹣∠C'EF=180°﹣35°﹣35°=110°,故B选项符合题意;C.∵∠BGE=∠FEG+∠EFB=35°+35°=70°,故C选项不符合题意;D.∵AE∥BF,∴∠EGF=∠AEC=110°(两直线平行,内错角相等),∵EC∥FD,∴∠BFD=∠EGF=110°(两直线平行,内错角相等),故D选项不符合题意;故选:B.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.11.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】解:A.∵∠FBC=∠DAB,∴AD∥BC,故A正确,本选项不符合题意;B.∵∠ADC+∠BCD=180°,∴AD∥BC,故B正确,本选项不符合题意;C.∵∠BAC=∠ACE,∴AB∥CD,故C不正确,本选项符合题意;D.∵∠DAC=∠BCA,∴AD∥BC,故D正确,本选项不符合题意;故选:C.【点睛】本题考查平行线的判定,解题的关键是准确识图,运用判定得出正确的平行关系.12.D解析:D【分析】根据平行线之间的距离及三角形的面积即可得出答案.【详解】解:∵A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n,根据平行线之间的距离相等可得:△ABC与△PBC是同底等高的三角形,故△ABC的面积等于△PBC的面积.故选D.【点睛】本题考查平行线之间的距离;三角形的面积.二、填空题13.16【分析】根据角平分线的定义可求∠BCF的度数再根据角平分线的定义可求∠BCD和∠DCF的度数再根据平行线的性质可求∠CDF的度数【详解】解:∵∠BCA=64°CE平分∠ACB∴∠BCF=32°∵解析:16【分析】根据角平分线的定义可求∠BCF的度数,再根据角平分线的定义可求∠BCD和∠DCF的度数,再根据平行线的性质可求∠CDF的度数.【详解】解:∵∠BCA=64°,CE平分∠ACB,∴∠BCF=32°,∵CD平分∠ECB,∴∠BCD=∠DCF=16°,∵DF∥BC,∴∠CDF=∠BCD=16°,故答案为:16.【点睛】本题考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.14.两点之间线段最短;直线外一点到这条直线上所有点连结的线段中垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解【详解】由垂线段最短可知点A 到直线l 的最短距离为AC 由两点之间线段最短可 解析:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解.【详解】由垂线段最短可知,点A 到直线l 的最短距离为AC ,由两点之间线段最短可知,点B 到点A 的最短距离为AB .故答案为:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短);【点睛】本题考察线段的概念和垂线的性质,熟练掌握其概念和性质是解题的关键.15.cm 【分析】作B′D//BC 与AB 交于点D 故三角板向左平移的距离为B′D 的长利用直角三角形的性质求出BC=B′C=6cmAC=cm 进而根据相似三角形对应线段成比例的性质即可求解【详解】如图作B′D/解析:(6-cm【分析】作B′D//BC 与AB 交于点D ,故三角板向左平移的距离为B′D 的长,利用直角三角形的性质求出BC=B′C=6cm ,AC=,进而根据相似三角形对应线段成比例的性质即可求解.【详解】如图,作B′D//BC 与AB 交于点D ,故三角板向左平移的距离为B′D 的长.∵AB=12cm ,∠A=30°,∴BC=B′C=6cm ,AC=cm ,∵B′D//BC ,∴AC D BC B AB ='',即66(6BC C B A AB D ⨯=='-'=cm ,故三角板向左平移的距离为(6-cm .【点睛】本题考查直角三角形的性质、相似三角形的性质,旋转和平移的性质,解题的关键是作辅助线构造相似三角形.16.12【分析】根据平移的性质得则可计算则可判断为等边三角形继而可求得的周长【详解】平移两个单位得到的又是等边三角形的周长为故答案为:12【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动会 解析:12【分析】根据平移的性质得2BB '=,4A B AB ''==,=60A B C B ∠''∠=︒,则可计算624B C BC BB '=-'=-=,则4A B B C ''='=,可判断A B C ''△为等边三角形,继而可求得A B C ''△的周长.【详解】 ABC 平移两个单位得到的A B C ''',2BB ∴'=,AB A B ='',4AB =,6BC =,4A B AB ∴''==,624B C BC BB '=-'=-=,4A B B C ∴''='=,又60B ∠=︒,60A B C ∴∠''=︒,A B C ∴''是等边三角形,A B C ∴''的周长为4312⨯=.故答案为:12.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.17.若两直线平行则同位角相等【分析】命题写成如果…那么…的形式如果后面接的部分是题设那么后面解的部分是结论【详解】解:命题两直线平行同位角相等可以改写成若两直线平行则同位角相等故答案为:若两直线平行则同 解析:若两直线平行,则同位角相等【分析】命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论.【详解】解:命题“两直线平行,同位角相等”可以改写成“若两直线平行,则同位角相等”,故答案为:“若两直线平行,则同位角相等”.【点睛】本题考查了命题的概念,掌握命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论是解题的关键.18.40º或140º【分析】根据题意可知射线OCOD可能在直线AB的同侧也可能在直线AB的异侧分两种情况进行讨论即可【详解】解:由OC⊥OD可得∠DOC=90°如图1当∠AOC=50°时∠BOD=180解析:40º或140º【分析】根据题意可知,射线OC、OD可能在直线AB的同侧,也可能在直线AB的异侧,分两种情况进行讨论即可.【详解】解:由OC⊥OD,可得∠DOC=90°,如图1,当∠AOC=50°时,∠BOD=180°-50°-90°=40°;如图2,当∠AOC=50°时,∠AOD=90°-50°=40°,此时,∠BOD=180°-∠AOD=140°.故答案为40º或140º.【点睛】本题考查了垂线的定义及角的计算.解决问题的关键是根据题意画出图形,解题时注意分类讨论思想的运用.19.【分析】根据平移的性质得出BE=6DE=AB=10则OE=6则阴影部分面积=S 四边形ODFC=S梯形ABEO根据梯形的面积公式即可求解【详解】解:由平移的性质知BE=6DE=AB=10∴OE=DE﹣解析:【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S四边形ODFC=S梯形ABEO,根据梯形的面积公式即可求解.【详解】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S 四边形ODFC =S 梯形ABEO 12=(AB+OE )•BE 12=×(10+6)×6=48. 故答案为48.【点睛】 本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO 的面积相等是解题的关键.20.60或120【分析】根据题意分两种情况如图所示(见解析)再分别根据平行线的性质即可得【详解】由题意分以下两种情况:(1)如图1(两直线平行同位角相等)(两直线平行内错角相等);(2)如图2(两直线平解析:60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:(1)如图1,//,//PC OB PD OA ,60AOB PDB ∴=∠=∠︒(两直线平行,同位角相等),60PDB CPD ∴=∠=∠︒(两直线平行,内错角相等);(2)如图2,//,//PC OB PD OA ,60AOB PDB ∴=∠=∠︒(两直线平行,同位角相等),180120C P B P D D ∠=︒-∴∠=︒(两直线平行,同旁内角互补);综上,CPD ∠的度数为60︒或120︒,故答案为:60或120.【点睛】本题考查了平行线的性质,依据题意,正确分两种情况讨论是解题关键.三、解答题21.(1)35BOD ∠=︒;(2)140∠=︒BOC【分析】(1)首先根据角平分线的性质得出∠AOC ,然后利用对顶角相等即可得出∠BOD ; (2)首先设4EOC x ∠=,则5EOD x ∠=,然后根据平角的性质构建方程,得出∠EOC ,再利用角平分线的性质得出∠AOC ,最后由平角得旋转即可得出∠BOC 即可.【详解】()170,EOC OA ∠=︒平分EOC ∠, 1352AOC EOC ∴∠=∠=︒, 35BOD AOC ∴∠=∠=︒;()2设4EOC x ∠=,则5EOD x ∠=,,54180x x ∴+=︒,解得20x =︒,则80EOC ∠=︒,又OA 平分0E C ∠,40AOC ∴∠=︒,180********BOC AOC ∴∠=︒-∠=︒-︒=︒.【点睛】本题主要考查利用角平分线、对顶角以及平角的性质求解角的度数,熟练掌握,即可解题.22.(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)4【分析】(1)用线段连接即可;(2)用三角板的两条直角边画图即可;(3)用圆规截取即可;(4)根据射线的定义画图即可;(5)根据直角的定义结合图形解答即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;(4)如图所示;(5)直角有:∠ACO ,∠ACB ,∠DCO ,∠DCB 共4个,故答案为:4.【点睛】本题考查了线段、射线、垂线、直角的定义,以及作一条线段等于已知线段,熟练掌握各知识点是解答本题的关键.23.对顶角相等;等量代换;同位角相等,则两直线平行;BFD ;两直线平行,则同位角相等;BFD ;内错角相等,则两直线平行;两直线平行,则同旁内角互补【分析】结合题意,根据平行线的性质分析,即可得到答案.【详解】∵12∠=∠且1CGD ∠=∠(对顶角相等),∴2CGD ∠=∠(等量代换),∴//CE BF (同位角相等,则两直线平行),∴∠BFD C =∠(两直线平行,则同位角相等),又B C ∠=∠(已知),∴∠BFD B =∠(等量代换),∴//AB CD (内错角相等,则两直线平行),∴180B BFC ︒∠+∠=(两直线平行,则同旁内角互补).故答案为:对顶角相等;等量代换;同位角相等,则两直线平行;BFD ;两直线平行,则同位角相等;BFD ;内错角相等,则两直线平行;两直线平行,则同旁内角互补.【点睛】本题考查了平行线的知识;解题的关键是熟练掌握平行线、内错角、同旁内角、同位角、对顶角的性质,从而完成求解.24.同位角相等,两直线平行;两直线平行,内错角相等;CD ;FH ;同旁内角互补,两直线平行;两直线平行,同位角相等.【分析】根据平行线的性质及平行线的判定解答.【详解】解:垂直,理由如下:∵DE AC ⊥,AC BC ⊥,∴90AED ACB ==︒∠∠(垂直的意义)∴//DE BC (同位角相等,两直线平行)∴1DCB ∠=∠(两直线平行,内错角相等)∵1∠与2∠互补(已知)∴DCB ∠与2∠互补∴CD //FH (同旁内角互补,两直线平行)∴BFH CDB ∠=∠(两直线平行,同位角相等)∵CD AB ⊥∴90CDB ∠=︒∴90HFB ︒∠=∴HF AB ⊥.故答案为:同位角相等,两直线平行;两直线平行,内错角相等;CD ;FH ;同旁内角互补,两直线平行;两直线平行,同位角相等.【点睛】此题考查平行线的判定及性质定理,熟记定理并熟练应用解决问题是解题的关键. 25.见解析.【分析】先根据∠DGA=∠EGC 证出AE ∥BF ,再根据平行证明出∠F=∠FBC 即可求证出结论.【详解】证明:∵∠DGA=∠EGC(对顶角相等)又∵∠DGA=∠FHC (已知)∴∠EGC=∠FHC (等量代换)∴AE ∥BF (同位角相等,两直线平行)∴∠A=∠FBC (两直线平行,同位角相等)又∵∠A=∠F (已知)∴∠F=∠FBC (等量代换)∴DF ∥AC (内错角相等,两直线平行).【点睛】此题考查平行线的判定与性质:同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.26.40AOC ∠=︒;70AOE ∠=︒【分析】先利用平角定义与90FOC求出90FOD ∠=︒,再利用互余关系求=40BOD ∠︒,利用对顶角性质求40AOC ∠=︒,利用邻补角定义,求出140AOD ∠=︒,利用角平分线定义便可求出AOE ∠.【详解】 解:90FOC ∠=︒,∴1801809090FOD FOC ∠=︒-∠=︒-︒=︒, ∵50BOF ∠=︒,90-50=40BOD FOD BOF ∴∠=∠-∠=︒︒︒,AOC ∠与BOD ∠是对顶角,40AOC BOD ∴∠=∠=︒;COD ∠是一个平角,∴∠AOC+∠AOD=180º,∵40AOC ∠=︒,140AOD ∴∠=︒, OE 平分AOD ∠, 12AOE AOD ∴∠=∠, 70AOE ∴∠=︒.【点睛】本题考查的知识点是对顶角、邻补角、两角互余、角平分线的意义,解题关键是熟练利用角平分线定理.。
人教版七年级下册数学《平行线的判定》相交线与平行线说课研讨复习教学课件
![人教版七年级下册数学《平行线的判定》相交线与平行线说课研讨复习教学课件](https://img.taocdn.com/s3/m/05b4da4d640e52ea551810a6f524ccbff021ca16.png)
是为什么?
解题秘方:找出AB,CD 被
AE 所截形成的同旁内角,利
用两个角之间的数量关系来
说明这两条直线平行.
感悟新知
解:因为∠ 1= ∠ AOD(对顶角相等),∠ 1=70°, 所以∠ AOD=70°. 又因为∠ A=110°, 所以∠ A+ ∠ AOD=180°. 所以AB ∥ CD(同旁内角互补,两直线平行).
(3)直线l1,l2位置关系如何?
两直线平行
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
.P
A
B
1
相关概念:判定1:同位角相等,两直线平行
平行线判定1:
两条直线被第三条直线所截 ,
如果同位角相等, 课件 课件 课件 课件 课件
2. 表达方式:如图5.2-12, 因为∠ 1+ ∠ 2=180°(已 知), 所以a ∥ b(同旁内角互补, 两直线平行).
感悟新知
特别解读 利用同旁内角说明两直线平行时,同旁内角之
间的关系是互补,不是相等.
感悟新知
例 3 如图5.2-13, 直线AE,CD 相交于点O, 如果
∠ A=110°,∠ 1=70°,就可以说明AB ∥ CD,这
【例1】如图,∠1=∠2=35°,
则AB与CD的关系是___A__B_∥_C_D____,
理课 课 课件 件 件 由课课课件件件 是___同___位__角__相__等__,__两__直__线__平__行__.
人教版初中数学七年级下 相交线和平行线知识点总结
![人教版初中数学七年级下 相交线和平行线知识点总结](https://img.taocdn.com/s3/m/19bb432e66ec102de2bd960590c69ec3d4bbdb52.png)
人教版初中数学七年级下 相交线和平行线知识点总结本章使生了解在平面不重合的直相交平行的位置系,究了直相交的形成的角的学内两条线与两种关研两条线时特征,直互相垂直所具有的特性,直平行的期共存件和所有的特征以及有形平移的两条线两条线长条它关图变换性,利用平移一些美的案质设计优图.。
重点:垂和的性线它质,平行的判定方法和的性,平移和的性,线它质它质以及些的用这组织运.5.1相交线1、邻补角与对顶角直相交所成的四角中存在几不同系的角,的念及性如下表:两线个种关它们概质形图点顶的系边关大小系关角对顶∠1∠与2有公共点顶∠1的两边与∠2的互两边为反向延长线角相等对顶即∠1=∠2角邻补 ∠3∠与4有公共点顶∠3∠与4有一公共,另一条边互反向延边为长。
线∠3+∠4=180°注意点:⑴角是成出的,角是具有特殊位置系的角;对顶对现对顶关两个⑵如果∠α∠与β是角,那一定有∠对顶么α=∠β;反之如果∠α=∠β,那∠么α∠与β不一定是角对顶⑶如果∠α∠与β互角,一定有∠为邻补则α+∠β=180°;反之如果∠α+∠β=180°,∠则α∠与β不一定是角邻补。
⑶直相交形成的四角中,每一角的角有,而角只有一。
两线个个邻补两个对顶个2、垂线⑴定,直相交所成的四角中,有一角是直角,就直互相垂直,其中的一直叫做义当两条线个个时说这两条线条线另一直的垂,的交点叫做垂足。
条线线它们符言作:号语记 第1页共7页1243A BCDO如所示:图AB⊥CD ,垂足为O⑵垂性线质1:一点有且只有一直已知直垂直 过条线与线(平行公理相比与较记)⑶垂性线质2:接直外一点直上各点的所有段中,垂段最短。
:垂段最短。
连线与线线线简称线3、垂线的画法:⑴直上一点已知直的垂;⑵直外一点已知直的垂。
过线画线线过线画线线注意:①一段或射的垂,就是所在直的垂;②一点作段的垂,垂足可在段上,也画条线线线画它们线线过线线线可以在段的延上。
线长线法:⑴一靠:用三角尺一直角靠在已知直上,⑵二移:移三角尺使一点落在的另一直角上,⑶画条边线动它边边三:沿着直角,不要成人的印象是段的。
《同位角、内错角、同旁内角》相交线与平行线PPT精品课件
![《同位角、内错角、同旁内角》相交线与平行线PPT精品课件](https://img.taocdn.com/s3/m/b7dd21c1b1717fd5360cba1aa8114431b90d8ed5.png)
观察∠3和∠6:
87 5
6 43 12
探究新知 观察∠3和∠6:
各有一边在同一直线上.
87 5
6
6
3
43
12
探究新知 观察∠3和∠6:
反向.
87 5
6
6
3
43
12
探究新知 观察∠3和∠6:
另一边在截线的同旁, 方向相同.
87 5
6
6
3
43
12
探究新知
观察∠3和∠6:
一边都在截线上而且反向,
6
另一边在截线同旁的两个角.
3
同旁内角
在截线同旁,夹在两 被截直线内.
探究新知
变式图形:图中的∠1与∠2都是同旁内角.
1
1
2
2
12
12
图形特征:在形如“U”的图形中有同旁内角.
探究新知
考 点 1 同旁内角的识别
下列图形中,∠1和∠2是同旁内角的有( A )
1
1
1
21
2
2
2
A
B
C
D
巩固练习
如果把图看成是直线AB,EF被直线CD所截,那么∠1与
解:∠A与∠8是直线AB,DE被直线AC 所截形成的内错角.
∠A与∠5是直线AB,DE被直线AC所截
形成的同旁内角.
∠A与∠6是直线AB,DE被直线AC所截
形成的同位角.
D 21
3 B
4
A
58 67 E C
课堂检测
拓广探索题
如图所示,指出图中各对角的位置关系:
(1)∠C和∠D是 同旁内 角;
(2)∠B和∠GEF是 同位
(1)∠1和∠2, ∠1和∠3,∠1和∠4各是什么位
2020—2021学年人教版七年级数学下册第五章《相交线与平行线》解答题易错题训练(一)
![2020—2021学年人教版七年级数学下册第五章《相交线与平行线》解答题易错题训练(一)](https://img.taocdn.com/s3/m/cf9c4ffe3169a4517623a39c.png)
人教版七年级数学下册第五章《相交线与平行线》解答题易错题训练(一)1.如图,AB∥CD,∠FGB=154°,FG平分∠EFD,求∠AEF的度数.2.如图,直线AB、CD相交于点O,∠AOD=2∠BOD,OE平分∠BOD,OF平分∠COE.(1)求∠DOE的度数;(2)求∠AOF的度数.3.如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥OE,垂足为O,若∠AOC=40°.(1)求∠DOE的度数;(按要求填空)解:因为直线AB、CD相交于点O(已知),所以∠AOC=∠BOD().因为∠AOC=40°(已知),所以()=40°(等量代换).因为OE平分∠BOD(已知),所以∠DOE=∠BOD().因为()(已证),所以∠DOE=∠BOD=()°(等式性质).(2)OF平分∠BOC吗?为什么?4.(1)如图1,AB∥CD,∠A=33°,∠C=40°,求∠APC的度数.(提示:作PE∥AB).(2)如图2,AB∥DC,当点P在线段BD上运动时,∠BAP=∠α,∠DCP=∠β,求∠CP A与∠α、∠β之间的数量关系,并说明理由.(3)在(2)的条件下,如果点P在射线DM上运动,请你直接写出∠CP A与∠α、∠β之间的数量关系.5.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,EO⊥AB于点O,FO⊥CD 于点O.(1)图中除直角外,还有其他相等的角,请写出两对:①;②.(2)如果∠AOD=40°;那么:①根据,可得∠BOC=;②求∠POF的度数.6.如图,∠1=∠2,∠BAC+∠DGA=180°,∠BFE=100°,将求∠BDA的过程填写完整.解:∵∠BAC+∠DGA=180°(已知)∴AB∥()∴∠1=∠3()又∵∠1=∠2(已知)∴∠2=∠3()∴EF∥()∴∠BDA=∠BFE()∵∠BFE=100°(已知)∴∠BDA=.7.如图,直线PQ∥MN,点C是PQ、MN之间(不在直线PQ,MN上)的一个动点,(1)若∠1与∠2都是锐角,如图甲,请直接写出∠C与∠1,∠2之间的数量关系;(2)若把一块三角尺(∠A=30°,∠C=90°)按如图乙方式放置,点D,E,F是三角尺的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数;(3)将图乙中的三角尺进行适当转动,如图丙,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,求的值.8.如图,已知AB∥CD.(1)发现问题:若∠ABF=∠ABE,∠CDF=∠CDE,则∠F与∠E的等量关系为.(2)探究问题:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F与∠E的等量关系,并证明你的结论.(3)归纳问题:若∠ABF=∠ABE,∠CDF=∠CDE.直接写出∠F与∠E的等量关系.9.如图,已知:△ABC,∠A=52°,∠ACB=56°,点D,E分别在AB,AC上,连接DE,且∠ADE=72°,F是AD上一点,FE的延长线交BC的延长线于点G.(1)求证:DE∥BC;(2)求证:∠EGH>∠ADE.10.如图,直线AB与CD相交于点O,∠AOE=90°.(1)如图1,若OC平分∠AOE,求∠AOD的度数;(2)如图2,若∠BOC=4∠FOB,且OE平分∠FOC,求∠EOF的度数.11.如图,在下列解答中,填空或填写适当的理由:(1)∵AB∥CF,(已知)∴∠1=∠.()∠A+∠=180°()(2)∵∠A=∠,(已知)∴AC∥EF;()(3)∵∠2=∠,(已知)∴∥.()12.如图,已知点D、F、E、G都在△ABC的边上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.(请在下面的空格处填写理由或数学式)解:∵EF∥AD(已知),∴∠2=∠3().∵∠1=∠2(已知),∴∠1=().∴∥().∴∠AGD+=180°(两直线平行,同旁内角互补).∵∠BAC=70°(已知),∴∠AGD=(等式的性质).13.已知:如图∠B+∠BCD=180°,∠B=∠D,那么∠E=∠DFE成立吗?为什么?下面是小丽同学进行的推理,请你将小丽同学的推理过程补充完整.解:成立,理由如下:∵∠B+∠BCD=180°(已知),∴①(同旁内角互补,两直线平行).∴∠B=∠DCE(②).又∵∠B=∠D(已知),∴∠DCE=∠D(等量代换).∴AD∥BE(③).∴∠E=∠DFE(④).14.试说明:若两条平行直线被第三条直线所截,则同位角的角平分线互相平行.已知:如图,直线AB∥CD,直线EF分别交AB、CD于点O、P,OG平分,PH 平分∠OPD.试说明:OG∥PH.阅读上述材料,把图形及已知条件补充完整,然后用逻辑推理说明上述结论.15.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF,此时∠EOC的度数等于(直接写出答案即可);(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,求此时∠OCA 度数.16.如图1,E点在BC上,∠A=∠D,∠ACB+∠BED=180°.(1)求证:AB∥CD;(2)如图2,AB∥CD,BG平分∠ABE,与∠EDF的平分线交于H点,若∠DEB比∠DHB大60°,求∠DEB的度数.(3)保特(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说明理由.17.已知DB∥FG∥EC,A是FG上一点,∠ABD=60°,∠ACE=36°,AP平分∠BAC.求:(1)∠BAC的大小;(2)∠P AG的大小.18.如图,AM、CM分别平分∠BAC和∠ACD,且AM⊥CM于M.(1)求证:AB∥CD;(2)E是直线CD上一动点(不与C重合),AF平分∠EAC,写出∠MAF与∠AEC的数量关系,并说明理由.19.如图,直线BE和CF相交于点O,OA,OD是射线,且OA⊥EB,OD⊥CF,若∠BOC =55°,求∠AOD的度数.20.如图,直线AB、CD相交于点O,OD平分∠BOF,OE⊥CD于O,∠EOF=116°,求∠COA、∠EOB、∠AOF的度数.参考答案1.解:∵AB∥CD,∠FGB=154°,∴∠GFD=180°﹣∠FGB=180°﹣154°=26°,∵FG平分∠EFD,∴∠EFD=2∠GFD=2×26°=52°,∵AB∥CD,∴∠AEF=∠EFD=52°.2.解:(1)∵∠AOD+∠BOD=180°,∠AOD=2∠BOD,∴∠AOD=180°×=120°,∠BOD=180°×=60°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=30°,(2)∵∠COE+∠DOE=180°,∴∠COE=180°﹣∠DOE=190°﹣30°=150°,∵OF平分∠COE,∴∠COF=∠EOF=∠COE=×150°=75°,又∵∠AOC=∠BOD=60°,∴∠AOF=∠AOC+∠COF=60°+75°=135°.3.解:(1)因为直线AB、CD相交于点O(已知),所以∠AOC=∠BOD(对顶角相等).因为∠AOC=40°(已知),所以(∠BOD)=40°(等量代换).因为OE平分∠BOD(已知),所以∠DOE=∠BOD(角平分线的定义).因为(∠BOD=40°)(已证),所以∠DOE=∠BOD=(20)°(等式性质).故答案为:对顶角相等;∠BOD;角平分线定义;∠BOD=40°;20;(2)结论:OF平分∠BOC.理由:∵∠COD=180°,∠EOF=90°,∴∠COF+∠EOD=90°,∴∠COF=70°,∵∠BOF=90°﹣∠BOE=70°,∴∠COF=∠BOF,即OF平分∠COB.4.解:(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A=∠APE,∠C=∠CPE,∵∠A=33°,∠C=40°,∴∠APE=33°,∠CPE=40°,∴∠APC=∠APE+∠CPE=33°+40°=73°;(2)∠APC=∠α+∠β,理由是:如图2,过P作PE∥AB,交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴∠APE=∠P AB=∠α,∠CPE=∠PCD=∠β,∴∠APC=∠APE+∠CPE=∠α+∠β;(3)如图3,过P作PE∥AB,交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴∠P AB=∠APE=∠α,∠PCD=∠CPE=∠β,∵∠APC=∠APE﹣∠CPE,∴∠APC=∠α﹣∠β.5.解:(1)∵EO⊥AB,FO⊥CD,∴∠EOB=∠DOF=90°,∴∠EOC+∠BOC=90°,∠AOD+∠BOF=90°,∵∠BOC=∠AOD,∴∠COE=∠BOF;∵OP是∠BOC的平分线,∴∠COP=∠BOP,故答案为:∠COE=∠BOF,∠COP=∠BOP;(2)①∵∠AOD=40°,∴∠BOC=40°(对顶角相等),故答案为:对顶角相等;40°;②∵OP平分∠BOC,∴∠POC=∠BOC=×40°=20°,∴∠POF=90°﹣∠POC=90°﹣20°=70°.6.解:∵∠BAC+∠DGA=180°(已知)∴AB∥DG(同旁内角互补,两直线平行)∴∠1=∠3(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠2=∠3(等量代换)∴EF∥AD(同位角相等,两直线平行)∴∠BDA=∠BFE(两直线平行,同位角相等)∵∠BFE=100°(已知)∴∠BDA=100°.故答案为:DG,同旁内角互补,两直线平行;两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同位角相等;100°.7.解:(1)∠C=∠1+∠2.理由:如图,过C作CD∥PQ,∵PQ∥MN,∴PQ∥CD∥MN,∴∠1=∠ACD,∠2=∠BCD,∴∠ACB=∠ACD+∠BCD=∠1+∠2.(2)∵∠AEN=∠A=30°,∴∠MEC=30°,由(1)可得,∠C=∠MEC+∠PDC=90°,∴∠PDC=90°﹣∠MEC=60°,∴∠BDF=∠PDC=60°;(3)设∠CEG=∠CEM=x,则∠GEN=180°﹣2x,由(1)可得,∠C=∠CEM+∠CDP,∴∠CDP=90°﹣∠CEM=90°﹣x,∴∠BDF=90°﹣x,∴==2.8.解:(1)∠BED=2∠BFD.证明:连接FE并延长,∵∠BEG=∠BFE+∠EBF,∠DEG=∠DFE+∠EDF,∴∠BED=∠BFD+∠EBF+∠EDF,∵BF、DF分别平分∠ABE、∠CDE,∴∠ABE+∠CDE=2(∠EBF+∠EDF),∵∠BED=∠ABE+∠CDE,∴∠EBF+∠EDF=∠BED,∴∠BED=∠BFD+∠BED,∴∠BED=2∠BFD;(2)过点E、F分别作AB的平行线EG、FH,由平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=3∠BFD.(3)由(1)(2)可得∠BED=n∠BFD.9.(1)证明:∵∠A=52°,∠ACB=56°,∴∠B=180°﹣∠A﹣∠ACB=72°,∵∠ADE=72°,∴∠B=∠ADE,∴DE∥BC;(2)证明:∵∠EGH是△FBG的外角,∴∠EGH>∠B,又∵DE∥BC,∴∠B=∠ADE.∴∠EGH>∠ADE.10.解:(1)∵∠AOE=90°,OC平分∠AOE,∴∠AOC=45°,∴∠AOD=180°﹣∠AOC=135°;(2)设∠BOF=α,则∠BOC=4α,∠COF=3α,∵OE平分∠FOC,∴∠EOF=1.5α,∵∠BOE=90°,∴1.5α+α=90°,∴α=36°,∴∠EOF=54°.11.解:(1)∵AB∥CF,(已知)∴∠1=∠F,(两直线平行,内错角相等)∠A+∠ACF=180°.(两直线平行,同旁内角互补)故答案为:F,;两直线平行,内错角相等;ACF;两直线平行,同旁内角互补;(2)∵∠A=∠1,(已知)∴AC∥EF;(同位角相等,两直线平行)故答案为:1;同位角相等,两直线平行;(3)∵∠2=∠ACB,(已知)∴AC∥EF,(内错角相等,两直线平行)故答案为:ACB;AC,EF;内错角相等,两直线平行.12.解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠1=∠3(等量代换).∴DG∥AB(内错角相等,两直线平行).∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补).∵∠BAC=70°(已知),∴∠AGD=110°(等式的性质).故答案为:两直线平行,同位角相等;∠3;等量代换;DG∥AB;内错角相等,两直线平行;∠BAC;110°.13.解:成立,理由如下:∵∠B+∠BCD=180°(已知),∴①AB∥CD(同旁内角互补,两直线平行).∴∠B=∠DCE(②两直线平行,同位角相等).又∵∠B=∠D(已知),∴∠DCE=∠D(等量代换).∴AD∥BE(③内错角相等,两直线平行).∴∠E=∠DFE(④两直线平行,内错角相等).故答案为:AB∥CD,两直线平行,同位角相等;内错角相等,两直线平行;两直线平行,内错角相等.14.解:根据题意可知:OG平分∠EOB,补充图形如图所示,理由如下:∵AB∥CD,∴∠EOB=∠OPD,∵OG平分∠EOB,∴,∵PH平分∠OPD,∴,∴∠EOG=∠OPH,∴OG∥PH.故答案为:∠EOB.15.解:(1)∵BC∥OA,∴∠B+∠O=180°,又∵∠B=∠A,∴∠A+∠O=180°,∴OB∥AC;(2)∵∠B+∠BOA=180°,∠B=100°,∴∠BOA=80°,∵OE平分∠BOF,∴∠BOE=∠EOF=∠BOF,∵∠FOC=∠AOC=FOA,∴∠EOC=∠EOF+∠FOC=∠BOF+∠FOA=∠BOA=40°;故答案为:40°;(3)结论:∠OCB:∠OFB的值不发生变化.理由为:∵BC∥OA,∴∠FCO=∠COA,∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2;(4)由(1)知:OB∥AC,∴∠OCA=∠BOC,由(2)知设:∠BOE=∠EOF=α,∠FOC=∠COA=β,∴∠OCA=∠BOC=2α+β,∴∠OEB=∠EOC+∠ECO=α+β+β=α+2β,∵∠OEB=∠OCA,∴2α+β=α+2β,∴α=β,∵∠AOB=80°,∴α=β=20°,∴∠OCA=2α+β=40°+20°=60°.16.(1)证明:如图1,延长DE交AB于点F,∵∠ACB+∠BED=180°,∠CED+∠BED=180°,∴∠ACB=∠CED,∴AC∥DF,∴∠A=∠DFB,∵∠A=∠D,∴∠DFB=∠D,∴AB∥CD;(2)如图2,作EM∥CD,HN∥CD,∵AB∥CD,∴AB∥EM∥HN∥CD,∴∠1+∠EDF=180°,∠MEB=∠ABE,∵BG平分∠ABE,∴∠ABG=ABE,∵AB∥HN,∴∠2=∠ABG,∵CF∥HN,∴∠2+∠β=∠3,∴ABE+∠β=∠3,∵DH平分∠EDF,∴∠3=EDF,∴ABE+∠β=EDF,∴∠β=(∠EDF﹣∠ABE),∴∠EDF﹣∠ABE=2∠β,设∠DEB=∠α,∵∠α=∠1+∠MEB=180°﹣∠EDF+∠ABE=180°﹣(∠EDF﹣∠ABE)=180°﹣2∠β,∵∠DEB比∠DHB大60°,∴∠α﹣60°=∠β,∴∠α=180°﹣2(∠α﹣60°)解得∠α=100°∴∠DEB的度数为100°;(3)∠PBM的度数不变,理由如下:如图3,过点E作ES∥CD,设直线DF和直线BP相交于点G,∵BM平分∠EBK,DN平分∠CDE,∴∠EBM=∠MBK=EBK,∠CDN=∠EDN=CDE,∵ES∥CD,AB∥CD,∴ES∥AB∥CD,∴∠DES=∠CDE,∠BES=∠ABE=180°﹣∠EBK,∠G=∠PBK,由(2)可知:∠DEB=100°,∴∠CDE+180°﹣∠EBK=100°,∴∠EBK﹣∠CDE=80°,∵BP∥DN,∴∠CDN=∠G,∴∠PBK=∠G=∠CDN=CDE,∴∠PBM=∠MBK﹣∠PBK=∠EBK﹣CDE=(∠EBK﹣∠CDE)=80°=40°.17.解:(1)∵DB∥FG∥EC,∴∠BAG=∠ABD=60°,∠CAG=∠ACE=36°,∴∠BAC=∠BAG+∠CAG=60°+36°=96°.(2)∵AP平分∠BAC,∴∠CAP=∠BAC=×96°=48°,∴∠P AG=∠CAP﹣∠CAG=48°﹣36°=12°.18.(1)证明:∵AM、CM分别平分∠BAC和∠ACD,∴∠BAC=2∠MAC,∠ACD=2∠ACM,∵AM⊥CM,∴∠AMC=90°,∴∠BAC+∠ACD=2(∠MAC+∠ACM)=2∠AMC=180°,∴AB∥CD;(2)∠AEC=2∠MAF或∠AEC=180°﹣2∠MAF.理由如下:①如图,点E在点C右边时,∵AM平分∠BAC,∴∠BAM=∠MAC,即∠4=∠1+∠2+∠3,∵AF平分∠EAC,∴∠1=∠2,∵AB∥CD,∴∠AEC=∠3+∠4=∠3+∠1+∠2+∠3=2(∠2+∠3)=2∠MAF,即∠AEC=2∠MAF;②如图,点E在点C左边时,∵AM平分∠BAC,∴∠3=∠4,∵AF平分∠EAC,∴∠1=∠2,∵AB∥CD,∴∠AEC+∠EAB=180°,∴∠AEC=180°﹣(∠1+∠2+∠3+∠4)=180°﹣2(∠2+∠3)=180°﹣2∠MAF,即∠AEC=180°﹣2∠MAF.综上所述:∠MAF与∠AEC的数量关系为:∠AEC=2∠MAF或∠AEC=180°﹣2∠MAF.19.解:∵OA⊥EB,OD⊥CF,∴∠AOB=∠AOE=∠DOC=∠DOF=90°,∵∠BOC=55°,∴∠EOF=∠BOC=55°,∴∠DOE=∠DOF﹣∠EOF=90°﹣55°=35°,∴∠AOD=∠DOE+∠AOE=35°+90°=125°.20.解:∵OD平分∠BOF,∴∠BOD=∠DOF=,∵OE⊥CD于O,∴∠COE=∠EOD=90°,∵∠EOF=116°,∴∠DOF=∠EOF﹣∠EOD=116°﹣90°=26°,∴∠BOD=∠DOF=26°,∴∠AOC=∠BOD=26°,∴∠EOB=∠EOD﹣∠BOD=90°﹣26°=64°,∴∠AOF=180°﹣∠BOF=180°﹣2×26°=128°.。
人教版七年级下册数学精品课件(RJ) 第五章 相交线与平行线 相交线 垂线 第1课时 垂线及其性质
![人教版七年级下册数学精品课件(RJ) 第五章 相交线与平行线 相交线 垂线 第1课时 垂线及其性质](https://img.taocdn.com/s3/m/1434a531a66e58fafab069dc5022aaea998f41aa.png)
8.(10分)(1)如图①,作AE⊥BC,CF⊥AD,垂足分别为E,F; (2)如图②,分别过点P作垂线PC⊥OA,PD⊥OB,垂足分别为C,D.
解:(1)如图①所示 (2)如图②所示
一、选择题(每小题5分,共10分) 9.(益阳中考)如图,直线AB,CD相交于点O,EO⊥CD.下列说法错误的是 ( C) A.∠AOD=∠BOC B.∠AOE+∠BOD=90° C.∠AOC=∠AOE D.∠AOD+∠BOD=180°
AOC,OF 平分∠BOC,所以∠EOC=12 ∠AOC=65°,∠COF=12 ∠COB= 25°,所以∠EOF=65°+25°=90°,所以 OE⊥OF (2)因为∠BOC=α,所以∠AOC=180°-α. 因为 OE 平分∠AOC,OF 平分∠BOC,
所以∠EOC=12 ∠AOC=90°-12 α,∠COF=12 ∠COB=12 α,所以∠EOF=
14.(12分)如图所示,OM平分∠AOB,ON平分∠COD,OM⊥ON,∠BOC =26°,求∠AOD的度数.
解:因为OM平分∠AOB,ON平分∠COD,所以∠AOB=2∠AOM= 2∠BOM,∠COD=2∠CON=2∠DON.因为OM⊥ON,所以∠MON=90°,所 以∠CON+∠BOC+∠BOM=90°.因为∠BOC=26°,所以∠CON+∠BOM =90°-26°=64°,所以∠DON+∠AOM=64°,所以∠AOD=∠DON+ ∠AOM+∠MON=64°+90°=154°
【素养提升】 15.(16分)如图,点O为直线AB上一点,OC为一射线,OE平分∠AOC,OF平 分∠BOC.
(1)若∠BOC=50°,试探究OE,OF的位置关系; (2)若∠BOC为任意角α(0°<α<180°),则(1)中OE,OF的位置关系是否仍成立? 请说明理由.由此你发现什么规律?
人教版数学七年级下册第五章相交线与平行线第一课《 垂线》
![人教版数学七年级下册第五章相交线与平行线第一课《 垂线》](https://img.taocdn.com/s3/m/8afaaaf7cfc789eb162dc8d2.png)
课堂检测
基础巩固题
1.如图,下列说法正确的是( D ) A.线段AB叫做点B到直线AC的距离 B.线段AB的长度叫作点A到直线AC的距离 C.线段BD的长度叫作点D到直线BC的距离 D.线段BD的长度叫作点B到直线AC的距离
=90°+55°=145°.
探究新知 知识点 2
垂线的画法及其性质
(1)画已知直线l的垂线能画几条? (2)过直线l上的一点A画l的垂线,这样的垂线能画几条? (3)过直线l外的一点B画l的垂线,这样的垂线能画几条?
.B .
Al
探究新知
如图,已知直线 l,作l的垂线.
A
1.放
2.靠
l 3.画 O
0
1
2
3
4
5
6
7
8
9
10
11
孝感市文昌中学学生专用尺
Cm
【讨论】这样画l的垂线可以画几条?无数条
探究新知 如图,已知直线 l 和l上的一点A ,作l的垂线.
B
1.放
2.靠
3.移
4.画
l
A
0
1
2
3
4
5
6
7
8
9
10
11
孝感市文昌中学学生专用尺
Cm
【讨论】这样画l的垂线可以画几条?一条
探究新知 如图,已知直线 l 和l外的一点B ,作l的垂线.
线互相垂直
(2)两条直线相交,只要有一组邻补角相等,则这两条直线互相
垂直
(3)两条直线相交,所成的四个角相等,这两条直线互相垂直
人教版七年级数学下册《平行线的性质》相交线与平行线PPT优秀课件
![人教版七年级数学下册《平行线的性质》相交线与平行线PPT优秀课件](https://img.taocdn.com/s3/m/dda957275e0e7cd184254b35eefdc8d376ee14b9.png)
感悟新知
特别警示 ●两条直线平行是前提,只有在这个前提下才有同
位角相等; ●格式书写时,顺序不能颠倒,与判定不能混淆.
感悟新知
例 1 如图5.3-2,把三角尺的直角顶点放在直尺的一边上, 若∠ 1=30°,则∠ 2 的度数为( A ) A.60° B.50° C.40° D.30°
感悟新知
1-1.[中考·柳州] 如图,直线a,b 被直线c 所截,若a ∥ b, ∠ 1=70 °,则∠ 2 的度数是( C ) A. 50° B. 60° C. 70° D. 110°
感悟新知
知识点 2 平行线的性质2
1. 性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
2. 表达方式:如图5.3-3,因为a ∥ b(已知), 所以∠ 1= ∠ 2(两直线平行,内错角相等).
感悟新知
特别警示 并不是所有的内错角都相等,只有在“两直线平
行”的前提下,才有内错角相等.
感悟新知
例2 如图5.3-4,AB ∥ CD,BE 平分∠ ABC,CF 平分 ∠ BCD,你能发现BE 和CF 有何特殊的位置关系吗? 说说你的理由. 解题秘方:由两直线平行得到 内错角相等,再由内错角相等 得到两直线平行.
感悟新知
解:BE∥CF.理由如下:∵ AB∥CD(已知),
∴∠ ABC= ∠ BCD (两直线平行,内错角相等).
∵ BE 平分∠ ABC,CF 平分∠ BCD (已知),
∴∠ 2=
1 2
∠ ABC,∠ 1=Fra bibliotek1 2
人教版七年级数学下册精品作业课件(RJ) 第五章 相交线与平行线 专题课堂(一) 相交线与平行线
![人教版七年级数学下册精品作业课件(RJ) 第五章 相交线与平行线 专题课堂(一) 相交线与平行线](https://img.taocdn.com/s3/m/a273ec7fac02de80d4d8d15abe23482fb4da0239.png)
解:(1)∵∠AOE=40°,∴∠AOF=180°-∠AOE=140°. ∵OC 平分∠AOF,∴∠AOC=12 ∠AOF=70°. ∵OA⊥OB,∴∠AOB=90°,∴∠BOD=180°-∠AOB-∠AOC=20° (2)∵∠AOE=α,∴∠AOC=12 (180°-α)=90°-12 α, ∴∠BOD=180°-∠AOB-∠AOC=12 α (3)∠AOE=2∠BOD
∴∠BEG=12 ∠BEO,∠DFG=12 ∠DFO.
∴∠G=12 (∠BEO+∠DFO)=12 ∠EOF=12 ×90°=45°
四、三角尺在平行线中的应用 【例4】(2021·赫山区期末)在综合与实践课上,老师让同学们以“两条平行线AB, CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数 学活动. (1)如图①,若三角尺的60°角的顶点G放在CD上,若∠2=2∠1, 则∠1=_4_0_°_; (2)如图②,小颖把三角尺的两个锐角的顶点E,G分别放在AB和CD上,请你探索并 说明∠AEF与∠FGC间的数量关系; (3)如图③,小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若 ∠AEG=α,∠CFG=β,则∠AEG与∠CFG的数量关系是什么?用含α,β的式子表 示.
解:(1)∵OC⊥OD,∴∠COD=90°,∴∠1+∠BOD=90°, ∵∠EDO 与∠1 互余.∴∠1ห้องสมุดไป่ตู้∠EDO=90°, ∴∠EDO=∠BOD,∴ED∥AB
(2)∵OF 平分∠COD,∴∠COF=12 ∠COD=45°,∵ED∥AB, ∴∠AOF=∠OFD=70°, ∴∠1=∠AOF-∠COF=70°-45°=25°,∴∠1 的度数为 25°
【对应训练】
5.(1)(2021·白银)如图①,直线DE∥BF,Rt△ABC的顶点B在BF上, 若∠CBF=20°,则∠ADE的度数为__7_0_°_; (2)(2021·菏泽)一副三角板按如图②方式放置,含45°角的三角板的斜边与含30° 角的三角板的长直角边平行,则∠α的度数是__1_5_°.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线与平行线(一)(时间:45分钟满分:100分)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40° 12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直.理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.相交线与平行线(二)1.如图,要判定AB∥CD,需要哪些条件?根据是什么?2.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.解:∵CD∥EF,∴∠DCB=∠2(____________________).∵∠1=∠2,∴∠DCB=∠1(____________________).∴GD∥CB(____________________).∴∠3=∠ACB(____________________).3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.5.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE 的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.6.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.求证:EC∥DF.7.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.8.如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?为什么?9.如图,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么BA是否平分∠EBF,试说明理由.10.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB 与DE 的位置关系,并说明理由.11.如图,直线l 1、l 2均被直线l 3、l 4所截,且l 3与l 4相交,给定以下三个条件:①l 1⊥l 3;②∠1=∠2;③∠2+∠3=90°.请从这三个条件中选择两个作为条件,另一个作为结论组成一个真命题,并进行证明.12.如图1,CE ∥AB,所以∠ACE=∠A,∠DCE=∠B,所以∠ACD=∠ACE+∠DCE=∠A+∠B.这是一个有用的结论,借用这个结论,在图2所示的四边形ABCD内,引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.参考答案1.略2.两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,同位角相等3.证明:∵AD∥BE,∴∠A=∠3.∵∠A=∠E,∴∠3=∠E.∴DE∥AB.∴∠1=∠2.4.证明:∵AD∥EF,∴∠1=∠BAD.∵∠1=∠2,∴∠BAD=∠2.∴AB∥DG.5.(1)∵∠AEF=66°,∴∠BEF=180°-∠AEF=114°.又PE平分∠BEF,∴∠PEB=12∠BEF=57°.(2)∵AB∥CD,∴∠EFD=∠AEF=66°.∵PF平分∠EFD,∴∠PFD=12∠EFD=33°.过点P作PQ∥AB,∵∠EPQ=∠PEB=57°, 又AB∥CD,∴PQ∥CD.∴∠FPQ=∠PFD=33°.∴∠EPF=∠EPQ+∠FPQ=57°+33°=90°.6.证明:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=12∠ABC,∠ECB=12∠ACB.∵∠ABC=∠ACB,∴∠DBF=∠ECB.∵∠DBF=∠F,∴∠ECB=∠F.∴EC∥DF.7.∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°.由折叠知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠1=180°-∠GED=70°.∴∠2=110°.8.平行.理由:∵CE平分∠BCD,∴∠1=∠4.∵∠1=∠2=70°,∴∠1=∠2=∠4=70°.∴AD∥BC.∴∠D=180°-∠BCD=180°-∠1-∠4=40°.∵∠3=40°,∴∠D=∠3.∴AB∥CD.9.BA平分∠EBF.理由如下:∵AB∥CD,∴∠2+∠3=180°.∵∠2∶∠3=2∶3,∴∠2=180°×25=72°.∵∠1∶∠2=1∶2,∴∠1=36°.∴∠EBA=72°=∠2,即BA平分∠EBF.10.AB∥DE.理由:图略,过点C作FG∥AB,∴∠BCG=∠ABC=80°.又∠BCD=40°,∴∠DCG=∠BCG-∠BCD=40°.∵∠CDE=140°,∴∠CDE+∠DCG=180°.∴DE∥FG.∴AB∥DE.11.已知:l1⊥l3,∠1=∠2.求证:∠2+∠3=90°. 证明:∵∠1=∠2,∴l1∥l2.∵l1⊥l3,∴l2⊥l3.∴∠3+∠4=90°.∵∠4=∠2,∴∠2+∠3=90°.12.过D作DE∥AB.则由阅读得到的结论,有∠BED=∠C+∠CDE.又∠ABE+∠BED=180°,∠A+∠ADE=180°(两直线平行,同旁内角互补).两式相加,得∠ABE+∠BED+∠A+∠ADE=360°,即∠A+∠B+∠C+∠ADC=360°.初中数学试卷。