电火花加工
电火花加工
电火花加工(英语:Electrical Discharge Machining,简称EDM),又称放电加工,是特种加工技术的一种,广泛应用在模具制造、机械加工行业。
电火花加工可以用来加工传统切削方法难以加工的超硬材料和复杂形状的工件,通常用于加工导电的材料,可以在诸如钛合金、工具钢、碳钢和硬质合金等难加工材料上加工复杂的型腔或者轮廓。
电火花加工原理是在导电的工具电极和工件之间施加上周期性快速变化的电压脉冲,通过浸没在绝缘介质中的工具电极与工件之间的脉冲性放电所产生的局部高温使工件表面金属熔化、气化,从而蚀除金属。
因此在加工过程中几乎不存在切削力。
应用这种加工方法的机床主要有:∙电火花成型加工机床:工具电极一般采用石墨或紫铜,工具和工件浸没在煤油基工作液中,通过放电把工具电极上的形状复制到工件上。
∙电火花线切割加工机床:采用去离子水(Deionized water)作为绝缘介质,采用黄铜丝或黄铜镀锌丝作为工具电极(中国大陆发明的往复走丝电火花加工线切割机床通常采用乳化液,采用钼丝作为工具电极)。
目录[隐藏]∙ 1 历史∙ 2 优点∙ 3 缺点∙ 4 线切割∙ 5 电火花加工分类∙ 6 电火花机分类∙7 电火花机放电微观过程[编辑]历史1943年,苏联学者拉扎连科夫妇(Dr. B.R. Lazarenko 及 Dr. N.I. Lazarenko )发明电火花机,使用电阻、电容回路,即RC回路。
50年代,改进为电阻、电感、电容等回路,即既RLC回路。
60年代,改进为晶体管,可控硅脉冲电源。
70年代,改进为高低压复合脉冲、多回路脉冲、等幅脉冲、可调波形脉冲电源。
80年代,采用工业级CPU控制,能实现G码编辑等功能,极大的提升了使用性能。
日本牧野(Makino)公司在1980年发明第一台数字控制电火花加工机。
至1990年代,采用了多轴控制及刀库(ATC)技术。
近些年,无电阻技术、直线导轨技术、混粉技术等一批新工艺也成功运用在电火花机上。
电火花加工
另外,实验表明:增大脉宽可降低工具电极的 损耗。当脉宽增大到一定程度时,且为负极 性加工时,电极损耗率小于1%,可以实现 低损耗加工
2、利用吸附效应:
什么是吸附效应? 煤油--热分解--大量碳微粒--碳和金属结 合(胶团)--胶团外层脱落(带负电荷的碳 胶粒)--吸附在正极 当正极表面温度在400度左右,并能维持一段时 间时,就能形成一定强度和厚度的化学吸附膜 (碳黑膜)。 由于碳的熔点、气化点很高,所以,碳黑膜可对 电极起到保护和补偿作用,从而实现低损耗加 工。
2、工具相对损耗 生产实际中用工具相对损耗或称损耗比θ作为 工具电极耐损耗的指标,即: θ=VE / VW×100% 损耗速度VE 的单位也为mm3 /min 或g /min 相应的损耗比θ也为体积相对损耗或质量相对 损耗
电火花加工中降低工具电极损耗具有重大意义, 一直是人们努力追求的目标。
要降低工具电极损耗必须充分利用极性效应、吸 附效应、传热效应等,这些效应又相互影响, 综合作用,具体如下: 1、正确选择极性和脉宽 一般,短脉宽精加工时采用正极性加工,长脉宽 粗加工时采用负极性加工。
第二章
电火花加工
电火花加工(我国)又称为放电加工(日、美、 英)或电蚀加工(俄罗斯) 第一节 电火花加工的基本原理及其分类 一、电火花加工原理及设备组成: 电火花加工原理: 基于工具和工件之间脉冲性火花放电时的 电腐蚀现象来蚀除多余金属,以达到对零件的尺 寸、形状及表面质量预定的加工要求。 电火花腐蚀的主要原因:
三、电火花加工工艺方法分类:
按工具电极和工件相对运动的方式和用 途的不同分类。前五类属电火花成形、尺寸 加工,后者属于表面加工方法,用于改善或 改变零件表面性质。
见表2-1
第二节 电火花加工的机理
电火花加工
2010-5-2
34
电火花成形加工机床组成部分:
床身,立柱,主轴头, 工作液循环系统,电源, 控制系统等
2010-5-2 35
§2-7 电火花穿孔成形加工
1,电火花穿孔加工 2,电火花型腔加工 3,小孔电火花加工 4,异形孔的电火花加工
2010-5-2
5,工艺扩展
36
一,电火花穿孔加工 冲模的电火花加工
2010-5-2
四,极间介质的消电离. 极间介质的消电离.
7
§2-3 电火花加工中的一些基本规律
一,影响材料放电腐蚀的主要因素: 影响材料放电腐蚀的主要因素: 1,极性效应 , 2,电参数对电蚀量的影响 , 3,金属材料热学常数对电蚀量的影响 , 4,工作液对电蚀量的影响 , 5,其它因素 ,
2010-5-2 8
四,电火花加工的局限性 五,电火花加工的应用
2010-5-2 5
六,电火花加工的工艺类型
按照工具电极和工件相对运动的方式和用途的不同, 按照工具电极和工件相对运动的方式和用途的不同,大致可 以分为以下几种: 以分为以下几种:
工 艺 类 型
电电电电电电电电电 电电电电电电 电电电电电电电电电电电 电电电电电电电电电电电 电电电电电电电电电 电电电电电电电电电电
2010-5-2
71
2010-5-2
72
�
PC机 A/D卡
2010-5-2
电源
间隙电压 采样电路
63
电火花线切割机床控制系统的控制功能:
1,轨迹控制 2,加工控制
2010-5-2 64
1,轨迹控制
偏差判断 进给 偏差计算 终点判断
2010-5-2
65
§3-3 电火花线切割控制系统和编
电火花加工的原理及应用
电火花加工的原理及应用1. 电火花加工的基本原理电火花加工是一种利用电脉冲放电的方法来加工金属材料的技术。
它通过在工件和电极之间产生电弧放电,利用电弧放电的高温和高能量来熔化和蒸发工件表面的金属,实现加工效果。
具体的原理如下:•电极与工件之间的间隙放电:电火花加工中,工件和电极之间需要保持一定的间隙,通过在这个间隙内产生电弧放电来进行加工。
电弧放电时,电极的一部分材料会被溶解和蒸发,同时工件表面的金属也会被融化。
•间隙放电时的高温和高压:电火花加工中,电弧放电产生的能量非常高,可以瞬间生成高温和高压。
这种高温和高压可以使工件表面的金属瞬间熔化和蒸发,形成加工效果。
•电弧放电的控制:电火花加工通过控制电极和工件之间的间隙距离、放电时间和放电频率等参数,来控制电弧放电的大小和位置。
通过合理调节这些参数,可以实现对工件表面金属的精细加工。
2. 电火花加工的应用电火花加工具有以下几个主要的应用领域:2.1. 模具制造电火花加工在模具制造中有着广泛的应用。
在制造模具的过程中,常常需要对模具表面进行精细的加工,以满足产品的需求。
电火花加工可以对模具表面进行加工,包括刻蚀、细微结构的加工等,由于其加工精度高、加工速度快的特点,可以提高模具制造的效率和质量。
2.2. 精密零件加工电火花加工在精密零件加工中也有着重要的应用。
在一些需要加工复杂形状和细微结构的零件中,传统的加工方法很难满足要求。
而电火花加工可以通过调节参数来实现对零件的精细加工,可以加工出形状复杂、尺寸精度高的零件,应用范围广泛。
2.3. 刀具制造电火花加工在刀具制造中也有着重要的应用。
刀具是加工过程中不可或缺的工具,在制造过程中需要对刀具的表面进行一定的加工,以提高刀具的使用寿命和切削性能。
电火花加工可以对刀具进行加工,包括刀具的修复、刀具的磨损层的去除等,有效提高了刀具的质量和使用寿命。
2.4. 复杂曲面加工电火花加工在复杂曲面加工中也有着广泛的应用。
简述电火花加工的原理
简述电火花加工的原理电火花加工是一种常用的金属加工方法,它通过电火花放电来加工金属材料。
电火花加工主要用于加工硬质材料,如钢、铸铁、合金等,尤其适用于制造模具和模具零件。
电火花加工的原理是利用电火花的高温和高能量,使工件表面的金属材料瞬间熔化和蒸发,从而实现加工目的。
具体来说,电火花加工是通过在工件表面和电极之间施加高频脉冲电压,产生电火花放电。
电火花放电时,电极和工件之间会形成电火花通道,通道中的金属材料会发生电蚀和熔化。
随着放电的不断重复,金属材料逐渐被蚀去,形成所需的加工形状。
电火花加工的原理可以分为放电阶段和冲击阶段两个过程。
在放电阶段,通过电极和工件之间的电压差,形成电火花通道,放电时产生高温和高压的等离子体。
放电过程中,电火花通道中的金属材料受到电蚀和熔化,形成微小的坑洞。
在冲击阶段,电火花通道中的等离子体受到脉冲电压的作用,产生冲击波,将周围的金属材料冲击击碎,形成微小的金属颗粒。
这些金属颗粒会随着电极和工件之间的间隙排出,从而实现材料的加工和去除。
电火花加工具有很多优点。
首先,它可以加工硬度较高的金属材料,如硬质合金和石英等。
其次,电火花加工可以实现高精度加工,加工表面粗糙度可以达到0.1微米。
此外,电火花加工不会产生应力和变形,对加工材料的性能影响较小。
另外,电火花加工还可以加工复杂形状和细小结构的工件,如细孔、细槽、螺纹等。
因此,电火花加工在制造模具和模具零件时得到广泛应用。
然而,电火花加工也存在一些局限性。
首先,加工速度较慢,通常需要几个小时甚至几十个小时才能完成一个工件的加工。
其次,电火花加工只适用于导电材料,无法加工非导电材料。
另外,电火花加工还存在电极磨损和放电气泡等问题,需要定期更换电极和清理工作。
总的来说,电火花加工是一种重要的金属加工方法,通过电火花放电来实现金属材料的加工和去除。
它具有可加工硬度高、加工精度高、加工复杂形状等优点,广泛应用于制造模具和模具零件。
电火花加工
其他电火花加工方法及图示说明
电火花加工
非接触加工
电火花加工
(4)极间介质的消电离
在电火花放电加工过程中产生的电蚀产物如果来 不及排除和扩散,那么产生的热量将不能及时传 出,使该处介质局部过热,局部过热的工作液高温 分解,结碳,使加工无法进行,并烧坏电极。因此为 了保证电火花加工过程的正常进行,在两次放电 之间必须有足够的时间间隔让电蚀产物充分排除, 恢复放电通道的绝缘性,使工作液介质消电离。
电火花加工
电火花加工
武汉大学综合工程训练中心
电火花加工
电火花加工的基本概念 电火花加工的特点 电ห้องสมุดไป่ตู้花加工的优点 电火花加工的局限性 电火花加工原理 电火花加工工艺方法分类 其他电火花加工方法及图示说明
电火花加工
电火花加工的基本概念: 电火花加工又称放电加工(Electrical Discharge Machining 简称EMD)。它是 在加工过程中,使工具和工件之间不断产生 脉冲性的火花放电,靠放电时产生的局部、 瞬时的高温将金属蚀除下来。这种利用火 花放电产生的腐蚀现象对金属材料进行加 工的方法叫电火花加工。
电火花加工
3、电火花加工是通过脉冲放电来蚀除金属 材料的,而脉冲电源的参数随时可调,因此在 同一情况下,只需调整电参数即可切换粗、 半精、精、超精加工。
电火花加工
电火花加工的局限性: (1)电火花加工生产效率低。 (2)被加工的工件只能是导体。 (3)存在电极损耗,这就影响了成型精度。 (4)加工表面有变质层。 (5)加工过程必须在工作液中进行。电火花 加工时放电部位必须处于工作液中,否则 将引起异常放电。 (6)线切割加工有厚度极限。
电火花加工
电火花加工原理
电火花加工基于电火花腐蚀原理,是在工具 电极与工件电极相互靠近时,极间形成脉冲 性火花放电,在电火花通道中产生瞬时高 温,使局部金属融化,甚至汽化,从而将金属 蚀除下来。这一过程大致分为以下几个阶 段:
电火花加工工艺及实例
精密零件的电火花加工
总结词
高精度、高表面质量、高稳定性
详细描述
电火花加工在精密零件加工中具有高精度、高表面质量和高度稳定性的特点。通过精确控制加工参数 和操作方法,可以制造出具有高精度和高表面质量的精密零件,满足各种高精度和高性能产品的需求 。
开发新的电火花加工电源和工具电极材料
高频脉冲电源
01
开发高频脉冲电源,提高加工速度和稳定性。
智能电源
02
开发智能电源,根据加工需求自动调整参数,提高加工效率和
精度。
新材料电极
03
研究新型电极材料,如陶瓷、金刚石等,提高电极的硬度和耐
磨性。
感谢您的观看
THANKS
多轴联动加工技术
采用多轴联动加工中心, 实现多轴同时控制,提高 加工速度和效率。
高效排屑技术
优化排屑系统,减少加工 过程中的排屑时间,提高 加工效率。
提高加工精度
高精度电极材料
采用高精度电极材料,如石墨、铜合金等,提高 电极的精度和稳定性。
精密定位技术
采用高精度定位系统,如光栅尺、激光干涉仪等 ,提高加工位置的精度和稳定性。
电火花加工工作液的选择与使用
工作液种类
电火花加工工作液主要有煤油、 机油、酒精等,选择合适的工作 液可以提高加工效率、减小电极
损耗和防止工件腐蚀。
工作液浓度
工作液的浓度对加工性能有很大 影响,浓度过高或过低都会影响 加工效果,应根据加工要求调整
工作液的浓度。
工作液循环
工作液的循环可以带走加工过程 中产生的热量和切削屑,保持加 工区域的清洁,提高加工精度和
电火花加工的原理及其应用
电火花加工的原理及其应用1. 原理介绍电火花加工(Electrical Discharge Machining,简称EDM)是一种利用电蚀作用来加工金属材料的非传统加工方法。
其原理是利用电脉冲产生高温电弧和高速电子撞击,使工件表面产生蚀剥现象,最终实现金属材料的高精度加工。
2. 基本过程电火花加工的基本过程可以分为以下几个步骤:•注油:在工件和电极之间注入防火花液体,用于冷却和清洗工件表面。
•装夹:将要加工的工件固定在加工台上,与电极相对位置调整。
•设置参数:根据加工要求,设置电极形状、工作电流、工作时间等参数。
•开始加工:启动电火花机,通过控制电脉冲的频率、幅值等参数,使电极和工件之间发生电弧放电。
•蚀剥过程:电弧放电产生的高温和高速电子撞击工件表面,使金属材料脱落。
•冷却清洗:持续注入防火花液体,冷却和清洗工件表面。
•监控检测:通过测量工件尺寸和表面粗糙度等参数,对加工效果进行监控和调整。
•完成加工:根据加工要求,达到预定的尺寸和表面精度要求后,停止加工。
3. 应用领域电火花加工具有以下几个优点,使其在一些特定领域得到广泛应用:•高精度加工:电火花加工可以在金属材料上实现针对性零件的高精度加工,可以达到亚微米级的表面精度,并且不会产生显微结构损伤。
•非接触加工:电火花加工过程中,电极与工件不直接接触,避免了物理切削的力和热造成的变形和残余应力。
•适用性广泛:无论是硬质材料,还是复杂形状的工件,电火花加工都能灵活应对。
•加工效率高:与传统切削加工相比,电火花加工可以同时加工多个工件,大大提高了效率。
•无需专门模具:电火花加工不需要专门制造模具,可以根据设计要求直接对工件进行加工。
•易于自动化:电火花加工具有较高的自动化程度,可以结合机器人、自动化生产线等设备进行多工位、多任务的加工。
基于以上优点,电火花加工在以下领域得到广泛应用:•航空航天:电火花加工可以用于加工航空发动机零件、涡轮叶片等高精度零件。
简述电火花加工原理
简述电火花加工原理
电火花加工原理是一种利用电脉冲放电的加工方法,它是一种非接触式的加工
方式,适用于高硬度、高脆性材料的加工。
它的原理是利用电压的高低变化来产生电火花,在工件表面形成微小的放电坑,从而实现对工件的加工。
下面将简要介绍电火花加工的原理。
首先,电火花加工的原理是利用电极和工件之间的电压差来产生电火花。
当电
极和工件之间的电压差达到一定数值时,空气中的电子会被加速,形成电子束,当电子束撞击到工件表面时,会产生高温和高压的电火花,从而将工件表面的材料熔化或者氧化。
其次,电火花加工的原理还包括放电过程和冷却过程。
在放电过程中,电极和
工件之间的电压差会引起电火花的产生,从而使工件表面的材料受到熔化或者氧化的影响。
而在冷却过程中,电火花消失后,工件表面的材料会迅速冷却凝固,形成微小的放电坑。
最后,电火花加工的原理还涉及到放电坑的形成和加工效果的影响。
放电坑的
形成是通过电火花的瞬间高温和高压作用下,使工件表面的材料受到熔化或者氧化的影响,从而形成微小的凹坑。
而加工效果的影响主要取决于放电坑的形状、大小和分布,以及放电参数的选择。
总的来说,电火花加工的原理是利用电压差来产生电火花,从而实现对工件的
加工。
它的加工效果受到放电坑的形状、大小和分布,以及放电参数的选择的影响。
因此,在进行电火花加工时,需要合理选择放电参数,以获得良好的加工效果。
电火花加工
• 2)热影响层。它介于融熔化层和基体之间,热影 响层的金属材料并没有熔化,只是受到高温的影 响,材料的金相组织发生了变化,它和基体材料 之间并没有明显的界限。由于温度场分布和冷却 速度的不同,对淬火钢,热影响层包括再淬火区、 高温回火区和低温回火区;对未淬火钢,热影响 层主要为淬火区。因此,淬火钢的热影响层厚度 比未淬火钢大。 • 热影响层中靠近熔化层部分,由于受到高温作 用并迅速冷却,形成淬火区,其厚度与加工条件 有关,一般为2—3倍的最大微观不平度(即δmax) 值。对淬火钢,与淬火层相邻的部分受到温度的 影响而形成高温、低温回火区,回火区的厚度约 为最大微观不平度的3,4倍。 • 不同金属材料的热影响层金相组织结构是不同的, 耐热合金的热影响层与基体差异不大。
第四节.电火花加工应用P200
电火花成形穿孔加工是用工具电极对工件进行复制加工 的工艺方法,可归纳为
• 一、冲模电火花加工
• 冲模是生产上应用最多的一种模具,由于形状 复杂和尺寸精度要求高,所以它的制造已成为生产 上关键技术之一。特别是凹模,应用一般的机械加 工是困难的,在某些情况下甚至不可能,而靠钳工 加工则劳动量大,质量不易保证,常因淬火变形而 报废,采用电火花加工能较好地解决这些问题、冲 模采用电火花加工工艺比机械加工有如下优点。 1)可以在工件淬火后进行加工,避免了热处理变 形的影响。 2)冲模的配合间隙均匀,刃口耐磨,提高了模具 质量。 3)不受材料硬度的限制,可以加工硬质合金等冲 模,扩大了模具材料的选用范围。 4)对于复杂的凹模可以不用镶拼结构,而采用整 体式,简化了模具的结构,提高了模具强度。
• 二、电火花加工的特点
•
•
•
• • •
1)这种方法易于用来加工各种导电材料,而不 受工件材料的物理、力学性能的限制。 2)在加工过程中,工具与工件不直接接触,所 以工件无机械变形,因而该方法可加工细长、薄、 脆性零件。 3)虽然该方法是利用热效应来切除金属,但大 部分材料不变热。 4)可以在硬度高的材料上,加工出精度高,表 面质量好的复杂模具。 5)用电火花加工的表面,是由许多小的弧坑组 成,有助于油的保存和较好的润滑。 6)这种方法易于实现自动化。
分析电火花加工的原理特点
分析电火花加工的原理特点
电火花加工是一种非接触电火花放电加工方法,利用高频电火花放电在工件表面形成电火花放电弧,通过电火花烧蚀工件表面,以实现材料的加工和加工形状的复制。
该加工方法的原理特点如下:
1. 非接触性:电火花加工是一种非接触性加工方法,通过控制电极与工件之间的放电间隙,使电极与工件表面之间形成高频放电,从而实现加工。
这种非接触性使得电火花加工可以对任何导电材料进行加工,无论材料硬度如何。
2. 热量集中:电火花加工通过高频放电产生高温电弧,使工件表面局部区域温度迅速升高,而其他部位温度相对较低,从而实现对工件表面进行局部加工。
这种热量集中性使得电火花加工可以实现高精度加工。
3. 离子撞击效应:在电火花放电过程中,电极与工件之间的电弧放电会产生离子,离子与工件表面相互碰撞,烧蚀材料表面并形成加工痕迹。
离子撞击效应使得电火花加工可以实现高精度、高质量的加工结果。
4. 可加工复杂形状:由于电火花加工是一种非接触加工方法,且主要依靠离子撞击效应实现加工,因此可以加工复杂形状的工件,无论工件表面有多少凹凸不平。
总的来说,电火花加工具有非接触性、热量集中性、离子撞击效应和适用于加工复杂形状的特点,使其在精密加工领域具有广泛的应用。
电火花加工简述
电火花加工简述一、电火花加工原理与特点电火花加工是一种利用电极之间脉冲放电时所产生的电力腐蚀现象进行加工的方法。
在加工过程中,工具与工件之间不断产生脉冲性的火花放电,靠放电使局部瞬间产生的高温蚀除工件多余材料。
随着电火花加工技术的发展,逐步在成型加工方面形成两种主要加工方式:电火花成型加工和电火花线切割加工。
1.电火花加工原理图6.70 电火花加工原理电火花加工又称为电腐蚀加工,其加工原理见图6.70所示。
电火花加工时,工具电极和被加工工件放入绝缘液体中,在两者之间加100V左右的电压。
因为工具电极和工件的表面不是完全平滑的,存在着无数个凹凸不平处,所以当两者逐渐接近、间隙变小时,在工具电极和工件表面的某些点上,电场强度急剧增大引起绝缘液体的局部电离,通过这些间隙发生火花放电。
电火花加工时,一秒钟会发生数十万次脉冲放电,每次放电都由10-5~10-4 ms的火花放电及持续10-3~1ms的过渡电弧构成。
火花的温度高达5 000℃,火花发生的微小区域(放电点)内,工件材料被熔化和气化。
同时,该处的绝缘液体也被局部加热,急速地气化,体积发生膨胀随之产生很高的压力。
在这种高压力的作用下,已经熔化、气化的材料就从工件的表面迅速地被除去。
每次放电后,工件表面上产生微小放电痕,这些放电痕的大量积累就实现了工件的加工。
电火花加工中的放电具有放电间隙小、温度高、放电点电流密度大等特点。
2.电火花加工的特点电火花加工有以下特点:(1)可以加工任何硬、脆、韧、软、高熔点的导电材料,在一定条件下,还可以加工半导体材料和非导电材料。
(2)加工时“无切削力”,有利于小孔,薄壁、窄槽以及各种复杂形状的孔、螺旋孔、型腔等零件的加工,也适合于精密微细加工。
(3)当脉冲宽度不大时,对整个工件而言,几乎不受热的影响,因此可以减少热影响层,提高加工后的表面质量,也适于加工热敏感的材料。
(4)可以任意调节脉冲参数,在一台机床上连续进行粗、半精、精加工。
电火花加工(电火花)
电火花加工(电火花)(文献部分内容摘抄)放电加工(EDM)是在介电液体存在下,通过快速重复放电来去除导电材料的过程。
凹模电火花加工和线切割电火花加工是电火花加工的两种主要类型,广泛应用于各行各业。
本文将概述电火花成型加工。
介绍了电火花加工的历史,沉模电火花工作原理,简要概述了沉模电热加工系统的基本组成部分,并简要介绍了沉模电弧加工的操作参数及加工特点。
本文介绍了工业界和学术界报道的一些模压沉积电火花加工的重要应用。
本文重点介绍了沉模电火花加工领域的最新进展和未来范围。
电火花加工(EDM)是产生最早、应用最广泛的非传统加工工艺之一电火花加工的主要优点是它能够加工导电材料,而不论材料的硬度、强度和其他机械性能。
电火花加工能够加工具有复杂几何形状的零件,保持较高的尺寸精度和可接受的表面光洁度。
目前,电火花加工在模具、航空航天、汽车、微电子和生物医学等工业中被广泛应用。
模切割电火花和线切割电焊是电火花的两种主要类型,其中铣削电火花由于其与传统铣削工艺相似的加工三维(3D)形状的能力而越来越受欢迎。
随着微细电火花加工技术的不断发展,微细电火花加工越来越受到各行业的青睐。
所有三种电火花加工(模压铣削、线切割和铣削电火花)都证明了其为各种工业应用制造微尺度复杂特征的能力。
电火花加工领域的另一个最新进展是基于电火花加工的混合工艺。
混合加工工艺的目标是通过将其他加工工艺与电火花加工相结合和/或在电火花工艺中应用外部辅助来最大限度地减少电火花的缺点或解决电火花的一个具体问题。
对排放间隙中气泡和碎屑运动的模拟很有趣,但其目的在于分析在多次排放过程中排放物的去除能力的影响。
更准确地说,在液体气泡和气泡边界上产生的放电可能导致不同的坑移除。
左图:用透明导电SiC电极进行((元奥仪器pco.dicam型号)高速相机观测实验装置图。
右图:在Sic和铜电极之间的间隙中,在第100次放电时采集的图像示例。
使用元奥仪器PCO.dicam型号高速相机成像的气泡和等离子体膨胀在200,000帧/秒。
第二章 电火花加工
23
第二章 电火花加工
电压 / V
^ ui
ti tp
电射 / A 空空
to td te ti to
电加 / µs
电电
电电
粗过电电
短短
ie
^
is
电加 / µs
图2 脉冲参数与脉冲电压、电流波形
24
第二章 电火花加工 4.脉冲间隔to(μs) 脉冲间隔简称脉间或间隔(也常用OFF、TOFF表示), 它是两个电压脉冲之间的间隔时间(如图3-2所示)。间隔时 间过短,放电间隙来不及消电离和恢复绝缘,容易产生电 弧放电,烧伤电极和工件;脉间选得过长,将降低加工生 产率。加工面积、加工深度较大时,脉间也应稍大。 5.放电时间(电流脉宽)te(μs) 放电时间是工作液介质击穿后放电间隙中流过放电电 流的时间,即电流脉宽,它比电压脉宽稍小 电流脉宽, 电流脉宽 它比电压脉宽稍小,二者相差一 个击穿延时td。脉冲宽度ti和电流脉宽te对电火花加工的生 产率、表面粗糙度和电极损耗有很大影响,但实际起作用 的是电流脉宽te。
16
第二章 电火花加工
(4) 极间介质的消电离 极间介质的消电离(如图 (e)所示)。加工 液流入放电间隙,将电蚀产物及残余的热 量带走,并恢复绝缘状态。若电火花放电 过程中产生的电蚀产物来不及排除和扩散, 产生的热量将不能及时传出,使该处介质 局部过热,局部过热的工作液高温分解、 积炭,使加工无法继续进行,并烧坏电极。 因此,为了保证电火花加工过程的正常进 行,在两次放电之间必须有足够的时间间 隔让电蚀产物充分排出,恢复放电通道的 绝缘性,使工作液介质消电离。
14
第二章 电火花加工
(2) 电极材料的熔化、气化热膨胀 电极材料的熔化、气化热膨胀(如图 (b)、(c) 所示)。液体介质被电离、击穿,形成放电通道 后,通道间带负电的粒子奔向正极,带正电的 粒子奔向负极,粒子间相互撞击,产生大量的 热能,使通道瞬间达到很高的温度。通道高温 首先使工作液汽化,进而气化,然后高温向四 周扩散,使两电极表面的金属材料开始熔化直 至沸腾气化。气化后的工作液和金属蒸气瞬间 体积猛增,形成了爆炸的特性。所以在观察电 火花加工时,可以看到工件与工具电极间有冒 烟现象,并听到轻微的爆炸声。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电火花加工技术摘要:电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用蚀除导电材料的特种加工方法,又称放电加工或电蚀加工,英文简称EDM。
本文简要介绍了电火花加工技术的发展历程、国内外研究现状以及未来发展趋势。
关键词:电火花加工;发展历程;现状;发展趋势一、电火花加工简介电火花加工(英语:Electrical Discharge Machining,简称EDM),是特种加工技术的一种,广泛应用在模具制造、机械加工行业。
放电加工可以用来加工传统切削方法难以加工的超硬材料和复杂形状的工件,通常用于加工导电的材料,可以在诸如钛合金、工具钢、碳钢和硬质合金等难加工材料上加工复杂的型腔或者轮廓。
其原理是在导电的工具电极和工件之间施加上周期性快速变化的电压脉冲,通过浸没在绝缘介质中的工具电极与工件之间的脉冲性放电所产生的局部高温使工件表面金属熔化、气化,从而蚀除金属。
因此在加工过程中几乎不存在切削力。
二、电火花加工发展历程1943年,苏联学者拉扎连科夫妇(Dr.B.R. Lazarenko 及 Dr. N.I. Lazarenko )发明电火花机,使用电阻、电容回路,即RC 回路。
50年代,改进为电阻、电感、电容等回路,即既RLC回路。
60年代,改进为晶体管,可控硅脉冲电源。
70年代,改进为高低压复合脉冲、多回路脉冲、等幅脉冲、可调波形脉冲电源。
80年代,采用工业级CPU控制,能实现G码编辑等功能,极大的提升了使用性能。
日本牧野(Makino)公司在1980年发明第一台数字控制放电加工机。
至1990年代,采用了多轴控制及刀库(ATC)技术。
近些年,无电阻技术、直线导轨技术、混粉技术等一批新工艺也成功运用在电火花机上。
在我国,电火花加工技术经历了手动电火花加工、液压伺服、直流电机、步进电机、交流伺服电机等一系列过程。
控制系统也越来越复杂,从单轴数控到3轴数控、再到多轴联动。
20世纪90年代初期,3轴电火花机在国内还是空白,主要是从日本和瑞士弓I进。
直到90年代中期,北京市电加工研究所才和日本沙迪克公司合作开始制造3轴电火花加工机,也可以说开始步人国内电火花加工机的真正快速发展轨道,后来在此基础上又生产研发了4轴4联动电火花加工机[1]。
三、电火花加工国内外研究现状1 独特的精密、微细加工能力根据国外的调查和统计,在众多的微细加工方法中(切削、线切割、磨削、激光、超声、电子束等加工),电火花微细加工的应用占第一位[2],这说明了电火花微细加工的重要作用。
实现精密、微细加工的一个重要条件是加工单位(即每次放电的蚀除量)尽可能小。
随着现代电力电子技术的发展,电火花加工的加工精度与表面质量得到了极大的提高,加工单位也日趋变小,有些零件的加工精度已属于微纳加工的范畴。
目前,应用电火花成形加工技术已可稳定地得到尺寸精度高于0.1μm、表面粗糙度Ra <0.01μm的加工表面。
电火花成形加工已成为零件精、微加工的有效手段之一。
对于微细孔和微细轴的加工,日本东京大学生产技术研究所增泽隆久教授加工出的5μm微细孔和2.5μm微细轴,代表了当前这一领域的世界先进水平。
我国生产的数控高速电火花小孔加工机的工艺指标已达到国际先进水平,加工的小孔深径比已超过1000:1,可加工不锈钢、硬质合金、铜、铝等各种导电难加工材料。
具有从斜面和曲面穿人、直接使用自来水工作液等特点.最高加工速度可达60mm/min。
除了微细孔和微细轴的加工外,微细电火花加工技术更深远的意义在于通过微细电火花铣削技术制造更小的微三维结构,进而制造更小的微型机械及微型机器人,从而体现该技术的潜在价值和应用前景。
美国林肯大学加工的l/8微型球瓣,其球径仅为l50μm。
日本东京大学增泽隆久教授以微细电火花加工为主要技术手段,利用简单形状的微细电极,制作出了长500μm、宽300μm、深200μm的微型汽车模具,井用此模具制作出了微型汽车模型。
2 智能化程度迅速提高由于电火花成形加工是在复杂环境下基于复杂任务对复杂对象的控制,传统的控制系统已不能满足自动化加工的要求,提高电火花成形加工过程的自动化程度是电加工技术发展的必然趋势。
因此,需要建立多输入、多输出的控制系统。
智能控制系统具有自学习和自适应功能,能自主间节系统的控制结构、参数和方法.进行决策规划和广义问题求解。
它就如同一个有经验的操作者,可通过对加工信息的定性刻划,模拟熟练操作者的思维方式,实时调整加工参数,进而实现提高加工效率、加工精度、加工过程稳定性以及简化操作过程、拓宽加工范围的目的。
国外电火花成形机在专家系统方面近来有了新的进展。
例如瑞士阿奇夏米尔公司ROBOFORM 2000L机床配置了新的PROGRAM EXPERT2自动编程系统,加工时按照画面的提示只需输入少量数据,如电极损耗、表面粗糙度值、加工工件及电极材料、加工面积、加工深度等,系统可自动选取最优参数,自动监控加工过程,实现自动化最优控制[3]。
3 日益高速、高效[4][5]近年来在提高电火花成形加工效率方面有了新突破。
利用非燃性工作液或在工作液中加人添加剂的电火花成形机可成倍提高加工速度。
如日本的三菱电机公司、Sodick公司相继开发了使用水基工作液的电火花成形机,德国AEG“艾洛特姆”公司在水基工作液中加工钢材,在相同的平均加工电流条件下,加工速度比煤油工作液高出2~3倍。
瑞士阿奇夏米尔公司最新推出的线切割机,最大切割速度为500mm2/min。
以往直线电机主要用在加工中心上。
目前,直线电机在沙迪克公司生产的EDM 和wEDM 机床上已广泛使用。
直线电机的使用使传动机构简单,不用滚珠丝杠没有传动间隙,能实现高速度、高加速度移动,满足了EDM加工高速响应的特别要求。
最大驱动力高达3000N,快进速度可达100m/min,最大加速度达到1 g以上。
能消除由于电蚀产物未排除而发生的集中放电,二次放电间隙不均匀等现象也得到极大的抑制,从而改善了加工质量,提高了加工效率。
随着互联网技术的高速发展和普及,EDM 机床的通信和控制也发生了巨大的变化。
FANAC公司开发了集中管理软件包。
公司的总监视器通过国际互联网可很便利地监控多台远程异地的WEDM机床的工作状况,并能实时诊断分析每一台机床的工作故障,及时向用户提出解决措施。
三菱电机公司也开发了远程操作监控系统。
远程终端的显示器画面与机床旁的显示器画面完全一样。
用户通过随机携带电话可与制造商讨论加工参数调整、机床故障诊断维修、订货等有关问题,实现了电火花加工过程的高效性。
此外,新型电源和机器人技术也已应用到了电火花加工机床中。
例如夏米尔公司生产的某系列电火花线切割机,不仅使用了十分先进的“Clean Cut”新型脉冲电源,还配备了小型HSR一5机器人,使其加工速度和其他性能有了大幅度提高,成为目前电火花线切割机世界先进水平的代表之一。
四、电火花加工未来发展趋势1 电火花加工精密化电火花加工的精密化可以理解为两方面的内容:一是加工尺寸上的精密性,二是加工表面质量的精密性。
在电火花加工过程中,与尺寸精度有直接关系的因素是放电间隙和电极损耗。
精密的电火花加工,加工过程中应保持较小的放电间隙,并使放电间隙稳定在一个较小范围内。
而放电间隙的调整与极间状态密切相关,实时、准确地检测出两极间的放电状态,则为调整两极间合适的放电间隙提供了必要的条件,加工间隙的准确调整还有赖于合理的伺服控制策略等。
由于电火花加工状态复杂多变,为加工状态的检测和放电间隙的控制增加了难度。
因此,需加强电火花加工状态的检测、加工间隙的控制以及加工电源的稳定性等方面的研究[6]。
电火花加工表面质量的精密化是加工精密化的另一方面的内容。
电火花加工表面是一系列的微小放电凹坑重叠组成的,一般的加工条件下表面有微裂纹,为达到较好的加工表面,需要在电火花之后增加手动抛光工序,这增加了工人的劳动强度和加工成本,制约电火花加工速度的提高,不利于自动化加工实现。
因此,实现电火花加工表面质量的精密化仍是今后的研究发展方向。
2 电火花加工的高速高效化同传统的切削加工相比,电火花加工速度和加工效率很低。
因此,高速高效化是电火花加工技术的发展方向。
根据现有对电火花加工机理的研究情况来分析,提高电火花加工速度和加工效率,可以从以下几方面来实现:(1)研究新型的电火花节能电源。
此方法是从提高电火花电源的使用效率入手从而提高电火花加工效率。
(2)采用电火花铣削加工技术,即使用简单形状的电极进行类似于数控铣削加工的电火花铣削技术的也是提高的火花加工速度的一种方法,并可实现电火花加工的自动化。
尤其在加工形面复杂的工件时,电火花铣削加工更是具有独特的优点。
(3)提高电火花加工机床伺服系统的响应(4)利用先进技术手段提高电火花加工速度。
计算机技术和智能技术等技术的发展,可促进电火花机关技术的发展,将这些先进技术应用到电火花加工中,可以提高电火花加工速度。
参考文献:[1]杨大勇.电火花加工技术的发展历程.模具工程,2009(7)[2]王克锡.电火花加工的最新发展(上).金属加工(冷加工),2009(8)[3]樊仁才.电火花加工技术研究和应用的现状[4]戴喜红,李文卓.电火花加工技术的高效化研究进展.机械工程师,2008(2):20~22.[5]李立青,郭艳玲,白基成等.电火花加工技术研究的发展趋势预测.机床与液压,2009(2):174~177.[6]杨大勇,电火花成形加工技术的发展概况.电加工与模具,2010。